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Structure including base pair (i, k):
I Inside: Structures over [i + 1, k − 1]

I Outside: Contexts of interval (i, k)

I ∀ interval [i, j], i < j ≤ k
I Complete structure by generating

brother intervals ([k + 1, j]) and
recurse over the father of [i, k ] .
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t∗1 t∗2

Structure including base pair (i, k):
I Inside: Structures over [i + 1, k − 1]

I Outside: Contexts of interval (i, k)

I ∀ interval [i, j], i < j ≤ k
I Complete structure by generating

brother intervals ([k + 1, j]) and
recurse over the father of [i, k ] .

Whenever some further technical conditions are satisfied, this decomposi-
tion is complete and unambiguous, and implies a simple recurrence for
computing the base pair probability matrix in Θ(n3).
Alternatively: Duplicate sequence
→ Inside contribution over [j , n] ∪ [1?, j?] = Outside contribution of [i , j].



Suboptimal structures 3/18

Prob.: Simplified energy model (no pseudoknots, only canonical BPs)
⇒ Native structure (functional) could be overthrown.

⇒ Investigate suboptimal structures (RNASubopt [WFHS99]),
i.e. build all structures within ∆ KCal.mol−1 of MFE:
I Compute minimum free-energy matrices
I Backtrack on any contribution within ∆ of MFE;
I Update ∆ such that future backtracks create ≥ 1 struct.
I Recursively generate subopts and combine (brute-force ou Sort)
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Prob.: Simplified energy model (no pseudoknots, only canonical BPs)
⇒ Native structure (functional) could be overthrown.

⇒ Investigate suboptimal structures (RNASubopt [WFHS99]),
i.e. build all structures within ∆ KCal.mol−1 of MFE:
I Compute minimum free-energy matrices
I Backtrack on any contribution within ∆ of MFE;
I Update ∆ such that future backtracks create ≥ 1 struct.
I Recursively generate subopts and combine (brute-force ou Sort)

⇒ Time complexity (Sort) : O(n3 + n · k log(k))
(k grows exponentially fast with ∆!)



What is a good dynamic programming scheme? 4/18

Correction of a (Ensemble) dynamic programming scheme:

Objective function correctly computed/inherited at local level

+ All the conformations can be obtained

⇒ Correct algorithm (Induction)

i j
=

i i+1 j
+

i k j

≥ θ ?⇔ =



=



=



Enumerating search space helps but does not constitute a proof.

Need to show equivalence of DP schemes, e.g. use one to simulate the
other and vice versa.

(Generating functions may help)
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⇒ Correct algorithm (Induction)

Ci,t = 1, ∀t ∈ [i , i + θ]

Ci,j =
∑

Ci+1,j
j∑

k=i+θ+1

1× Ci+1,k−1 × Ck+1,j

Homopolymère (Toute paire autorisée) + θ = 1
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Enumerating search space helps but does not constitute a proof.

Need to show equivalence of DP schemes, e.g. use one to simulate the
other and vice versa.

(Generating functions may help)



Predicting pseudoknotted structures 5/18

Pseudoknots are essential to the folding and activity of multiple RNA families.

Groupe I Ribozyme

Their disregard within current folding algorithms stems both from algorithmic
and energetic intricacies.
(Pseudoknots = Crossings⇒ foldings delimited by base-pair can no longer
be assumed to be independent)

Type Complexity Reference
Secondary structures O(n3) [MSZT99]

L&P O(n5) [LP00]

D&P O(n5) [DP03]

A&U O(n5) [Aku00]

R&E O(n6) [RE99]

Unconstrained NP-complete [LP00]



Akutsu/Uemura Algorithm 6/18

Goal: Capture a category of simple, yet recurrent, pseudoknots.

Idea: When such a PK motif is rotated, one can deduce the MFE of a triplet
(i , j , k) from the MFE of triplets directly below it.
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Akutsu/Uemura: Dynamic programming 7/18
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Application/Problem Weight fun. Time/Space Ref.
Energy minimization πbp O(n4)/O(n4) [Aku00]

Partition function e
−πbp

RT O(n4)/O(n4) Θ(n6)[CC09]

BP probabilities e
−πbp

RT O(n4)/O(n4) –

Sampling (k -struct.) e
−πbp

RT O(n4 + kn log n)/O(n4) –

Exercice: Write DP equation for MFE computation, counting and

partition function.



Structural alignment: Why? 8/18

Hypothesis: Common evolutionary pressure = Common function .

Within certain RNA families (ex.: RNAse-P), low sequence conservation yet
high structural conservation.

Algorithmic problems:
I Editing: Compute distance between two secondary structures A and B.

Find minimal cost sequence of operations to turn A into B. Already
NP-complete for two secondary structures [BFRS07].

I Alignment: Find minimal cost super-structure.
Generalizes sequence alignment. Polynomial (O(n4)) for secondary
structures [BDD+08], NP-complete in 3D [SZS+08].
Alternatives: Local/global alignment, motifs search (aka small-in-large).

I Superimposition: Find solid-body geometric transform (Rotation,
translation, zoom) to superimpose as well as possible the coordinates of
two RNAs having known matching. Polynomial in 3D [McL82].

Remark: Algorithmic hardness stems from finding the matching (i.e.
combinatorial, not geometric).



FR3D: A geometric approach 9/18

When 3D models are available, the alignment problem can be tackled in a
purely geometric setting.

Problem

Input: Motif m, target structure b (ordered set of 3D points).
Output: Matching of m versus a subset of b that minimizes a notion of
geometric discrepancy.

Geometric discrepancy: In FR3D [SZS+08], a discrepancy function D
combines two error functions L et A, respectively accounting for the
superimposability (L) and base orientation (A) of m and b.

L =

√√√√min
R,T

m∑
i=1

‖bi − R(T (mi ))‖2 A =

√√√√ m∑
i=1

α2
i D =

1
m

√
L2 + A2

R,T : Rotation and translation. ci : Center of mass (CM) of base mi . αi :
Spread between orientation of CMs/bases in mi et bi .

Backtrack + Incremental pruning (Bounds on D)⇒ Combinatorial explosion!
But exact search feasible for smaller motifs.



Structures to Trees 10/18

The alignment of two secondary structures is based on their tree-like
representations1.

Base pairs⇒ internal nodes Unpaired bases⇒ Leaves

Alignment = Complete matching having minimal cost.

1Illustrations empruntées à C. Herrbach



Historic algorithm: Jiang, Wang & Zhang 95 [JWZ94] 11/18

Aligning Trees2

Aligning Forests

Worst-case complexity in O(n4) [JWZ94], on average in O(n2) [HDD07].
But RNA-specific operations are lacking

2Idem



RNAForester [HVG04] 12/18

Parametrization of operation costs, but some operations, atomic in a realistic
model, must be composed from available ones.
Example: To detach a base-pair, delete node (base-pair), and insert two
leaves (bases).

RNAForester: Based on Jiang, Wang & Zhang algorithm
+ Integration of RNA-specific operations3.

3Idem



NestedAlign [BDD+08] 13/18



Integrative methods 14/18

DIAL [FPLC07] is an integrative method which focuses on local similarities.
Idea: RNA is flexible, meaningless local variations (even of small amplitudes)
may induce large geometric discrepancies.

DIAL captures local similarities at three levels:
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DIAL [FPLC07] is an integrative method which focuses on local similarities.
Idea: RNA is flexible, meaningless local variations (even of small amplitudes)
may induce large geometric discrepancies.

A sequence alignment algorithm is then used
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