
INF421 PROGRAMMING PROJECT

NUMBERLINK SOLVER

VINCENT PILAUD
vincent.pilaud@lix.polytechnique.fr

1. Numberlink

Numberlink is a Japanese logic puzzle developed by Issei Nodi and published by Nikoli Co. Ltd.,
the same company that produced the sudoku and kakuro games. The player is given a grid with
some pairs of numbers and is required to connect the different pairs with continuous paths.

Figure 1. Numberlink solving: A grid (left) and its solution (right). Images
from https://en.wikipedia.org/wiki/Numberlink.

The same game has been popularized in a more modern version by the Big Duck Games app
Free Flow (see https://www.bigduckgames.com).

The goal of this programming project is to solve and create Numberlink puzzles, using different
algorithmic approaches.

2. Solving puzzles

In this section, you will design algorithms to solve a Numberlink problem. We consider a
graph G = (V,E) with vertex set V and edge set E ⊆

(
V
2

)
, and we are given a collection X ⊆

(
V
2

)
of disjoint pairs of vertices of G. A disjoint path matching for (G,X) is a collection P of paths in G
such that each pair of X is the pair of endpoints of a path of P and the vertex set V is the disjoint
union of the paths of P . Finding a disjoint path matching is known to be an NP-complete problem:
the special instance with a single pair amounts to finding a Hamiltonian path between two points
of a graph, which is NP-complete. In this section, we discuss two computational methods to find
a disjoint path matching for small instances (G,X).

2.1. Using a SAT solver. An instance of the SAT problem (SAT for satisfiability) consists
in deciding whether a formula over boolean variables x1, . . . , xm connected with operators of
conjunction ∧ (for “and”), disjunction ∨ (for “or”) and negation ¬ (for “not”) is satisfiable. The
formula is in conjunctive normal form when it is written as a conjunction (∧) of clauses, each of
which is a disjunction (∨) of literals (xi or ¬xi).

To solve a SAT problem, we can use libraries already developed for java, for example Sat4j (see
http://www.sat4j.org for the documentation). A minimal example of use of this library is pro-
vided at http://www.lix.polytechnique.fr/~pilaud/enseignement/TP/DIX/INF421/1819/.

Given a graph G = (V,E) and a set of k disjoint pairs X = {(s1, t1), . . . , (sk, tk)} ⊆
(
V
2

)
, we

can transform the problem to find a disjoint path matching in G connecting the pairs of X into a
SAT problem in various possible ways that we need to compare.

1

https://en.wikipedia.org/wiki/Numberlink
https://www.bigduckgames.com
http://www.sat4j.org
http://www.lix.polytechnique.fr/~pilaud/enseignement/TP/DIX/INF421/1819/


INF421 Programming project Numberlink

2.1.1. Focus on paths. For each vertex v ∈ V , each index i ∈ [k] and position p ∈ [n], we consider a
boolean variable xv,i,p which remembers if the vertex v is the pth vertex along the path i. We also
use a phantom vertex ⊥ so that x⊥,i,p remembers that the path i was finished before position p.
These variables should satisfy the following constraints:

• each vertex v ∈ V appears at a single position in a single path,
• each position p ∈ [n] in a path i ∈ [k] is occupied by precisely one vertex (or by ⊥ if the

path finished before position p),
• if a path is finished before position p, it is also finished before position p+ 1,
• for each index i ∈ [k], consecutive vertices along the path i are adjacent in the graph G,
• for each index i ∈ [k], the source si appears first in the path i, and the sink vertex ti is

followed by ⊥ in the path i.

Task 1. Write a method that translates a disjoint path matching problem to a SAT solver using
this approach and solves it using the library of your choice. Test on the example of Figure 1, and
evaluate the computation time on complete graphs and grid graphs.

2.1.2. Focus on edges. For each edge e ∈ E and each index i ∈ [k], we consider a boolean vari-
able xe,i which remembers if the edge e belongs to the path i. These variables should satisfy the
following constraints:

• each edge e ∈ E appears in at most one path,
• each vertex v ∈ V of a pair (si, ti) of X is contained in precisely 1 edge of path i and none

of the other paths,
• each vertex v ∈ V not in a pair of X is contained in precisely two edges of one of the paths.

Task 2. Write a method that translates a disjoint path matching problem to a SAT solver using
this approach and solves it using the library of your choice. Test on the example of Figure 1,
evaluate the computation time on complete graphs and grid graphs, and compare with the previous
approach.

One problem with this method is that we have no way to control that our solution does not
contain closed cycles. There are two ways to get rid of cycles:

• include more variables to remember the order of the edges along the paths. This would
require O(n2) variables and would therefore be equivalent to the approach of Task 1.

• each time we find a solution with a cycle C, we add constraints to ensure that the edges
of C cannot appear simultaneously in the same path, and we iterate until we find a solution
with no cycle.

Task 3. Using the second solution, adapt your method of Task 2 so that it does not answer with a
solution containing closed cycles. Test on the example of Figure 1, evaluate the computation time
on complete graphs and grid graphs, and compare with the previous approach.

2.1.3. Focus on vertices. If we are only interested in grid graphs, we could also use a different
encoding of the disjoint path matching problem as follows. For each vertex v ∈ V of the grid, each
color i ∈ [k] and each shape σ ∈ { , , , , , , }, we consider a boolean variable xv,i,σ which
remembers if the path i passes through vertex v with the shape σ. Again, these variables satisfy
some elementary constraints and we should be careful to avoid closed cycles.

Task 4. Write a method that translates a disjoint path matching problem on a grid to a SAT
solver using this approach and solves it using the library of your choice. Test on the example of
Figure 1, evaluate the computation time on complete graphs and grid graphs, and compare with
the previous approaches.

2.1.4. Find a second solution. It will be important in Section 3 to be able to decide whether a
puzzle has no, one, or more than one solution.

Task 5. Adapt your algorithm so that it can tell whether the puzzle has at least 2 solutions (hint:
you might want to run twice the SAT solver). Is the solution of Figure 1 unique? And if the
bottom 4 were in the bottom right corner?

2



INF421 Programming project Numberlink

2.2. Backtracking algorithm. Our second method to solve the disjoint path matching problem
is to design an adapted backtracking algorithm. The idea is simple: we start with all paths at
their source vertices, and at each step we try to extend one path by appending one neighbor of its
current last vertex, until all paths reach their target vertices. A priori, the paths can be extended
in any order, but there are two things to keep in mind:

• we have to extend in a consistent way so that we do not obtain the same states in two
different ways (for example by extending first p1 and then p2 or by extending first p2 and
then p1),

• as we are using a branching algorithm, it is preferable to first make the choices with less
options and leave the choices with more options for later (even more since the number of
options for future choices might decrease with the first choices that are done).

Therefore, we choose to extend the path whose current last vertex has the fewest possible exten-
sions, and we choose the minimal such path if there are ties.

Task 6. Implement this backtracking method to solve the disjoint path matching problem. Test on
the example of Figure 1 and evaluate the computation time on complete graphs and grid graphs.

Remark 1. Many improvements can be done to cut the branches of the backtracking algorithm
earlier. See for instance the blog post at https://mzucker.github.io/2016/08/28/flow-solver.
html. As an extension of your project, you can implement some of these ideas and compare their
impact on the computation time.

We are also interested in knowing the number of solutions of a puzzle and in particular if a
puzzle has more than one solution.

Task 7. (i) Adapt your backtracking algorithm so that it counts the number of disjoint path
matchings of (G,X). Illustrate on examples of your choice.

(ii) Adapt your backtracking algorithm so that, for a given k, it returns an empty solution if there
are less than k disjoint path matchings of (G,X), and one of these disjoint path matchings
if there are more than k.

2.3. Some optional extensions. To complete your project, you can:

• discuss and implement further variations as those described on the page https://www.

bigduckgames.com and illustrated on Figure 2. You can also invent your own extensions
and special rules.

• implement functions that output nice representations of your disjoint path matchings, like
the ones in Figures 1 or 2. A basic graphical interface is provided at http://www.lix.

polytechnique.fr/~pilaud/enseignement/TP/DIX/INF421/1819/.

Figure 2. Some possible extensions from https://www.bigduckgames.com.

3

https://mzucker.github.io/2016/08/28/flow-solver.html
https://mzucker.github.io/2016/08/28/flow-solver.html
https://www.bigduckgames.com
https://www.bigduckgames.com
http://www.lix.polytechnique.fr/~pilaud/enseignement/TP/DIX/INF421/1819/
http://www.lix.polytechnique.fr/~pilaud/enseignement/TP/DIX/INF421/1819/
https://www.bigduckgames.com


INF421 Programming project Numberlink

3. Creating puzzles

The goal of the remaining of the project is to create numberlink puzzles. We require that the
puzzles have a unique solution and we will try to create puzzles with nice shapes.

3.1. From a graph. At the moment, we start from a graph G = (V,E). Our goal is to output a
numberlink instance which admits a unique solution but also minimizes the number of pairs in X.
For that, we propose to proceed as follows:

(1) Compute an arbitrary partition of the vertices of V into a set P of paths of G, trying
heuristically to minimize the number of paths used.

(2) As long as the numberlink problem where the pairs are the endpoints of P admits more
than one solution, split an arbitrary path of P into two paths (thus creating one more pair
in the numberlink instance).

Task 8. Write a method that implements this approach to create numberlink puzzles. Evaluate
the computation time on grid graphs.

3.2. From a picture. We now want to create puzzles with nice shapes. As you probably have
observed, it is quite tedious to create a puzzle with a nice shape.

Task 9. Given a black and white picture and a chosen resolution, provide a method that creates
a numberlink puzzle whose underlying graph is a subset of the grid that looks similar to the initial
picture.

Some binary images and a class to manipulate binary images are provided at http://www.lix.
polytechnique.fr/~pilaud/enseignement/TP/DIX/INF421/1819/.

Figure 3. Some binary images to create your own numberlink puzzles.

Remark 2. In general, feel free to invent any extension of the tasks presented in this project
(why not a web interface... even if this does not enter anymore in the INF421 phylosophy). Be
imaginative, you are a puzzle creator!

4

http://www.lix.polytechnique.fr/~pilaud/enseignement/TP/DIX/INF421/1819/
http://www.lix.polytechnique.fr/~pilaud/enseignement/TP/DIX/INF421/1819/

	1. Numberlink
	2. Solving puzzles
	2.1. Using a SAT solver
	2.2. Backtracking algorithm
	2.3. Some optional extensions

	3. Creating puzzles
	3.1. From a graph
	3.2. From a picture


