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Abstract

By analogy with the theory surrounding the Ewens sampling formula
in neutral population genetics, we ask whether there exists a natural one-
parameter family of probability distributions on cladograms (“evolution-
ary trees”) which plays a central role in neutral evolutionary theory. Un-
fortunately the answer seems to be “no” — see Conjecture 2. But we can
embed the two most popular models into an interesting family which we
call “beta-splitting” models. We briefly describe some mathematical re-
sults about this family, which exhibits qualitatively different behavior for
different ranges of the parameter 5.

1 Probability distributions on partitions and
neutral population genetics

The first few sections give some conceptual background. The reader wishing to
“get right to the point” should skim these and proceed to section 3.

For each n there is a finite set of partitions of {1,2,... n} into unordered
families { Ay, Aa, ..., Ap} of subsets. A one-parameter family (Pe(n)) of proba-
bility distributions on this set of partitions can be defined by

(i — 1) oy™
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where m; is the number of A’s with exactly ¢ elements. The right side is a
slightly disguised statement of the Fwens sampling formula in neutral popula-
tion genetics, which is central to a mathematically rich and elegant theory which
has made an impact in non-mathematical genetics. See e.g. [16, 26, 11, 9]. Our
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purpose in this paper is to ask whether there is an analogous theory for neutral
evolutionary trees. In particular, we study whether the following two results
have analogs for evolutionary trees.

(a) Consistency characterization. A family (P(");1 < n < oo) satisfies the
following three conditions iff it is one of the (Pe(n)).

(i) Exchangeability. For each n, the distribution is invariant under permu-
tations of the labels {1,2,...,n}.

(ii) Sampling invariance. For each n, P() induces a distribution on parti-
tions of {1,2,...,n— 1} by the action of deleting n: this distribution is P(*~1),

(iii) Subset deletion. For each j < n, given that P(") has {j4+1,j+2,...,n}
as a set in the partition, the remaining partition of {1,2,...,j} has distribution
P,

(b) Interpretation via time-evolution. Suppose there are k neutral alleles
(an allele is a possible “type” of a gene; neutral means to confer no selective
advantage or disadvantage). Count the proportions (X;(¢);1 < ¢ < k) of a
population with allele ¢ in generation . Then under natural models there is a

k-dimensional diffusion (X;(¢)) representing the limit (as population size tends
to infinity and time is rescaled), where randomness comes from the random
number of copies of an individual allele which appear in the next generation.
If we also allow random mutations to produce new alleles, we get an infinite-
dimensional diffusion (“the infinitely-many-alleles model”). A random sample of
n individuals from the population can be partitioned into subsets with i1dentical
alleles, and this random partition has distribution Pe(n), where the parameter ¢
is related to the mean number of mutations per generation.

2 Phylogenetic trees

A phylogenetic tree is a visual representation of an assertion about relationships
between species A, B,C,.... There are many varieties of such tree, differing in
the details of what exactly is being asserted — see Eldredge and Cracraft [10]
for an extensive discussion. Figure 1 1s a cladogram. The basic interpretation
is the obvious one: amongst species {C, D, E'}, the most closely related are D
and £, and so on. The species are distinguished, 1.e. switching A with D gives
a different cladogram. But there is no distinction between right and left edges,
i.e. switching A with B gives the same cladogram. And there is no explicit time
scale.
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Figure 1

Biologists believe in evolution, and so implicitly believe there is a true “evo-
lutionary tree” linking all living and extinct species, and that classifications of
species should be consistent with evolutionary history. The classical Linnaean
hierarchy (originally species, genus, order, class, kingdom but subsequently ex-
tended to many more ranks) remains in practical use, but theoreticians have
conducted a vigorous debate about how classification ought to be done.

Figure 2 is one way to picture a true evolutionary tree. Species are repre-
sented by vertical lines, from their time of origin to their time of extinction,
with dotted horizontal lines indicating the origin of a species from its parent
species. Implicit in such a picture are a set of generally-held beliefs about evo-
lution (e.g. that species arise comparatively quickly and then remain largely
unchanged until extinction) which T won’t go into.
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In practice one seldom has enough information about extinct species to be
able to draw a tree as detailed as Figure 2, but it is useful to envisage such
a tree in order to avoid drawing unwarranted inferences from other representa-
tions. To illustrate, consider the cladogram in Figure 1, which is consistent with
the evolutionary tree of Figure 2. ;jFrom the cladogram one might think, loosely
speaking, that A and B are more closely related to each other than are C' and
D. But the evolutionary tree indicates the opposite is possible, if we measure
closeness by either time of divergence or number of intermediate species. More
dramatically, a cladogram does not indicate ancestor-descendant pairs. In Fig-
ure 1, A and B might be “cousins” (as Figure 2 shows), or one might be an
offspring of the other (as Figure 2 shows F to be an offspring of D).

A third type of picture, a phenogram, is often used, in particular in the
context of molecular genetics analysis of living species.
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A phenogram contains more information than the cladogram, in that there
is an absolute time scale. But the previous warning about casual inferences still
holds. jFrom Figure 3 one might assume that the common ancestor « of {A, B}
lived earlier than the common ancestor v of {C, D, F'}, whereas Figure 2 shows
it is possible that a both originated later than v and became extinct later than
¥.

Minor points. (a) We're going to assume cladograms have only binary splits,
although actual cladograms exhibited in the literature usually have some higher-
order splits also. One can interpret a higher-order split as a collection of binary
splits which cannot be resolved with the data available.

(b) Drawing cladograms with diagonal lines is just a convention, but is useful
for distinguishing them from phenograms or other kinds of evolutionary tree.

2.1 Why consider probability models?

There are two quite different reasons for considering probability models of phy-
logenic trees. The first reason concerns technical aspects of reconstructing trees
from data. Molecular biologists in general have eschewed probability models
in favor of parsimony (deterministic best-fit) methods, which have the advan-
tage of telling you what tree to write down (up to often-serious non-uniqueness
and computational tractability issues), but the disadvantage of not indicating
quantitative confidence assertions. To implement a more classical statistical
methodology involves a complex array of modeling problems, one of which is
to specify an a priori model of evolutionary history. A related issue is testing
the actual algorithms used: given a hypothetical true phylogenetic tree and a
model for the mutation process underlying the observed data, how well does the



algorithm reconstruct the treel’ Since these procedures are computationally in-

tensive anyway, it would seem better to use a “good” @ priori model (if we could

agree on one!) rather than a model chosen purely for mathematical simplicity.
My own motivation comes from the more conceptual question

If we had the true evolutionary tree of all species, what could we infer
about the relative roles of selectivity and neutrality in the pattern
of speciations and extinctionsI’

Several disparate lines of relevant research appear in the literature. Gould,
Raup et al [24, 12, 23] compared paleontological data with random models
(essentially critical branching processes). ! The recent book by Kauffman [15]
contains a wide-ranging study of mathematical models of selectivity effects. See
also the conference proceedings [22] and the work cited in the next section.
But the bottom line is that (in contrast to neutral population genetics) there is
no accepted definite notion, at either the conceptual or mathematical level, of
“neutral evolution of species”.

One could discuss models of any of the varieties of tree discussed in section 2.
For the technical issues mentioned above it is most natural to use phenograms,
whereas for our purpose of extracting patterns from published trees we shall use
cladograms, which are becoming the most common form of published phylogeny.

2.2 Two particular probability distributions on phyloge-
netic trees

There is a scattered (and mostly mathematically unsophisticated) biological
literature on a prior: models of random phylogenetic trees. Brief surveys are
contained in [14, 19]. We describe below the two models which have been most
discussed in the biological literature. As noted later these models (under a
bewildering variety of different names) have also been extensively studied in
other contexts.

The number of different cladograms on n species is

n=02n =3 =(2n-3)(2n—-5)- 3-1.

One way to see this is to note that a cladogram on n species has 2n — 1 edges
(for this purpose we add an edge upwards from the root) and that each choice
of edge at which to add a n + 1’st species leads to a different cladogram on
n + 1 species, 80 ¢p41 = (2n — 1)en. In the uniform model we assume each
cladogram 1s equally likely. The Yule model, considered as a phenogram, is just
the elementary continuous-time pure birth process started with one lineage.
That is, each lineage persists for a random, exponential(1) time and then splits
into two lineages. Continue the process until there are n lineages. The resulting

I Their work focused on number of species as a function of time, whereas ours focuses on
the combinatorial structure of phylogenetic trees.



random cladogram has an equivalent description as “random joinings”, where
we count time backwards from the present. Starting with n lines of descent, we
choose uniformly at random one of the n(n — 1)/2 pairs and join the pair, to
make n — 1 lines of descent, and continue until there is a unique line. In either
case, throwing away the time scale leaves a random cladogram.

2.3 Search trees

Some probability distributions on cladograms can be associated with well-studied
random search trees in computer science. Let us explain the connection briefly.

Figure 4

Figure 4 shows a subtree of the infinite binary tree, i.e. a tree in which
a node has either zero children, a left child, a right child, or both a left and a
right child. Such a “binary tree” can be described using either the n—1 internal
nodes e or, as 1s customary in computer science, via the n external nodes o, i.e.
those nodes outside the subtree whose parent is in the subtree. Such a tree can
be mapped to a cladogram on n leaves, as shown in Figure 5. Thus a probability
distribution on binary trees induces a probability distribution on cladograms,
by randomly (uniformly) labeling the leaves 1,2, ..., n.

The recent book Mahmoud [20] treats several models of random binary tree
from the viewpoint of search trees in computer science. Some of these models —
precisely, the induced models on cladograms — occur later.

A wide-ranging abstract study of trees as proximity indicators (but not em-
phasizing probability models) can be found in Barthelemy and Guenoche [6].



3 Axiomatizing properties of random cladograms

We seek probability models for “neutral evolution of species”. By analogy with
the results in section 1 for neutral population genetics, it is natural to hope
there exists a one-parameter family of probability distributions on cladograms
for which

(a) random cladograms (7,,;n > 2) are in the family iff they satisfy some
specified intrinsic compatibility conditions.

(b) These random cladograms arise from some natural model of species evolv-
ing with time.

Let’s start with idea (b). Consider the following class of models.

At each time ¢ there are a finite number of species alive (starting
with one species at time 0). ;From time to time there is an “event”
which is either an extinction or a speciation, i.e. either some species
B becomes extinct or some species A splits into species A and A’.
The time from t until the next event, and the chance the next event
is an extinction rather than a speciation, may depend on the past in
an arbitrary way. But if the next event is an extinction then each
species 1s equally likely to be the one to become extinct, and if the
next event is an speciation then each species is equally likely to be
the one to speciate.

At first sight the arbitrariness should allow us to get a family of models, with a
parameter representing (say) the ratio of speciation rate to extinction rate. But
this is false, because 1t 1s easy to show

Lemma 1 For any model of the class above which ends with n living species, the
cladogram of those species is distributed as the Yule model described in section

2.2.

Turning to idea (a), the following two compatibility conditions for a family
(Th;n > 2) of random cladograms seem to be the natural analogs of those in
section 1.

(i) Exchangeability. For each n, the random cladogram is exchangeable in
the labels of the n species, 1.e. invariant under permutations.

(ii) Group elimination. For each 1 < k < n, conditional on {k + 1,k +
2,...,n} being a group in 7,, (i.e. being the set of descendants of some internal
vertex), the cladogram restricted to {1,2,...,k} is distributed as Tj.

It is easy to check that the Yule model and the uniform model (described in
section 2.2) satisfy these conditions, as does the family of combs, i.e. the family
with the deterministic “maximally unbalanced” shape below, and with the n
species uniformly randomly distributed amongst positions.




Figure 5

Unfortunately we have been unable to construct any more examples, so
Conjecture 2 The three families above are the only families satisfying (i)-(ii).

Another open question in this “axiomatic” spirit will be mentioned in section
6.3, but the bottom line is that our attempt to define models of “neutral evolu-
tion of species” by some close analogy with neutral population genetics seems
completely unsuccessful. In the next section we resort to pulling a model out of
thin air.

4 The beta-splitting model

Suppose that for each n > 2 we are given a probability distribution q, =
(gn(i);i=1,2,...,n— 1) which is symmetric (¢, (¢) = ¢n(n — ¢)). Then we can
define probability distributions on cladograms in the obvious way: the root-split
has ¢ elements in the left branch and n—¢ elements in the right branch, where ¢ is

chosen at random according to the distribution ¢, and where each of the ( 7; )

choices of elements for the left branch are equally likely. Repeat recursively
in each branch. Interpret the resulting tree as a cladogram by removing the
left /right markers. Call these Markov branching models.

To specialize this construction, consider a probability density f on (0,1)
which is symmetric (that is, f(z) = f(1 — #)), and define

(i) = a7’ ( " ) /01 21— 2"~ f(x)dx (1)

for normalizing constant

Qn

/0 (1—a™ = (1 - 2)") f(x)de )
= 1—2/(Jx"f(x)dx.



This specialization has a simple interpretation in terms of splitting intervals (a
topic discussed from a different viewpoint by Brennan and Durrett [7, 8]). Start
with n uniform random “particles” on the unit interval. Split the interval at a
random point with density f. Repeat recursively on subintervals, splitting each
interval [a, b] at a point a+ X (b—a) where the X’s are independent with density
f, stopping when a subinterval contains only one particle.

Figure 6 illustrates the construction and its interpretation as a cladogram.
Note that a subinterval split in which all particles go into one side of the split
is suppressed.

Note that for (1, 2) to make sense it is not necessary for f to be a probability
density. It is enough to have f > 0 be symmetric and satisfy f0+ zf(x)de < 0.

: 2 | ; ' s
I * % * I * *
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Figure 6
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We now specialize further to define a one-parameter family (Tgn)) of random
cladograms, parametrized by —2 < g < co. For —1 < < 0o these are obtained
by the interval-splitting construction above with the beta density

o) = I'(26+2) P

=FOTD 1-2), 0<ze<l. (3)

Applying (1),
(i) = 1 TPR+i+1D)I(B+n—i+1)
= @) T+ Dn—it1)

where as at (2) a,(3) is the normalizing constant. For § = oo we get the
interval-splitting construction where intervals are split deterministically at their
center. For —2 < 3 < —1 the recursive construction with ¢, defined at (4)
still makes sense, corresponding as mentioned above to the function f(z) =
z?(1 — 2)? for which f0+ zf(z)dz < oco. Finally, for fixed n the § — —2 limit
is the “comb” described in section 3, so we take the comb as the § = —2 model.

1<i<n-—1 (4)
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4.1 Special cases

Three special case have been studied in the literature.

B3 = oo. This is the “symmetric binary trie” studied in computer science,
and surveyed in Chapter 5 of [20]. Tt has been briefly considered in the biological
literature [19].

3 = o. Here we have

(i) = 1,1§i§n—1.

This is the Yule model of section 2.2. It arises from the “binary search tree”
in computer science, surveyed in Chapter 2 of [20]. It also arises from the
“coalescent” in mathematical population genetics ([16, 26]). And as mentioned
in section 2.2 it arises from the Yule process, 1.e. the linear pure birth process.
All these processes are different as processes indexed by time, but the induced
random cladograms are identical.

B = —3/2. This is the uniform model from section 2.2. To verify, a counting
argument shows that the uniform model corresponds to a recursive construction

with .
. n CiCpn_—;
iy =5 (1) e )

where ¢, = (2n — 3)!! is the number of cladograms on n leaves. But we can
write ¢, = 2"7!'T(n — £)/T(%), which leads to

—

[(n4+1) TIGE-35Hln—i-3)
JL(E) T+ Dl(n—i+ 1)

=
3
—
BN
~—
l
]

which is indeed (4) for 8 = —3/2.

This is the model of cladograms associated (in the sense of section 2.3)
with the uniform random binary tree with n external leaves, which has been
studied extensively in combinatorics and computer science (e.g. Knuth [17]).
Its asymptotics can be studied via the continuum tree set-up of [2, 3].

The beta-splitting model certainly satisfies the exchangeability condition (i)
of section 3, but in general does not satisfy the group elimination property (ii).
As a specific example, for § = oo the chance of the cladogram

equals 1/7. But if we take the cladogram on 6 leaves
and condition on {5,6} being a group, then (by an elementary but tedious
calculation) the probability that the cladogram restricted to {1,2,3,4} is the

5-13
cladogram above equals 5.

11



The special case 3 = —1 has apparently not been studied before, but turns
out to have interesting properties. Note that here we have ¢,(i) = anﬁ.

n—1 n—1
1 1/1 1 2h,_1
St =

i=1

Because

where h,_1 is the harmonic sum, we can write

n 1
4n(?) 2hp_1 iln—1)  — = (6)

4.2 Is there an underlying process?

We are introducing the beta-splitting models as the mathematically most natu-
ral way to embed the Yule model and the uniform model into a one-parameter
family. To make this convincing for biological applications one would like an
underlying continuous-time process of speciation and extinction for which the
general beta-splitting model was the associated cladogram. I do not know a
natural candidate for such a process.

It has often been asserted in the biological literature [14, 19] that the uniform
model 1s unsatisfactory because there is no such underlying process. This is not
entirely correct. Consider conditioned critical branching processes, which have
been studied in the biological literature ([24, 12]) as models for neutral evolution
of large groups of species. One of the results from [2, 3] is that, for a random
sample of n species from a large such group, the cladogram on the sampled
species will follow the uniform model.

This observation makes it slightly more plausible that there might be some
subtle process underlying the general beta-splitting model.

4.3 A data-set

The most famous datum in the subject (discussed in [14] and by many other
writers) is (9672,21), the split between bird species and crocodilian species.
Under the Yule model (8 = 0) the chance of a more unbalanced split is 0.004,
whereas under the uniform model (3 = —1.5) the chance is 0.878. Guyer and
Slowinski ([14] table 1) consider the sizes of the smaller branch in the root split
in 30 large cladograms. Tt is clear from the raw data (and confirmed in [14] by
a test of significance) that the splits are more unbalanced than predicted under
the Yule model, but more balanced than predicted under the uniform model.
Figure 7 gives a visual display of the data under each model using the quantile
transform, (i.e. the bird-crocodile split would be plotted at 0.878 under the
uniform model and at 0.004 under the Yule model.) So under a true model we
would see 30 independent uniform points.

12
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Figure 7

The fit to the 7 = —1 model is strikingly better than to the usual models.
Is this just a flukel’

Let me also mention that two papers (Savage [25], Guyer and Slowinski [13])
analyze data on small cladograms (4 < n < 7 and n = 5). [25] concludes that
the Yule model gives a better fit than the uniform model, whereas [13] concludes
the opposite.

5 Some asymptotics for the beta-splitting model

This section outlines some asymptotics for the beta-splitting family. Details of
some of the more interesting results may be given elsewhere. In the three special
cases (f = —3/2, 0, oo) these results (and much more) are either explicitly
known or can be proved by routine methods.

5.1 Asymptotics of the root-split distribution

The top-most split in a cladogram splits it into two branches of sizes ¢ and n—1.
If we randomly call these “left” and “right” then the size L, of the left branch
has the distribution ¢, at (4). And if we write B, for the size of the branch
containing a specified leaf, then by exchangeability

P(By=i)= 2 qui); 1<i<n—1. (7)
n

It is straightforward to obtain the following asymptotics as n — oo.

—_ d _ d
Lemma 3 8 =0cc. n7 'L, = %;n B, =

—1<B8< . n L, A Xg and n~ B,
distribution (3) and where Yz has density

1
5
4, Y3, where Xg has the beta

T(26 +3)
A+ 1DI(B+2)

0= 5 (1 =) (3)

13



logmin(L,,n — Ly) < and
logn logn

log(n — By) 4y

where U has the uniform distribution on (0,1).
—2 < B < —1. For each fivred 1 > 1,

P(min(L,,n— L,) =1) — v5(i) and P(B, = n —1) — v3(i)

where the limat distribution vs ts given by

00 —t4i :
. _ et 4 L TE+1+9)
= t7 dt = _
76(8) = K /0 il " TG+ 1)
for normalizing constant
Kg = 1—e HPdt = - T . 9
o= [ = T ©
And if i ~axn for 0 < x < 1,
. 1 _
qn (%) ~ §nﬁ1xﬁ(1—x)ﬁnﬁ. (10)

Note that the distribution vg can also be expressed as

’yg(i):mbH(l—Fﬁ,), 121
j=2 J

for different normalizing constants.

5.2 Depth and height statistics

The depth of a leaf in a cladogram is the number of branchpoints on the path
from that leaf to the root, where we include the root as a branchpoint. Thus in
Figure 1, species A has depth 2 and species F has depth 3. We can define the
following three numbers for a cladogram.

e d, the average depth of the leaves.

. ci, the depth of the leaf found by starting at the root and recursively choos-
ing the larger branch at each branchpoint (averaging over possibilities if
an even split is encountered).

e d", the maximal depth of a leaf.

Sod< d < d*. In many settings, statistics like these are called heights, and in
particular one could call d* the height of the cladogram.

14



Proposition 4 Define Dn,Dn,D;‘l to be the random wvalues of the statistics
above for the beta-splitting model. Note that ED, = ED,, where D, is the
depth of species 1. As n — oo,

—1 <8< 0.

(EDn, EDy, ED}) ~ (p(8), 5(B3), p" (B)) logn

and D), /ED!, 4 for each of the four statistics, where (for Xg,Ys as in
Lemma 3 and f < o)

(28 + 3)
LB+ 1DT(B+2

1

= —Flog¥Ys =
7(5) e

) /0 P — 2)P log(1/x)dz.

1

o Elosmax 2 @B T s e
=55 = ~Flogmax(Xy.1- X;) = / (1 - ) log(1/)dz.

2B +1) Jis
—0

= ————, where § = 0(5) is the solution of
7, W
log2E X}

P (P)
EXflog Xs =07 (EX})log(2EX5).

B=—1. B R
(EDy, EDy) ~ (3772, 6772) log” n.

—2< B < —1.
(EDn, EDy, ED},) ~ (p(8), 5(8), p*(8)) n~ P~

where

1 —1/1 p+1 —p-
—— =K z 1— 21— 2% Y de
ZE S )

1 [ 8 p-1
——— =K, " (1 —z)’ (1l —2z= 7 ") de
7y = 2o )
for k defined at (9), and where we do not have a simple expression for p*(3).
For each of the four statistics we have a non-degenerate limit distribution for

D.JED.,.

Some numerical values are tabulated below. The unexplained decimal num-
bers were obtained by numerical evaluation of the formulae above, and the
others (except for p*(—1.5), discussed later) by exact evaluation.

3 —0.5 0 1 o0
p(B)  gge=t = 259 2 217 10%2 =1.44
p(B) 4.55 hogz = 320 oz = 256 iy = 144
p*(3) 6.38 4.31 3.19 ppz = 44



154 -2 -1.7% —-1.5 —1.25

p(B) 1/2 0.952 2 =177 8.13
~ 2rl/2 _

p(ﬁ) 1 171 W = 333 155
P31 r 27t/? = 3.54 r

Qutline of proof.

—1 < B8 < oo. Consider the process of splitting the unit interval into
subintervals. For these first-order results the issue 1s when the “relevant subin-
terval” has length ~ 1/n. For D,, the relevant subinterval is the one containing
a prespecified point, and the lengths of such subintervals behave as an 1.1.d.
product of Yz’s. Similarly for [)n, the lengths of the relevant subintervals be-
have as an 1.i.d. product of max(Xg,1 — Xp)’s. For D}, we are concerned with
the maximal-length subinterval after m splits, but here log (length) behaves
as (a slight variation of) branching random walk, and the result comes from
the usual large deviation analysis of the rightmost walker in branching random
walk. (This is an elaboration of the known result ([20] section 2.7) that 1/p*(0)
is the solution of 2z = exp(z — 1)).

3 = —1. The recurrence for t, = ED, is (for any 3)

n—1

ty = 1+qun(i)ti. (11)

i=1

In the case 8 = —1 this becomes

1 t; —1tn
0=1 .
+ hn—l Z_: n—1
Writing ¢, ~ ¢log? n and approximating the sum by an integral,

1
1
0:1+2c/ O8Y gy,
o 1—y

and the integral equals 72 /6.
The analysis of E D, is similar, leading to an equation

1
logy
0= 1—1—26/ —— dy,
1/2 y(1 —y)

and the integral here equals 72/12.
To explain intuitively the order of magnitude in this case, note that D, is
distributed as the number of steps of the following Markov chain, started at n

and run until absorption at 1.
1 1
5 1<i<j-1

PG, = hj_1 j—i
i

16



The mean position after one step from j is about j(1— log]. ), so it takes O(logn)

steps to go from n to around n/2, and so it requires O(log2 n) steps until ab-
sorption.

—2 < B < —1. In the recurrence (11), writing ¢, ~ en™?~! and approxi-
mating ¢, (7) by the asymptotic values (10),

i AN N T A
Ozl—l—ﬁglcnﬁZ(g) ( - ) (i_ﬁ_l—n_ﬁ_l).

i=1

Approximating the sum by an integral gives the result for p(53), and the ar-
gument for 5(3) is similar. Finally, finiteness of p* and the existence of non-
degenerate limit distributions are consequences of the process approximation
indicated in section 6.1.

Remarks on Proposition 4 for 3 = —3/2. The p = —3/2 case fits into a
long-studied line of work in probabilistic combinatorics, the “simply-generated
trees” of Meir and Moon [21]. Many asymptotic results for these models have
been proved by generating function methods, in particular the values of p(—3/2)
and p*(—3/2). See [2] for a brief discussion and the interpretation of the limits
in terms of Brownian excursion. Curiously, p(—3/2) has only recently been
investigated in that literature — see the preprints by Vatutin [27] and Luczak
[18].

6 Directions for further study

6.1 More on the beta-splitting model

Two features of the results outlined in section 5 seem sufficiently interesting
(from the mathematical, rather than biological, point of view) to warrant more
careful study. In all models of random n-vertex trees known to me which deal
with “combinatorial” trees (rather than trees with vertices in d-dimensional
space), the height statistics (c.f. Proposition 4) grow as either ©(logn) or as
@(nl/z). So our beta-splitting family exhibits two types of novel behavior. For
8 = —1 the mean depth grows as (9(log2 n), and this immediately raises a
host of questions whose answers cannot be immediately guessed by analogy: is
the mean height also (9(log2 n)I' what are the spreads of the various statistics
Dy, Dy, Dy, DT are there other models for which these statistics are (9(log2 n)
with different constantsl’ I do not see any elegant probabilistic way of studying
this case, but obviously one can try analytic techniques. Secondly, in the case
—2 < < —1 the mean depth grows as ©(n~?~!). Randomly call edge-splits
“left” and “right”, thereby inducing a left-to-right ordering on the leaves. Define
Ho(t),0<t <1, by

H,(i/n) = n"T1( depth of leaf 7 in the left-to-right ordering)
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with linear interpolation. Then one can see heuristically that as n — oo there
is some limiting stochastic process Ho (1), 0 < ¢ < 1 and that the quantities D,
considered in Proposition 4 have non-degenerate limit distributions expressible
in terms of H.,. For B = —3/2 the limit process is Brownian excursion —
this is part of the circle of ideas discussed in [2, 3]. But for general —2 <
4 < —1 the limit processes H., seem novel and interesting stochastic processes.
Informally, they can be constructed as processes in which intervals split and
shrink continuously, as opposed to the discrete-step splitting of section 4 for
3 > —1. Details will be given in [4].

6.2 Other one-parameter families

We introduced the beta-splitting models as a mathematically natural way to
embed the Yule model and the uniform model into a one-parameter family.
One can of course invent other such families. For instance, under the Yule
model the chance of a particular cladogram ¢ equals

2n—1 n

SNICEIR
n.

1=3

where d;(t) is the number of internal nodes with exactly ¢ descendant species.
Thus we can define a family (Tw(n)) for which

P(T =1) = an(y) JJG— 17",
=3

So v = 0 is the uniform model and v = —1 is the Yule model. This is a different
family, because (for instance) the y — —oo limit is the uniform distribution on
maximally-balanced n-cladograms.

The only one-parameter family in the literature which exhibits qualitative
change in behavior as the parameter varies are the randomly-growing binary
trees discussed in [1] and [5]. These contain the Yule model but not the uniform
model.

6.3 Another characterization question

Consider the “Markov branching” models (P(”); n > 1) defined at the start of
section 4. These are automatically exchangeable, but do not necessarily have
the property (c.f. property (ii) in section 1)

Sampling consistency. For each n, P") induces a distribution on cladograms
on {1,2,...,n— 1} by the action of deleting n: this distribution is P(*~1),

So 1t 1s natural to ask

Open Problem 1 Characterize the subclass of Markov branching models which
satisfy the sampling consistency property.
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This subclass contains the beta-splitting models, but I suspect it is much larger.

Acknowledgements. 1 thank John Kingman, Warren Ewens and an anony-
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MATICA, and I thank Mike Steele for assistance therewith.

References

[1] D. Aldous and P. Shields. A diffusion limit for a class of randomly-growing
binary trees. Probab. Th. Rel Fields, 79:509-542, 1988.

[2] D.J. Aldous. The continuum random tree II: an overview. In M.T. Barlow
and N.H. Bingham, editors, Stochastic Analysis, pages 23-70. Cambridge
University Press, 1991.

[3] D.J. Aldous. The continuum random tree III. Ann. Probab., 21:248-289,
1993.

[4] D.J. Aldous. A family of self-similar continuous interval-splitting processes.
In Preparation, 1995.

[65] M.T. Barlow, R. Pemantle, and E. Perkins. Diffusion-limited aggregation
on a tree. Technical report, U. British Columbia, 1994.

[6] J.-P. Barthelemy and A. Guenoche. Trees and Prozimily Representations.
Wiley, 1991.

[7] M.D. Brennan and R. Durrett. Splitting intervals. Ann. Probab., 14:1024—
1036, 1986.

[8] M.D. Brennan and R. Durrett. Splitting intervals IT: Limit laws for lengths.
Probab. Th. Rel. Fuields, 75:109-127, 1987.

[9] P. Donnelly and P. Joyce. Weak convergence of population genealogical
processes to the colescent with ages. Ann. Probab., 20:322-341, 1992.

[10] N. Eldredge and J. Cracraft. Phylogenic Paiterns and the Evolutionary
Process. Columbia University Press, New York, 1980.

[11] W. J. Ewens. Population genetics theory: The past and the future. In
S. Lessard, editor, Mathematical and Statistical Developments of Evolu-
tionary Theory, pages 177-227, 1990.

[12] S.J. Gould, D.M. Raup, J.J. Sepkoski, T.J.M Schopf, and D.S. Simberloff.
The shape of evolution: a comparison of real and random clades. Paleobi-

ology, 3:23-40, 1977.

19



[13] C. Guyer and J.B. Slowinski. Comparisons between observed phylogenetic
topologies with null expectations among three monophyletic lineages. Fvo-

lution, 45:340-350, 1991.

[14] C. Guyer and J.B. Slowinski. Adaptive radiation and the topology of large
phylogenies. Evolution, 47:253-263, 1993.

[15] S.A. Kauffman. The Origins of Order: Self Organization and Selection in
FEvolution. Oxford University Press, 1993.

[16] J.F.C. Kingman. Mathematics of Genetic Diversity. S.I.A. M., Philadelphia
PA, 1980.

[17] D.E. Knuth. The Art of Compuler Programming, volume 1. Addison-
Wesley, 1968.

[18] T. Luczak. A greedy algorithm for estimating the height of random trees.
Technical Report 1190, LM.A., Minneapolis MN, 1993.

[19] W.P. Maddison and M. Slatkin. Null models for the number of evolutionary
steps in a character on a phylogenic tree. Evolution, 45:1184-1197, 1991.

[20] H. M. Mahmoud. Evolution of Random Search Trees. Wiley, 1992.

[21] A. Meir and J.W. Moon. On the altitude of nodes in random trees. Canad.
J. Math., 30:997-1015, 1978.

[22] M.H. Nitecki and A. Hoffman, editors. Neutral Models in Biology. Oxford
University Press, 1987.

[23] D.M. Raup. Mathematical models of cladogenesis. Paleobiology, 11:42-52,
1985.

[24] D.M. Raup, S. J. Gould, T.J.M. Schopf, and D.S. Simberloff. Stochastic
models of phylogeny and the evolution of diversity. J. Geology, 81:525-542,
1973.

[25] H.M. Savage. The shape of evolution: Systematic tree topology. Biological
J. Linnean Soc., 20:225-244 1983.

[26] S. Tavare. Line-of-descent and genealogical processes and their applications
in population genetics models. Theoret. Population Biol., 26:119-164, 1984.

[27] V.A. Vatutin. On the height of the primary path of random rooted trees.
Technical report, Mathematics, Chalmers Univ., 1993.

20



