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The idea of this class

Why Combinatorial Optimization in Bioinformatics?




Bioinformatics is concerned with Molecular Biology
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Bioinformatics is concerned with Molecular Biology
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Where in this setting does computation make sense?
What can we learn (computationally)?
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What is combinatorial optimization?
Example: Traveling Salesman

Problem: Given n cities, find shortest tour (round-trip)

» finite solution space (here: all city permutations)
> objective function (here: total distance)
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What has Combinatorial Optimization to do with bioinformatics?

Typical biological problem: Find common sequence and structure motifs in the 5’
regions of mMRNAs that are upregulated under condition X over condition Y.
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What has Combinatorial Optimization to do with bioinformatics?

Typical biological problem: Find common sequence and structure motifs in the 5’
regions of mMRNAs that are upregulated under condition X over condition Y.

Break down into subproblems:
» Determine upregulated genes

> get (assembled) genome of your organism
> sequence the mRNAs under conditions X and Y using NGS
» map them to the genome (to measure expression level)

» compare 5’ regions to identify common motifs
» predict RNA structures of 5’ regions
» compare structures
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What has Combinatorial Optimization to do with bioinformatics?

Typical biological problem: Find common sequence and structure motifs in the 5’
regions of mMRNAs that are upregulated under condition X over condition Y.

Break down into subproblems:
» Determine upregulated genes

> get (assembled) genome of your organism
> sequence the mRNAs under conditions X and Y using NGS
» map them to the genome (to measure expression level)

» compare 5’ regions to identify common motifs
» predict RNA structures of 5’ regions
» compare structures

Finally, computational problems can be formalized as combinatorial optimization
problems.
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What is combinatorial optimization?

Example: RNA structure prediction
Formalize: ’Determine the best structure (out of all possible ones)’
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» objective function (here: RNA energy function) < energy model
» in which ways is it a typical example for CO in Bioinformatics?




What is combinatorial optimization?

Example: RNA structure prediction
Formalize: ’Determine the best structure (out of all possible ones)’
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» finite solution space (here: RNA secondary structures)
» objective function (here: RNA energy function) < energy model
» in which ways is it a typical example for CO in Bioinformatics?
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What is combinatorial optimization?

Example: RNA structure prediction
Formalize: ’Determine the best structure (out of all possible ones)’
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» objective function (here: RNA energy function) < energy model
» in which ways is it a typical example for CO in Bioinformatics?




Topics of the class(es)

» Jan 06th 2022 — YP: Intro & Sequence Alignment, Dynamic programming
» Jan 13th 2022 — SW: Pattern Matching, Mapping, Index data structures
» Jan 20th 2022 — YP: Genome Assembly, Graph algorithms

> Jan 27th 2022 — YP: RNA structure prediction, Dynamic programming

v

Feb 03th 2022 — SW: Advanced RNA structure prediction
» Feb 10th 2022 — SW: Comparative genomics

» Feb 17th 2022 : Exam
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Organisational stuff & grading

» Online Tools

» Zoom, Slack (possibly Gather.Town, later)
> Use Jupyter notebooks via Colab for programming:
https://colab.research.google.com/notebooks/intro.ipynb

» Article presentations (60% of grade)
» presentations in groups of three (with mixed backgrounds!)
> each defense 15 mins (sharp!, 5min each) + 5-10 mins questions
> we will let you choose from ~10 articles (next week)
> we plan presentations in classes of weeks 5 and 6

» Written exam: Feb, 17th (last class)

€ . Y. Ponty - Combinatorial Optimization in Bioinformatics 2021 - 13/ 68


https://colab.research.google.com/notebooks/intro.ipynb

Class Topic: Sequence Alignment
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Sequence Alignment

Motivation: assess similarity of sequences and learn about their evolutionary

relationship

Example: Sequences Alignment
ACCCGA ACCCGA
ACTA =align AC--TA
TCCTA TCC-TA

Homology: Alignment reasonable, if sequences homologous

ACCGA
ACCTA
ACCCGA TCCTA ACTA

Two (or more sequences) are homologous if they evolved
from a common ancestor.

Homology inherited by letters through correspondences in-
duced by columns

f

[ﬁomdfogy in anatghy]
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Plan: from simple pairwise to multiple alignment

> pairwise alignment
Sequence A: ACGTGAACT ACGTGAACT

:>align AandB

Sequence B: AGTGAGT A-GTGA-GT
» variants: global and local, realistic gap costs, . ..

» multiple alignment
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A first attempt to compare sequences: Levenshtein Distance

Sequences are words over alphabets >, e.g. X = {A,C, G, T}.

The Levenshtein Distance between two words/sequences is the minimal number of
substitutions, insertions and deletions to transform one into the other.

Example

ACCCGA and ACTA have (at most) distance 3:
ACCCGA — ACCGA — ACCTA — ACTA

In biology, operations have different cost. (Why?)
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Edit Distance: Operations

Definition (Edit Operations)

An edit operation is a pair (x,y) € (XU {-} # (-, —). We call (x,y)
» substitutioniff x 2 —and y # —
» deletion iff y = —
» insertion iff x = —

For sequences a, b, write a — 4, b, iff ais transformed to b by operation (x, y).
Furthermore, write a =g b, iff ais transformed to b by a sequence of edit operations S.

Example
ACCCGA —(C,-) ACCGA —(G,T) ACCTA —(=,T) ATCCTA
ACCCGA =(C,-),(G,T),(—=,T) ATCCTA

% . Y. Ponty - Combinatorial Optimization

Recall: — ¢ ¥, a, b are sequences in ©*
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Edit Distance: Cost and Problem Definition

Definition (Cost, Edit Distance)

Let w be a cost function on edit operations, then the edit distance of sequences a and b is
the minimum cost of all sequences S of edit operations that transform a to b.

in Bioinformatics 2021 - 19/ 68
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Edit Distance: Cost and Problem Definition

Definition (Cost, Edit Distance)

Let w be a cost function on edit operations, then the edit distance of sequences a and b is
the minimum cost of all sequences S of edit operations that transform a to b.

» Does it match our idea of evolution?
» Is it Combinatorial Optimization?
» How to compute edit distance efficiently? not at all obvious = alignments
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Alignments

a = ACGGAT
b = CCGCTT

possible alignments are
2= AC-GG-AT ; 2= ACGG-—-AT
b = -cceeT-T b = --ccGeT-T

edit operations of first alignment: (A,-),(-,C),(G,C),(-,T),(A,-)

or ... (exponentially many)

Definition (Alignment)
A pair of words &, b € (X U {—1})* is called alignment of sequences a and b (& and b are
called alignment strings), iff
1. &l = |b]
2. forall1<i<|a: 3 #—orb #—
3. deleting all gap symbols — from & yields a
and deleting all — from b yields b

in Bioinformatics 2021 - 21/ 68
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Best alignment distance = best edit distance

The columns of an alignment (4, 5) correspond to edit operations; we score it by adding
the cost of these operations.

|al

Z W(éj, i),)

i=1

The best alignment distance equals the best edit distance (if the cost of edit operations is
a metric).
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Best alignment distance = best edit distance

The columns of an alignment (4, B) correspond to edit operations; we score it by adding
the cost of these operations.

|al

Z W(?:l,', i),)

i=1

The best alignment distance equals the best edit distance (if the cost of edit operations is
a metric).

What is the significance of this?

» Edit distance is biologically well motivated, but there is no obvious way to efficiently
optimize it.

» Alignment distance is equivalent.

» — focus on alignments. One can optimize over these combinatorial objects efficiently.

% . Y. Ponty - Combinatorial Optimization in Bicinformatics 2021 - 23/ 68



Derive best alignments from smaller best alignments

a = CACGGCT
b = CCGCTG
The best alignment ends in either
> (T,G); we get it from the best alignment of (the prefixes) CACGGC and CCGCT,
» or (T,-); we get it from aligning CACGGC and b,
» or (-,G); we get it from aligning a and CCGCT.

This recursive decomposition strategy is possible because the problem has the property of
‘optimal substructure’: “the prefix alignment of any optimal alignment is itself optimal”.

» does this immediately allow us to optimize efficiently?
» the property allows us to apply dynamic programming
» many problems in biocinformatics have this property

in Bioinformatics 2021 - 24/ 68
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Recursion of the Needleman-Wunsch Algorithm

Define a function D(i,j), to compute the (best) alignment distance for the prefix sequences
ay.jand by .
D(i,j) can be implemented by based on the decomposition idea of the last slide:

D(i—1,j—1)+ w(a;, bj) (match)
D(ij) = min § D(i —1,j) + w(aj, -) (deletion)
D(i,j— 1)+ w(—, b) (insertion)

This works only for i > 0 and j > 0, in these special cases
» D(0,0)=0
» D(i,0)=D(i—1,0) + w(a;, —)
» D(0,j) = D(0,j — 1)+ w(—, b)

in Bioinformatics 2021 - 25/ 68

Let’s code it!

Recursion alone, does not allow for efficient computation, because of overlapping
subproblems!
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Recursion + Alignment Matrix:
the Needleman-Wunsch Algorithm
To evaluate the recursion efficiently, use a matrix to store all partial solutions D(i, j).

The alignment matrix of aand b is the (n+ 1) x (m+ 1)-matrix that contains at each entry
(1,/) the alignment distances of the prefixes a;_; and b ;.

Example

0 iffx=
a =AT, b =AAGT ; w(x,y) = {1 otherwi};e
AAGT
A
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Recursion + Alignment Matrix:
the Needleman-Wunsch Algorithm
To evaluate the recursion efficiently, use a matrix to store all partial solutions D(i, j).

The alignment matrix of aand b is the (n+ 1) x (m+ 1)-matrix that contains at each entry
(1,/) the alignment distances of the prefixes a;_; and b ;.

Example
0 iffx=y

a :AT, b =AAGT 5 W(Xa y) = {1 otherwise

AAGT

0/1/2(3]|4
Al1]ot
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Recursion + Alignment Matrix:
the Needleman-Wunsch Algorithm
To evaluate the recursion efficiently, use a matrix to store all partial solutions D(i, j).

The alignment matrix of aand b is the (n+ 1) x (m+ 1)-matrix that contains at each entry
(1,/) the alignment distances of the prefixes a;_; and b ;.

Example

0 iffx=
a:AT,b:AAGT;W(X,y):{1 otherwi};e
AAGT
011|234

Afl1lo|1]2]3
Tl211]1(2]2

Let’s code it!
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How to find the best aligmnment?

> a =AT, b =AAGT

> w(x,y) = {0 iff x=y

1 otherwise
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Traceback

)0 iffx=y
w(x.y) = {1 otherwise

()

-
4

A 3

T 2

» Startin (n, m). For every (i, ) determine optimal case.
» Not necessarily unique.
» Sequence of frace arrows let’s infer best alignment.

A
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o4
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Traceback

)0 iffx=y
w(x.y) = {1 otherwise

-
4

A 3

T 2

» Startin (n, m). For every (i, ) determine optimal case.
» Not necessarily unique.
» Sequence of frace arrows let’s infer best alignment.

A A
@ 2
0|@
1(1

G
3
2
2
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Traceback

)0 iffx=y
w(x.y) = {1 otherwise

-
4

A 3

T 2

» Startin (n, m). For every (i, ) determine optimal case.
» Not necessarily unique.
» Sequence of frace arrows let’s infer best alignment.

A A
@ 2
0|@
1(1

G
3
2
2
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Complexity

» compute one entry: three cases, i.e. constant time
» nm entries = fill matrix in O(nm) time

» traceback: O(n+ m) time

» Overall: O(n?) time and space (assuming m < n)

» assuming m < nis w.l.0.g. since we can exchange a and b

» space complexity can be improved to O(n) for computation of distance (simple, “store
only current and last row”) and traceback (more involved; Hirschberg-algorithm uses
“Divide and Conquer” for computing trace)
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Plan

» We have seen how to compute the pairwise edit distance and the corresponding
optimal alignment.
» Before going multiple, we will look at two further special topics for pairwise alignment:

» more realistic, non-linear gap cost and
> similarity scores and local alignment
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Alignment Cost Revisited

Motivation:
GA--T G-A-T

> . .
The alignments CAAGT and CAAGT have the same edit distance.

» The first one is biologically more reasonable: it is more likely that evolution introduces
one large gap than two small ones.

» This means: gap cost should be non-linear, sub-additive!
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Gap Penalty

A gap penalty is a function g : N — R that is sub-additive, i.e.

gk +1) < g(k)+g(l).

A gap in an alignment string & is a substring of & that consists of only gap symbols — and
is maximally extended. A4 is the multi-set of gaps in a.

The alignment cost with gap penalty g of (&, b) is

wy(8,b) = Z w(ar, br) (cost of mismatchs)
1§r§|é\i
where a,#— b, #£—
+ Z a(lx]) (cost of gaps)
Example: X€AZyAD
a ATG---CGAC--GC = A& = {---,--}, Ab — {-,-}

= -TGCGGCG-CTTTC
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General sub-additive gap penalty
Let D be the alignment matrix of a and b with cost w and gap penalty g, such that
D,"/' = Wg(a1_',', b1--/)' Then:
» Dypo=0
> forall1 <i<n: Djo=g(i)
> forall1 <j<m: Dy;=g(j)
D,‘,1’j,1 + W(a,'7 b/) (match)
» Dj; = min{ mini<k<i Di_k; + g(k) (deletion of length k)
mini<k<;j Djj—x + g(k) (insertion of length k)

» Complexity O(n®) time, O(n?) space
» pseudocode, correctness, traceback left as exercise

» much more realistic, but significantly more expensive than Needleman-Wunsch
= can we improve it?

in Bioinformatics 2021 - 37/ 68
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General sub-additive gap penalty
Let D be the alignment matrix of a and b with cost w and gap penalty g, such that
D,"/' = Wg(a1_',', b1--/)' Then:
» Dypo=0
> forall1 <i<n: Djo=g(i)
> forall1 <j<m: Dy;=g(j)
D,‘,1’j,1 + W(a,'7 b/) (match)
» D;; = min { mini<k<; Di_xj+ g(k) (deletion of length k)
mini<k<;j Djj—x + g(k) (insertion of length k)

» Complexity O(n®) time, O(n?) space
» pseudocode, correctness, traceback left as exercise

» much more realistic, but significantly more expensive than Needleman-Wunsch
= can we improve it?

Let’s code it! [
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Affine gap cost

A gap penalty is affine, iff there are real constants o and $, such that for all k € N:
g(k) = a + Bk.

» Affine gap penalties almost as good as general ones: Distinguishing gap opening («)
and gap extension cost () is “biologically reasonable”.

» The minimal alignment cost with affine gap penalty can be computed in O(n?) time!
(Gotoh algorithm)

in Bioinformatics 2021 - 39/ 68
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Gotoh algorithm

In addition to the alignment matrix D, define two further matrices/states.

> A;; := cost of best alignment of a_;, by_;, that ends with deletion i

» B, := cost of best alignment of a;_;, by_;, that ends with insertion bT
]

Recursions: A — mi A1+ (deletion extension)
M Di_1;+g(1) (deletion opening)
B — min Bij_1+8 (insertion extension)
W D;j—1+g(1) (insertion opening)
D,',17/',1 + W(c’:i,'7 bl) (match)
Dij=min ¢ A;; (deletion closing)
B, (insertion closing)

Remark: O(n?) time and space
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Gotoh algorithm

In addition to the alignment matrix D, define two further matrices/states.

> A;; := cost of best alignment of a_;, by_;, that ends with deletion i

» B, := cost of best alignment of a;_;, by_;, that ends with insertion bT
]

Recursions: A — mi A1+ (deletion extension)
M Di_1;+g(1) (deletion opening)
B — min Bij_1+8 (insertion extension)
W D;j—1+g(1) (insertion opening)
D,',17/',1 + W(c’:i,'7 bl) (match)
Dij=min ¢ A;; (deletion closing)
B, (insertion closing)

Remark: O(n?) time and space

Let’s code it!
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Similarity

The similarity of an alignment (&, b) is s(&,b) = Y"1, s(&;, b;), where s : (ZU{~})? = R
is a similarity function (s(x,x) > 0, s(x,—) < 0, §(—, x) < 0).
Observation. Instead of minimizing alignment cost, one can maximize similarity:

S,'_17/‘_1 + s(a;, bj)
Sij=maxq Si_1,+ s(a;, —)
Sij-1+ (- by)
Why similarity ?
» Defining similarity of ’building blocks’ is often more natural; easier to learn.
» Similarity is useful for local alignment
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Local Alignment Motivation

Local alignment asks for the best alignment of any two subsequences of a and b.
Important Application: Search!
(e.g. BLAST combines heuristics and local alignment)

Example

a =AWGVIACAILAGRS
b =VIVTAIAVAGYY

In contrast, all previous methods compute “global alignments”.
Why is distance not useful?

Example
) XXXAAXXXX ) XXAAAAAXXXX
YYAAYY YYYAAAAAYY
Where is the stronger local motif? Only similarity can distinguish.

‘
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Local Alignment

Definition (Local Alignment Problem)

Let s be a similarity on alignments.

Sgiobal(@, b) 1= max s(a,b) (global similarity)
ab
alignme(né: of)a and b
max  Sgiobal(a@ir..i» by j) (local similarity)

1<i’<i<n
1<)/ <j<m

SIocal (37 b) :

The local alignment problem is to compute Siocal(a, b).

» That is, local alignment asks for the subsequences of a and b that have the best
alignment.

» How would we define the local alignment matrix for DP?
» Case in point, why does “H; j := Siscai(ai..i, b1.j)” not work?

atics 2021 - 44/ 68
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Local Alignment Matrix

The local alignment matrix H of aand b is the n+ 1 x m + 1 matrix of entries

H ;= maxXx S|b|a‘/ b Y
1] 0<i’<i,0<j/<j glo a( P10 ]+1])

> S.oca|(a, b) = max; ; H,"/' (')
» all entries H;; > 0, since Sgiopai(e€, €) = 0.

» H;; = 0 implies no (non-empty) subsequences of a and b that end in respective / and
Jj are similar.

> Allows case distinction / optimal substructure property holds.
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Local Alignment Algorithm — Case Distinction

Cases for H;

] a
1.) b:-

bj

a;

2) 3)

4.) 0, since if each of the above cases is dissimilar (i.e. negative), there is still (e, ¢).

ics 2021 - 46/ 68

- C

© . Y. Ponty



Local Alignment Algorithm (Smith-Waterman Algorithm)

For the local alignment matrix H of a and b,
> Hoo=0
> forall1 <i<n Hi,=0
> forall1 <j<m:Hy;=0

0 (empty alignment)
> o — max d Hi-1i-1 + 8@ b))
Y Hi_1j+ s(ai, —)

H,'J,1 + S(f7 bj)
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Local Alignment Algorithm (Smith-Waterman Algorithm)

For the local alignment matrix H of a and b,
> Hoo=0
> forall1 <i<n Hi,=0
> forall1 <j<m:Hy;=0

0 (empty alignment)
> o — max d Hi-1i-1 + 8@ b))
Y Hi_1j+ s(ai, —)

H,‘J,1 + S(*, bj)

Let’s code it!
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Local Alignment Remarks

» Complexity O(n?) time and space, again space complexity can be improved

» Requires that similarity function is centered around zero, i.e. positive = similar,
negative = dissimilar.

» Extension to affine gap cost works
» Traceback?
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Local Alignment Example

> a=AAC, b =ACAA

g s(x,y)—{2_3 i:d:(e:vi};e
ACAA
0/{0|/0|0]|O
Alo|l2|0]2]2
Alo|(2|0|2]|4
Clojo|4|1]1

Traceback: start at maximum entry, trace back to first 0 entry

in Bioinformatics 2021 - 50/ 68
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Exercise / Homework: semi-local “glocal” alignemnt

» Also known as free end-gap alignment.

» Case in point, align a short sequence a to a subsequence of a long(er) sequence b.
Leave gaps at the beginning and end of b free of cost.
AACTACETAG

AACTACGTAG

-0 >

Green end-gaps are free
» How would you modify your implementation of Smith-Waterman? (code it!)
» Analogous variants make costs free at the beginning and/or end of a.

» Can you imagine, where such algorithms are useful?

in Bioinformatics 2021 - 51/ 68
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Substitution/Similarity Matrices

» In practice: use similarity matrices learned from closely related sequences or multiple
alignments

» PAM (Percent Accepted Mutations) for proteins
» BLOSUM (BLOcks of Amino Acid SUbstitution) for proteins
> RIBOSUM for RNA

> Scores are (scaled) log odd scores: /og%

Ala
Arg
Asn
Asp
Cys
Gln
Glu
Gly
His

oAaldomn s
oo Go
c

lle
Leu
Lys
Met
Phe
Pro
Ser
Thr
Trp

Tyr
-3 -1 - -2 -3 -3 3 1 -2 -2 0o -3 -1 4

Val 0 - :3 V -2
Case In po/nt BLOSUM62- : Ala Arg Asn Asp Cys GIn Glu Gly His lle Leu Lys Met Phe Pr: Ser Thr Trp Tyr Val
y .

OR GG B BN O

GrndAdinbdinnbdono adno o
ES
N

AN ARG o e s

GO s b s A A

o

G
N I N
[ I N N\ Y
Lo A bosdins

5

0

2 3 -2
1 1 1
o -1 1 1
4 -4 -2 1
2 2 1
1

N N et

7
14
115

-4 -3 -2 11
3 -2 -2 2 7

NSRRI
(SN
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Multiple Alignment

Example: Sequences Alignment
a(") = ACCCGAG ACCCGA-G-
a® = ACTACC =align A= AC--TAC-C
a®) = TCCTACGG TCC-TACGG
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Definition

A multiple alignment A of K sequences a)...a¥) is a K x N-matrix (A;)1<i<k (N is the
1<j<N

number of columns of A)

where

1. eachentry A;; € (XU {-})
2. for each row i: deleting all gaps from (A 1...A; n) yields a(’)
3. no column j contains only gap symbols



How to Score Multiple Alignments

As for pairwise alignment:
» Assume columns are scored independently
» Score is sum over alignment columns

Example

S(A) = s(

A
A
T

) o<

C
C
C

) o<l

C

N

S(A) = Zs(AU,...,AK,)

j=1

C)+s(f>+...+s@

How do we know similarities?
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How to Score Multiple Alignments

As for pairwise alignment:
» Assume columns are scored independently
» Score is sum over alignment columns

S(A) = s(g) +s<§> +s<g) +s(§) +...+s(g>

X X
. n Pr[x,y,z| Related] o
How to define s ;Z/) ? as log odds s(g) = Iog—F,r[X’y’z| Background] -

Problems? Can we learn similarities for triples, 4-tuples, ... ?
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Sum-Of-Pairs Score

Idea: approximate column scores by pairwise scores

s<.x.1_.)— > s, x)

% 1<k<i<K

Sum-of-pairs is the most commonly used scoring scheme for multiple alignments.
(Extensible to gap penalties, in particular affine gap cost)

Drawbacks?
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Optimal Multiple Alignment

Idea: use dynamic programming

For 3 sequences a, b, ¢, use 3-dimensional matrix

(after initialization:)
Si—1j-1k-1 +S(ai, by, ck)
Sic1j-1k  +s(ai, b, —)
Si—1jk—1  +s(ai,—,ck)

Si,j,k = max S,'7j_1,k_1 JrS(*, b/', Ck)
Si—1,jk +5(
Sij—1.k +8(=, by, )
Sijk—1 +s(—, —, k)

For K sequences use K-dimensional matrix.
Complexity?
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Heuristic Multiple Alignment: Progressive Alignment

Idea: compute optimal alignments only pairwise

4 sequences a(V), a® a8 g*)
1. determine how they are related
= tree, e.g. ((a",a?), (a®, a*))
2. align most closely related sequences first
= (optimally) align a(") and a(® by DP
3. go on = (optimally) align a® and a*) by DP
4. goon?! = (optimally) align the two alignments
How can we do that?
5. Done. We produced a multiple alignment of a(¥), a®), a(3) g,

Remarks: - Optimality is not guaranteed. Why?
- The tree is known as guide tree. How can we get it?
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Guide tree

The guide tree determines the order of pairwise alignments in the progressive alignment
scheme.
The order of the progressive alignment steps is crucial for quality!

Heuristics:

1. Compute pairwise distances between all input sequences

> align all against all

> in case, transform similarities to distances (e.g. Feng-Doolittle)
2. Cluster sequences by their distances, e.g. by

> Unweighted Pair Group Method (UPGMA)
» Neighbor Joining (NJ)
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Aligning Alignments

Two (multiple) alignments A and B can be aligned by DP (like two sequences).
Idea:
» An alignment is a sequence of alignment columns.

ACCCGA-G- NN _
Example: AC--TAC-C = (A) (C> () (> (c)
TCC-TACGG T/ \€/ \C/ \~ @

» Assign similarity to two columns from A and B, e.g. s( (g), (g)) by sum-of-pairs.

Apply dynamic programming (recurse over alignment scores of prefixes of alignments)

Consequences for progressive alignment scheme:

» Optimization only /ocal.
» Commits to local decisions. “Once a gap, always a gap”
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Aligning Alignments

Two (multiple) alignments A and B can be aligned by DP (like two sequences).
Idea:
» An alignment is a sequence of alignment columns.

ACCCGA-G- NN _
Example: AC--TAC-C = (A) (C> () (> (c)
TCC-TACGG T/ \€/ \C/ \~ @

» Assign similarity to two columns from A and B, e.g. s( (g), (g)) by sum-of-pairs.

Apply dynamic programming (recurse over alignment scores of prefixes of alignments)

Consequences for progressive alignment scheme:

» Optimization only /ocal.
» Commits to local decisions. “Once a gap, always a gap”

Let’s code it! j¥&
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Progressive Alignment — Example

Oiff x =y

IN: &) = ACCG, a® = TTGG, a® = TCG, a® = CTGG w(x,y) = { 2iffx = —ory = —

» Compute all against all edit distances and cluster

Align ACCG and TTGG

T T

0 2 4

A 2 3 5
Cc 4 5 6
Cc 6 7 8

G 8 9 10

Align ACCG and CTGG

C T

0 2 4

A 2 3 5
Cc 4 2 5
Cc 6 4 5

G 8 7 7

Align TTGG and CTGG

C T

0 2 4

T 2 3 2

T 4 5 3

G 6 7 6

G 8 9 9

a®®~NQ EXCERNE- Yo

owaoo®

0I5 000 ©ZlZo®®

[EXS NNN N o)

Align ACCG and TCG

T c

0 2 4

A 2 3 5

C 4 5 3

C 6 7 5

G 8 9 8
Align TTGG and TCG

T Cc

0 2 4

T 2 0 3

T 4 2 3

G 6 5 5

G 8 8 8
Align TCG and CTGG

C T

0 2 4

T 2 3 2

C 4 2 5

G 6 5 5

awo oo o oN® e

oo

[SN-NN N0

3 otherwise (for mismatch)
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Progressive Alignment — Example

Oiff x =y
IN: &V = ACCG, a® = TTGG,a® = TCG, a® = CTGG w(x,y) = {2 ffx=—ory=—

3 otherwise (for mismatch)

» Compute all against all edit distances and cluster

= distance matrix
a0 & g 4@

a» o 9 5 8
a 0 5 3
a® 0 5
a® 0

= Cluster (e.g. UPGMA)
a® and a¥ are closest, Then: a¥) and a®®
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Progressive Alignment — Example

IN: &) = ACCG, a® = TTGG, a® = TCG, &% = CTGG w(x,y) = {

» Compute all against all edit distances and cluster
= guide tree ((a®, a®), (a, a®))

> Align a® and a®:

TTGG
CTGG

» Align the alignments!

Align

TC

TT
GG
GG

TTGG
CTGG

ACCG
and  Z7cg
A C
- T
4 12

C
C

20

, Align a and a®:

28

ACCG
-TCG

Oiff x =y
2iff x = —ory = —
3 otherwise (for mismatch)
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Progressive Alignment — Example

Oiff x =y
IN: &) = ACCG, a® = TTGG, a® = TCG, a® = CTGG w(x,y) = { 2iffx = —ory = —
3 otherwise (for mismatch)

» Compute all against all edit distances and cluster
= guide tree ((a®, a®), (a, a®))

> H (2) (4). TTGG H (1) (3). ACCG
Align a'*) and a'*: i , Align a'' and a\*): o
» Align the alignments!
Align TTGG and ACCG
9 crae -TC6 P w1, ——) = W(T, =) + w(C, =) + W(T, =) + w(C, —) = 8
A C C G
- T C G P W= A) = W= A w(— o) (= A w(—, —) =4
0 4 12 20 28 P w(TC, A—) = w(T, A) + w(C, A) + w(T, —) + w(C, —) = 10
TC 8 10 . >
T 16 X w(TC, CT) = w(T,C)+ w(C,C) + w(T, T)+ w(C, T) =6
GG 24 >

GG 32
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Progressive Alignment — Example

Oiff x =y
IN: &) = ACCG, a® = TTGG, a® = TCG, &% = CTGG w(x,y) = {2 iff x=—ory=—

3 otherwise (for mismatch)

» Compute all against all edit distances and cluster
= guide tree ((a®, a®), (a, a®))

> Align a® and a®: T | Align a(V) and a(®): *¢¢¢

GG 32

cTGG -TCG 8

» Align the alignments! °
£

Align ggg and é%gg ?%i
A C C G TTGG

- T . ¢Cc @ — CTGG

0 4 12 20 28 after filling ACCG :

™ 8 10 .. and traceback g

T 16 g -TCG s
GG 24 $



A Classical Approach: CLUSTALW

Hbb_Human 1]
Hobbome 2| 17 -
HooHuman 3| ® 0 -
| » »
Pairwise alignment: Rt A
Calculate distance matr s 6| B R B @ -
ate .l Lgb2_ Luplu 7| 7 86 86 88 93 50
T 2 3 q 5 s
Hba_Horse MygPhyea
Hba_Hu
Unrooted Neighbor-Joining :H HBb_Horse.
Hbb_Human Gibs_Petma
Lgh2_Lupi

om0 > prototypical progressive alignment
"”"*""‘" o » similarity score with affine gap cost
ons v o0 » neighbor joining for tree construction
> special ‘tricks’ for gap handling

Rooted N] tree (guide tree)
and sequence weights

Progressive

alignment:

Align following
8

€ . Y. Ponty - Combinatorial Optimization in Bioinformatics 2021 - 67/ 68



Advanced Progressive Alignment in MUSCLE

1.1 k-mer 1.2 1.3 progressive
counting UPGMA alignment .
p— N i —
> — i =—=——= MSA1
unaligned
sequences k-mer distance TREE1
matrix D1 2.1 compute
<_& %ids from MSA1
< — N Kimura distance
P Se—— matrix D2
23 progressive 2.2 UPGMA
alignment TREE2
| No,
i delete
>
-+ {
/}/L i 3. 1 ; Yes,
< 3.2 compute i i———— save
\5\ subtree profiles score better? oo
_ /
3.1 delete S~ 7

e e -
edge from TREE2 Te— Epe,it —

giving 2 subtrees

1.) alignment draft and 2.) reestimation 3.) iterative refinement

3
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