Assessing the predictive capacity of the Nussinov model

Warm-up
A secondary structure can be given as a list of base-pairs l over a sequence of length n. This first assignment consists in printing the structure back as a well-parenthesized expression.

Implement a function `displaySecStr`, which takes as input a pair (l,n), and returns the well-parenthesized expression. Remark: Bases will be numbered starting from 0.

Example:
\[
\text{Input: } \text{displaySS}([[2,8),(3,7)],10) \quad \text{Output: } "\ldots(\ldots)." \\
\]

Parsing secondary structures
We wish to extract a list of base-pairs from the well-parenthesized notation used in the Vienna package. In this notation, two positions are involved in a base-pair if and only if they correspond to matched opening (and closing) parentheses. Unpaired positions are denoted by dots.

Implement a `parseSS(struct)` function, which takes a string `struct` as input, and returns a pair (l,n), where l is the list of base-pairs and n is the length of the string.

Example:
\[
\text{Input: } \text{parseSS}("((.(.....))") \quad \text{Output: } (([0,9),(1,8),(3,7]),10)
\]

The correctness of this function will be verified using its inverse function `parseSS`, defined above. Namely, for any well-parenthesized sequence `seq`, one should have:
\[
\text{displaySS(parseSS(seq),len(seq)) == seq}
\]

Counting compatible structures

Implement a counting variant of the Nussinov algorithm (setting $\theta = 1$ for the sake of simplicity), into a function `countSS`, which will return the number of secondary structures compatible with a given sequence. To that purpose, it is sufficient to replace any occurrences of `min` and `+` in the dynamic programming equation, seen in the first lecture, with `+` and `*` respectively.

\footnote{Remind that θ denotes the minimal distance of paired positions.}
The function takes as input an RNA sequence \(r \) and a boolean \(\text{debug} \). In the normal mode \(\text{debug} = \text{False} \), the function returns the number of secondary structures which only induces base-pairs of the type GC, AU or GU on \(r \). When \(\text{debug} = \text{True} \), it relaxes the base-pairing condition, and returns the total number of secondary structures of length \(\text{len}(r) \).

Example:

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>countSS("A")</td>
<td>1</td>
</tr>
<tr>
<td>countSS("CAG")</td>
<td>2</td>
</tr>
<tr>
<td>countSS("CAGU")</td>
<td>3</td>
</tr>
<tr>
<td>countSS("AAAA",True)</td>
<td>4</td>
</tr>
<tr>
<td>countSS("AAAAAAA",True)</td>
<td>82</td>
</tr>
</tbody>
</table>

You may use the number of secondary structures for sequence lengths up to 12:

<table>
<thead>
<tr>
<th>(\text{len}(r))</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>17</td>
<td>37</td>
<td>82</td>
<td>185</td>
<td>423</td>
<td>978</td>
<td>2283</td>
</tr>
</tbody>
</table>

to check your implementation.

Nussinov

Now, we move on to the implementation of our variant of the Nussinov algorithm. To that purpose, one must duplicate the code of the \(\text{countSS} \) function, and adapt it into a function \(\text{fillMatrix} \), which precomputes the energy of the minimal free-energy structure with respect to a Nussinov energy model \(\Delta \text{G}(\text{AU}) = \Delta \text{G}(\text{GC}) = \Delta \text{G}(\text{GU}) = -1 \). Additionally, the code will be modified to account for general minimal distances \(\theta \) between matching positions.

The \(\text{fillMatrix} \) function takes a sequence \(r \) and a \(\text{theta} \) integer value as input, and return a filled dynamic programming matrix \(\text{tab} \) such that \(\text{tab}[i][j] \) is the MFE for any structure compatible with the interval \([i,j] \).

Example:

Entree : \(\text{fillMatrix(CCCCCUUUUGGGG},3) \)

Sortie :

\[
\text{tab} = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -2 & -3 & -4 & -5 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -2 & -3 & -4 & -4 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -2 & -3 & -4 & -4 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -2 & -2 & -3 & -3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & -2 & -2 & -3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & -2 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]
Once tested, the matrix-filling function will be supplemented by a traceback (possibly recursive) function, which builds (one of) the MFE structure(s). This function takes a DP matrix \(\text{tab} \) produced by \(\text{fillMatrix} \) as input, and returns a set of non-crossing base-pairs associated with the minimal free-energy.

Example:

\[
\begin{align*}
\text{Input} & \quad \text{Output} \\
\text{traceback}(\text{tab}) & \quad [(0,12),(1,11),(2,10),(3,9),(4,8)] \\
\text{displaySS}(& \text{traceback}(\text{tab})) & \quad "(((((...))))")
\end{align*}
\]

Finally, combine these two functions into a \text{nussinov} function which takes an RNA sequence as input, and returns a minimal free-energy structure in the Nussinov model.

Half-time summary

The time has now come to compare the predictive capacities of our – minimally simple – RNA folding software with state-of-the-art tools. To that end, we will use the Vienna package, a suite of tools maintained by Ronny Lorenz at the Theoretical Biochemistry Institute of Vienna. The package includes \text{RNAEval}, which computes the free-energy of a given secondary structure, and \text{RNAFold} which uses dynamic programming to compute the MFE structure for a given RNA sequence, both with respect to the latest version of the Turner energy model.

We implemented two Python \textit{wrappers} for the \texttt{runRNAEval} and \texttt{runRNAFold} tools through the following functions:

- \texttt{runRNAFold(seq)} takes a sequence \(\text{seq} \), and return a pair \((mfe,E)\), where \(\text{mfe} \) is the MFE secondary structure for \(\text{seq} \), given as a base-pair list, and \(E \) is its energy.

You should start by downloading the wrappers (+ data) at:

Model discrepancies

Firstly, implement a function \text{compareSS} which takes as input two structures \(S \) et \(S' \) (represented as base-pair lists), and returns the number of common base-pairs \(|S \cap S'|\). We recommend using Python sets for a single-line implementation.

Predictive performances

Use the \text{compareSS} function to implement a \textit{benchmark} function, which takes an RNA sequence \(\omega \) as input, along with its (assumed known) native structure \(S \), and returns the proportion of base-pairs correctly predicted by the algorithms \text{nussinov} and \text{RNAFold}.
on a reference set of sequence/structures. The dataset was gathered by D. H. Mathews, and can be downloaded from:

http://www.lix.polytechnique.fr/~ponty/enseignement/MathewsRNASorted.faa