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Scientific context and objectives. A DP-ribbon is a topological cylinder (a sphere with two
boundaries) with a distinguished core circle with a distinguished side and an arrangement of
DP-ribbons is a finite family of at least two DP-ribbons pairwise attached as shown in Fig. 1.
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Figure 1. A DP-ribbon embedded in three-space (only the core circle is drawn, the
distinguished side is indicated by small sky blue disks, and half-twists of the ribbon are
indicated by horizontal dashed line segments), an arrangement of two DP-ribbons, and
an indexed arrangement of two oriented DP-ribbons

Note that the underlying surface of an arrangement of two DP-ribbons is a sphere with one
crosscap and five boundaries. The genus of an arrangement of DP-ribbons is the genus of its
underlying surface. The interest of this class of arrangements lies in the following three statements.

Theorem 1 ([9]). The arrangements of DP-ribbons of genus 1 are exactly, modulo the adjunction
of topological disks along their boundaries, the so-called arrangements of double pseudolines, i.e.,
the dual arrangements of finite families of pairwise disjoint convex bodies of (real two-dimensional)
projective planes.

Theorem 2 ([9]). An arrangement of DP-ribbons is of genus 1 if and only if its subarrangements
of size 3, 4 and 5 are of genus 1.
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Theorem 3 ([9]). There is a natural one-to-one and onto correspondence between indexed arrange-
ments of n oriented DP-ribbons and the n-tuples of shuffles of the n − 1 circular sequences jjjj,
j = 2, 3, . . . , n. In particular the number bn of indexed arrangements of n oriented DP-ribbons is{

4n−2

(
4n− 5

3, 4, 4, . . . , 4

)}n

and the number an of arrangements of n DP-ribbons is bounded from below by

bn/(2nn!).

The class of arrangements of double pseudolines is an extension of the well-studied class of
arrangements of pseudolines [7]. It plays a central role in the algorithmic of two-dimensional
visibility graphs [14, 1], in the algorithmic of pseudotriangulations [8, 13, 15], in two-dimensional
line transversal theory [5, 17, 10], and (more recently) in the classical (1, k)-separation problem of
Tverberg [16, 12].

The driving goal of the internship is to check the following conjecture.

Conjecture 1. An arrangement of five (hence any number of) DP-ribbons is of genus 1 if and
only if its subarrangements of size 3 and 4 are of genus 1.

We ask both for a non computer-assisted proof and a computer-assisted proof. So far we only
know that an arrangement of five DP-ribbons whose subarrangements of size 4 are of genus 1 is of
genus 1 or its subarrangements of size 4 belong to a well-defined family of few dozens of arrange-
ments [9, Theorem 46]. A computer-assisted proof is therefore doable using modest computing
ressources. Using classical enumeration algorithms for multiset permutations [18, 11] among other
things, preliminary investigations1 lead to the following values for the numbers a∗4(g) of arrange-
ments of DP-ribbons of size 4 and genus g whose subarrangements of size 3 are of genus 1 and
the numbers b∗4(g) of indexed arrangements of oriented DP-ribbons of size 4 and genus g whose
subarrangements of size 3 are of genus 1:

g 1 2 3 4 5 6 7 ≥ 8
a∗4(g) 6 570 0 455 0 18 0 1 0
b∗4(g) 2 415 112 0 135 664 0 4 560 0 16 0
db∗4(g)/244!e 6290 0 354 0 12 0 1 0

The code for the computer-assisted proof will aggregate the general-purpose platform to manipu-
late DP-ribbons of genus 1 developped in [6] and could potentially be reused to check conjectures
related to the lines of research cited above (line transversal theory and so forth). Depending on
time and the expectations of the intern, a multi-dimensional version of arrangements of double
pseudolines (modeled on the notion of pseudohyperplane arrangements [2, 3, 4]) could be investi-
gated.
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