Combinatorial Optimisation in Bioinformatics

Introduction \& Sequence Alignments

Yann Ponty • Sebastian Will

sebastian.will@polytechnique.edu • yann.ponty@lix.polytechnique.fr

The idea of this class

Why Combinatorial Optimization in Bioinformatics?

Bioinformatics is concerned with Molecular Biology

Replication
DNA $\xrightarrow{\text { Tanscripton }}$ RNA $\xrightarrow{\text { Transation }}$ Protein

Bioinformatics is concerned with Molecular Biology

Where in this setting does computation make sense? What can we learn (computationally)?

What is combinatorial optimization?

Example: Traveling Salesman

Problem: Given n cities, find shortest tour (round-trip)

- finite solution space (here: all city permutations)
- objective function (here: total distance)

What has Combinatorial Optimization to do with bioinformatics?

Typical biological problem: Find common sequence and structure motifs in the 5' regions of mRNAs that are upregulated under condition X over condition Y .

What has Combinatorial Optimization to do with bioinformatics?

Typical biological problem: Find common sequence and structure motifs in the 5' regions of mRNAs that are upregulated under condition X over condition Y .

Break down into subproblems:

- Determine upregulated genes
- get (assembled) genome of your organism
- sequence the mRNAs under conditions X and Y using NGS
- map them to the genome (to measure expression level)
- compare 5 ' regions to identify common motifs
- predict RNA structures of 5 ' regions
- compare structures

What has Combinatorial Optimization to do with bioinformatics?

Typical biological problem: Find common sequence and structure motifs in the 5' regions of mRNAs that are upregulated under condition X over condition Y .

Break down into subproblems:

- Determine upregulated genes
- get (assembled) genome of your organism
- sequence the mRNAs under conditions X and Y using NGS
- map them to the genome (to measure expression level)
- compare 5 ' regions to identify common motifs
- predict RNA structures of 5 ' regions
- compare structures

Finally, computational problems can be formalized as combinatorial optimization problems.

What is combinatorial optimization?

Example: RNA structure prediction

Formalize: 'Determine the best structure (out of all possible ones)'

GGGCUAUUAGCUCAGUUGGUUAGAGCGCACCCCUGAUAAGGGUGAGGUCGCUGAUUCGAAUUCAGCAUAGCCCA

- finite solution space (here: RNA secondary structures)
- objective function (here: RNA energy function) \leftarrow energy model
- in which ways is it a typical example for CO in Bioinformatics?

What is combinatorial optimization?

Example: RNA structure prediction

Formalize: 'Determine the best structure (out of all possible ones)'

GGGCUAUUAGCUCAGUUGGUUAGAGCGCACCCCUGAUAAGGGUGAGGUCGCUGAUUCGAAUUCAGCAUAGCCCA

- finite solution space (here: RNA secondary structures)
- objective function (here: RNA energy function) \leftarrow energy model
- in which ways is it a typical example for CO in Bioinformatics?

What is combinatorial optimization?

Example: RNA structure prediction

Formalize: 'Determine the best structure (out of all possible ones)'

GGGCUAUUAGCUCAGUUGGUUAGAGCGCACCCCUGAUAAGGGUGAGGUCGCUGAUUCGAAUUCAGCAUAGCCCA

- finite solution space (here: RNA secondary structures)
\checkmark objective function (here: RNA energy function) \leftarrow energy model
- in which ways is it a typical example for CO in Bioinformatics?

Topics of the class(es)

- Jan 06th 2022 - YP: Intro \& Sequence Alignment, Dynamic programming
- Jan 13th 2022 - SW: Pattern Matching, Mapping, Index data structures
- Jan 20th 2022 - YP: Genome Assembly, Graph algorithms
- Jan 27th 2022 - YP: RNA structure prediction, Dynamic programming
- Feb 03th 2022 - SW: Advanced RNA structure prediction
- Feb 10th 2022 - SW: Comparative genomics
- Feb 17th 2022 : Exam

Organisational stuff \& grading

- Online Tools
- Zoom, Slack (possibly Gather.Town, later)
- Use Jupyter notebooks via Colab for programming:
https://colab.research.google.com/notebooks/intro.ipynb
- Article presentations (60\% of grade)
- presentations in groups of three (with mixed backgrounds!)
- each defense 15 mins (sharp!, 5 min each) + 5-10 mins questions
- we will let you choose from ~10 articles (next week)
- we plan presentations in classes of weeks 5 and 6
- Written exam: Feb, 17th (last class)

Class Topic: Sequence Alignment

Sequence Alignment

Motivation: assess similarity of sequences and learn about their evolutionary relationship

Example: Sequences		Alignment
ACCCGA		ACCCGA
ACTA	$\Rightarrow_{\text {align }}$	AC--TA
TCCTA		TCC-TA

Homology: Alignment reasonable, if sequences homologous

Two (or more sequences) are homologous if they evolved from a common ancestor.
Homology inherited by letters through correspondences induced by columns

Plan: from simple pairwise to multiple alignment

- pairwise alignment

$$
\begin{array}{lll}
\text { Sequence A: ACGTGAACT } & \Rightarrow \text { align A and B } & \text { ACGTGAACT } \\
\text { Sequence B: AGTGAGT } & \text { A-GTGA-GT }
\end{array}
$$

- variants: global and local, realistic gap costs, ...
- multiple alignment

	IVGADMYGSkDmgotems lrgk-avylmgkntmmikatrghlenn--PaLE	
rlao huhan		76
RLĀ0 0 RAT		
rlat Chick		
Q7zUG3-brare		
RLAO ICTPU	kitgllndypkcfivgadnygskgmgt irls lrge-aivimgkntmmikatrghenn--pale	
RLa0 ${ }^{\text {droude }}$	EFPRCFIVGADHVGSQQQHIRTS LRGL-AVVLMGKHTMARKAIRGHLENH--pQ1	
rlat dicdi		
$54 \mathrm{LPO} 0-\mathrm{DICDI}$		
rlat plafg		
rlao -sulto		
ruao_sulso		
rlat ${ }^{\text {- }}$ ampe		
RLAO-met Ac		
rlat metma		
RLAO METKR		
RLAO- mettil		
RLAO-metya	,	
rlat pyrab	MAhyabtikkeveelanliks	
rlat PYrFu		
riao Pyrko		
RLao halua		
rlao-halyo		
RLAO-halsa		
RLAO- theac		
RLaO ${ }^{-}$thevo	-HRKIHPKRKE IVSELAQDITKSKAVAIVDIKGVRTRQHODIRAKHRDK-VKIKVYKRILLFKALDSIHD----EKLT	
	BQqKIDFVKNLENEINSRKVAAIVSIKGLRMNEFGKIRAS IRDK-RRIKVSRARLLRLAIENTGK----NNIV	

A first attempt to compare sequences: Levenshtein Distance

Sequences are words over alphabets Σ, e.g. $\Sigma=\{A, C, G, T\}$.

Definition

The Levenshtein Distance between two words/sequences is the minimal number of substitutions, insertions and deletions to transform one into the other.

Example

ACCCGA and ACTA have (at most) distance 3:
ACCCGA \rightarrow ACCGA \rightarrow ACCTA \rightarrow ACTA

In biology, operations have different cost. (Why?)

Edit Distance: Operations

Definition (Edit Operations)

An edit operation is a pair $(x, y) \in(\Sigma \cup\{-\} \neq(-,-)$. We call (x, y)

- substitution iff $x \neq-$ and $y \neq-$
- deletion iff $y=-$
- insertion iff $x=-$

For sequences a, b, write $a \rightarrow_{(x, y)} b$, iff a is transformed to b by operation (x, y).
Furthermore, write $a \Rightarrow_{s} b$, iff a is transformed to b by a sequence of edit operations S.

Example

ACCCGA $\rightarrow\left({ }_{(,-)}\right.$ACCGA $\rightarrow(G, T)$ ACCTA $\rightarrow_{(-, T)}$ ATCCTA
ACCCGA $\Rightarrow{ }_{(C,-),(G, T),(-, T)}$ ATCCTA

Recall: $-\notin \Sigma, a, b$ are sequences in Σ^{*}

Edit Distance: Cost and Problem Definition

Definition (Cost, Edit Distance)
Let w be a cost function on edit operations, then the edit distance of sequences a and b is the minimum cost of all sequences S of edit operations that transform a to b.

Edit Distance: Cost and Problem Definition

Definition (Cost, Edit Distance)

Let w be a cost function on edit operations, then the edit distance of sequences a and b is the minimum cost of all sequences S of edit operations that transform a to b.

Remarks

- Does it match our idea of evolution?
- Is it Combinatorial Optimization?
- How to compute edit distance efficiently? not at all obvious \Rightarrow alignments

Alignments

Example

$a=$ ACGGAT
$b=$ CCGCTT
possible alignments are
$\hat{a}=$ AC-GG-AT
$\hat{b}=-$ CCGCT-T or $\begin{aligned} & \hat{a}=\text { ACGG---AT } \\ & \hat{b}=-- \text { CCGCT-T }\end{aligned}$ or \ldots (exponentially many)
edit operations of first alignment: (A,-),(-,C),(G,C),(-,T),(A,-)

Definition (Alignment)

A pair of words $\hat{a}, \hat{b} \in(\Sigma \cup\{-\})^{*}$ is called alignment of sequences a and b (a and \hat{b} are called alignment strings), iff

1. $|\hat{a}|=|\hat{b}|$
2. for all $1 \leq i \leq|\hat{a}|: \hat{a}_{i} \neq-$ or $\hat{b}_{i} \neq-$
3. deleting all gap symbols - from â yields a and deleting all - from \hat{b} yields b

Best alignment distance $=$ best edit distance

The columns of an alignment (\hat{a}, \hat{b}) correspond to edit operations; we score it by adding the cost of these operations.

$$
\sum_{i=1}^{|\hat{a}|} w\left(\hat{a}_{i}, \hat{b}_{i}\right)
$$

The best alignment distance equals the best edit distance (if the cost of edit operations is a metric).

Best alignment distance = best edit distance

The columns of an alignment (\hat{a}, \hat{b}) correspond to edit operations; we score it by adding the cost of these operations.

$$
\sum_{i=1}^{|\hat{a}|} w\left(\hat{a}_{i}, \hat{b}_{i}\right)
$$

The best alignment distance equals the best edit distance (if the cost of edit operations is a metric).

What is the significance of this?

- Edit distance is biologically well motivated, but there is no obvious way to efficiently optimize it.
- Alignment distance is equivalent.
$-\rightarrow$ focus on alignments. One can optimize over these combinatorial objects efficiently.

Derive best alignments from smaller best alignments

Example

$\mathrm{a}=\mathrm{CACGGCT}$
b = CCGCTG
The best alignment ends in either

- (T,G); we get it from the best alignment of (the prefixes) CACGGC and CCGCT,
- or (T,-); we get it from aligning CACGGC and b,
- or (-,G); we get it from aligning a and CCGCT.

This recursive decomposition strategy is possible because the problem has the property of 'optimal substructure': "the prefix alignment of any optimal alignment is itself optimal".

Remarks

- does this immediately allow us to optimize efficiently?
- the property allows us to apply dynamic programming
- many problems in bioinformatics have this property

Recursion of the Needleman-Wunsch Algorithm

Define a function $D(i, j)$, to compute the (best) alignment distance for the prefix sequences $a_{1 . . i}$ and $b_{1 . . j}$.
$D(i, j)$ can be implemented by based on the decomposition idea of the last slide:

$$
D(i, j)=\min \begin{cases}D(i-1, j-1)+w\left(a_{i}, b_{j}\right) & \text { (match) } \\ D(i-1, j)+w\left(a_{i},-\right) & \text { (deletion) } \\ D(i, j-1)+w\left(-, b_{j}\right) & \text { (insertion) }\end{cases}
$$

This works only for $i>0$ and $j>0$, in these special cases

- $D(0,0)=0$
- $D(i, 0)=D(i-1,0)+w\left(a_{i},-\right)$
- $D(0, j)=D(0, j-1)+w\left(-, b_{j}\right)$

Recursion alone, does not allow for efficient computation, because of overlapping subproblems!

Recursion + Alignment Matrix:

 the Needleman-Wunsch AlgorithmTo evaluate the recursion efficiently, use a matrix to store all partial solutions $D(i, j)$.
The alignment matrix of a and b is the $(n+1) \times(m+1)$-matrix that contains at each entry (i, j) the alignment distances of the prefixes $a_{1 . . i}$ and $b_{1 . . j}$.

Example

$a=$ AT, $b=\operatorname{AAGT} ; w(x, y)= \begin{cases}0 & \text { iff } x=y \\ 1 & \text { otherwise }\end{cases}$

Recursion + Alignment Matrix:

 the Needleman-Wunsch AlgorithmTo evaluate the recursion efficiently, use a matrix to store all partial solutions $D(i, j)$.
The alignment matrix of a and b is the $(n+1) \times(m+1)$-matrix that contains at each entry (i, j) the alignment distances of the prefixes $a_{1 . . i}$ and $b_{1 . . j}$.

Example

$a=$ AT, $b=\operatorname{AAGT} ; w(x, y)= \begin{cases}0 & \text { iff } x=y \\ 1 & \text { otherwise }\end{cases}$

Recursion + Alignment Matrix:

 the Needleman-Wunsch AlgorithmTo evaluate the recursion efficiently, use a matrix to store all partial solutions $D(i, j)$.
The alignment matrix of a and b is the $(n+1) \times(m+1)$-matrix that contains at each entry (i, j) the alignment distances of the prefixes $a_{1 . . i}$ and $b_{1 . . j}$.

Example

$a=$ AT, $b=\operatorname{AAGT} ; w(x, y)= \begin{cases}0 & \text { iff } x=y \\ 1 & \text { otherwise }\end{cases}$

	A A G T				
	0	1	2	3	4
A	1	0	1	2	3
T	2	1	1	2	2

How to find the best aligmnment?

Example

- $a=\mathrm{AT}, b=\mathrm{AAGT}$
- $w(x, y)= \begin{cases}0 & \text { iff } x=y \\ 1 & \text { otherwise }\end{cases}$

	A A G T				
	0	1	2	3	4
A	1	0	1	2	3
T	2	1	1	2	2

Traceback

$$
w(x, y)= \begin{cases}0 & \text { iff } x=y \\ 1 & \text { otherwise }\end{cases}
$$

		A	A G		
	0	1	2	3	4
A	1	0	1	2	3
T	2	1	1	2	(2)

Remarks

- Start in (n, m). For every (i, j) determine optimal case.
- Not necessarily unique.
- Sequence of trace arrows let's infer best alignment.

Traceback

$$
w(x, y)= \begin{cases}0 & \text { iff } x=y \\ 1 & \text { otherwise }\end{cases}
$$

Remarks

- Start in (n, m). For every (i, j) determine optimal case.
- Not necessarily unique.
- Sequence of trace arrows let's infer best alignment.

Traceback

$$
w(x, y)= \begin{cases}0 & \text { iff } x=y \\ 1 & \text { otherwise }\end{cases}
$$

Remarks

- Start in (n, m). For every (i, j) determine optimal case.
- Not necessarily unique.
- Sequence of trace arrows let's infer best alignment.

Complexity

- compute one entry: three cases, i.e. constant time
- $n m$ entries \Rightarrow fill matrix in $O(n m)$ time
- traceback: $O(n+m)$ time
- Overall: $O\left(n^{2}\right)$ time and space (assuming $m \leq n$)

Remarks

- assuming $m \leq n$ is w.l.o.g. since we can exchange a and b
- space complexity can be improved to $O(n)$ for computation of distance (simple, "store only current and last row") and traceback (more involved; Hirschberg-algorithm uses "Divide and Conquer" for computing trace)

Plan

- We have seen how to compute the pairwise edit distance and the corresponding optimal alignment.
- Before going multiple, we will look at two further special topics for pairwise alignment:
- more realistic, non-linear gap cost and
- similarity scores and local alignment

Alignment Cost Revisited

Motivation:

- The alignments $\underset{\text { GAAGT }}{\text { GA--T }}$ and $\underset{\text { GAAGT }}{\text { G-A-T }}$ have the same edit distance.
- The first one is biologically more reasonable: it is more likely that evolution introduces one large gap than two small ones.
- This means: gap cost should be non-linear, sub-additive!

Gap Penalty

A gap penalty is a function $g: \mathbb{N} \rightarrow \mathbb{R}$ that is sub-additive, i.e.

$$
g(k+l) \leq g(k)+g(l) .
$$

A gap in an alignment string \hat{a} is a substring of \hat{a} that consists of only gap symbols - and is maximally extended. $\Delta^{\hat{a}}$ is the multi-set of gaps in \hat{a}.

The alignment cost with gap penalty g of (\hat{a}, \hat{b}) is

$$
\begin{array}{rlr}
w_{g}(\hat{a}, \hat{b})= & \sum_{\substack{1 \leq r \leq|\hat{a}|, \\
\text { where } \\
\hat{a}_{r} \neq-, \hat{b}_{r} \neq-}} w\left(\hat{a}_{r}, \hat{b}_{r}\right) \quad \text { (cost of mismatchs) } \\
& +\sum_{x \in \Delta^{\hat{a}} \uplus \Delta^{\hat{b}}} g(|x|) & \text { (cost of gaps) }
\end{array}
$$

Example:

General sub-additive gap penalty

Let D be the alignment matrix of a and b with cost w and gap penalty g, such that $D_{i, j}=w_{g}\left(a_{1 . i}, b_{1 . . j}\right)$. Then:

- $D_{0,0}=0$
- for all $1 \leq i \leq n: D_{i, 0}=g(i)$
- for all $1 \leq j \leq m: D_{0, j}=g(j)$
$-D_{i, j}=\min \begin{cases}D_{i-1, j-1}+w\left(a_{i}, b_{j}\right) & \text { (match) } \\ \min _{1 \leq k \leq i} D_{i-k, j}+g(k) & \text { (deletion of length } k \text {) } \\ \min _{1 \leq k \leq j} D_{i, j-k}+g(k) & \text { (insertion of length } k \text {) }\end{cases}$

Remarks

- Complexity $O\left(n^{3}\right)$ time, $O\left(n^{2}\right)$ space
- pseudocode, correctness, traceback left as exercise
- much more realistic, but significantly more expensive than Needleman-Wunsch

$$
\Rightarrow \text { can we improve it? }
$$

General sub-additive gap penalty

Let D be the alignment matrix of a and b with cost w and gap penalty g, such that $D_{i, j}=w_{g}\left(a_{1 . i}, b_{1 . . j}\right)$. Then:

- $D_{0,0}=0$
- for all $1 \leq i \leq n: D_{i, 0}=g(i)$
- for all $1 \leq j \leq m: D_{0, j}=g(j)$
$-D_{i, j}=\min \begin{cases}D_{i-1, j-1}+w\left(a_{i}, b_{j}\right) & \text { (match) } \\ \min _{1 \leq k \leq i} D_{i-k, j}+g(k) & \text { (deletion of length } k \text {) } \\ \min _{1 \leq k \leq j} D_{i, j-k}+g(k) & \text { (insertion of length } k \text {) }\end{cases}$

Remarks

- Complexity $O\left(n^{3}\right)$ time, $O\left(n^{2}\right)$ space
- pseudocode, correctness, traceback left as exercise
- much more realistic, but significantly more expensive than Needleman-Wunsch

$$
\Rightarrow \text { can we improve it? }
$$

Affine gap cost

Definition

A gap penalty is affine, iff there are real constants α and β, such that for all $k \in \mathbb{N}$: $g(k)=\alpha+\beta k$.

Remarks

- Affine gap penalties almost as good as general ones: Distinguishing gap opening (α) and gap extension cost (β) is "biologically reasonable".
- The minimal alignment cost with affine gap penalty can be computed in $O\left(n^{2}\right)$ time! (Gotoh algorithm)

Gotoh algorithm

In addition to the alignment matrix D, define two further matrices/states.

- $A_{i, j}:=$ cost of best alignment of $a_{1 . . i}, b_{1 . . j}$, that ends with deletion $\stackrel{a_{i}}{\underline{-}}$.
- $B_{i, j}:=$ cost of best alignment of $a_{1 . . j}, b_{1 . . j}$, that ends with insertion $\begin{aligned} & - \\ & b_{j}\end{aligned}$.

Recursions:

$$
\begin{gathered}
A_{i, j}=\min \begin{cases}A_{i-1, j}+\beta & \text { (deletion extension) } \\
D_{i-1, j}+g(1) & \text { (deletion opening) }\end{cases} \\
B_{i, j}=\min \begin{cases}B_{i, j-1}+\beta & \text { (insertion extension) } \\
D_{i, j-1}+g(1) & \text { (insertion opening) }\end{cases} \\
D_{i, j}=\min \begin{cases}D_{i-1, j-1}+w\left(a_{i}, b_{j}\right) & \text { (match) } \\
A_{i, j} & \text { (deletion closing) } \\
B_{i, j} & \text { (insertion closing) }\end{cases}
\end{gathered}
$$

Remark: $O\left(n^{2}\right)$ time and space

Gotoh algorithm

In addition to the alignment matrix D, define two further matrices/states.

- $A_{i, j}:=$ cost of best alignment of $a_{1 . . i}, b_{1 . . j}$, that ends with deletion $\stackrel{a_{i}}{\underline{-}}$.
- $B_{i, j}:=$ cost of best alignment of $a_{1 . . j}, b_{1 . . j}$, that ends with insertion $\begin{aligned} & - \\ & b_{j}\end{aligned}$.

Recursions:

$$
\begin{gathered}
A_{i, j}=\min \begin{cases}A_{i-1, j}+\beta & \text { (deletion extension) } \\
D_{i-1, j}+g(1) & \text { (deletion opening) }\end{cases} \\
B_{i, j}=\min \begin{cases}B_{i, j-1}+\beta & \text { (insertion extension) } \\
D_{i, j-1}+g(1) & \text { (insertion opening) }\end{cases} \\
D_{i, j}=\min \begin{cases}D_{i-1, j-1}+w\left(a_{i}, b_{j}\right) & \text { (match) } \\
A_{i, j} & \text { (deletion closing) } \\
B_{i, j} & \text { (insertion closing) }\end{cases}
\end{gathered}
$$

Remark: $O\left(n^{2}\right)$ time and space

Similarity

The similarity of an alignment (\hat{a}, \hat{b}) is $s(\hat{a}, \hat{b})=\sum_{i=1}^{|\hat{a}|} s\left(\hat{a}_{i}, \hat{b}_{i}\right)$, where $s:(\Sigma \cup\{-\})^{2} \rightarrow \mathbb{R}$ is a similarity function $(s(x, x)>0, s(x,-)<0, s(-, x)<0)$.
Observation. Instead of minimizing alignment cost, one can maximize similarity:

$$
S_{i, j}=\max \left\{\begin{array}{l}
S_{i-1, j-1}+s\left(a_{i}, b_{j}\right) \\
S_{i-1, j}+s\left(a_{i},-\right) \\
S_{i, j-1}+s\left(-, b_{j}\right)
\end{array}\right.
$$

Why similarity?

- Defining similarity of 'building blocks' is often more natural; easier to learn.
- Similarity is useful for local alignment

Local Alignment Motivation

Local alignment asks for the best alignment of any two subsequences of a and b. Important Application: Search!
(e.g. BLAST combines heuristics and local alignment)

Example

$a=A W G V I A C A I L A G R S$
$b=$ VIVTAIAVAGYY
In contrast, all previous methods compute "global alignments".
Why is distance not useful?

Example

a) $\begin{aligned} & \text { XXXAAXXXX } \\ & \text { YYAAYY }\end{aligned}$
b) XXAAAAAXXXX
YYAAYY b) YYYAAAAAYY
Where is the stronger local motif? Only similarity can distinguish.

Local Alignment

Definition (Local Alignment Problem)

Let s be a similarity on alignments.

$$
\begin{aligned}
& S_{\text {global }}(a, b):=\max _{(\hat{a}, b)} s(\hat{a}, \hat{b}) \\
& \text { alignment of } a \text { and } b \\
& S_{\text {local }}(a, b):=\max _{\substack{1 \leq i^{\prime}<i \leq n \\
1 \leq j^{\prime}<j \leq m}} S_{\text {global }}\left(a_{i^{\prime} \ldots . i}, b_{j^{\prime} \ldots . j}\right)
\end{aligned}
$$

The local alignment problem is to compute $S_{\text {local }}(a, b)$.

Remarks

- That is, local alignment asks for the subsequences of a and b that have the best alignment.
- How would we define the local alignment matrix for DP?
- Case in point, why does " $H_{i, j}:=S_{\text {local }}\left(a_{1 . . i}, b_{1 . . j}\right)$ " not work?

Local Alignment Matrix

The local alignment matrix H of a and b is the $n+1 \times m+1$ matrix of entries

$$
H_{i, j}:=\max _{0 \leq i^{\prime} \leq i, 0 \leq j^{\prime} \leq j} S_{\text {global }}\left(a_{i^{\prime}+1 . . i}, b_{j^{\prime}+1 . . j}\right) .
$$

Remarks

- $S_{\text {local }}(a, b)=\max _{i, j} H_{i, j}(!)$
- all entries $H_{i, j} \geq 0$, since $S_{\text {global }}(\epsilon, \epsilon)=0$.
- $H_{i, j}=0$ implies no (non-empty) subsequences of a and b that end in respective i and j are similar.
- Allows case distinction / optimal substructure property holds.

Local Alignment Algorithm - Case Distinction

Cases for $H_{i, j}$

1.) | \ldots | a_{i} | 2.$)$ | \ldots | a_{i} | 3.) | \ldots | - |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \ldots | b_{i} | | \ldots | - | | b_{j} | |

4.) 0 , since if each of the above cases is dissimilar (i.e. negative), there is still (ϵ, ϵ).

Local Alignment Algorithm (Smith-Waterman Algorithm)

For the local alignment matrix H of a and b,

- $H_{0,0}=0$
- for all $1 \leq i \leq n: H_{i, 0}=0$
- for all $1 \leq j \leq m: H_{0, j}=0$
- $H_{i, j}=\max \left\{\begin{array}{l}0 \\ H_{i-1, j-1}+s\left(a_{i}, b_{j}\right) \\ H_{i-1, j}+s\left(a_{i},-\right) \\ H_{i, j-1}+s\left(-, b_{j}\right)\end{array} \quad\right.$ (empty alignment)

Local Alignment Algorithm (Smith-Waterman Algorithm)

For the local alignment matrix H of a and b,

- $H_{0,0}=0$
- for all $1 \leq i \leq n: H_{i, 0}=0$
- for all $1 \leq j \leq m: H_{0, j}=0$
- $H_{i, j}=\max \left\{\begin{array}{l}0 \\ H_{i-1, j-1}+s\left(a_{i}, b_{j}\right) \\ H_{i-1, j}+s\left(a_{i},-\right) \\ H_{i, j-1}+s\left(-, b_{j}\right)\end{array} \quad\right.$ (empty alignment)

Local Alignment Remarks

Remarks

- Complexity $O\left(n^{2}\right)$ time and space, again space complexity can be improved
- Requires that similarity function is centered around zero, i.e. positive = similar, negative = dissimilar.
- Extension to affine gap cost works
- Traceback?

Local Alignment Example

Example

- $a=\mathrm{AAC}, b=\mathrm{ACAA}$
- $s(x, y)= \begin{cases}2 & \text { iff } x=y \\ -3 & \text { otherwise }\end{cases}$

		A	$C A A$		
	0	0	0	0	0
A	0	2	0	2	2
A	0	2	0	2	4
C	0	0	4	1	1

Traceback: start at maximum entry, trace back to first 0 entry

Exercise / Homework: semi-local "glocal" alignemnt

- Also known as free end-gap alignment.
- Case in point, align a short sequence a to a subsequence of a long(er) sequence b. Leave gaps at the beginning and end of b free of cost.

- How would you modify your implementation of Smith-Waterman? (code it!)
- Analogous variants make costs free at the beginning and/or end of a.
- Can you imagine, where such algorithms are useful?

Substitution/Similarity Matrices

- In practice: use similarity matrices learned from closely related sequences or multiple alignments
- PAM (Percent Accepted Mutations) for proteins
- BLOSUM (BLOcks of Amino Acid SUbstitution) for proteins
- RIBOSUM for RNA
- Scores are (scaled) \log odd scores: $\log \frac{\operatorname{Pr}[x, y \mid \text { Related }]}{\operatorname{Pr}[x, y \mid \text { Background }]}$

Multiple Alignment

Example: Sequences		Alignment $a^{(1)}=$ ACCCGAG $a^{(2)}=$ ACCTACC \Rightarrow align $a^{(3)}=$ TCCTACGG $A=A C--T A C-C ~$ ACC-TACGG

Definition

A multiple alignment A of K sequences $a^{(1)} \ldots a^{(K)}$ is a $K \times N$-matrix $\left(A_{i, j}\right)_{\substack{1 \leq i \leq K \\ 1 \leq j \leq N}} \quad(N$ is the number of columns of A) where

1. each entry $A_{i, j} \in(\Sigma \cup\{-\})$
2. for each row i : deleting all gaps from $\left(A_{i, 1} \ldots A_{i, N}\right)$ yields $a^{(i)}$
3. no column j contains only gap symbols

How to Score Multiple Alignments

As for pairwise alignment:

- Assume columns are scored independently
- Score is sum over alignment columns

$$
S(A)=\sum_{j=1}^{N} s\left(A_{1 j}, \ldots, A_{K j}\right)
$$

Example

$$
S(A)=s\left(\begin{array}{l}
A \\
A \\
T
\end{array}\right)+s\left(\begin{array}{l}
C \\
C \\
C
\end{array}\right)+s\binom{C}{C}+s\left(\begin{array}{l}
C \\
- \\
-
\end{array}\right)+\cdots+s\binom{\bar{C}}{G}
$$

How do we know similarities?

How to Score Multiple Alignments

As for pairwise alignment:

- Assume columns are scored independently
- Score is sum over alignment columns

$$
S(A)=\sum_{j=1}^{N} s\binom{A_{1 j}}{\dddot{A}_{k j}}
$$

Example

$$
S(A)=s\left(\begin{array}{l}
A \\
A \\
T
\end{array}\right)+s\left(\begin{array}{l}
C \\
C \\
C
\end{array}\right)+s\binom{C}{C}+s\left(\begin{array}{l}
C \\
- \\
-
\end{array}\right)+\cdots+s\left(\begin{array}{l}
- \\
C \\
G
\end{array}\right)
$$

How to define $s\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$? as log odds $s\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\log \frac{\operatorname{Pr}[x, y, z \mid \text { Related }]}{\operatorname{Pr}[x, y, z \mid \text { Background }]}$?
Problems? Can we learn similarities for triples, 4-tuples, ... ?

Sum-Of-Pairs Score

Idea: approximate column scores by pairwise scores

$$
s\left(\begin{array}{c}
x_{1} \\
\cdots \\
x_{j}
\end{array}\right)=\sum_{1 \leq k<l \leq K} s\left(x_{k}, x_{l}\right)
$$

Sum-of-pairs is the most commonly used scoring scheme for multiple alignments. (Extensible to gap penalties, in particular affine gap cost)

Drawbacks?

Optimal Multiple Alignment

Idea: use dynamic programming

Example

For 3 sequences a, b, c, use 3 -dimensional matrix (after initialization:)

$$
S_{i, j, k}=\max \begin{cases}S_{i-1, j-1, k-1} & +s\left(a_{i}, b_{j}, c_{k}\right) \\ S_{i-1, j-1, k} & +s\left(a_{i}, b_{j},-\right) \\ S_{i-1, j, k-1} & +s\left(a_{i},-, c_{k}\right) \\ S_{i, j-1, k-1} & +s\left(-, b_{j}, c_{k}\right) \\ S_{i-1, j, k} & +s\left(a_{i},-,-\right) \\ S_{i, j-1, k} & +s\left(-, b_{j},-\right) \\ S_{i, j, k-1} & +s\left(-,-, c_{k}\right)\end{cases}
$$

For K sequences use K -dimensional matrix.
Complexity?

Heuristic Multiple Alignment: Progressive Alignment

Idea: compute optimal alignments only pairwise

Example

4 sequences $a^{(1)}, a^{(2)}, a^{(3)}, a^{(4)}$

1. determine how they are related
\Rightarrow tree, e.g. $\left(\left(a^{(1)}, a^{(2)}\right),\left(a^{(3)}, a^{(4)}\right)\right)$
2. align most closely related sequences first
\Rightarrow (optimally) align $a^{(1)}$ and $a^{(2)}$ by DP
3. go on \Rightarrow (optimally) align $a^{(3)}$ and $a^{(4)}$ by DP
4. go on?! \Rightarrow (optimally) align the two alignments

How can we do that?
5. Done. We produced a multiple alignment of $a^{(1)}, a^{(2)}, a^{(3)}, a^{(4)}$.

Remarks: - Optimality is not guaranteed. Why?

- The tree is known as guide tree. How can we get it?

Guide tree

The guide tree determines the order of pairwise alignments in the progressive alignment scheme.
The order of the progressive alignment steps is crucial for quality!
Heuristics:

1. Compute pairwise distances between all input sequences

- align all against all
- in case, transform similarities to distances (e.g. Feng-Doolittle)

2. Cluster sequences by their distances, e.g. by

- Unweighted Pair Group Method (UPGMA)
- Neighbor Joining (NJ)

Aligning Alignments

Two (multiple) alignments A and B can be aligned by DP (like two sequences). Idea:

- An alignment is a sequence of alignment columns.

$$
\begin{gathered}
\text { ACCCGA-G- } \\
\text { Example: } \begin{array}{c}
\text { AC--TAC-C } \\
\text { TCC-TACGG }
\end{array}
\end{gathered} \equiv\left(\begin{array}{l}
A \\
A \\
T
\end{array}\right)\left(\begin{array}{l}
C \\
C \\
C
\end{array}\right)\binom{C}{C}\left(\begin{array}{l}
C \\
- \\
-
\end{array}\right) \ldots\left(\begin{array}{l}
- \\
C \\
G
\end{array}\right) .
$$

- Assign similarity to two columns from A and B, e.g. $s\left(\left(\begin{array}{l}- \\ C \\ G\end{array}\right),\binom{G}{C}\right)$ by sum-of-pairs.

Apply dynamic programming (recurse over alignment scores of prefixes of alignments)
Consequences for progressive alignment scheme:

- Optimization only local.
- Commits to local decisions. "Once a gap, always a gap"

Aligning Alignments

Two (multiple) alignments A and B can be aligned by DP (like two sequences). Idea:

- An alignment is a sequence of alignment columns.

$$
\begin{gathered}
\begin{array}{c}
\text { ACCCGA-G- } \\
\text { Example: } \mathrm{AC--TAC-C} \\
\text { TCC-TACGG }
\end{array}
\end{gathered} \equiv\left(\begin{array}{l}
A \\
A \\
T
\end{array}\right)\left(\begin{array}{l}
C \\
C \\
C
\end{array}\right)\binom{C}{C}\left(\begin{array}{l}
C \\
- \\
-
\end{array}\right) \ldots\left(\begin{array}{l}
- \\
C \\
G
\end{array}\right) .
$$

- Assign similarity to two columns from A and B, e.g. $s\left(\left(\begin{array}{l}- \\ C \\ G\end{array}\right),\binom{G}{C}\right)$ by sum-of-pairs.

Apply dynamic programming (recurse over alignment scores of prefixes of alignments)
Consequences for progressive alignment scheme:

- Optimization only local.
- Commits to local decisions. "Once a gap, always a gap"

Progressive Alignment - Example

$$
\text { IN: } a^{(1)}=\text { ACCG, } a^{(2)}=\text { TTGG, } a^{(3)}=\text { TCG, } a^{(4)}=\text { CTGG } w(x, y)=\left\{\begin{array}{l}
0 \text { iff } x=y \\
2 \text { iff } x=- \text { or } y=- \\
3 \text { otherwise (for mismatch) }
\end{array}\right.
$$

- Compute all against all edit distances and cluster

Align ACCG and TTGG					
		T	T	G	G
	0	2	4	6	8
A	2	3	5	7	9
C	4	5	6	8	10
C	6	7	8	9	11
G	8	9	10	8	9
Align ACCG and CTGG					
		C	T	G	G
	0	2	4	6	8
A	2	3	5	7	9
C	4	2	5	8	10
C	6	4	5	8	11
G	8	7	7	5	8
Align TTGG and CTGG					
		C	T	G	G
	0	2	4	6	8
T	2	3	2	5	8
T	4	5	3	5	8
G	6	7	6	3	5
G	8	9	9	6	3

Align ACCG and TCG					
		T	C	G	
	0	2	4	6	
A	2	3	5	7	
C	4	5	3	6	
C	6	7	5	6	
G	8	9	8	5	
Align TTGG and TCG					
		T	C	G	
	0	2	4	6	
T	2	0	3	6	
T	4	2	3	6	
G	6	5	5	3	
G	8	8	8	5	
Align TCG and CTGG					
		C	T	G	G
	0	2	4	6	8
T	2	3	2	5	8
C	4	2	5	5	8
G	6	5	5	5	5

Progressive Alignment - Example

$$
\text { IN: } a^{(1)}=\text { ACCG, } a^{(2)}=\text { TTGG, } a^{(3)}=\text { TCG, } a^{(4)}=\text { CTGG } w(x, y)=\left\{\begin{array}{l}
0 \text { iff } x=y \\
2 \text { iff } x=- \text { or } y=- \\
3 \text { otherwise (for mismatch) }
\end{array}\right.
$$

- Compute all against all edit distances and cluster
\Rightarrow distance matrix

	$a^{(1)}$	$a^{(2)}$	$a^{(3)}$	$a^{(4)}$
$a^{(1)}$	0	9	5	8
$a^{(2)}$		0	5	3
$a^{(3)}$			0	5
$a^{(4)}$				0

\Rightarrow Cluster (e.g. UPGMA)
$a^{(2)}$ and $a^{(4)}$ are closest, Then: $a^{(1)}$ and $a^{(3)}$

Progressive Alignment - Example

$$
\text { IN: } a^{(1)}=\text { ACCG, } a^{(2)}=\text { TTGG, } a^{(3)}=T C G, a^{(4)}=\text { CTGG } w(x, y)=\left\{\begin{array}{l}
0 \text { iff } x=y \\
2 \text { iff } x=- \text { or } y=- \\
3 \text { otherwise (for mismatch) }
\end{array}\right.
$$

- Compute all against all edit distances and cluster
\Rightarrow guide tree $\left(\left(a^{(2)}, a^{(4)}\right),\left(a^{(1)}, a^{(3)}\right)\right)$
- Align $a^{(2)}$ and $a^{(4)}: \begin{gathered}\text { TTGG } \\ \text { CTGG }\end{gathered}$, Align $a^{(1)}$ and $a^{(3)}: \begin{aligned} & \text {-TcG }\end{aligned}$
- Align the alignments!

Align	TTGGCTGG	and	$\underset{-T C G}{\text { ACCG }}$		
		A	C	C	G
		-	T	C	G
	0	4	12	20	28
TC	8	10			
TT	16	:			
GG	24				
GG	32				

Progressive Alignment - Example

$$
\text { IN: } a^{(1)}=\text { ACCG, } a^{(2)}=\text { TTGG, } a^{(3)}=\text { TCG, } a^{(4)}=\text { CTGG } w(x, y)=\left\{\begin{array}{l}
0 \text { iff } x=y \\
2 \text { iff } x=- \text { or } y=- \\
3 \text { otherwise (for mismatch) }
\end{array}\right.
$$

- Compute all against all edit distances and cluster
\Rightarrow guide tree $\left(\left(a^{(2)}, a^{(4)}\right),\left(a^{(1)}, a^{(3)}\right)\right)$
- Align $a^{(2)}$ and $a^{(4)}: \begin{gathered}\text { TTGG } \\ \text { CTGG }\end{gathered}$, Align $a^{(1)}$ and $a^{(3)}: \begin{aligned} & \text { ACCG } \\ & -\mathrm{TcG}\end{aligned}$
- Align the alignments!

Align	$\underset{\text { CTGG }}{\text { TTGG }}$	and A	$\begin{gathered} \text { ACCG } \\ -\mathrm{TCG} \\ \mathrm{C} \\ \mathrm{~T} \end{gathered}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{G} \\ & \mathrm{G} \end{aligned}$	$\begin{aligned} & w(T C,--)=w(T,-)+w(C,-)+w(T,-)+w(C,-)=8 \\ & w(--, A-)=w(-, A)+w(-,-)+w(-, A)+w(-,-)=4 \end{aligned}$
TC	0 8	$\begin{gathered} 4 \\ 10 \end{gathered}$	12	20	28	- $w(T C, A-)=w(T, A)+w(C, A)+w(T,-)+w(C,-)=10$
TT	16	\vdots				- $w(T C, C T)=w(T, C)+w(C, C)+w(T, T)+w(C, T)=6$
GG	24					- ..
GG	32					

Progressive Alignment - Example

$$
\text { IN: } a^{(1)}=\text { ACCG, } a^{(2)}=\text { TTGG, } a^{(3)}=T C G, a^{(4)}=\text { CTGG } w(x, y)=\left\{\begin{array}{l}
0 \text { iff } x=y \\
2 \text { iff } x=- \text { or } y=- \\
3 \text { otherwise (for mismatch) }
\end{array}\right.
$$

- Compute all against all edit distances and cluster
\Rightarrow guide tree $\left(\left(a^{(2)}, a^{(4)}\right),\left(a^{(1)}, a^{(3)}\right)\right)$
- Align $a^{(2)}$ and $a^{(4)}: \begin{gathered}\text { TTGG } \\ \text { CTGG }\end{gathered}$, Align $a^{(1)}$ and $a^{(3)}: \begin{aligned} & \text {-TcG }\end{aligned}$
- Align the alignments!

Align	${ }_{\text {CTGG }}$	and	${ }_{\text {-TCG }}$				
		A	C	C	G	\Longrightarrow	TTGG
	0	4	12	20	28	after filling	CTGG
TC	8	10				and traceback	ACCG
TT	16						-TCG
GG	24						
GG	32						

A Classical Approach: CLUSTALW

- prototypical progressive alignment
- similarity score with affine gap cost
- neighbor joining for tree construction
- special 'tricks' for gap handling

Advanced Progressive Alignment in muScLE

1.) alignment draft and 2.) reestimation 3.) iterative refinement

