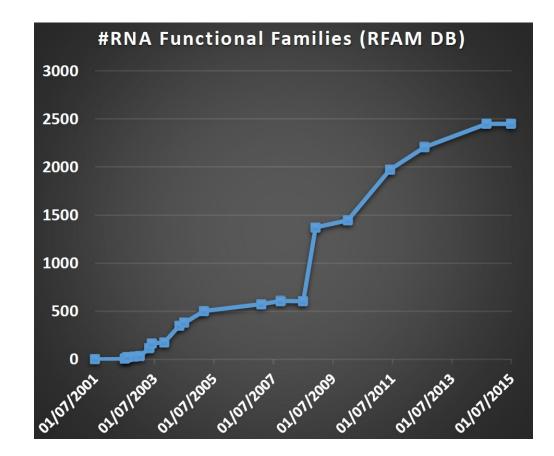
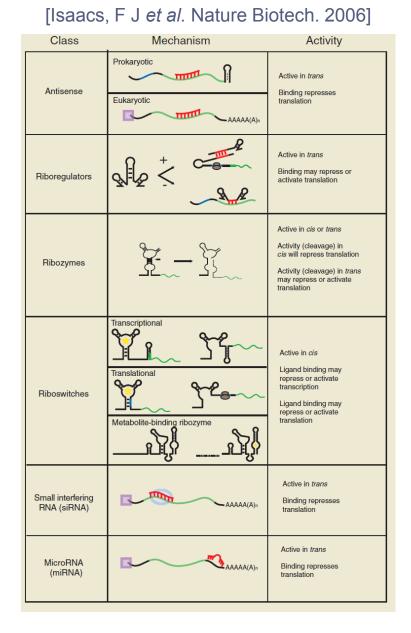


Slides @ http://goo.gl/1sc5MT

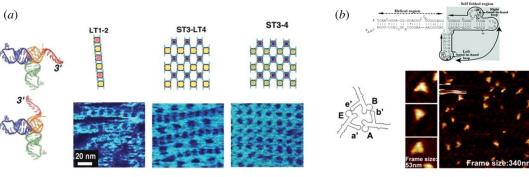
Why (non-coding) RNAs?

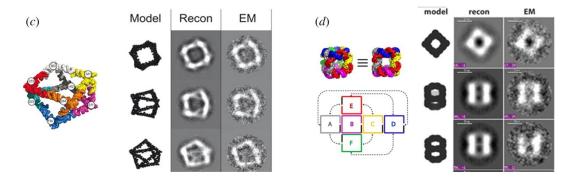

- Ubiquitous
- Pervasively expressed


The human genome is **pervasively transcribed**, such that the majority of its bases are associated with at least one primary transcript and many transcripts link distal regions to established protein-coding loci.

ENCODE Analysis of 1% of the human genome Nature 2007

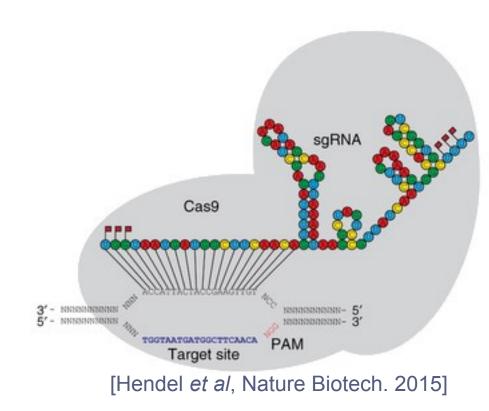
- Ubiquitous
- Pervasively expressed
- Versatile
 - Carriers
 - Transporter
 - Enzymatic
 - Processing
 - Regulatory
 - ssRNA genomes (HIV)
 - Immune system (CRISPR)
 - More soon... (lincRNAs)

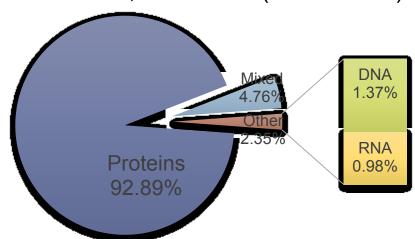



- Ubiquitous
- Pervasively expressed
- Versatile
- Easy to handle
 - Synthetic biology

- Ubiquitous
- Pervasively expressed
- Versatile
- Easy to handle
 - Synthetic biology
 - Nanotechs

RNA-based Nanoarchitectures [Li H *et al*, Interface Focus 2011]




- Ubiquitous
- Pervasively expressed
- Versatile
- Easy to handle
 - Synthetic biology
 - Nanotechs
 - Therapeutics and genetic engineering (CRISPR)

Blooming therapeutic RNAi... ... making way for CRISPR!

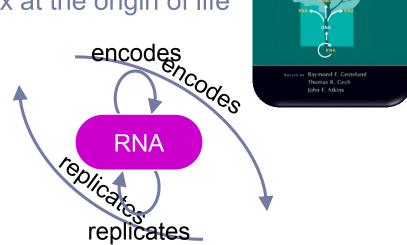
[Agrotis & Ketteler, Frontiers Genetics 2015]

- Ubiquitous
- Pervasively expressed
- Versatile
- Easy to handle
 - Synthetic biology
 - Nanotechs
 - Therapeutics and genetic engineering (CRISPR)
 - Computationally fun (but still challenging)

PDB: 117,022 entries (March 2016)

(Initial) lack of structural data

Experiment-based energy models


- + Secondary structure
- + Efficient combinatorial algorithms

⇒ Mature *ab initio* prediction tools (Mfold, RNAfold...)

The *chicken vs egg* paradox at the origin of life

- Ubiquitous
- Pervasively expressed
- Versatile
- Easy to handle
 - Synthetic biology
 - Nanotechs
 - Therapeutics and genetic engineering (CRISPR)
 - Computationally fun (but still challenging)

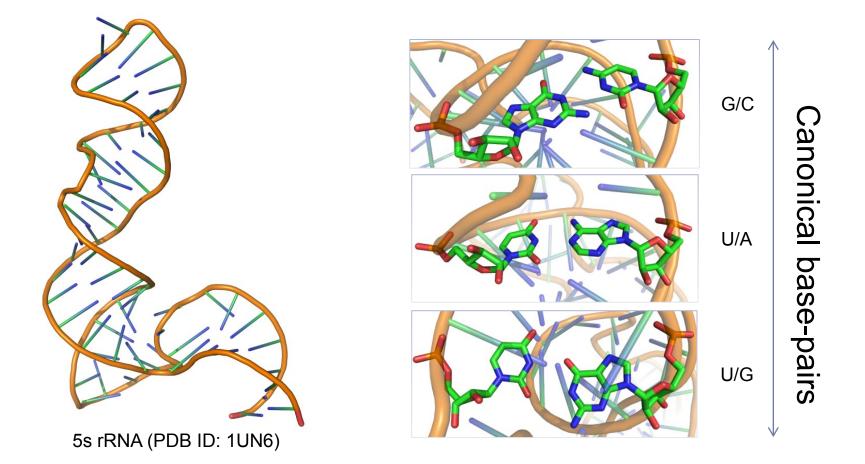
RNA at the origin of life!?

The RNA World

This is the RNA World.

[...] **Proteins** are good at being enzymes but bad at being replicators; [...] **DNA** is good at replicating but bad at being an enzyme; [...] **RNA** might just be good enough at both roles to break out of the Catch-22.

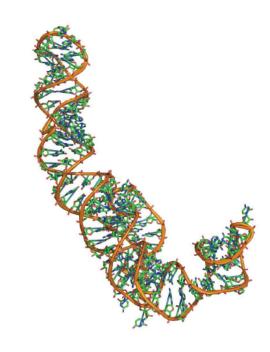
R. Dawkins. The Ancestor's tale


RNA Structure

Why structure matters

- Transcription: RNA is (mostly) single stranded
- Structurally diverse
- ncRNAs → Structure(s) typically more conserved than sequence
- Functionally versatile

Use structure as a proxy for function, to explain functional behaviors

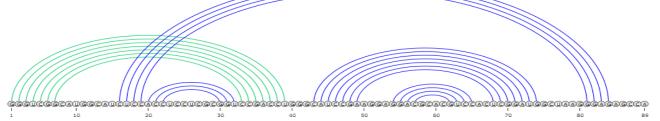

Why RNA folds

RNA folding = Hierarchical stochastic process driven by/resulting in the pairing (hydrogen bonds) of a subset of its bases.

Three levels of RNA structure

UUAGGCGGCCACAGC GGUGGGGUUGCCUCC CGUACCCAUCCCGAA CACGGAAGAUAAGCC CACCAGCGUUCCGGG GAGUACUGGAGUGCG CGAGCCUCUGGGAAA CCCGGUUCGCCGCCA CC

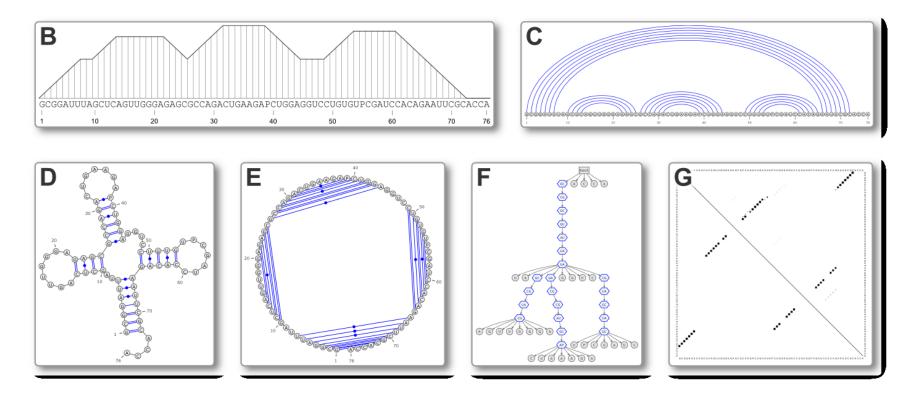
Primary structure


Secondary structure

Tertiary structure

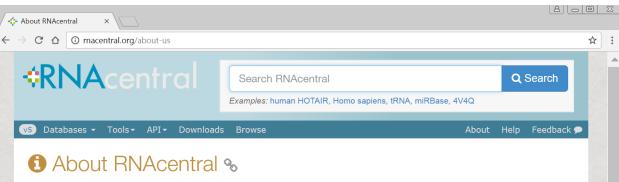
Source: 5s rRNA (PDBID: 1K73:B)

Pseudoknots


Pseudoknots are complex topological models indicated by crossing interactions.

- Pseudoknots are largely ignored by computational prediction tools:
 - Lack of accepted energy model
 - Algorithmically challenging

- Yet heuristics can be sometimes efficient
 - Pknots-RG offers a reasonable time/sensitivity tradeoff


Secondary Structure representations

http://varna.lri.fr

ncRNA Data

RNACentral.org: One ID to rule them all

RNAcentral is a public resource that offers integrated access to a **comprehensive and up-to-date** set of non-coding RNA sequences provided by a collaborating group of Expert Databases. The development of RNAcentral is coordinated by European Bioinformatics Institute @ and is funded by BBSRC @.

➡ Data integration

RNAcentral imports ncRNA sequences from **multiple databases** and enables integrated text search, sequence similarity search, and programmatic data access.

‡ Genomic mapping

Where possible, we map sequences to **reference genomes** from select species. You can use a genome browser to browse all mapped sequences or view individual sequences in their genomic context.

For example, view genomic location IncRNA.

mic location of human TSIX

Stable identifiers

RNAcentral assigns unique identifiers to every distinct sequence and supports **species-specific identifiers** for referring to sequences in specific organisms. More \rightarrow

We aim to include intermolecular interactions and highquality secondary structures soon.

any otated by both databases).

ve aim to include intermolecular interactions and highquality secondary structures soon.

🛃 Database growth 🗞

Mod

Sources of RNA structural data

Name	Data type	Scope	Description	File formats	#Entries	URL	
PDB	All-atoms	General	RCSB Protein Data Bank – Global repository for 3D molecular models	PDB	~1,900 models	http://www.pdb.org	
NDB	All-atoms, Secondary structures	General	Nucleic Acids Database – Nucleic acids models and structural annotations.	PDB, RNAML	~2,000 models	http://bit.ly/rna-ndb	
RFAM	Alignments, Secondary structures ³	General	RNA FAMilies – Multiple alignments of RNA as functional families. Features consensus secondary structures, either predicted and/or manually curated.	STOCKHOLM , FASTA	~1,973 Alignments/ structures, 2,756,313 sequences	http://bit.ly/rfam-db	
STRAND	Secondary structures	General	The RNA secondary STRucture and statistical ANalysis Database – Curated aggregation of several databases	CT, BPSEQ, RNAML, FASTA, Vienna	4,666 structures	http://bit.ly/sstrand	
PseudoBase	Secondary structures	Pseudok notted RNAs	PseudoBase – Secondary structure of known pseudonotted RNAs.	Extended Vienna RNA	359 structures	http://bit.ly/pkbase	
CRW	Sequence alignments, Secondary structures	Ribosom al RNAs, Introns	Comparative RNA Web Site – Manually curated alignments and statistics of ribosomal RNAs.	FASTA, ALN, BPSEQ	1,109 structures, 91,877 sequences	http://bit.ly/crw-rna	

[2012 Snapshot]

RNA file formats: Sequences (alignments)

>0.sativa.1 AJ489954.1/1-104

.....UGGCUGUGACGACUAGGUGAAAUU.CAAGCUCAACAGACCAAAUCACAGGUCUC .UCUCCAAGGCCUU.UGGAGAUGGGAUCUGUAUGCCGA.....GU.UUCCGCUC.... .AGCCG.....

>0.sativa.2 AY013245.2/61987-62105

....GAUGGCAGUGACGACUUGGUAAUAUU.CAAGCUCAACAGACCAAAUCACAGGUCUU CCUCUCUGGAUCCAC.UCCUCUGGGAUUGAUUUG.UAUGCCGAUUUUCCCGCUGAACC GAGCCAUC....

>0.sativa.3 AJ307928.1/3-121

....GAUGGCAGUGACGACCUGGUAAUAUU.CAAGCUCAACAGACCAAAUCACAGGUCUU ..UCUCUCUGGAUCUACUCCUCAGGGAUUGAUUUG.UAUGCCGAUUUUUCCGCUGAACC GAGCCAUC....

CLUSTAL 2.1 multiple sequence alignment

M.musculus.1	UGGCCUCGUUCAAGUAAUCCAGGAUAGGCUGUG-CAGGUCCCAAGGGGCCUAUUCU 55
H.sapiens.2	UGGCCUCGUUCAAGUAAUCCAGGAUAGGCUGUG-CAGGUCCCAAU-GGCCUAU-CU 53
H.sapiens.3	GGACCCAGUUCAAGUAAUUCAGGAUAGGUUGUGUG-CUGUCCAGCCUGUUCU 51
T.rubripes.1	CAACCGGGUUCAAGUAAUCCAGGAUAGGCUCUGUAUCUGUCUUGGCCUAUGCU 53
H.sapiens.1	UGGCUGGAUUCAAGUAAUCCAGGAUAGGCUGUUUCCAUCUGUG-AGGCCUAUUCU 54
·	* ******* ******* * * * * * ***
M.musculus.1	UGGUUACUUGCACGGGGAC 74
H.sapiens.2	UGGUUACUUGCACGGGGAC 72
H.sapiens.3	CCAUUACUUGGCUCGGGGAC 71
n.saprens.s	

RNA file formats: Sequences (alignments)

# STOCKHOLM 1.0 #=GF ID mir-22 #=GF AC RF00653	
 O.latipes.1 Gasterosteus_aculeat.1 R.esox.1	CGUUG.CCUCACAGUCGUUCUUCA.CUGGCU.AGCUUUAUGUCCCACG. GGCUG.ACCUACAGCAGUUCUUCA.CUGGCA.AGCUUUAUGUCCUCAUCU AGCUGAGCACACAGUUCUUCA.CUGGCA.GCCUUAAGGUUUCUGUAG
#=GC SS_cons #=GC RF	.<< <ggccg.acucacagcaguucuuca.cuggca.agcuuuauguccuuauaa< td=""></ggccg.acucacagcaguucuuca.cuggca.agcuuuauguccuuauaa<>
O.latipes.1 Gasterosteus_aculeat.1 R.esox.1	CCCCACCGUAAAGCU.GC.CAGUUGAAGAGCUGUUGUGUGUAACC ACCAGCUAAAGCU.GC.CAGCUGAAGAACUGUUGUGGUCGGCA ACAGGCUAAACCU.GC.CAGCUGAAGAACUGCUCUGGCCAGCU
#=GC SS_cons #=GC RF //	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

> Rat Alanine tRNA

GAGGAUUUAGCUUAAUUAAAGCAGUUGAUUUGCAUUUAACAGAUGUAAGAUAUAGUCUUACAGUCCUUA

	1590	1600	1610	1620	1630
#	12345678	9 12345678	9 12345678	9 12345678	9 123456
\$ 1590	AAAAAACUA	AUAGAGGGGG	GACUUAGCGC	CCCCCAAACC	GUAACCCC=1636
% 1590	::::::::	:::::[[[[[[::::(((]]]]]]::::)))::::::

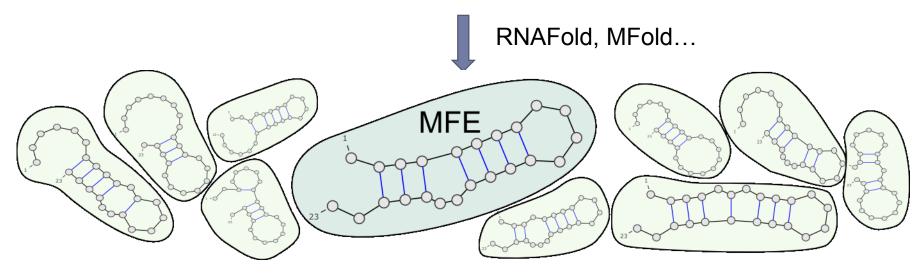
Filename: AM286415_b.bpse Organism: Yersinia entero Accession Numbers: AM2864 Citation and related info	colitica 15					utexas.edu
1 U O						
117 U 0 118 U 236 119 G 235 120 C 234						
121 C 233	(
122 U 232	80	dG = -3	3.48 [In	itially	-35.60]	
123 G 231	1	U	0	2	80	1
124 G 230	2	G	1	3	79	2
124 G 230	3	G	2	4	78	3
···	4	G	3	5	77	4
230 C 124	5	А	4	6	76	5
231 C 123	6	U	5	7	0	6
232 A 122	7	G	6	8	75	7
233 G 121		0	C	0		
234 G 120	75	U	74	76	7	75
235 C 119	76	U	75	77	5	76
236 A 118	77	c	76	78	4	77
	78	c	70	79	3	78
		-				
	79	U	78	80	2	79
	80	А	79	0	1	80

ATOM 8009 P U A 375 19.076 79.179 370.688 1.00 66.25 P ATOM 8010 OP1 U A 375 18.815 77.862 371.313 1.00 83.22 O ATOM 8011 OP2 U A 375 19.869 80.203 371.409 1.00 56.32 O CONECT 8655 8521 CONECT 8658 8531 ATOM 66 0 0 69 6 8656 2 123 33 MASTER 717 O 66 O O 69 6 8656 2 123 33	HEADER TITLE TITLE COMPND COMPND	2 1 MC 2 N		RON 1; _E: G				OCE	EANOBA		27-JUI _US II		3IGI SIS GRO	DUP	
ATOM 8010 OP1 U A 375 18.815 77.862 371.313 1.00 83.22 O ATOM 8011 OP2 U A 375 19.869 80.203 371.409 1.00 56.32 O CONECT 8654 8520 CONECT 8655 8521 CONECT 8658 8531 MASTER 717 0 66 0 0 69 6 8656 2 123 33															
CONECT 8654 8520 CONECT 8655 8521 CONECT 8658 8531 MASTER 717 0 66 0 0 69 6 8656 2 123 33	АТОМ АТОМ	8010	OP1	UA	375		18.815	77	7.862	371	.313	1.00	83.22		0
	CONECT CONECT CONECT MASTER	8655	8521 8531	0	66	0	0	0	69	6	8656	2	123	33	

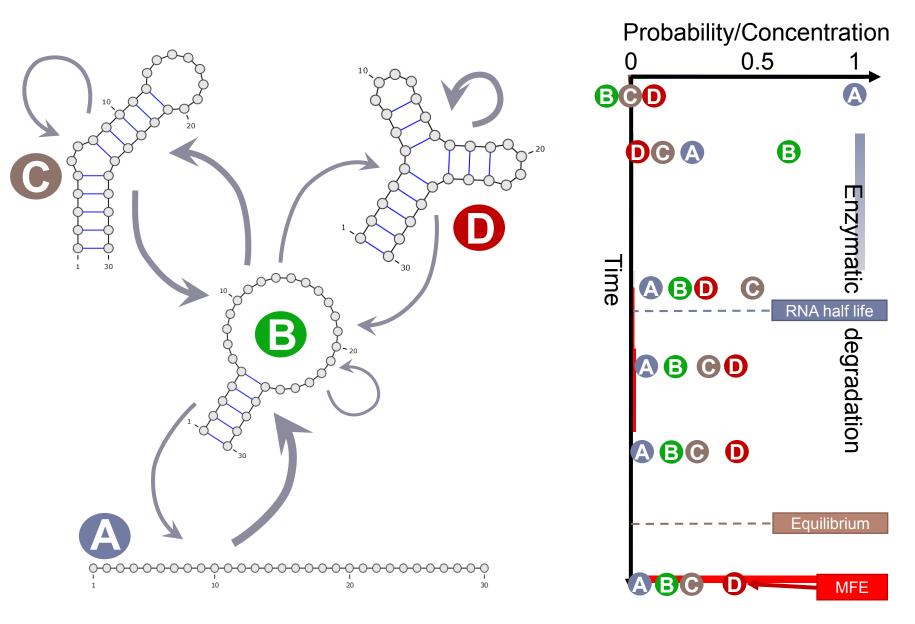
```
<?xml version="1.0"?>
<!DOCTYPE rnaml SYSTEM "rnaml.dtd">
<rnaml version="1.0">
<molecule id="xxx">
<sequence> ... </sequence>
<structure> ... </sequence>
</molecule>
<interactions> ... </interactions>
</rnaml>
```

```
<?xml version="1.0"?>
<!DOCTYPE rnaml SYSTEM "rnaml.dtd">
<rnaml version="1.0">
   <molecule id="xxx">
      <sequence>
        <numbering-system id="1" used-in-file="false">
            <numbering-range>
               <start>1</start><end>387</end>
            </numbering-range>
        </numbering-system>
        <numbering-table length="387">
                3
                          5 6 7 8...
            2
                     4
        </numbering-table>
         <seq-data>
            UGUGCCCGGC AUGGGUGCAG UCUAUAGGGU...
         </seq-data>
         . . .
      </sequence>
      <structure> ... </structure>
    </molecule>
 <interactions> ... </interactions>
</rnaml>
```

```
<?xml version="1.0"?>
<!DOCTYPE rnaml SYSTEM "rnaml.dtd">
<rnaml version="1.0">
   <molecule id="xxx">
      <sequence> ... </sequence>
      <structure>
        <model id="yyy">
            <base> ... </base> ...
            <str-annotation>
               <base-pair>
                 <base-id-5p><base-id><position>2</position></base-id></base-id-5p>
                 <base-id-3p><base-id><position>260</position></base-id>3p>
                  <edge-5p>+</edge-5p>
                 <edge-3p>+</edge-3p>
                 <bond-orientation>c</bond-orientation>
               </base-pair>
              <base-pair comment="?">
                 <base-id-5p><base-id><position>4</position></base-id></base-id-5p>
                 <base-id-3p><base-id><position>259</position></base-id></base-id-3p>
                 <edge-5p>S</edge-5p>
                  <edge-3p>W</edge-3p>
                 <bond-orientation>c</bond-orientation>
              </base-pair>
            </str-annotation>
       </model>
      </structure>
   </molecule>
 <interactions> ... </interactions>
</rnaml>
```


RNA Structure Prediction

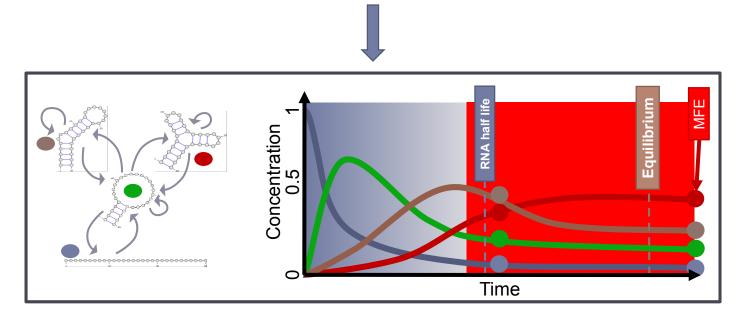
RNA structure prediction: The big picture


Biophysics \rightarrow Shifting paradigms in RNA structure prediction

- ▶ 1970s-1990s: Free-Energy Minimization → Maximizing stability
- ▶ 1990s-2010s: Thermodynamic equilibrium → Average picture

...CAGUAGCCGAUCGCAGCUAGCGUA...

RNA kinetics: Why go through all the trouble?



RNA structure prediction: The big picture

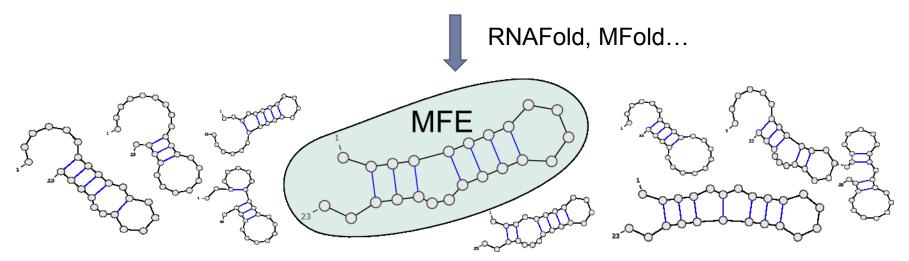
Biophysics \rightarrow Shifting paradigms in RNA structure prediction

- ▶ 1970s-1990s: Free-Energy Minimization → Maximizing stability
- ▶ 1990s-2010s: Thermodynamic equilibrium → Average picture
- ▶ 2010s-???: Kinetics \rightarrow RNA folding at finite time

...CAGUAGCCGAUCGCAGCUAGCGUA...

Kinetics remains challenging physically and computationally

RNA Structure Prediction


Free-Energy Minimization (MFE)

Minimal Free-Energy (MFE) Folding

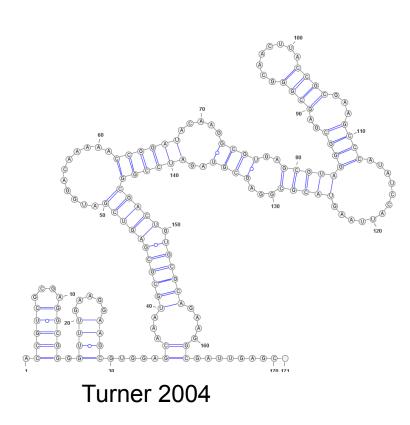
Goal: Predict the functional (aka native) conformation of an RNA

- Absence of homologs/experimental evidences \rightarrow Consider energy
- Turner model associates free-energies to secondary structures
- Vienna RNA package implements a O(n³) optimization algorithm for computing most stable (= min. free-energy) folding

...CAGUAGCCGAUCGCAGCUAGCGUA...

[Nussinov & Jacobson, PNAS 1980; Zuker & Stiegler, NAR 1981]

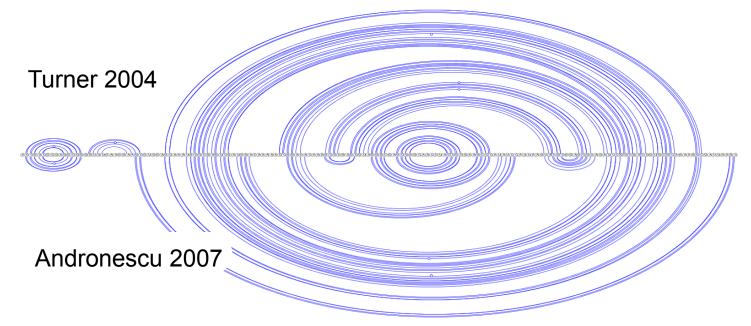
Energetic and algorithmic considerations


http://goo.gl/TSu679

Optimization methods can be overly sensitive to fluctuations of the energy model

Andronescu 2007

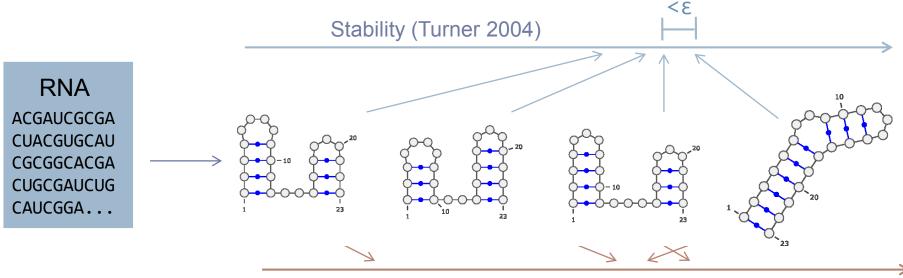
Example:


- Get RFAM A. capsulatum D1-D4 domain of the Group II intron
- Run RNAFold using default parameters (Turner 2004)
- Rerun RNAFold using latest energy parameters

Optimization methods can be overly sensitive to fluctuations of the energy model

Example:

- Get RFAM A. capsulatum D1-D4 domain of the Group II intron
- Run RNAFold using default parameters (Turner 2004)
- Rerun RNAFold using latest energy parameters



Discrepancy not as embarrassing as it first seemed... ... but still substantial!

Optimization methods can be overly sensitive to fluctuations of the energy model

Example:

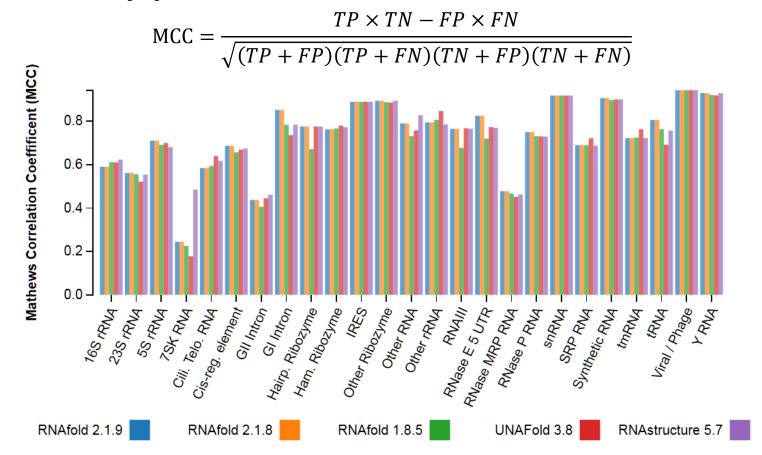
- Get RFAM A. capsulatum D1-D4 domain of the Group II intron
- Run RNAFold using default parameters (Turner 2004)
- Rerun RNAFold using latest energy parameters

Stability (Andronescu 2007)

- Suboptimal structures (homogeneity, exponential growth)
- Guiding predictions with low-res/high-throughput experimental evidences

Energy-based *Ab initio* folding: Does it *really* work?

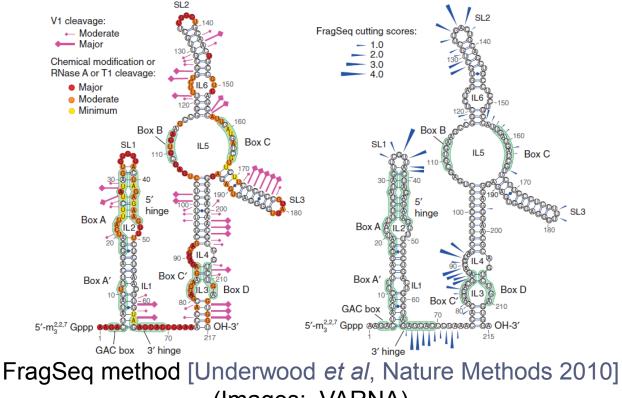
Generally yes, but variable results for different studies


 $MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$

Program	Sensitivity	PPV	мсс	F-measure
RNAfold 2.1.9	0.742	0.795	0.767	0.765
RNAfold 2.1.8	0.740	0.792	0.764	0.762
RNAfold 1.8.5	0.711	0.773	0.740	0.737
UNAfold 3.8	0.693	0.767	0.727	0.725
RNAstructure 5.7	0.716	0.781	0.746	0.744

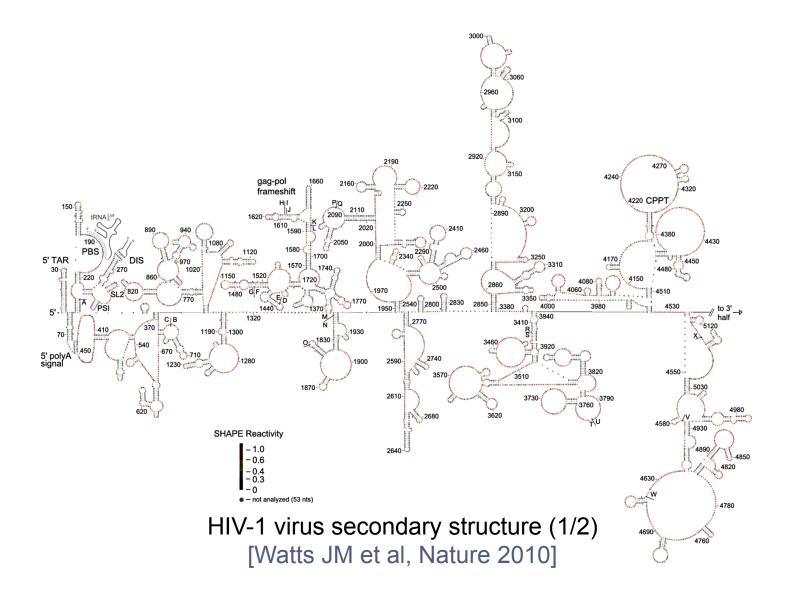
Benchmark: 1919 non-multimer/non-pseudoknotted sequence/structure pairs from the RNAstrand database (source Vienna Package web site)

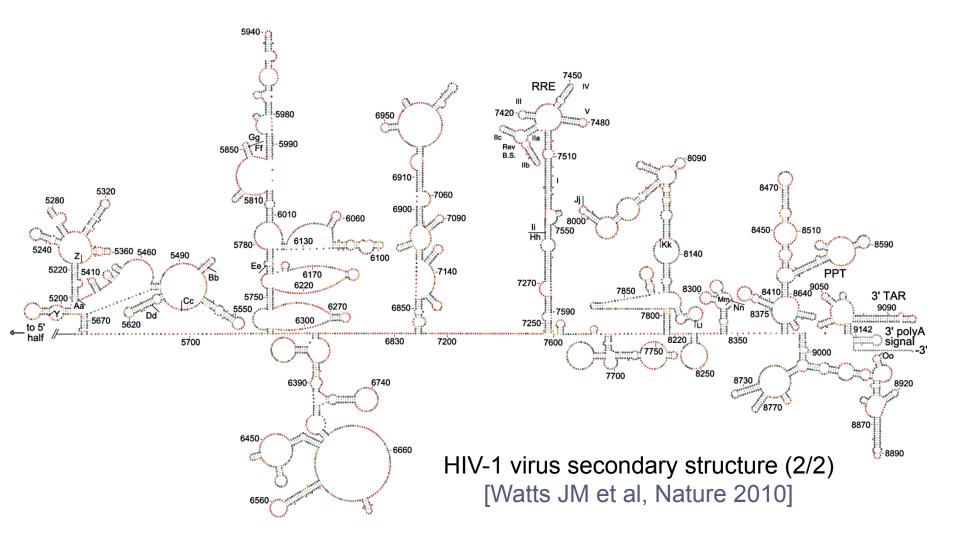
Energy-based *Ab initio* folding: Does it *really* work?


Generally yes, but variable results for different RNAs

Benchmark: 1919 non-multimer/non-pseudoknotted sequence/structure pairs from the RNAstrand database (source Vienna Package web site)

Chemical/enzymatic probing to model 2D


- High-throughput secondary structure determination
- Reactivity/accessibility guide manual modeling choices


(Images: VARNA)

Inclusion as pseudo potentials within energy-models [Lorenz et al, Bioinformatics 2015]

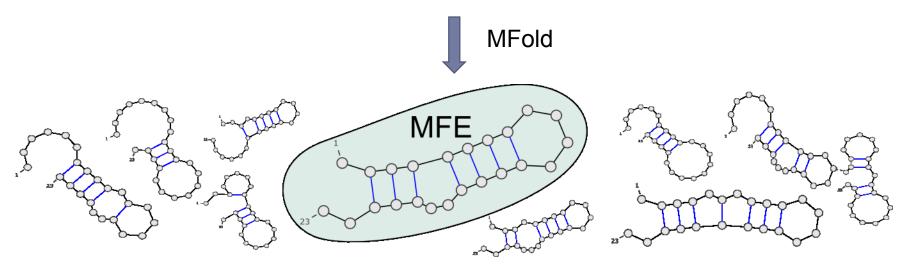
SHAPE probing to model 2D

SHAPE probing to model 2D

Lab: RNA folding basics

Write and test Python functions to:

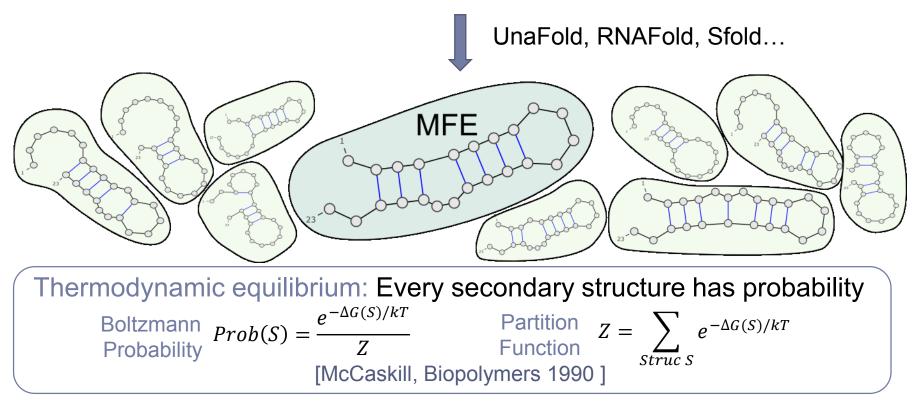
- Parse and print 2^{ary} structures
 - ▶ Dot-parenthesis notation ↔ List of base-pairs + length
 - ► Ex.: "(((..)(.).)" \leftrightarrow ([(0,9),(1,4),(5,7)],10)
- Compare alternative structures for a given RNA
 Compute base-pair distance between two structures
 - Ex.: "(.).(.)(..)" + "((...))(..)" $\rightarrow 4$
- Run RNAfold and retrieve its MFE structure
- Benchmark RNAfold
 - Download and save http://goo.gl/l0mx9c
 - For each sequence, predict MFE and compare to structure
 - Report average base-pair distance


RNA Structure Prediction

Boltzmann ensemble Partition function-based methods

Ensemble approaches in RNA folding

- RNA *in silico* paradigm shift:
 - From single structure, minimal free-energy folding...

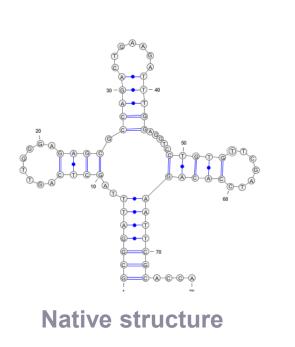

...CAGUAGCCGAUCGCAGCUAGCGUA...

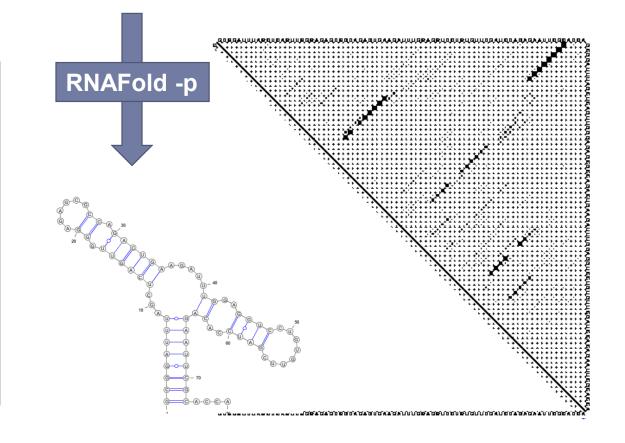
Ensemble approaches in RNA folding

- RNA *in silico* paradigm shift:
 - From single structure, minimal free-energy folding...
 - ... to ensemble approaches.

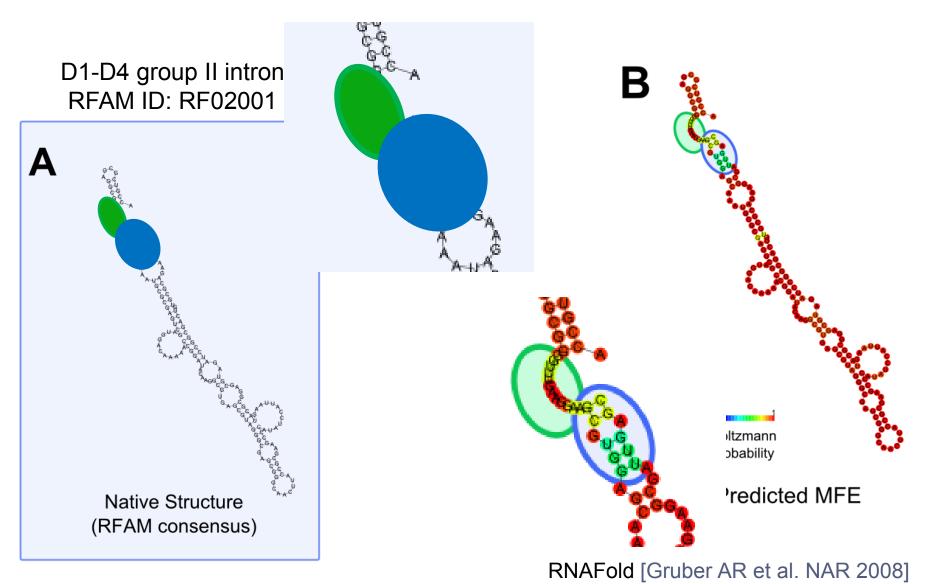
...CAGUAGCCGAUCGCAGCUAGCGUA...

→ Ensemble diversity? Structure likelihood? Evolutionary robustness?

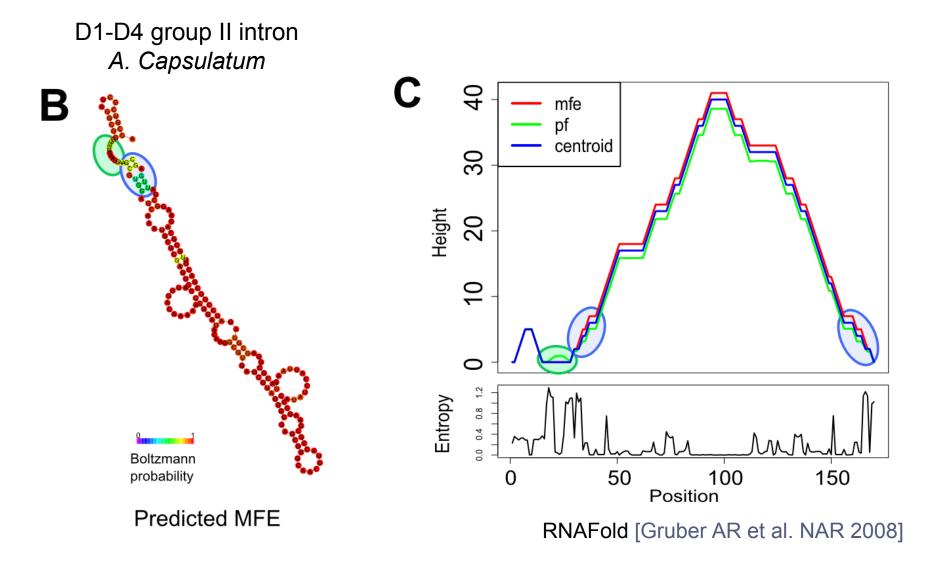

Partition function and statistical sampling

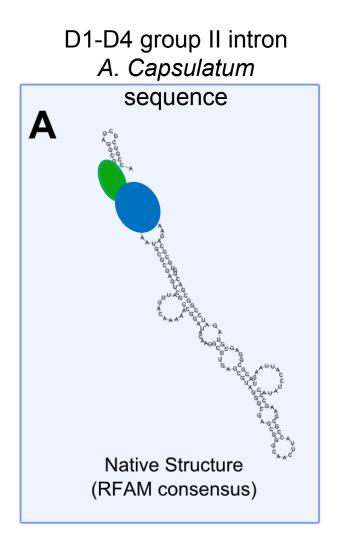

http://goo.gl/RRo6mG

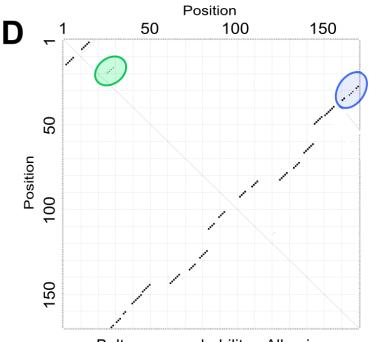
Ensemble approaches indicate uncertainty and suggest alternative conformations


Example:

>ENA|M10740|M10740.1 Saccharomyces cerevisiae Phe-tRNA. : Location:1..76 GCGGATTTAGCTCAGTTGGGAGAGCGCCAGACTGAAGATTTGGAGGTCCTGTGTTCGATCCACAGAATTCGCACCA

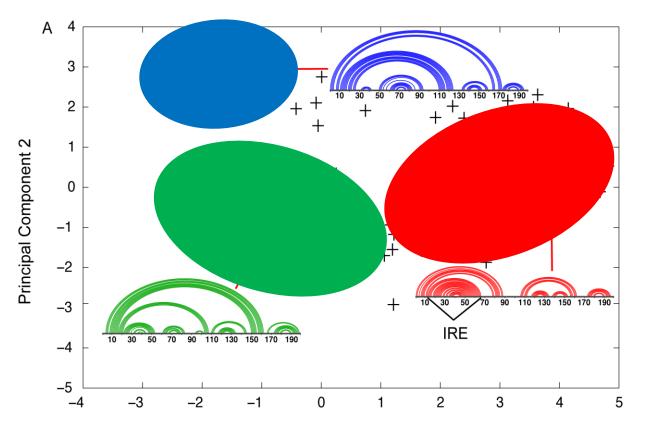



Assessing the reliability of a prediction



Assessing the reliability of a prediction

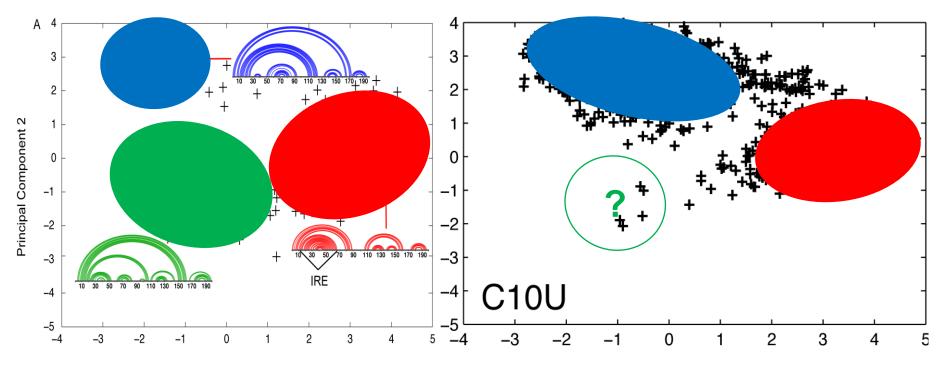
Assessing the reliability of a prediction



Boltzmann probability - All pairs

- Low BP probabilities indicate uncertain regions
- ▶ BP>99% → PPV>90% (BP>90% → PPV>83%) [Mathews, RNA 2004]
- Visualizing probs in the context of structure helps refining predicted structures.

Sensitivity to (single-point) mutations


▶ Boltzmann Sampling → Clustering (+PCA)

[Halvorsen M et al, PLOS Gen 2010]

Sensitivity to (single-point) mutations

▶ Boltzmann Sampling → PCA → Clustering

[Halvorsen M et al, PLOS Gen 2010]

C10U associated with Hyperferritinemia cataract syndrome

Lab: Partition function approaches

In Python, implement:

- A *Nussinov-style* DP counting algorithm
 - Input: RNA sequence w + Min. base pair distance theta
 - Output: #Secondary structures compatible with (w,theta)
 - Ex.: "AU", $0 \rightarrow 1$ "AU", $1 \rightarrow 0$ "ACU", $1 \rightarrow 1$ "GGGAAACCC", $3 \rightarrow 20$
- (Uniform) stochastic backtrack
 - Propose a validation procedure
- A basic agglomerative clustering procedure
 - At each step pick the closest structures and merge them
 - Stop when k=10 clusters are found
- Benchmark RNAsubopt -p + Clustering

Comparative methods and the pitfalls of benchmarks

The BRaliBase dent—a tale of benchmark design and interpretation [Löwes, Chauve, Ponty, Giegerich, Brief Bioinfo 2016]

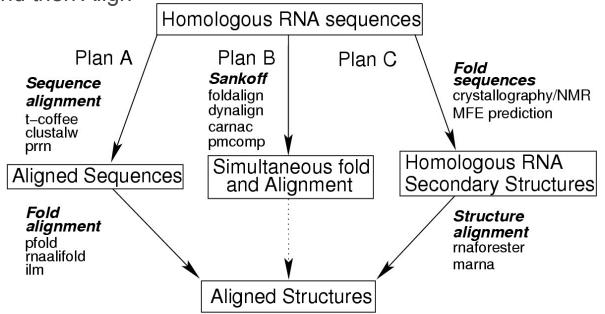
Evolution to the rescue: Comparative approaches for structured RNAs

U64887.1/1-331	ACAA GC GCUUGUAGU
AF056391.1/4-345	ACAU-CC GGAUGUAGU
U64882.1/1-342	ACAU-CC GGAUGUAGU
U64883.1/1-328	GCAA-GC GCUUGUAGU
D13066.1/58-413	ACAA-UC GAUUGUAGU
U41756.1/1-291	ACAA-CC GGUUGUAGU
X69983.1/47-447	ACUA-CC GGUAGUAGU
X69982.1/45-449	ACUA-CC ··· GGUAGUAGU
AF151218.1/1-397	ACAG-UC GAUUGUAGU
U64885.1/1-349	ACAG-UC GAUUGUAGU
U64886.1/1-331	ACAG-GC GCCUGUAGU
AF295988.1/1-331	ACUG-GC GCCGGUAGU
AF 295989.1/1-302	ACCA-CC ··· GGUGGUAGU
AJ511701.1/1-371	ACUG-GC GCCGGUAGU
AF295987.1/1-332	ACCG-GC GCUGGUAGU

RFAM Bacterial RNase P class B Alignment RF00011, rendered using JalView

Structure (=phenotype) more typically conserved than sequence

secondary structure.

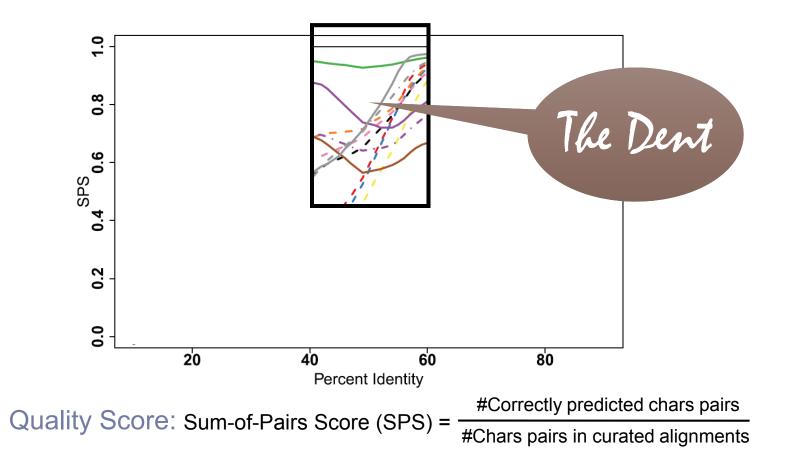

Covariations/compensatory mutations hint towards shared structure

Evolution to the rescue: Comparative approaches for structured RNAs

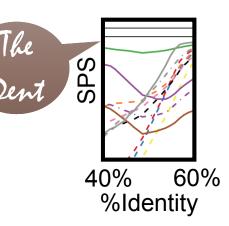
Idea: If Sequence Alignment available, then fold columns!

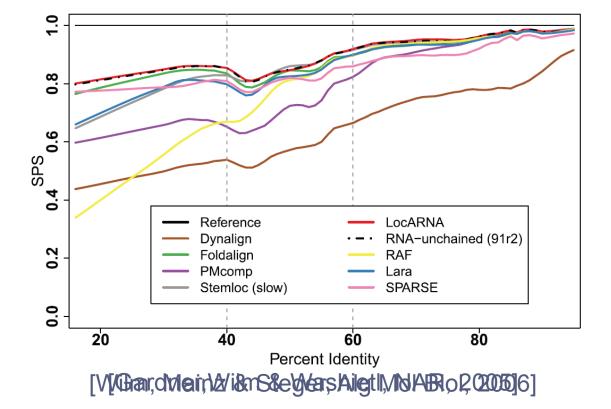
RNAAlifold [Bernhardt et al, BMC Bioinfo 2008]

- From unaligned sequences, chicken and egg paradox (again!)
 - Align and then Fold
 - ► Fold and align simultaneously (Sankoff) $\rightarrow \Theta(n^{3m})/\Theta(n^{2m})$ time/memory
 - Fold and then Align

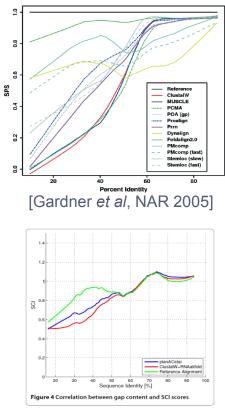


[Gardner & Giegerich, BMC Bioinfo 2004]

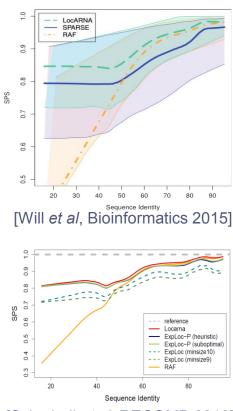


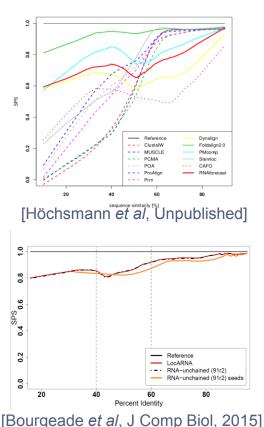

[Gardner & Giegerich, BMC Bioinfo 2004] [Gardner,Wilm & Washietl, NAR, 2005] [Wilm, Mainz & Steger, Alg Mol Biol, 2006]

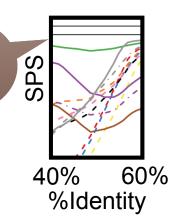
- Benchmark of sequence/alignment since 2004-2005
- Cited ~800 times, de facto standard for new tools
- Based on sequence/structure alignments for several RNA families



- The Dent = Quality drop in 40%-60% sequence identity
- Tool-independent phenomenon found in 2005
- Reproduced by following tools & improved benchmarks
- Inspiration for new algorithms, creative conjectures...

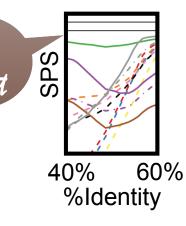



- The Dent = Quality drop in 40%-60% sequence identity
- Tool-independent phenomenon found in 2005
- Reproduced by following tools & improved benchmarks
- Inspiration for new algorithms, creative conjectures...


[Bremges et al, BMC Bioinfo, 2010]

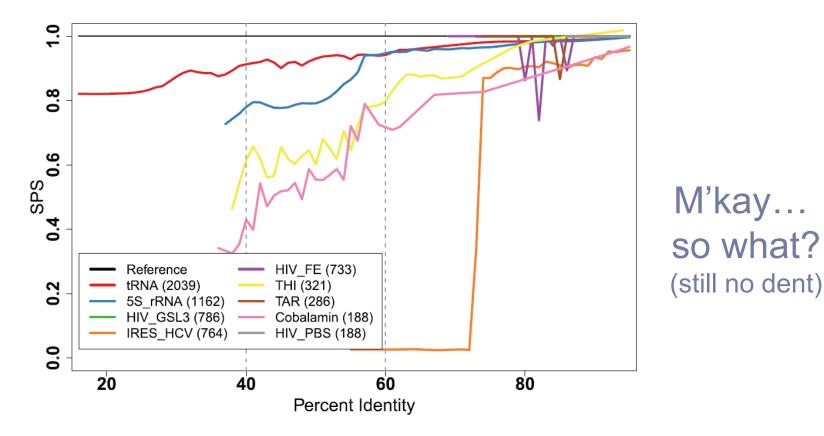
[Schmiedl et al, RECOMB 2012]

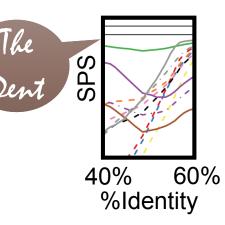
he


- The Dent = Quality drop in 40%-60% sequence identity
- Tool-independent phenomenon found in 2005
- Reproduced by following tools & improved benchmarks
- Inspiration for new algorithms, *creative conjectures*...

The dent marks the transition between sequence and structure-driven alignments

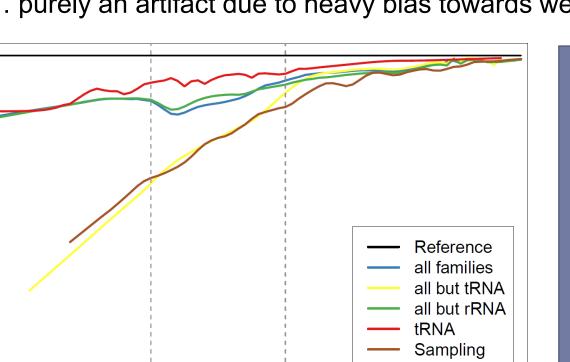
The dent identifies inconsistent practices by alignment curators

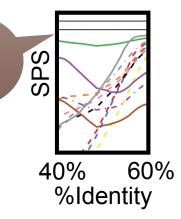

The dent undeniably proves the existence of the great spaghetti monster in the sky...


(Very) probably not...

l he

- The Dent = Quality drop in 40%-60% sequence identity
- Tool-independent phenomenon found in 2005
- Reproduced by following tools & improved benchmarks
- Inspiration for new algorithms, creative conjectures...

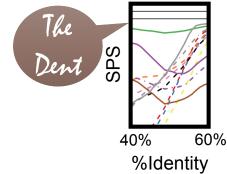

- The Dent = Quality drop in 40%-60% sequence identity
- Tool-independent phenomenon found in 2005
- Reproduced by following tools & improved benchmarks
- Inspiration for new algorithms, creative conjectures...
- ... purely an artifact due to heavy bias towards well-predicted tRNAs!


1.0 0.8 0.6 SPS 0.4 Reference all families all but tRNA 0.2 all but rRNA **tRNA** Sampling 0.0 20 40 80 60 Percent Identity

tRNAs are overly dominant for low identities and very well-predicted

The

The dent simply occurs when they cease to dominate.



Conclusion

Conclusion

- More to RNA than single-structure prediction methods
- Most methods run in a few seconds, and are available online!
- Thermodynamic equilibrium: Making statements about the complete (exponential) (sub)optimal space (in polynomial time)
 - Assess reliability (Boltzmann probability)
 - Detect presence of alternative conformers (Dot-plot)
 - Identify dominant structures (Boltzmann sampling + clustering)
- Comparative approaches: Mature methods (LocARNA) significantly outperform single-sequence predictions
 - Avoid using structure-agnostic sequence MSAs
 - Benchmarks must be taken with a grain of salt...
 - ... and should not be the sole driving force for methodological development!

The future

- RNA Design
 - Inverse folding = Synthesize RNA folding into a predefined structure
 - Gap between theory (almost nothing) and practice (design of regulatory networks)
 - Many software, hard to decide which one to choose for a given task

- RNA Kinetics: Boltzmann ensemble approaches postulate equilibrium ... but RNAs may have short life span (+co-transcriptional folding)
 - Probably no efficient ab initio combinatorial approaches (NP-hard problems)
 - Tools to study of RNA >100nts will require collaborations between App. Maths, biochemistry and computer science