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...or how to make a million bucks by giving change parsimoniously!!
Problem: You have access to unlimited amount of 1, 20 and 50 cents coins.
A client prefers to travel light, i.e. to minimize the #coins.

How to give N cents back in change without losing a customer?

Strategy #1:Start with heaviest coins, and then complete/fill-up with coins of
decreasing value.
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...or how to make a million bucks by giving change parsimoniously!!
Problem: You have access to unlimited amount of 1, 20 and 50 cents coins.
A client prefers to travel light, i.e. to minimize the #coins.

How to give N cents back in change without losing a customer?

Strategy #1:Start with heaviest coins, and then complete/fill-up with coins of
decreasing value.
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Problem a priori (?!) non-solvable using such a greedy approach, as a
(simpler) problem is already NP-complete (thus Efficient solution = 1M$).
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Strategy #2:Brute force enumeration — #Coins" (Ouch!)
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Strategy #2:Brute force enumeration — #Coins" (Ouch!)

Strategy #3: The following recurrence gives the minimal number of coins:
O 5 1+ Min#Coins(N — 1)
Min# Coins(N) = Min ¢ “# 1 4 Min#Coins(N — 20)
P

S

‘ — 14 Min#Coins(N — 50)

With some memory (N intermediate computations), the minimum number of
coins can be obtained after Nx#Coins operations. An actual set of coins can
be reconstructing by tracing back the choices performed at each stage,
leading to the minimum.

Remark:We still haven’t won the million, as N has exponential value
compared to the length of its encoding, so the algorithm does not qualify
as efficient (i.e. polynomial).

Still, this approach is much more efficient than a brute-force enumeration:
= Dynamic programming.



Dynamic programming: General principle

Dynamic programming = General optimization technique.
Prerequisite: Optimal solution for problem P can be derived from solutions
to strict sub-problems of P.

Bioinformatics :
Discrete solution space (alignments, structures...)
+ Additively-inherited objective function (cost, log-odd score, energy. . .)
= Efficient dynamic programming scheme

Example: Local Alignment(Smith/Waterman)
1

i

(]
‘ 1 Match/Mismatch ~ j-1 j‘ W(I7 0) _ 0
| e L owE)) = 0
1 i 1 nsetion 1 j W([ — .‘| Ni _.1) + mj
1 i W(i,j) = max W(i—1,))+ pi
| 4 W(i,j—1)+ pa



Algorithmic details 6/40

Dynamic programming scheme defines a space of (sub)problems and a
recurrence that relates the score of a problem to that of smaller problems.

Given a scheme, two steps :

» Matrix filling: Computation and tabulation of best scores (Computed
from smaller problems to larger ones).

» Traceback: Reconstruct best solution from contributing subproblems.

Complexity of algorithm depends on:
» Cardinality of sub-problem space
» Number of alternatives considers at each step (#Terms in recurrence)

Smith&Waterman example:
> i:1—>n+1=0(n)
> ji1—=>m+1=0(m) W0— 1. — 1) 4+ m,
> 3 operations at each step w(i,j) = max{ W(i—1,))+p
= ©(m.n) time/memory W(i,j = 1)+ pa

W(i,0) = 0
w(,) = o0



Properties of DP schemes 7/40

Necessary properties:

» Correctness: V sub-problem, the computed value must indeed
maximize the objective function .

Proofs usually inductive, and quite technical, but very systematic.

Desirable properties of DP schemes:

» Completeness of space of solutions generated by decomposition.
Algorithmic tricks, by cutting branches, may violate this property.

» Unambiguity: Each solution is generated at most once.
=- Under these properties, one can enumerate solution space.
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9 Variations on RNA folding

Why RNA?

RNA folding

RNA Structure(s)

Some representations of RNA structure
Thermodynamics vs Kinetics
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#RNA Functional Families (RFAM DB)

RNA functions
» Messenger
Translation
Regulation

>
>

» Enzyme
» Catalytic
>




RNA world: Resolving the chicken vs egg paradox at the origin of life... 11/40

The RN
encodes

o

\_/

replicates

A gene big enough to specify an enzyme would be too big to replicate
accurately without the aid of an enzyme of the very kind that it is trying to
specify. So the system apparently cannot get started.

R. Dawkins. The Ancestor's Tale: A Pilgrimage to the Dawn of Evolution
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The RN

encodes

replicates

A gene big enough to specify an enzyme would be too big to replicate
accurately without the aid of an enzyme of the very kind that it is trying to
specify. So the system apparently cannot get started.

[...] This is the RNA World. To see how plausible it is, we need to look at
why proteins are good at being enzymes but bad at being replicators; at why
DNA is good at replicating but bad at being an enzyme; and finally why RNA
might just be good enough at both roles to break out of the Catch-22.

R. Dawkins. The Ancestor's Tale: A Pilgrimage to the Dawn of Evolution



RNA folding 12/40

RNA is single-stranded and
folds on itself, establishing
complex 3D structures
that are essential to its
function(s).

RNA structures are stabi-
lized by base-pairs, each
mediated by hydrogen
bonds.

sJied-aseq 3olD/UOSIBA

Jed-aseq 8|qqop

Canonical base-pairs
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Three! levels of representation:

UUAGGCGGCCACAGC
GGUGGGGUUGCCUCC
CGUACCCAUCCCGAA
CACGGAAGAUAAGCC
CACCAGCGUUCCGGG
GAGUACUGGAGUGCG
CGAGCCUCUGGGAAA
CCCGGUUCGCCGCCA
cC

Primary structure Secondary structure Tertiary structure

Source: 5s rRNA (PDB 1K73:B)

TWell, mostly...
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Three! levels of representation:

UUAGGCGGCCACAGC
GGUGGGGUUGCCUCC
CGUACCCAUCCCGAA
CACGGAAGAUAAGCC
CACCAGCGUUCCGGG
GAGUACUGGAGUGCG
CGAGCCUCUGGGAAA
CCCGGUUCGCCGCCA
cC

Primary structure Secondary* structure Tertiary structure

Source: 5s rRNA (PDB 1K73:B)

TWell, mostly...



Ignored by secondary structure

» Non-canonical base-pairs
Any base-pair other than {(A-U), (C-G), (G-U)}
Or interacting on non-standard edge (# WC/WC-Cis) [Lwo1].

ey Eed

Canonique CG pair(WC/WC-Cis)  Non-canonique CG pair (Sugar/WC-Trans)

» Pseudoknots (PKs)

Pseudoknoted structure of group | ribozyme (PDBID: 1YOQ:A)

Considering PKs may lead to better predictions, but:

» Some PK conformations are simply unfeasible;

» Folding in silico with general pseudoknots is NP-complete [LP00];
Still, folding on restricted classes of conformations seems
promising [CDR*04].
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Outer-planar graphs
Hamiltonian-path, A(G)<3, 2-connected*

Supporting intuitions

Different representations
Common combinatorial structure

* Additional steric constraints
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Various representations for a versatile biomolecule

CCCCOCC CCCCannn 200 (CCCCCennn D) e 1320323 .-

Motzkin words™

Outer-planar graphs ‘ //—N

Hamiltonian-path, A(G)<3, 2-connected*

Non-crossing arc-annotated sequences*

Supporting intuitions

Different representations
Common combinatorial structure

Dot plots Non-crossing arc diagrams* * Additional steric constraints

Adjacency matrices*



Various representations for a versatile biomolecule

CCCCOCC CCCCannn 200 (CCCCCennn D) e 1320323 .-

Positive 1D meanders* over s = {+1, —1,0}

Outer-planar graphs ‘ /—\

Hamiltonian-path, A(G)<3, 2-connected* - . . . . - .

Dot plots
Adjacency matrices*

Non-crossing arc-annotated sequences*

Supporting intuitions

Different representations
Common combinatorial structure

Non-crossing arc diagrams* * Additional steric constraints



Thermodynamics aparté

At the nanoscopic scale, RNA structure fluctuates (=~ Markov process).

-
S

Convergence towards a stationary distribution at the Boltzmann equilibrium,
where the probability of a conformation only depends on its free-energy.
Corollary: Initial conformation does not matter.

Questions: For a given conformation space and free-energy model:
A. Determine most stable (Minimum Free-Energy) structure at equilibrium;
B. Compute average properties of Boltzmann ensemble;
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Transcription: RNA synthesized, supposedly without structure?

2Except for co-transcriptional folding. . .
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Transcription: RNA synthesized, supposedly without structure?

T =10h
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Away from equilibrium 17/40

Transcription: RNA synthesized, supposedly without structure?

T =10h

But most mRNAs are degrade before 7h (Org.: Souris [SSN*09]).

>

Determine most stable (Minimum Free-Energy) structure at equilibrium;
B. Compute average properties of Boltzmann ensembile;

C. Determine most likely structure at finite time T.
(c.f. H. Isambert through simulation, NP-complete
deterministically (MTSC09])

2Except for co-transcriptional folding. . .
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e Free-energy minimization
@ Nussinov-style RNA folding
Turner energy model
MFold/Unafold
Performances and the comparative approach

o
°
o
@ Towards a 3D ab-initio prediction



Folding by minimizing free-energy

Problem A: Determine Minimum Free-Energy structure (MFE).

Ab initio folding prediction =
Predict RNA structure from its sequence w only.

3D 2t

» Conformations: Set S, of secondary structures compatible (w.r.t.
base-pairing constraints) with primary structure w .

> Free-Energy: Function E,, s (KCal.mol™"), additive on motifs occurring
in any sequence/conformation couple (w, S).

» Native structure: Functional conformation of the biomolecule.
Remarks:

> Not necessarily unique (Kinetics, or bi-stable structures);
> In presence of PKs — Ambiguous: Which is the native conformation?




Nussinov/Jacobson model 20/40

Nussinov/Jacobson energy model (NJ)

Base-pair maximization :
> Additive model on independently contributing base-pairs;
» Canonical base-pairs only: Watson/Crick (A/U,C/G) and Wobble (G/U)

= E, s = —#Paires(S)

Folding in NJ model < Base-pair maximization

Example:

UUUUCCCUAAAAGG
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Nussinov/Jacobson energy model (NJ)

Base-pair maximization (with a twist):
> Additive model on independently contributing base-pairs;
» Canonical base-pairs only: Watson/Crick (A/U,C/G) and Wobble (G/U)

= E, s = —#Paires(S)

Folding in NJ model < Base-pair (weight) maximization

Example:

UUUUCCCUAAAAGG

Variant: Weight each pair with —#Hydrogen bonds
AG(G=C) =-3 AG(A=U)=-2 AG(G-U) =1



Nussinov/Jacobson DP scheme 21/40

Ny = 0, Vteli,i+0]
Nit1 i unpaired
min

J A .
k:rm51+1 AG,',k + N,'+17k_1 + Nk+1,/ 1 palred with k
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, , P j i ko]
Ni = 0, Vtelii+0]
N1 i unpaired
N = i j
i J min min AGi,k + Ni+1,k—1 4 Nk+1,j i paired with k
k=i+0+1

Correctness. Goal = Show that MFE over interval [/, j] is indeed found in N; ;
after completing the computation. Proceed by induction:

> Assume that property holds for any [/, '] such that j — i" < n.
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, , P j i ko]
Ni = 0, Vtelii+0]
N1 i unpaired
N = i j
i J min min AGi,k + Ni+1,k—1 4 Nk+1,j i paired with k
k=i+0+1

Correctness. Goal = Show that MFE over interval [/, j] is indeed found in N; ;
after completing the computation. Proceed by induction:
> Assume that property holds for any [/, '] such that j — i" < n.
» Consider [i,j],j — i = n. Let MFE; ; := Base-pairs of best struct. on [/, ].
Then first position i in MFE; ; = is either:
> Unpaired: MFE; ; = MFE; 4 ; — free-energy = Ni4 ;



Nussinov/Jacobson DP scheme 21/40

Ny = 0, Vtelii+0]

N1, i unpaired
N = i i
& min . rT(g AGijk + Niptk—1 + Nisr,j 1 paired with k
1

Correctness. Goal = Show that MFE over interval [/, j] is indeed found in N; ;
after completing the computation. Proceed by induction:

> Assume that property holds for any [/, '] such that j — i" < n.

» Consider [i,j],j — i = n. Let MFE; ; := Base-pairs of best struct. on [/, ].
Then first position i in MFE; ; = is either:
> Unpaired: MFE; ; = MFE; 4 ; — free-energy = Ni4 ;
> Paired to k: MFE,, = {(, k)}uMFE,+1 k—1 UMFEj 1 .
(Indeed, any BP between [i + 1, k — 1] and [k + 1, j] would cross (i, k))
— free-energy = AG,"k + N,'+1,k_1 + Nk+1 J
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Turner energy model 23/40

Based on unambiguous decomposition of 2% structure into loops:

Free-energy A G of a loop depend on
bases, assymmetry, dangles ...

Experimentally determined
+ Interpolated for larger loops.

Improved results by taking stacking into account.
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Turner energy model 23/40

Based on unambiguous decomposition of 2% structure into loops:
» Internal loops
> Bulges
» Terminal loops
» Multi loops

Free-energy A G of a loop depend on
bases, assymmetry, dangles ...

Experimentally determined
+ Interpolated for larger loops.

Improved results by taking stacking into account.



Turner energy model

Based on unambiguous decomposition of 2% structure into loops:
» Internal loops
> Bulges
» Terminal loops
» Multi loops
» Stackings

Free-energy A G of a loop depend on
bases, assymmetry, dangles ...

Experimentally determined
+ Interpolated for larger loops.

Improved results by taking stacking into account.



MFE DP equations 24/40

O—0

Terminal loops

. Stackings

Al

loop Bulges/Internal loops

Stem

Multi loops
(Sequence >2 helices)
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MFE DP equations

Stem
loop

O—0

Terminal loops

f

Stackings
& ! L ,é
Bulges/Internal loops

s @

Multi loops
(Sequence >2 helices)

s

Helix sequence

Helix

Seq. + Helix

'd

Y

Helix

600

Unpaired base

Stem Sloop



MFold Unafold 25/40

En(i, j): Energy of terminal loop enclosed by (i, j) pair

Egi(i, ): Energy of bulge or internal loop enclosed by (i, j) pair

Es(i, j): Energy of stacking (i, j)/(i +1,j — 1)

Penalty for multi loop (a), and occurrences of unpaired base (b) and helix (c) in multi loops.

vvyyvyy

b
oo 4
¢

¢

004

DP recurrence

En(i,J)

Es(i, ) + M'is1,j-1
Ming: o (Eai(i, 7', ', J) + M'iv jr)
a -+ Ming(Mig1 k-1 + M'kj—1)

My = Mink{min(/\/t;,k,hb(k—1))+/\/l‘k_,}

M'ij = Ming {b+ Mijr, e+ /vl’,-,,-}




Backtracking 26/40

Backtracking to reconstruct MFE structure:

EH(I7./)
. Es(i,j) + M is1,j-1
M'ijl = Min . Sy ’
M|n/'7j/(EBI(Iyl ,] 7/) + M "/,j')
a-+ Ming( Miy1 k-1 + M1k7j71 )
Mij = Ming {min (Mik—1,b(k —1)) + M1k,i}
M1i,i = Ming {b + /\/11,',/‘—17 c+ M//J}
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Backtracking to reconstruct MFE structure:

//,— - T EH(I7./)
e - Es(i )+ Mgy
M,i,j «~—=-Min \ T /
N - —»M|ni'7j/(EBI(I7I7]7/)+M"/’j,)
S~ - - a+ Ming( Mgt k-1 + M'xj1)
Mi; = Ming {min (Mik—1,b(k —1)) + M1k,i}
My = Moo oot




Backtracking 26/40

Backtracking to reconstruct MFE structure:

En(i.J)

Es(i,f) + M'i1,j—1
Miny y (Egi(i, 1", ,j) + M'in )
a+ Ming( Mgt -1 + M'j_1)

Mij = Ming {min (Mik—1,b(k — 1)) + M1k,,}

=
I

Mingk {b + M1i,j—1 ,C+ M//)/}

Complexity:

For each min, O(n) potential contributors
= Worst-case complexity in O(n?) for naive backtrack.




Backtracking

Backtracking to reconstruct MFE structure:

EH(I7./)
. Es(i,j) + M is1,j-1
M,i,j = Min . PRI ’
M|n/'7j/(EBI(Iyl ,] 7/) + M "/,j')
a-+ Ming( Miy1 k-1 + M1k7j71 )
Mij = Ming {min (Mik—1,b(k —1)) + M1k,i}
M1i,i = Ming {b + /\/11,',/‘—17 c+ M//J}

Complexity:

For each min, O(n) potential contributors
= Worst-case complexity in O(n?) for naive backtrack.




Backtracking 26/40

Backtracking to reconstruct MFE structure:
En(i, ))
Es(i,j) + M'iz1,j-1
Mini’ j’(EBI(i [./ j/ _/) J’_M’I., ./)
a+M|nk(M,+1k 1 +M Kj—1)

./\/l/i,/ = Min

M, <—:—M%{m'9£/}4m—17 b(k —1))+M k/}
M ‘:-—Mmﬁ{b—FMLi,f:ﬂC-!-M i,j}

Complexity:

For each min, O(n) potential contributors
= Worst-case complexity in O(n?) for naive backtrack.




Backtracking 26/40

Backtracking to reconstruct MFE structure:

1))
, . Es(i,j) + M'i1,j—1
M’ = Min . RV ,
Mln/’,f'(EB’(lvl i 7/) +M I",/")
a-+Ming( Migt k-1 + M'ijo1)
My, = Ming {min (Mo, b(k = 1)) + M’}
M = Ming {b+M1i,j717C+M/i,j}
Complexity:

For each min, O(n) potential contributors
= Worst-case complexity in O(n?) for naive backtrack.
Keep best contributor for each Min = Backtracking in O(n)




Backtracking 26/40

Backtracking to reconstruct MFE structure:

EH(’7])

» y Es(i, ) + M'is1,j-1

ij = N . PR /

/ Min;: o (Egi(i, 1", J) + M'is )

a+ Ming( Mgt ,—1 + M'xj_1)
M;j| = Ming {min (Mik—1,b(k —1))+ M1k,i}
/\/ﬂ,.,l- = Ming {b+M1i,j717C+M/fJ}
Complexity:

For each min, O(n) potential contributors
= Worst-case complexity in O(n?) for naive backtrack.
Keep best contributor for each Min = Backtracking in O(n)

= UnaFold [MZ08)/RNAFold [HFS*94] compute the MFE for the Turner model
in overall® time/space complexities in O(n®)/O(n?)

3Using a trick/restriction for internal loops...



Two main approaches 27/40

Definition (Ab initio folding)

Starting from sequence, find conformation that minimizes free-energy.

Advantages: Limitations:
» Mechanical nature allows the » Hard to include PKs
(in)validation of models > Highly dependent on
» Reasonable complexity energy model
O(n*)/O(r?) time/space » No cooperativity

» Exhaustive nature > Limited performances



Two main approaches 27/40

Definition (Ab initio folding)

Starting from sequence, find conformation that minimizes free-energy.

Advantages: Limitations:
» Mechanical nature allows the » Hard to include PKs
(in)validation of models > Highly dependent on
» Reasonable complexity energy model
O(n*)/O(r?) time/space » No cooperativity
> Exhaustive nature » Limited performances

Definition (Comparative approach)

Starting from homologous sequences, postulate common structure and find
best possible tradeoff between folding & alignment.

Avantages : Limitations
» Better performances » Easily unreasonable complexity
> (Limited) cooperativity » Non exhaustive search

» Self-improving » Captures transient structures



UUAGGCGGCCACAGC
GGUGGGGUUGCCUCC
CGUACCCAUCCCGAA
CACGGAAGAUAAGCC
CACCAGCGUUCCGGG
GAGUACUGGAGUGCG

CGAGCCUCUGGGAAA
CCCGGUUCGCCGCCA
cc

Sequence

Reminder: Mcc=

the— —fte—

\/(r++f+)(r++f— Y=+t~ +f7)

2%V Structure




Performances

Taille Sens.
<700 70-73%
[MSZT99, DCCG04]
16s,23s  ~50%
MCC~ 0.5 [GG04]
UUAGGCGGCCACAGC Thermodynamics
GGUGGGGUUGCCUCC
CGUACCCAUCCCGAA
CACGGAAGAUAAGCC

CACCAGCGUUCCGGG
GAGUACUGGAGUGCG

CGAGCCUCUGGGAAA
CCCGGUUCGCCGCCA
cc

Sequence

2%V Structure

the— —fte—

Reminder: McC=
\/(r++f+)(t++f— Y=+t~ +f7)




Performances

UUAGGCGGCCACAGC
GGUGGGGUUGCCUCC
CGUACCCAUCCCGAA
CACGGAAGAUAAGCC
CACCAGCGUUCCGGG
GAGUACUGGAGUGCG

CGAGCCUCUGGGAAA
CCCGGUUCGCCGCCA
cc

Sequence

NS

Reminder: Mcc=

Taille Sens.
<700 70-73%
[MSZT99, DCCGO4]

16s,23s  ~50%

N

MCC~ 0.5 [GGo4]
Thermodynamics

2%V Structure

Sens. Spé.
~75%

MCC.
~75% 0.8
Comparative [GG04]

A

the —frte
\/(r++f+)(t++f— Y=+t~ +f7)




Towards a 3D ab-initio prediction

Goal: From sequence to all-atom/coarse grain 3D models!!!

UUAGGCGGCCACAGC
GGUGGGGUUGCCUCC
CGUACCCAUCCCGAA
CACGGAAGAUAAGCC
CACCAGCGUUCCGGG
GAGUACUGGAGUGCG

CGAGCCUCUGGGAAA
CCCGGUUCGCCGCCA
cc

Séquence 3*Y Structure




Towards a 3D ab-initio prediction

Goal: From sequence to all-atom/coarse grain 3D models!!!
» Comparative models + Molecular dynamics: RNA2D3D [SYKB07]

UUAGGCGGCCACAGC
GGUGGGGUUGCCUCC
CGUACCCAUCCCGAA
CACGGAAGAUAAGCC
CACCAGCGUUCCGGG
GAGUACUGGAGUGCG

CGAGCCUCUGGGAAA
CCCGGUUCGCCGCCA
cc

Séquence

Comparative
KNetFold

2%V Structure

+ Pseudoknots
. J

Molecular
dynamics

3% Structure




Towards a 3D ab-initio prediction

Goal: From sequence to all-atom/coarse grain 3D models!!!

» Pipeline MC-Fold/MC-sym [PM08]

UUAGGCGGCCACAGC

GGUGGGGUUGCCUCC

CGUACCCAUCCCGAA

CACGGAAGAUAAGCC

CACCAGCGUUCCGGG

GAGUACUGGAGUGCG )
CGAGCCUCUGGGAAA

CCCGGUUCGCCGCCA MCFold

cc

Séquence

MCSym

%,

2 Structure 3% Structure




Outline 30/40

o Boltzmann ensemble
@ Nussinov: Minimisation = Counting
@ Computing the partition function
@ Statistical sampling



The canonical Boltzmann Ensemble

RNA breathes = There is no more than a single conformation.

New paradigm

The conformations of an RNA coexist in the Boltzmann distribution.

Consequence: The MFE probability can be arbitrarily small.
= To understand how RNA acts, one must account for the set of alternative
structures.

In particular, structurally close structures may ally, and become the most
realistic candidate in the search for a functional conformation.



The canonical Boltzmann Ensemble

RNA breathes = There is no more than a single conformation.

New paradigm

The conformations of an RNA coexist in the Boltzmann distribution.

Consequence: The MFE probability can be arbitrarily small.
= To understand how RNA acts, one must account for the set of alternative
structures.

In particular, structurally close structures may ally, and become the most
realistic candidate in the search for a functional conformation.



Boltzmann Distribution: Definition

For each structure S compatible with an RNA w, the Boltzmann distribution
associates a Boltzmann factor Bs,, = e%, where:

> Es, is the free-energy S (kCal.mol™")

» T is the temperature (K)

> Ris the perfect gaz constant (1.986.1073 kCal.K~'.mol~")

To obtain a distribution, one simply renormalizes by the partition function

where S, is the set of conformations that are compatibles with w.

The Boltzmann probability of a structure S is simply given by

7E5,w
e RT

Ps.., =
s, Z.




Nussinov/Jacobson DP scheme 33/40

i j i+ j i k j
Ni: = 0, Vteli,i+6]
Nit1, i unpaired
Nij = min I — .
i, k:rp-f—lg+1 AG,',k =+ N,'+17k_1 =+ Nk+1,/ ] palred with k

Ambiguity? Consider i: Either unpaired, or paired to k.
Sets of structures generated in these two cases are clearly disjoint.
(also holds for various values of k) = Unambiguous decomposition

Completeness?True, since scheme explores every possible outcome for .
+ Induction on interval length = Complete decomposition



Nussinov/Jacobson DP scheme 34/40

>0
[ e = L -0 + NN—O
i j i+ j i k j
Recurrence for minimal free-energy of a fold :
Ni; = 0, Vteli,i+0]
N = min{ Nit1,4 (/ unpaired)
W min]k:,-+9Jr1 E/7k+N,‘+1’k,1 +Nk+1’j (i comp. with k)

Recurrence for counting compatible structures :

Cii = 1, Vtelii+6]
Cis1, (/ unpaired)
C, = A : -
i.J Z { ij:i+9+11 X Ci+1,k—1 X Ck+17j (I comp. with k)

Decomposition matters, and the rest (MFE, count.. .) follows!



Partition function 35/40

Partition function = Weighted count over compatible structures

[ 29:
o ~—e
i i k i

e = o—o

i j i+

Zi = 1, Vtelii+0]
J

Zis1,j
Fny =
" Z Z 1 X Zip1 k-1 X Zpt1,

k=i+6+1




Partition function 35/40

Partition function = Weighted count over compatible structures

[ 29:
o ~—e
i i k i

i j i+

Ziy = 1, Vteli,i+40]
Zip,j
J _
z.. = Eoplish)
" Z Z e AT X Zigik—1 X Zk41,
Kk=i+0+1




Partition function 35/40

Partition function = Weighted count over compatible structures

; p
0-i0ny

VAR % ‘{M&

~y

En(i, f)

o : Es(i,j) + M'iz1,j-1
M = Mln{ Min(Ezi(i, 7', /',j) + M’ ;1)

a+Min (Mig1x-1+M'ij1)
Mg = Min {Min (M1, b(k = 1) + M'i; }

/\/l‘i,,‘ Min{b+/\/l‘i,/‘_|4,C+M’,‘,,‘}



Partition function 35/40

Partition function = Weighted count over compatible structures

o

! o -
0- 1,00

7 @ © —{H‘*

~y

—En(i.))
e AT
—Eg(i.j)
M Mi R +M/+11|
h = in Egi(iri’ J" )
/ Min(e—m — + M'yy

oA +Min (Mjy1x-1 + My 1)
My = Min{Min (Mlk e 5v‘>+M k,}

My = Min{em + My, 7 + My}



Partition function 35/40

Partition function = Weighted count over compatible structures

o

! o -
0- 1,00

7 @ v —{H“

~y

—En(id)
AT
v - e AT M'it1j
ij = In —Egy(ii' J' )
ij i B
Min (e‘m'*/vl’,,./)
—@,, q
€A Min (Mig1 k-1 Mk j1)
) . —b(k—1)
Mij = M|n{Mln <./\/l,;k,‘,e AT )J\/l'k,,}

o~ Mi A A M
M = in<em M'j;_1,efT M'j;



Partition function 35/40

Partition function = Weighted count over compatible structures

; p
0- 00,

P % ‘{M&

efE;T(l,J)
—Egi) _, . .
L e At Z'(i+1,j—1)
Z'(i,j) = Z m (e—Ea/(h"./’./) (i ]/))

+e Y (Z(i+1,k—1)2' (k,j— 1))
2(ij) = Z(z(i,kqwe;“»k%") 2k, j)

20j) = emZ'(i,j-1)+e T Z(i))



Partition function 35/40

Partition function = Weighted count over compatible structures

Zy = 1, Vtelii+0]
Ziy1j
j 7
Z. = — Ep(i,k)
o > dooe X Zivthet X 2ot
K=it0+1

Validity of a partition function computation:
» Completeness/Unambiguity of decomposition scheme



Partition function 35/40

Partition function = Weighted count over compatible structures

Zit

1, Vtelii+6]

Zl+1]
Z —Epp(irk)
e AT X Zip1k—1 X Zk1)

k=i+6+1

Zij

Validity of a partition function computation:
» Completeness/Unambiguity of decomposition scheme
» Correctness of Boltzmann factor
Weight induced by backtrack = Product of derivations weights
e E/AT _, Weight products < Summing energy terms

g Eop(i:K)/AT o Zivthet X Zgar) = Ze x)/RT Ze E(y)/RT

_ Zefa/HT — )/RT 7E(y)/RT

_ Z e (Eop (i, k)+E(x)+E(y))/RT

X,y



Statistical sampling of RNA 22" structures 36/40

MFE (< Max probability) may be heavily dominated by a set B of
structurally similar suboptimal structures.
= Functional conformation probably closer to 3 than to MFE.

Proof-of-concept: [DCL05]
» Sample structures within Boltzmann probability
» Cluster structures
» Build and return consensus structure of the heaviest cluster

= Relative improvement for specificity (+17.6%) and sensitivity (+21.74%,
except group Il introns)

Problem
How to sample from the Boltzmann ensemble?




Stochastic backtrack (adapted from SFold) 37/40

Goal [pLo3]: From sequence w, draw S with prob. e £s/fT /=

Principle: Choose derivation with prob. prop. to its contribution to part. fun.
Precomputation: Compute part. fun. versions of matrices (2, 2’, 2").
Stochastic backtrack:

e Em 21,1 B
Ly (ewz,(i,J,))
->eHTZ(Z(/+1k—1)Z (k,j—1)) ©




Stochastic backtrack (adapted from SFold) 37/40

Goal [pLo3]: From sequence w, draw S with prob. e £s/fT /=

Principle: Choose derivation with prob. prop. to its contribution to part. fun.
Precomputation: Compute part. fun. versions of matrices (2, 2’, 2").
Stochastic backtrack:

@ Draw uniform random number r € [0, Z’(i,))

e H2 pemlz(i41,j-1) &

—Egy (i, 7 )
20 = x (e 20)
e S (2(i+1,k-1Z'(kj—1) ©



Stochastic backtrack (adapted from SFold) 37/40
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Goal [pLo3]: From sequence w, draw S with prob. e £s/fT /=

Stochastic backtrack:
@ Draw uniform random number r € [0, Z’(i,))
@ Subtract from r the contributions of Z’(i, j) until r < 0
© Recurse over associated regions/matrices
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Average-case complexity in ©(k x n+/n) (homopolymer model) [Ponos].
Boustrophedon search = O(k x nlog n) worst-case [Pon08g].
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After ©(n) operations, recurse over region of length n — 1
= Worst-case complexity in O(k x n?) for k samples

Average-case complexity in ©(k x n+/n) (homopolymer model) [Ponos].
Boustrophedon search = O(k x nlog n) worst-case [Pon08].
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