
The Minisatellite Transformation Problem
Revisited: A Run Length Encoded Approach

Behshad Behzadi and Jean-Marc Steyaert

LIX, Ecole Polytechnique, Palaiseau cedex 91128, France
{Behzadi,Steyaert}@lix.polytechnique.fr

Abstract. In this paper we present a more efficient algorithm for com-
parison of minisatellites which has complexity O(n′3 + m′3 + mn′2 +
nm′2 + mn) where n and m are the lengths of the maps and n′ and m′

are the sizes of run-length encoded maps. We show that this algorithm
makes a significant improvement for the real biological data, dividing the
computing time by a factor 30 on a significant set of data.

1 Introduction

Comparing sequences is a long-addressed problem in computer science as well as
in biology. Numerous algorithms have been designed starting from diff in Unix
and ending (for the moment) at the subquadratic algorithm of Crochemore et
al. (see [13]). Our interest in this paper is devoted to a structured comparison
of sequences when complex operations can be used to transform strings. These
notions intervene naturally in the algorithmic study and treatment of minisatel-
lites – a very important concept in biology. These genomic subsequences are
commonly used to understand the dynamic of mutations in particular for inter-
allelic gene conversion-like processes at autosomal loci [8, 9]. Jobling et al. [7]
have characterized the Y-specific locus MSY1, a haploid minisatellite, which is
composed of 48 to 114 copies of a repeat unit of length 25, rich in AT and pre-
dicted to form stable hairpin structures. These sequences are of great interest
since they constitute markers for Y chromosome diversity: therefore they allow
to trace male descendence proximity in populations.

Modelling minisatellite evolution is therefore necessary in order to provide
biologists with a rigorous tool for comparing sequences and establishing likely
conclusions as to their proximity. Bérard and Rivals [6] have proposed a com-
binatorial algorithm to solve the edit distance problem for minisatellites: they
considered the five operations – amplification, contraction, mutation, insertion,
deletion – with symmetric costs for each type of operation and designed an O(n4)
algorithm. We showed in [4] that it is possible to take into account the general-
ized cost model, and we designed an algorithm which runs in time O(n3), thus
being more efficient even in a more involved context. In this paper we propose
a new enhancement of the method, by making use of a renewed vision based on
the run-length encoding.

A string s is called run length encoded if it is described as an ordered sequence
of pairs (x, i), often denoted xi, where x is an alphabet symbol and i is an integer.

I. Jonassen and J. Kim (Eds.): WABI 2004, LNBI 3240, pp. 290–301, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

The Minisatellite Transformation Problem Revisited 291

Each pair corresponds to a run in s consisting of i consecutive occurrences of x.
For example, the string aaaabbbbcccabbbbcc is encoded as a4b4c3a1b4c2. Letters
of two consecutive runs are different. Such a run-length encoded string can be
significantly shorter than the standard string representation. Run-length encod-
ing is a usual image compression technique, since many images typically contain
large runs of identically-valued pixels. Among biological sequences, minisatellites
are ideal ones for using the run-length encoded technique, because basically they
consist of a large number of tandem repeats.

Different algorithms have been developed for comparing run-length encoded
(RLE) strings. Bunke and Csirik [3] as well as Apostolico, Landau, and Skiena
[1] present algorithms for the LCS problem on RLE strings. Mäkinen, Navarro
and Ukkonen in [5], Arbell, Landau and Mitchell in [2] and Crochemore, Landau
and Ziv-Ukelson in [13] presented algorithms for edit distance of RLE strings.

In this paper, we extend these algorithms and propose an algorithm for com-
puting the transformation distance between two RLE minisatellite maps. The
framework we propose has its full generality; operation costs can be almost ar-
bitrary with the only feature that amplifications and contractions are of low
cost.

In Section 2, we describe the mathematical model for the minisatellite evo-
lution, and we state the problem in its general form.

In Section 3, we state different lemmas which are essential to prove the cor-
rectness of our algorithm.

In Section 4, we show how our method can be adapted for the simplest
transformation distance using the arch concept developed by Bérard and Rivals
[6].

Section 5 is dedicated to the algorithm. It consists of two parts: Preprocessing
and the Core algorithm both of which use the dynamic programming method.

In section 6, we discuss about the performance of the new algorithm compared
with the previous ones on randomly generated data and real biological data. We
show that our new algorithm works much faster on the real minisatellite data.

2 Model Description

The symbols are elements from a finite alphabet Σ. We will use the letters x, y,
z,... for the symbols in Σ and s, t, u, v,... for strings1 over Σ. The empty string is
denoted by ε. We will denote by s[i] the symbol in position i of the string s (the
first symbol of a string s is s[1]). The substring of s starting at position i and
ending at position j is denoted by s[i..j] = s[i]s[i + 1] . . . s[j]. A substring s[i..j]
is called a run if s[i − 1] �= s[i] = s[i + 1] = s[i + 2]...s[j − 1] = s[j] �= s[j + 1]. A
string obtained by replacing each of the runs of string s by a letter of that run
is called the compact representation of s and is denoted by s′.

1 Throughout the paper we use the word string to designate what biologists call se-
quences or maps [6]. The word sequence will refer to a sequence of operations on a
string.

292 Behshad Behzadi and Jean-Marc Steyaert

In the evolutionary model, five elementary operations are considered on
strings. These operations are mutation (replacement), insertion, deletion, ampli-
fication and contraction. The first three are the well-known string edit distance
operations (see for example [12]). The last two are new operations which are
significant in the study of the evolution of minisatellite strings and more gener-
ally whenever large substrings in the genome are multiply repeated or deleted.
Amplification of a symbol x in a string s amounts to repeating this symbol after
one of its occurrences in s. A p -plication of a symbol x which is an amplification
of order p amounts to p − 1 times repeat symbol x after the initial symbol x.
Conversely, the p -contraction of a symbol x means to delete p − 1 consecutive
symbols x provided that the symbol just before them is also an x. Given two
strings s and t, there are infinitely many sequences of elementary operations
which transform the string s into the string t. Among this infinity, some evo-
lution sequences are more likely; in order to identify them, we introduce a cost
function for each elementary operation depending on the symbols involved in the
operation: I(x) and D(x) are the costs of an insertion or a deletion of symbol
x. M(x, y) is the cost of the replacement of symbol x by symbol y in the string.
For p > 1, Ap(x) is the cost of a p -plication of symbol x in the string and finally
Cp(x) is the cost of a p -contraction of a symbol x. In this paper we consider
only the amplifications (and contractions) of order 2. Whenever we use the terms
amplification and contraction, we mean duplication and 2-contraction. Note that
the costs can be non symmetric (I(x) may be different from I(y), etc.). We sup-
pose that the mutation cost function satisfies the triangle inequality property:
M(x, y) + M(y, z) ≥ M(x, z) for all different x, y, z in Σ ∪ {ε}. In addition,
M(x, x) = 0 for any symbol x and all other values of all of the cost functions
are strictly greater than zero. These hypotheses do not reduce the generality of
our statements. The main hypothesis to consider in comparison of minisatellites
is the following:

Hypothesis 1 The cost of duplications (and contractions) is less than the cost
of all other operations.

A transformation of s into t amounts to applying a sequence of operations on
s transforming it into t. When s is transformed into t by a sequence of operations
we write by s

∗→ t and when s is transformed into t in one elementary operation
we use the notation s→ t. The cost of a transformation is the sum of the costs
of its operations. The transformation distance from s into t is the minimum cost
for a possible transformation from s into t. The transformation which gives this
minimum is called optimal transformation (it is not necessarily unique). Our
objective in this paper is to find this distance between two strings and one of
their optimal transformations. In the next section we will study the optimal
transformation properties.

It will be convenient to add an extra special symbol $ to the alphabet and
to consider that the value of all the functions with $ as one of their variables is
∞ (with exception of M($, $) = 0). Whenever we are asked to find the trans-
formation distance between strings s and t, we will compute the optimal trans-
formation of $s into $t. By our assumption these two values are equal. This is a

The Minisatellite Transformation Problem Revisited 293

way to forbid any insertion (and deletion) at the beginning of strings. (So from
now without loss of generality we suppose that the insertions (and deletions) are
allowed only after symbols.)

3 Optimal Transformation Properties

A transformation applies a sequence of operations on a string s and the result
will be a string t. This sequence is called transformation sequence from s into
t. In a transformation of s into t, each symbol of s, generates a substring of
t: this substring can be the empty string. The symbols of s which generate a
non-empty substring of t are called generating symbols and the other symbols
are called vanishing symbols.

Now consider the transformation of one symbol x to a non-empty string s:
This transformation is called generation. The generations which use only mu-
tations, amplifications and insertions are called non-decreasing generations. A
non-decreasing generation can be represented by a tree. The tree construction
rules are the following:
1) The root of the tree has label x.
2) For any duplication of a symbol y, add two new nodes with label y as children
of that node.
3) The insertion of a letter z after a symbol y is shown by adding two children
to the corresponding node y which have labels y and z from left to right.
4) The mutation of a symbol y into z is represented by a single child with label
z for the node with label y.

F i g. 1. The tree representation of a non-decreasing generation.

Each internal node in the tree corresponds to an operation. As shown in
the Figure 1, different generation sequences can have the same tree represen-
tation. They differ by the order of operations but their costs are the same. A
distinguished generation sequence that one can construct for a given tree is the
sequence which is obtained by a left depth first search of the tree (visit the chil-
dren of a node from left to right). This sequence is called left-to-right generation

294 Behshad Behzadi and Jean-Marc Steyaert

sequence. We recall two lemmas about the optimal transformation properties
from [4]. The proofs are given in [4].

Lemma 1. (The generation lemma):
The optimal generation of a non-empty string s from a symbol x can be achieved
by a non-decreasing generation.

Lemma 2. (The independency of contractions)
There exists an optimal transformation of a string s into string t in which all
the contractions are done before all the amplifications.

Symmetrically, the optimal reduction of a non-empty string s to a single symbol
x can be obtained by using only mutations, deletions and contractions. Now
we study the properties of runs in an optimal transformation. The next lemma
considers a transformation of a single run string into another single run string.

Lemma 3. (Transformation of xk into yl)
The cost of the optimal transformation of the string s = xk into t = yl is:
For k ≤ l:
(1) (k − 1) × C2(x) + M(x, y) + (l − 1) × A2(y) if M(x, y) ≥ A2(y) + C2(x)
(2) k × M(x, y) + (l − k) × A2(y) if M(x, y) < A2(y) + C2(x)
For k > l:
(3) (k − 1) × C2(x) + M(x, y) + (l − 1) × A2(y) if M(x, y) ≥ A2(y) + C2(x)
(4) k × M(x, y) + (k − l) × C2(x) if M(x, y) < A2(y) + C2(x)

Proof: Let u be the number of x’s which are mutated into y. Then k − u
contractions on s = xk are necessary to delete the extra symbols. If l ≥ k then
l − u duplications should be applied after the mutations. The total cost can be
expressed as a function of u: f(u) = u×M(x, y)+(l−u)×A2(y)+(k−u)×C2(x).
This linear function of u is minimized at u = 1 or u = k depending on the sign
of M(x, y) − A2(y) − C2(x). These two possible cases for the minimum are the
expressions (1) and (2) of the lemma. A similar proof can be considered in the
case l < k for the expressions (3) and (4). Note that M(x, y) = 0 if x = y. �

Hypothesis 1 leads us to the following fact:

Fact 1 There exists an optimal generation of a non-empty string t from a single
symbol x in which for every run of size k > 1 in t, the k− 1 right symbols of the
run are generated by duplications of the leftmost symbol of the run.

Lemma 4. (First run lemma)
There exists an optimal transformation of string s into string t in which for any
generating symbol x the following is true: If x generates t[i..j] and t[i] is not the
first symbol of a run in t then the first run in t[i..j] has length one.

Proof: Consider an optimal transformation of s into t. Let x be the rightmost
symbol which violates the statement of the lemma. This means that the first run
in t[i..j] generated by x is a run of length at least two and t[i − 1] = t[i]. If we
move t[i] from this generated substring to the substring immediately generated

The Minisatellite Transformation Problem Revisited 295

at its left, the total cost remains the same (Fact 1). By iterating this operation
the first run generated by x will have length one. By iterating the whole proce-
dure all the symbols will satisfy the lemma statement. �

Lemma 4 is important for the design of our algorithm. In fact in an optimal
transformation of string s into string t, if s[n] is a generating symbol it will
generate a suffix of t and there are O(m′) candidate suffixes in t (and not O(m))
for this generation.

Lemma 5. (Generating and vanishing symbols of a run)
There exists an optimal transformation of s to t such that for any run in s, all
the vanishing symbols are at the right of all the generating symbols.

Proof: Consider a run of size k = kv +kg such that kv symbols are vanishing and
kg symbols are generating. If kg = 0 the statement of the lemma is correct. If
kg > 0, the reduction of kv symbols costs minimum when they have an identical
symbol at their left because all these symbols can use contractions for their
deletions. �

We call a substring of s a vanishing substring if all the symbols of the sub-
string are vanishing symbols. A vanishing substring is maximal if there is no
other vanishing symbol just before or just after it. By lemma 5, there exists
an optimal transformation of s into t in which the last symbol of all maximal
vanishing substrings of s is the last (rightmost) symbol of some run in s. This is
an important fact for the design of our algorithm. In a transformation of string
s (with compact form s′) into string t, the maximum number of maximal van-
ishing substrings is not more than n′ = |s′| and the rightmost symbol of any of
these vanishing substring is one of the n′ special positions in s.

Consider a maximal vanishing substring s[i..j] and let i′ be the smallest
number in the interval [i, j] which is a first symbol of a run in s if such a
number exists. If i′ exists the evolution can be considered as two reductions:
First s[(i′−1)..j] is reduced into s[i′−1] and then s[(i−1)..(i′−1)] is reduced into
s[i− 1]. The rightmost symbol of both of these reductions is a rightmost symbol
of some run in s, so the whole number of these reductions in a transformation
is O(m′). As a conclusion we have the following lemma.

Lemma 6. (Reduction types)
There exists an optimal transformation of s into t, in which the last symbol
of any reduced substring (reduction) is the last symbol of a run in s and the
reduction is one of the two following types:
(a) Some complete runs of s vanish.
(b) A suffix of one of the runs of s vanishes.

4 Arch Representation

Bérard and Rivals [6] use the notion of arches in order to represent the duplica-
tions (and contractions). For a given string s an arch is identified by a pair of

296 Behshad Behzadi and Jean-Marc Steyaert

integers (i, j) such that i < j and s[i] = s[j]. Two arches are called compatible if
both of the duplications (or contractions) can happened together in an evolution
history. Formally, two arches (i, j) and (i′, j′) where i ≤ i′ are incompatible if
i < i′ < j and j′ ≥ j. Two arches are compatible if they are not incompatible
(Figure 2).

F i g. 2. Different cases for compatible and incompatible arches.

In their simple model, where the cost of operations does not depend on the
symbols, they show that the minimum generation cost of a substring can be
computed from the maximum number of compatible arches in the substring.
The following proposition shows how one can compute the maximum number of
the compatible arches faster using the runs idea:

Proposition 1 Let s′ be the string obtained by replacing each run of the string
s by a single letter. The maximum number of compatible arches in s equals the
maximum number of compatible arches in s′ plus the difference of lengths of the
strings s and s′.

Proof: Let n and n′ be the lengths of the strings s and s′ respectively. The proof
consists of two parts.

Let k′ be the maximum number of compatible arches in s′. Let A′ be a set of
k′ compatible arches in s′. We construct a set A of arches in s in the following
way: For each pair (i′, j′) in A′, add an arch connecting the last symbol of the
i′-th run to the first symbol of the j′-th run (inter-run arches). Add all arches of
the form (i, i+1) into A (in-run arches). The number of in-run arches is n−n′.
All of the arches in A are compatible; hence we have at least k = k′ + (n − n′)
compatible arches in s.

Let k be the maximum number of compatible arches in s and A be a set
of k compatible arches in s. If the number of in-run arches of form (i, i + 1) in
A is less than n − n′, then there exists an in-run arch of form (i, i + 1) which
is not included in A. Let (i, i + 1) be the leftmost such arch. By definition of
the incompatible arches, in A there is at most one arch with i + 1 as the right
endpoint (Figure 2(f)). So there is at most one arch in A incompatible with
(i, i + 1). By maximality of A, there is exactly one arch in A incompatible with
(i, i+1). We replace this arch by (i, i+1) in A. By iterating the same procedure,
we arrive to a set of k compatible arches such that n − n′ are in-run arches of

The Minisatellite Transformation Problem Revisited 297

form (i, i + 1). Since all the possible in-run arches of form (i, i + 1) are present
in this set, there is at most one inter-run arch between two given runs. If we
reduce every run to a single symbol and keep only the inter-run arches, we ob-
tain a set of k′ = k−(n−n′) compatible arches for s′. This completes the proof.�

As a result of this proposition, instead of computing the maximum number
of compatible arches in a string s, one can compute the maximum number of
compatible arches in s′ (which is eventually much smaller than s) and add n−n′

to the computed value. Let MA[i, j] be the maximum number of compatible
arches in substring s′[i..j]. The simple dynamic programming algorithm given in
Figure 3 computes the maximum number of compatible arches for all substrings
of s′. The proof is easy and is omitted. The time complexity is O(n′3).

Algorithm 1 Compatible Arches

If i ≥ j Then MA[i, j] = 0

Else MA[i, j] = max

{
MA[i + 1, j]
MA[i, k − 1] + MA[k, j] + 1 if s′[i] = s′[k], ∀i < k ≤ j

Fig. 3. Recurrence relations for Maximum Compatible arches calculation.

5 The Algorithm

In this section we describe an algorithm to compute the transformation distance
from a string s into a string t. Firstly, in the preprocessing part we determine
the cost of generation of substrings of the target string t from any given symbol
in the alphabet. Then we will compute the transformation distance from s to t
by applying a dynamic programming algorithm using the preprocessing results.

5.1 Pre-processing

Let t[i..j] be the string generated by a symbol x. The compact representation of
this substring is (t[i..j])′. By Fact 1 and the proof of Proposition 1, the optimal
cost of x

∗→ t[i..j] can be obtained by adding all duplication costs of two identical
neighbor symbols in t[i..j] into the optimal cost of the generation x

∗→ (t[i..j])′.
Let b(i) denotes the number of the runs including t[i]. NDup[i] is defined as
below:

NDup[1] = 0 and ∀ 1 < i NDup[i] = NDup[i − 1] +
{

0 if t[i] �= t[i − 1]
A2(t[i]) if t[i] = t[i − 1]

If t′ is the compact representation of t, the minimum generation cost of
t[i..j] from a symbol x denoted by Gt(x, i, j) is equal to (NDup[j]−NDup[i])+
Gt′ [x, b[i], b[j]]. The table Gt′ is computed by dynamic programming algorithm

298 Behshad Behzadi and Jean-Marc Steyaert

given in Figure 4. This algorithm is a simplified version of the pre-processing
algorithm given in [4]. The proof is identical to the proof in [4].
Symmetrically to Gt(x, i, j), we compute Ks(x, i, j) which is the minimum cost
of reduction of s[i..j] into the symbol x. The complexity of the preprocessing part
for a fixed alphabet is O(n + m + n′3 + m′3) in time and O(m + n + n′2 + m′2)
in space.

Algorithm 2 Generation Costs

Initialization:
∀ 0 < i ≤ m′, ∀x ∈ Σ : Gt′ [x, i, i] = M(x, t′[i])

Recurrence:
∀i < j ∀x ∈ Σ :

1) T [x, i, j] = min

{
A2(x) + mini<k≤j{Gt′ [x, i, k − 1] + Gt′ [x, k, j]}
Gt′ [y, i + 1, j] + I(y) if t′[i] = x, ∀y ∈ Σ

2)Gt′ [x, i, j] = miny∈Σ{T [y, i, j] + M(x, y)}

Fig. 4. Recurrence relations for generation costs.

5.2 Core Algorithm: Dynamic Programming Algorithm

An optimal transformation which satisfies the lemmas 4, 5 and 6 is called a
good optimal transformation. Dynamic programming is the tool to find a good
optimal transformation of string s into string t. Let TD[i..j] be the minimum
cost for a transformation of s[1..i] into t[1..j] which can be extended into a good
transformation of s[1..n] into t[1..m]; n′ and m′ denote the number of runs in
strings s and t respectively. Let es(k) be the position of the last element of the
k-th run in s for any 1 ≤ k ≤ n′. Es is the set of all values of es(k) for 1 ≤ k ≤ n′.
For each i ≤ n, e∗s(i) is defined as the largest es(k) < i for k ≥ 1 if such a k
exists and 0 otherwise; et(l), Et and e∗t (j) are defined similarly for 1 ≤ l ≤ m′

and 1 ≤ j ≤ m. All these functions can be computed in linear time, before the
execution of the core algorithm. The core algorithm is given in Figure 5.

Proposition 2 The Algorithm given in Figure 5 determines correctly the trans-
formation distance of s into t.

Proof Sketch: Let us explain how the recurrence relations given in Figure 5
determine the cost of a good optimal transformation. The first lines correspond
to the fact there is a special symbol $ in the head of the strings. We have four
different cases for the recurrence relation. Each case corresponds to different po-
sitions of the current indices w.r.t a run in s and t; then we apply repeatedly
Lemmas 4, 5 and 6 to the situation and evaluate systematically the costs of all
possible analyses that can be done. �

The Minisatellite Transformation Problem Revisited 299

Algorithm 3 Transformation Distance(S,T)
TD[0, 0] = 0
For i← 1 to n do TD[i, 0] =∞
For j ← 1 to m do TD[0, j] =∞

For i← 1 to n do
For j ← 1 to m do

TD[i, j] =




A) if i /∈ Es and j ∈ Et

min{TD[i-1, l] + Gt(s[i], l + 1, j)} l≤j: l∈Et or l+1∈Et or l=j−1

B) if (i /∈ Es and i-1 /∈ Es) and j /∈ Et

min{TD[i-1, j-1] + Gt(s[i], j, j), TD[i-1, e∗t (j)] + Gt(s[i], e
∗
t (j) + 1, j)}

C) if (i ∈ Es or i-1 ∈ Es) and j /∈ Et

min




TD[i-1, j-1] + Gt(s[i], j, j)
TD[i-1, e∗t (j)] + Gt(s[i], e

∗
t (j) + 1, j)

{TD[i-1, l] + Gt(s[i], l + 1, j)} l≤j: l∈Et or l+1∈Et if i-1 ∈ Es

{TD[k, j] + Ks(s[k], k, i)}k<i: k∈Es or k>e∗s(i)

D) if i ∈ Es and j ∈ Et

min

{ {TD[i-1, l] + Gt(s[i], l + 1, j)} l≤j: l∈Et or l+1∈Et or l=j−1

{TD[k, j] + Ks(s[k], k, i)}k<i: k∈Es or k>e∗s(i)

Fig. 5. Recurrence relations for Transformation Distance.

The complexity of the algorithm is O(mn+mn′2 +nm′2) in time and O(mn)
in space. Analysis of the complexity can be done by computing the total com-
plexity of each single line in the recurrence relation separately and then adding
the results.

6 Discussion

In this section, we compare the running time of the algorithms presented in
this paper with the algorithms presented in [4] and [6]. For this aim we firstly
compare the running time on randomly generated strings on an alphabet Σ.
In a second part we run the three algorithms on a real biological database of
minisatallites.

Let us just remark that the number of runs R in a random sequence of
length n with equally distributed letters follows a Bernoulli law: P{R = k} =(
n−1
k−1

)
(|Σ|−1

|Σ|)k−1(1
|Σ|)

n−k. The mathematical expectation of the number of runs

for a string of size n is 1 + (n − 1) |Σ|−1
|Σ| .

The number of runs of a string which is generated randomly on an alphabet
Σ grows linearly with n. The compact representations of randomly generated
strings have size proportional to n on the average. We observe on biological
minisattelite samples that the compact representation is much shorter than the
original string.

300 Behshad Behzadi and Jean-Marc Steyaert

F i g. 6. Five variant MSY1 repeats identified and a simple mutation table on them
based on the number of different nucleotides.

Table 1. Running times of different algorithms on random and biological datasets.

Algorithm Random sequences minisatellites data

PreProcessing Core PreProcessing Core

Bérard & Rivals(2002) 15.90 sec 1058.44 sec 16.37 sec 1062.23 sec

Behzadi & Steyaert(2003) 2.51 sec 1014.32 sec 2.49 sec 1012.38 sec

This paper 2.14 sec 810.93 sec 0.03 sec 32.54 sec

The MSY1 repeats are AT rich (75%-80%) sequences. Five variant repeats
designated were identified. Each of these repeats contains 25 bp. Repeat types
1-4 differ at two sites, a C/T transition at position 3, and a C/G transition
at position 13. The single type 5 repeat, differs from the type 2 repeat by a
transition at position 21.

We used a dataset provided by M. Jobling in which minisattelite maps for 690
Y chromosome from worldwide population samples were determined. The length
of each of these 690 sequences is between 48 and 118. We compute the trans-
formation distances between each pair of these strings by the three mentioned
algorithms. The running times are given in table 1. The PreProcessing part is
executed once for each of these strings and the core algorithm is considered for
any pairs of these strings (690×690 pairs). The given times correspond to the
total time needed for all these computations. Note that the random sequences
have the same lengths as the sequences in the database and the alphabet is the
same.

7 Conclusion

We have also considered a model in which we have amplifications (and contrac-
tions) of order greater than two. The results can be easily generalized.

As a final remark, let us just point out again, that the minisatellite problem
is an instance of the general problem of transforming a chain into another and
the framework is now at its maximum generality.

The Minisatellite Transformation Problem Revisited 301

References

1. Apostolico, A., Landau, G.M. and Skiena, S.: Matching for Run Length Encoded
Strings. Journal of Complexity, 15, 1, 4-16 (1999).

2. Arbell, O., Landau, G.M., Mitchell, J.S.B: Edit Distance of Run-Length Encoded
Strings. Information Processing Letter, 83(6), 307-314, 2002.

3. Bunke, H. and Csirik, J.: An Improved Algorithm for Computing the Edit Distance
of Run Length Coded Strings. Information Processing Letters, 54, 93-96 (1995).

4. Behzadi B. and Steyaert J.-M.: An Improved Algorithm for Generalized Compar-
ison of Minisatellites. Proc. of 14th CPM. Lecture Notes in Computer Science
(2003).

5. Mäkinen, V., Navarro, G., Ukkonen, E.: Approximate Matching of Run-Length
Compressed Strings. Proc. of 12th CPM, Lecutre Notes in Computer Science 2089,
Springer-Verlag, 31-49 (2001).

6. Bérard, S., Rivals, E.: Comparison of Minisatellites. Proceedings of the 6th Annual
International Conference on Research in Computational Molecular Biology. ACM
Press, (2002).

7. Jobling, M.A., Bouzekri, N., Taylor, P.G.: Hypervariable digital DNA codes
for human paternal lineages: MVR-PCR at the Y-specific minisatellite,
MSY1(DYF155S1). Human Molecular Genetics, Vol. 7,No. 4. (1998)643–653.

8. Bouzekri, N., Taylor, P.G., Hammer M.F, Jobling, M.A.: Novel mutation processes
in the evolution of haploid minisatellites, MSY1: array homogenization without
homogenization. Human Molecular Genetics,Vol. 7, No. 4. (1998)655–659

9. Jeffreys, A.J., Tamaki, K., Macleod, A., Monckton, D.G., Neil, D.L and Armour,
J.A.L: Complex gene conversion events in germline mutation at human minisatel-
lites. Nature Genetics, 6. (1994)136–145.

10. Brión, M., Cao, R., Salas, A., Lareu M.V., Carracedo A.: New Method to Measure
Minisatellite Variant Repeat Variation in Population Genetic Studies. American
Journal of Human Biology, Vol. 14.(2002) 421–428.

11. Elemento, O., Gascuel, O., Lefranc, M.-P.: Reconstructing the duplication history
of tandemly repeated genes. Molecular Biology and Evolution,vol 19(3). (2002)
278–288.

12. Sankoff, D. and Kruskal, J.B: Time Warps, String Edits and Macromolecules: The
Theory and Practice of Sequence Comparison. Addison-Wesley. (1983).

13. Crochemore, M., Landau, G. M., Ziv-Ukelson, M.: A sub-quadratic sequence
alignment algorithm for unrestricted cost matrices. SODA’2002. ACM-SIAM.
(2002)679–688.

	1 Introduction
	2 Model Description
	3 Optimal Transformation Properties
	4 Arch Representation
	5 The Algorithm
	5.1 Pre-processing
	5.2 Core Algorithm: Dynamic Programming Algorithm

	6 Discussion
	7 Conclusion
	References

