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Grammars and DP schemes over sequences

2
I

3 0, Vteli,i+46]
N1 i unpaired
N,',/' = min

J . .
min AGik + Nip1,k—1 + Niy1j i paired with k

Ambiguity? Consider i: Either unpaired, or paired to k.
Sets of structures generated in these two cases are clearly disjoint.
(also holds for various values of k) = Unambiguous decomposition

Completeness? True, since scheme explores every possible outcome for /.
+ Induction on interval length = Complete decomposition
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9 Boltzmann ensemble
@ Nussinov: Minimisation = Counting
@ Computing the partition function
@ Statistical sampling
@ Inside/outside
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The canonical Boltzmann Ensemble

RNA breathes = There is no more than a single conformation.

New paradigm

The conformations of an RNA coexist in the Boltzmann distribution.

@) bt

Consequence: The MFE probability can be arbitrarily small.
= To understand how RNA acts, one must account for the set of alternative
structures.

In particular, structurally close structures may ally, and become the most
realistic candidate in the search for a functional conformation.
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Boltzmann Distribution: Definition

For each structure S compatible with an RNA w, the Boltzmann distribution
associates a Boltzmann factor Bs,, = e%, where:

» Es,, is the free-energy S (kCal.mol™")

» T is the temperature (K)

» Ris the perfect gaz constant (1.986.10~% kCal.K~'.mol~")

To obtain a distribution, one simply renormalizes by the partition function

where S, is the set of conformations that are compatibles with w.

The Boltzmann probability of a structure S is simply given by

_ES,w
e RT

PS,w = ZW
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Nussinov/Jacobson DP scheme

2
I

3 0, Vteli,i+46]
N1 i unpaired
N,',/' = min

J . .
min AGik + Nip1,k—1 + Niy1j i paired with k

Ambiguity? Consider i: Either unpaired, or paired to k.
Sets of structures generated in these two cases are clearly disjoint.
(also holds for various values of k) = Unambiguous decomposition

Completeness? True, since scheme explores every possible outcome for /.
+ Induction on interval length = Complete decomposition
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Nussinov/Jacobson DP scheme
>0
e = — o~~~ | mwo
i j

i j i+ j i k

Recurrence for minimal free-energy of a fold :

Ny = 0, Vteli,i+0]
Ni: = min{ Niy1 (/ unpaired)
A MM, o1 Eik+Nis1 k—14+Nks1; (i comp. with k)

Recurrence for counting compatible structures :

Cip = 1, Vtel[i,i+¥6]
c Cit1 (7 unpaired)
[V Z ZJK:HBH 1% C/+1,k—1 X Ck+17j (I comp. with k)

Decomposition matters, and the rest (MFE, count...) follows!
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Partition function

Partition function = Weighted count over compatible structures

izal
o + ~—e
j i k j

i i i e
Zip = 1, Vtel[i,i+0]
Zif
J
Z. =
" > S X Zijikot X Bkt
K=it0+1
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Partition function

Partition function = Weighted count over compatible structures

izal
o + ~—e
j i k j

. o« = o
i j i
Zi = 1, Vtelii+0]
Ziy1j
_ J — B (i,K)
= bp
o > S e X Zitko1 X Bk
k=it 6+1
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Partition function

Partition function = Weighted count over compatible structures

2@
R 4o}
DAL L
[ ]

En(i,f)
; Es(i,f) + M'i11,j-1
o= M ' W B
M MY Min(Esi(i,7,7,]) + M )
a+ ¢+ Min (Mg k1 + Mg +)
Mij = Min{Min(M;,k,‘,b(k—1))+,\/l'k,,}

My = Min{b+ Moo+ My}
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Partition function

Partition function = Weighted count over compatible structures

oo ]
4

a / _
a . C A

] 20;

U-ie0y

g S,
g
’ o = >
PR =
=
—En(ii)
ZEyli)
—Eg(i,j) 7
, ) AT + M4
M'i; = Min . —Eg(i,i" 1" i) ,
Min (e AT + My

)

+ Min (M1 k-1 4+ M'xj1)
My = Min{Min (M,-,k,he’”iff”> +M‘k,,}

. .
My = Min{em + My, e + My}
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Partition function

Partition function = Weighted count over compatible structures

g S,
g
o = >
PR =
=
—Ep(i)
—Es)
/ . Mt i1
M = Min —Egy(isi' ')

Min (e~ A" M',r,,r)

(a+c) . 1
e AT Min (M1 k-1 M j-1)

) ) —bk=1) a
Mi; = Min { Min | M x_1,€™ AT Mk
—b —c
My = Min{eW,f\/l'u,heW,\/l’,J
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Partition function

Partition function = Weighted count over compatible structures

o
oo y
u d’p =
& P
- &
V-ioan
% A T
[ |
e*EH(w)
—Es(is))
e A2 (i1, — 1)
Z'(i,)) = —Eg(i.i" '
@ = > 5 (e D S ].,))

e TS (2(i+ 1,k —1)2' (k,j— 1))
1)

ZG,)) = Z(Z(i,k—1)+e *hr )Z‘(k,j)

—b

ZYij) = emE'(ij—1)ted (i)
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Partition function

Partition function = Weighted count over compatible structures

Zie = 1, Vtelii+6]
Zig1,j
J _
z. = Eop(i:k)
ij Z Z € AT X Zivtk-t X Zki1
k=i+6+1

Validity of a partition function computation:
» Completeness/Unambiguity of decomposition scheme
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Partition function

Partition function = Weighted count over compatible structures

Ziy 1, Vtelii+0]

Zit1,j
J _
z. = Enp (k)
" Z Z e AT X Zipik—1 X Zk41,

k=i+6+1

Validity of a partition function computation:
» Completeness/Unambiguity of decomposition scheme
» Correctness of Boltzmann factor
Weight induced by backtrack = Product of derivations weights
e E/RT _, Weight products < Summing energy terms

e—Ebp(i,k)/RT

X Zit k1 X Zgi1)=- Ze x)/RT Ze E(y)/RT
_ Ze’a/m - )/RT e EW/RT

_ Z e (Eop(i,k)+E(x)+E(y))/RT

X,y

Yann Ponty M2 AMI2B - Lecture 2 - Boltzmann ensemble



Statistical sampling of RNA 22" structures

MFE (< Max probability) may be heavily dominated by a set B of
structurally similar suboptimal structures.
= Functional conformation probably closer to 1 than to MFE.

e

Proof-of-concept: [DCL05]
» Sample structures within Boltzmann probability

i

» Cluster structures
» Build and return consensus structure of the heaviest cluster

= Relative improvement for specificity (+17.6%) and sensitivity (+21.74%,
except group Il introns)

Problem
How to sample from the Boltzmann ensemble?
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Stochastic backtrack (adapted from SFold)

Goal [pL03]: From sequence w, draw S with prob. e=£s/fT /2

Principle: Choose derivation with prob. prop. to its contribution to part. fun.
Precomputation: Compute part. fun. versions of matrices (2, 2’, 2").
Stochastic backtrack:

—En(ij) —Eg(is)
W2 e H ziv1,j-1) B
1229)----»% (ei—%’% o Z’(/"J’))

¢ 7~
e Y (Z(i+1,k—1)2'(kj—1) ©
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Stochastic backtrack (adapted from SFold)

Goal [pL03]: From sequence w, draw S with prob. e=£s/fT /2

Principle: Choose derivation with prob. prop. to its contribution to part. fun.
Precomputation: Compute part. fun. versions of matrices (2, 2’, 2").
Stochastic backtrack:

@ Draw uniform random number r € [0, Z'(i,))

—En(ij) —Eg(is)
e B2 o H zit1,j-1) B
—Eg(i,i’,j .j)
E IS 5 (e 20)

—(a+c)

e S (Z(i+ 1, k- 1)2'(kj—1)) ©
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Stochastic backtrack (adapted from SFold)

Goal [pL03]: From sequence w, draw S with prob. e=£s/fT /2

Principle: Choose derivation with prob. prop. to its contribution to part. fun.
Precomputation: Compute part. fun. versions of matrices (2, 2’, 2").
Stochastic backtrack:

@ Draw uniform random number r € [0, Z'(i,))

—En(ij) —Eg(is)
e B2 o H zit1,j-1) B
—Eg(i,i’,j .j)
E IS 5 (e 20)

—(a+c)

[~
e e S (Z(i+1,k—1)Z"(kj—1)) ©

1
Ai|A2|Bi|Bisa . .. |Bi—1|Bj| Cil Cisil- - . [ Cj-1 | G
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Stochastic backtrack (adapted from SFold)

Goal [pL03]: From sequence w, draw S with prob. e=£s/fT /2

Principle: Choose derivation with prob. prop. to its contribution to part. fun.
Precomputation: Compute part. fun. versions of matrices (2, 2’, 2").
Stochastic backtrack:

@ Draw uniform random number r € [0, Z'(i,))
@ Subtract from r the contributions of Z'(i, j) until r < 0

— (i,j —Eg(i,))
e B2 e H zit1,j-1) B
—Eg(i,i’,j .j) o
E IS 5 (e 2001)

—(atc 7~
e Y (Z(i+1,k— 12" (k,j—1) ©

1
Al A21Bi|Bix1. - - |Bj=11B; | Cil Cistl- - - 1G=1] G
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Stochastic backtrack (adapted from SFold)

Goal [pL03]: From sequence w, draw S with prob. e=£s/fT /2

Principle: Choose derivation with prob. prop. to its contribution to part. fun.
Precomputation: Compute part. fun. versions of matrices (2, 2’, 2").
Stochastic backtrack:

@ Draw uniform random number r € [0, Z'(i,))
@ Subtract from r the contributions of Z'(i, j) until r < 0

— (i,j —Eg(i,))
e B2 e H zit1,j-1) B
—Eg(i,i’,j .j) o
E IS 5 (e 2001)

—(atc 7~
e Y (Z(i+1,k— 12" (k,j—1) ©

1
Ai|A2|Bi|Bis1 . .. |Bi-1|Bj| Cil Citil- . [ Cj-1 | G
A A+
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Stochastic backtrack (adapted from SFold)

Goal [pL03]: From sequence w, draw S with prob. e=£s/fT /2

Principle: Choose derivation with prob. prop. to its contribution to part. fun.
Precomputation: Compute part. fun. versions of matrices (2, 2’, 2").
Stochastic backtrack:

@ Draw uniform random number r € [0, Z'(i,))
@ Subtract from r the contributions of Z'(i, j) until r < 0

— (i,j —Eg(i,))
e B2 e H zit1,j-1) B
—Eg(i,i’,j .j) o
E IS 5 (e 2001)

—(atc 7~
e Y (Z(i+1,k— 12" (k,j—1) ©

1
Ai|A2|Bi|Bis1 ... |Bi-1|Bj| Cil Cisil- - . [ Cj-1 | G
N A A A EN

N -
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Stochastic backtrack (adapted from SFold)

Goal [pL03]: From sequence w, draw S with prob. e=£s/fT /2

Principle: Choose derivation with prob. prop. to its contribution to part. fun.
Precomputation: Compute part. fun. versions of matrices (2, 2’, 2").
Stochastic backtrack:

@ Draw uniform random number r € [0, Z'(i,))
@ Subtract from r the contributions of Z'(i, j) until r < 0

— (i,j —Eg(i,))
e B2 e H zit1,j-1) B
—Eg(i,i’,j .j) o
E IS 5 (e 2001)

—(atc 7~
e Y (Z(i+1,k— 12" (k,j—1) ©

1
A A2|Bi|Bistl. .. | Bi—1 | Bi| Cill Cix1 - . .| C—1| G
WU\ /W

Yann Ponty M2 AMI2B - Lecture 2 - Boltzmann ensemble



Stochastic backtrack (adapted from SFold)

Goal [pL03]: From sequence w, draw S with prob. e=£s/fT /2

Principle: Choose derivation with prob. prop. to its contribution to part. fun.
Precomputation: Compute part. fun. versions of matrices (2, 2’, 2").
Stochastic backtrack:

@ Draw uniform random number r € [0, Z’(i, f))
© Subtract from r the contributions of Z'(i, j) until r < 0
© Recurse over associated regions/matrices

—Eq(i)) —Es(i))

e A +e A Z'(i+1,j—1) @
Z’(i,j) _ z Z(eiEBI%HL’I’I)Z/(i/,j/))

—(atc)

e A S (Z(i+1,k—1)Z"(k,j—1)) @

Correctness: Each S € S, uniquely generated (DP scheme unambiguity)
Therefore the probability of generated S is

po— B(E) B(E) B(Ey)  BUS))
B(Sw) B(E)) B(E) ~ B(Em)
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Stochastic backtrack (adapted from SFold)

Goal [pL03]: From sequence w, draw S with prob. e=£s/fT /2

Principle: Choose derivation with prob. prop. to its contribution to part. fun.
Precomputation: Compute part. fun. versions of matrices (2, 2’, 2").
Stochastic backtrack:

@ Draw uniform random number r € [0, Z’(i, f))
© Subtract from r the contributions of Z'(i, j) until r < 0
© Recurse over associated regions/matrices

—Eq(i)) —Es(i))

e A +e A Z'(i+1,j—1)
—E, (I‘,f’,‘/,')
i) = Y Z(ei‘g’w”zw,/’))

—(atc)

e A S (Z(i+1,k—1)Z"(k,j—1))

@

=
Q)

Correctness: Each S € S, uniquely generated (DP scheme unambiguity)
Therefore the probability of generated S is

1 1 1 B({S})
1
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Stochastic backtrack (adapted from SFold)

Goal [pL03]: From sequence w, draw S with prob. e=£s/fT /2

Principle: Choose derivation with prob. prop. to its contribution to part. fun.
Precomputation: Compute part. fun. versions of matrices (2, 2’, 2").
Stochastic backtrack:

@ Draw uniform random number r € [0, Z'(i,))
@ Subtract from r the contributions of Z’(i, ) until r < 0
© Recurse over associated regions/matrices

— (i,] —Eg(i,))
e B2 o H zit1,j-1) B
—Eg(i,i’,j .j) o
EI S 5 (e 201)

—(a+c)

e S (Z(i+ 1, k- 1)2'(kj—1)) ©

Correctness: Each S € S, uniquely generated (DP scheme unambiguity)
Therefore the probability of generated S is

_B({S}) e &/
Ps= B, ~ =

:Ps,w
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Complexity

Goal [pL03]: From sequence w, draw S with prob. e=£s/fT /2

Stochastic backtrack:
@ Draw uniform random number r € [0, Z'(i,))
@ Subtract from r the contributions of Z'(i,j) until r < 0
© Recurse over associated regions/matrices

—Ex(i) S(

AT + e RT) (I+1j71) @

l
Ai|A2|Bi|Bisi ... |Bi-1|Bj| Ci| Cital. .1 Cj—1| G
A A A NGy

Average-case complexity in ©(k x n+/n) (homopolymer model) [Ponos].
Boustrophedon search = O(k x nlog n) worst-case [Pon0s].
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Complexity

Goal [pL03]: From sequence w, draw S with prob. e=£s/fT /2

Stochastic backtrack:
@ Draw uniform random number r € [0, Z'(i,))
@ Subtract from r the contributions of Z'(i,j) until r < 0
© Recurse over associated regions/matrices

—Ex(i) S(

e AT +e RT) Z'(i+1,j-1) @

i) = ¥ 5 (e ™ 200

—(a+c)

RT Z(z(/+,k—1)z (k,j—1) &

l
Ai|A2|Bi|Bisi ... |Bi-1|Bj| Ci| Cital. .1 Cj—1 | G
A A A NGy

After ©(n) operations, recurse over region of length n — 1
= Worst-case complexity in O(k x n?) for k samples

Average-case complexity in ©(k x n/n) (homopolymer model) [Ponos].
Boustrophedon search = O(k x nlog n) worst-case [Pon0s].
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Algorithme Inside/outside

Structure including base pair (i, k):

So

> Inside: Structures over [i+ 1,k —1]
S*
/ &
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Algorithme Inside/outside

Structure including base pair (i, k): So

> Inside: Structures over [i+ 1,k —1]

*

S

A

Gl

71\
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Algorithme Inside/outside

Structure including base pair (i, k):
> Inside: Structures over [i+ 1,k —1]
» Outside: Contexts of interval (i, k)

> Vinterval [i,j],i <j <k

» Complete structure by generating
brother intervals ([k + 1,/]) and
recurse over the father of [i, k] .

So

S *
/ :

Yann Ponty
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Algorithme Inside/outside

Structure including base pair (i, k): So

A

> Inside: Structures over [i+ 1,k —1]
» Outside: Contexts of interval (i, k)

> Vinterval [i,j],i <j <k

» Complete structure by generating
brother intervals ([k + 1,/]) and
recurse over the father of [i, k] .
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Algorithme Inside/outside

Structure including base pair (i, k):
> Inside: Structures over [i+ 1,k —1]
» Outside: Contexts of interval (i, k)

> Vinterval [i,j],i <j <k

» Complete structure by generating
brother intervals ([k + 1,/]) and
recurse over the father of [i, k] .

So

VS/ Y
/*A\\
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Algorithme Inside/outside

Structure including base pair (i, k):
> Inside: Structures over [i+ 1,k — 1]
» Outside: Contexts of interval (i, k)

> Vinterval [i,j],i <j <k

» Complete structure by generating
brother intervals ([k + 1,/]) and
recurse over the father of [i, k] .

So

S *
/ :

Whenever some further technical conditions are satisfied, this decomposi-
tion is complete and unambiguous, and implies a simple recurrence for

computing the base pair probability matrix in ©(n®).

Yann Ponty
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