
LECTURE NOTES MPRI 2.38.1

GEOMETRIC GRAPHS, TRIANGULATIONS AND POLYTOPES

VINCENT PILAUD

These lecture notes on “Geometric Graphs, Triangulations and Polytopes” cover the material
presented for half of the MPRI Master Course 2.38.1 entitled “Algorithmique et combinatoire des
graphes géométriques”. The other half of the course, taught by Éric Colin de Verdière, focusses on
“Algorithms for embedded graphs” [dV]. Announcements and further informations on the course
are available online:

https://wikimpri.dptinfo.ens-cachan.fr/doku.php?id=cours:c-2-38-1

Comments and questions are welcome by email: vincent.pilaud@lix.polytechnique.fr.

These lecture notes focus on combinatorial and structural properties of geometric graphs and
triangulations. The aim is to give both an overview on classical theories, results and methods,
and an entry to recent research on these topics. The course decomposes into the following 6
interconnected chapters:

(i) Chapter 1 introduces planar, topological and geometric graphs. It first reviews combinatorial
properties of planar graphs, essentially applications of Euler’s formula. It then presents
considerations on topological and rectilinear crossing numbers.

(ii) Chapter 2 presents the structure of Schnyder woods on 3-connected planar graphs and their
applications to graph embedding, orthogonal surfaces and geometric spanners.

(iii) Chapter 3 introduces the theory of polytopes needed later in the notes. It tackles in particular
the equivalence between V- and H-descriptions, faces and f - and h-vectors, the Upper and
Lower Bound Theorems for polytopes, and properties of graphs of polytopes.

(iv) Chapter 4 is devoted to triangulations of planar point sets. It first discusses upper and
lower bounds on the number of triangulations of a point set, and then introduces regular
triangulations (with a particular highlight on the Delaunay triangulation) and their polytopal
structure.

(v) Chapter 5 focuses on triangulations of a convex polygon and the associahedron. The goal is
to present Loday’s construction and its connection to the permutahedron.

(vi) Chapter 6 explores combinatorial and geometric properties of further flip graphs with a more
combinatorial flavor. It first presents the interpretation of triangulations, pseudotriangula-
tions and multitriangulations in terms of pseudoline arrangements on a sorting network.
Finally, it constructs brick polytopes and discusses their combinatorial structure.

Most of the material presented here is largely inspired from classical textbook presentations.
We recommend in particular the book of Felsner [Fel04] on geometric graphs and arrangements
(in particular for Sections 1 and 2), the book of De Loera, Rambau and Santos [DRS10] on
triangulations (Section 4 and its extension to higher dimension), and the book of Ziegler [Zie95]
for an introduction to polytope theory (Section 3). The last two chapters present more recent
research from [Lod04, PP12, PS12]. Original papers are not always carefully referenced along the
text, but precise references can be found in the textbooks and articles mentioned above.
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1. Introduction to planar, topological, and geometric graphs

This section gives a short introduction to planar, topological, and geometric graphs. It focusses
on combinatorial properties of planar graphs (essentially from Euler’s relation), and topological
and geometric graph drawings and embeddings (in particular considerations on the topological
and rectilinear crossing number). This material is classical, see e.g. [Fel04, Chap. 1, 3, 4].

1.1. Graph drawings and embeddings. A graph G is given by a set V = V (G) of vertices
and a set E = E(G) of edges connecting two vertices. We use the following definition for graph
drawings and embeddings.

Definition 1. A drawing of a graph G = (V,E) in the plane is given by an injective map φV :
V → R2 and a continuous map φe : [0, 1]→ R2 for each e ∈ R such that

(i) φe(0) = u and φe(1) = v for any edge e = (u, v),
(ii) φe(]0, 1[) ∩ φV (V ) = ∅ for any e ∈ E,

The drawing is a topological drawing if

• no edge has a self-intersection,
• two edges with a common endpoint do not cross,
• two edges cross at most once.

Finally, the drawing is an embedding if φe(x) 6= φe′(x
′) for any e, e′ ∈ E and x, x′ ∈ ]0, 1[ such

that (e, x) 6= (e′, x′).

Exercice 2. Show that a drawing of a graph in the plane can be modified to get a topological
drawing with at most as many crossings.

1.2. Planar graphs and Euler’s formula. A graph is planar if it admits an embedding in the
plane. The connected components of the complement of this embedding are called faces of the
graph. Planar graphs will be a central subject in these lecture notes.

Proposition 3 (Euler’s formula). If a connected planar graph has n vertices, m edges and p faces,
then n−m+ p = 2.

Proof. The formula is valid for a tree (n vertices, n−1 edges and 1 face). If the graph is not a tree,
we delete an edge from a cycle. This edge is incident to two distinct faces (Jordan’s Theorem), so
that the flip preserves the value of n−m+ p. We conclude by induction on m− n. �

Corollary 4. A simple planar graph with n vertices has at most 3n − 6 edges. A simple planar
graph with no triangular face has at most 2n− 4 edges. In general, a planar graph with no face of
degree smaller or equal to k has at most k+1

k−1 (n− 2) edges.

Proof. Assume that all faces have degree strictly greater than k. By double counting of the
edge-face incidences, and using Euler’s relation, we get

2m ≥ (k + 1)p = (k + 1)m− (k + 1)(n− 2),

which yields

m ≤ (k + 1)(n− 2)

k − 1
. �

Corollary 5. The complete graph K5 and the complete bipartite graph K3,3 (see Figure 1) are
not planar.

Proof. Both would contradict the previous statement: the complete graph K5 has 5 vertices and
10 edges, and the complete bipartite graph K3,3 has 6 vertices, 9 edges, but no triangle. �

Exercice 6. Show that the Petersen graph is not planar (see Figure 1).

A subdivision of a graph G is any other graph obtained by replacing some edges of G by paths
of edges. This operation clearly preserves planarity and non-planarity. Therefore, Corollary 5 tells
that all subdivisions of K5 and K3,3 are non-planar. In fact, this turns out to be a characterization
of planar graphs, known as Kuratowski’s theorem.
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Figure 1. The complete graph K5 (left), the complete bipartite graph K3,3

(middle), and the Petersen graph (right) are not planar.

Theorem 7 (Kuratowski [Kur30]). A graph is planar if and only if it contains no subdivision
of K5 and K3,3.

This characterization is not algorithmic: testing naively whether a graph G contains a subdi-
vision of K5 or K3,3 is exponential in the number of vertices of G. However, it turns out that
there exist efficient algorithms for planarity testing: planarity can be tested in linear time. See
the other part of the course [dV] for a method and proof of this result.

Exercice 8 (Colorability of planar graphs). (1) Prove that all planar graphs are 6-colorable. (Hint:
delete a vertex of degree at most 5 and apply induction).

(2) Prove that all planar graphs are 5-colorable. (Hint: immediate by induction if there is a
vertex of degree strictly less than 5. Otherwise, consider a vertex u of degree 5 with neigh-
bors v1, . . . , v5 cyclically around u. Construct by induction a 5-coloring of the graph where v
is deleted. If all 5 colors appear on v1, . . . , v5, consider the subgraph induced by the vertices
colored as v1 or v3. If this subgraph is disconnected, exchange the two colors in the connected
component of v1 and conclude. Otherwise, observe that the subgraph induced by the vertices
colored as v2 or v4 is disconnected and conclude).

In fact, the four color theorem ensures that all planar graphs are 4-colorable (see e.g. [RSST97]).

Exercice 9 (Sylvester-Gallai theorem). For any set of n ≥ 3 points in the plane, not all on one
line, there is always a line that contains exactly two points. (Hint: By duality, the statement is
equivalent to showing that for any set of n ≥ 3 lines in the plane, not all through one point, there
is always a point contained in exactly two of them. This is clear since a planar graph has at least
one vertex of degree at most 5).

Exercice 10 (Monochromatic line in a bicolored point set). Show that in a planar graph whose
edges have been colored black and white, there is always a vertex with at most two color changes
in the cyclic order around it. (Hint: show that the number c of bicolored corners is bounded
by c ≤ 2f3 + 4f4 + 4f5 + 6f6 + 6f7 + · · · ≤ 4m− 4p = 4n− 8). Derive from this result that for any
configuration of black and white points, there is always a monochromatic line.

1.3. Topological graphs and the crossing lemma. The crossing number of a graph G is the
minimal number cr(G) of crossings in a drawing of G. We start with an upper bound on the
crossing number of the complete graph Kn.

Exercice 11 (On the crossing number of the complete graph). The goal of this exercice is to
obtain a non-trivial upper bound on the crossing number cr(Kn) of the complete graph Kn.

(1) Consider n points in convex position and connect any two of them by the straight segment
between them. How many crossings appear?

(2) Assume that n = 2ν is even and consider a prism over a ν-gon. Label the vertices of the two
bases of this prism by a1, . . . , aν and b1, . . . , bν respectively. Draw the complete graph Kn on
this prism as follows:
• any two vertices of the same base are connected by the straight segment in this base,
• for any i, j ∈ [ν], vertex ai is connected to vertex bj by the clockwise geodesic on the

surface of the prism not crossing the edge [ai, bi]. Denote by Ei the set of edges from ai
to the vertices {b1, . . . , bν}.
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Figure 2. Drawings of the complete graphs K6 (left), K8 (middle), and K10 (right).

This drawing is illustrated on Figure 2 for K6, K8 and K10, where the prism has been projected
to the plane. For each i ∈ [ν], we have colored the vertices ai, bi and the edge set Ei with the
same color.

(i) Show that for any i 6= j, the edge sets Ei and Ej have

(|i− j| − 1)|i− j|
2

+
(ν − |i− j| − 1)(ν − |i− j|)

2

crossings.
(ii) Deduce that Ei has ν(ν − 1)(ν − 2)/3 crossings for any i ∈ [ν].
(iii) Deduce that the total number of crossings of this drawing of Kn is

ν(ν − 1)2(ν − 2)

4
' n4

64
' 3

8

(
n

4

)
.

(3) Using a similar construction, show that the crossing number of the complete graph on n = 2ν + 1
vertices is at most

ν2(ν − 1)2

4
' ν4

64
' 3

8

(
n

4

)
.

(4) Conclude that

cr(Kn) ≤ 1

4

⌊
n

2

⌋⌊
n− 1

2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋
.

This bound was conjectured to be tight for all values of n by Guy [Guy60].

We now consider a simple graph G with n vertices and m edges, and give lower bounds on
the crossing number cr(G) in terms of n and m, as well as applications to incidence problems in
geometry.

Proposition 12. cr(G) ≥ m− 3n+ 6.

Proof. Let H be a maximal planar subgraph of G. All edges in GrH create at least one crossing.
Conclude by Euler relation on H. �

Exercice 13. Prove that cr(G) ≥ r
∑bm/rc
i=1 i, where r ≤ 3n− 6 denotes the number of edges in a

maximal planar subgraph of G. (Hint: delete successive maximal planar subgraphs of G). Derive
a lower bound on the crossing number cr(G) of order m2/6n.

The following theorem gives the right order of magnitude for the crossing number cr(G), as
conjectured by Erdős and Guy [EG73].

Theorem 14 (Crossing lemma). If G as n vertices and m ≥ 4n edges, then cr(G) ≥ m3/64n2.
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Proof. Consider an optimal drawing of G, and let H be the random induced subgraph of G
obtained by picking independently each vertex of G with probability p. The expected number of
vertices, edges, and crossings of H are respectively

E(n(H)) = p · n(G), E(m(H)) = p2 ·m(G), and E(cr(H)) = p4 · cr(G).

We conclude using the trivial bound of Proposition 12 on the graph H and setting the probabil-
ity p = 4n/m (thus needing the assumption m ≥ 4n). �

Remark 15. The previous bound is tight up to a constant. Indeed, for any n ∈ N, the complete
graph Kn has by Exercice 11

n(Kn) = n, m(Kn) =

(
n

2

)
, and cr(Kn) ≤ 3

8

(
n

4

)
' m3

8n2

However, the constant 1/64 of Theorem 14 can be slightly improved as discussed in the next
proposition and exercice.

Proposition 16. If G as n vertices and m ≥ 21n/4 edges, then

cr(G) ≥ 32m3/1323n2 ' m3/41.34n2.

Proof. Call a graph k-restricted if it admits a drawing where each edge has at most k crossings.
E.g. a planar graph is 0-restricted. We claim that a k-restricted graph has at most (k+ 3)(n− 2)
edges for k ∈ {0, 1}. We show this claim at the end of this proof. Consider for now an arbitrary
graph G, and let G2 = G, let G1 be a maximal 1-restricted subgraph of G and G0 a maximal
planar subgraph of G1. By maximality, all edges in Gi r Gi−1 have at least i crossings. We
therefore obtain using our claim that

cr(G) ≥ 2
(
|E(G2)| − |E(G1)|

)
+
(
|E(G1)| − |E(G0)|

)
≥ 2m− |E(G1)| − |E(G0)|
≥ 2m− 4(n− 2)− 3(n− 2)

≥ 2m− 7n.

We then use this inequality instead of the trivial bound of Proposition 12 as in the proof of
Theorem 14.

We still have to show our claim. It is clear for k = 0 (Corollary 4). For k = 1, consider a 1-
restricted drawing of a graph G with n vertices maximizing the number of edges in such a graph,
and let H be a maximal planar subgraph of G. For any edge e = (u, v) ∈ G r H, there exists
an edge e′ = (u′, v′) such that u, u′, v′ and v, u′, v′ are triangular faces of H. We say that these
triangular faces witness e. Since any edge in GrH is witnessed by two triangular faces of H, and
any triangular face can witness at most one edge of GrH, we obtain that |GrH| ≤ n− 2 and
thus m(G) ≤ 4(n− 2). �

Exercice 17. In fact, one can prove [PT97] that a k-restricted graph with n vertices has at most
(k + 3)(n− 2) edges for any k ≤ 4. Deduce from this statement that cr(G) ≥ m3/33.75n2 as soon
as m ≥ 7.5n.

We close this section with some applications to incidence problems in geometry. The incidences
between a point set P and a line set L are all pairs (p, l) with p ∈ P, l ∈ L and p ∈ l. Incidence
problems deal with counting (or estimating the number of) incidences between arbitrary point
and line sets of given sizes. Points and lines can also be replaced by other elementary geometric
objects, such as circles, squares, etc. Although other (rather complicated) proofs were known for
the results below, Szekely [Szé97] noticed that they can be obtained as direct applications of the
crossing lemma.

Theorem 18 (Szemerédi and Trotter [ST83, Szé97]). The maximum number

I(p, `) := max
|P|=p,|L|=`

| {(p, l) | p ∈ P, l ∈ L, p ∈ l} |
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of incidences between p points and ` lines in the plane is bounded by

I(p, `) ≤ 3.2 p2/3`2/3 + 4p+ 2`.

Proof. Consider the graph G whose vertices are given by the points and edges by the segments
between two consecutive points. This graph has n(G) = p vertices, m(G) = I − ` edges, and since
any two lines intersect at most once, we get

`2

2
>

(
`

2

)
≥ cr(G) ≥ (I − `)3/64 p2,

as soon as I − ` > 4p. We therefore obtain that I < 3.2 p2/3`2/3 + ` or I < 4p+ `, and the sum of
these two bounds give the announced bound. �

Exercice 19 (Unit distances in a point set). Prove that the maximum number

U(p) := max
|P|=p

|
{

(p,q) ∈ P2
∣∣ ‖p− q‖ = 1

}
|

of unit distances between p points in the plane is bounded by

U(p) ≤ 4 p4/3.

(Hint: Let P be a maximizing point set. Apply the crossing lemma to the graph with vertices
given by the points of P and edges given by the arcs between two points of P of the unit circles
centered at points of P, after deletion of duplicated edges).

1.4. Geometric graphs and the rectilinear crossing number. A geometric drawing of a
graph is a drawing where vertices are points in the plane and edges are straight segments between
these points. We always assume general position, i.e. no three points are colinear. The rectilinear
crossing number of a graph G is the minimal number cr(G) of crossings of a geometric drawing
of G. We discuss here the rectilinear crossing number of the complete graph Kn. For small values
of n, the rectilinear crossing number is given by

n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
cr(Kn) 0 1 3 9 19 36 62 102 153 229 324 447 603 798 1029 1318

and crossing minimizing rectilinear drawings of Kn for 4 ≤ n ≤ 9 are represented on Figure 3.

Figure 3. Optimal rectilinear drawings of the complete graphs Kn for 4 ≤ n ≤ 9.

Under the general position assumption, the convex hull of any four points is either a quadrangle
or a triangle. Fix a point set P and denote by �(P) (resp. 4(P)) the number of quadruples of
points in P with 4 (resp. 3) points on the convex hull. Note that the number of crossings in
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the geometric drawing of the complete graph determined by P is precisely �(P) and that
(
n
4

)
=

�(P) +4(P).

Exercice 20. Show that any 5 points in general position determine a convex quadrilateral. Derive
from this observation that

1

5

(
n

4

)
≤ cr(Kn) ≤

(
n

4

)
.

Is the upper bound tight?

Our goal is to improve the trivial lower bound. For this, we connect the rectilinear crossing
number of P to the k-edges of P. A k-edge of P is a directed edge between two points of P such
that exactly k points of P lie on the left side of the directed line supporting that edge. For example,
0-edges are convex hull edges. We denote by ek(P) the number of k-edges of P and Ek(P) the
number of (≤ k)-edges of P.

Proposition 21. The numbers �(P) of convex quadrilaterals in P and ek(P) of k-edges of P are
connected by

�(P) =

n
2−1∑
k=0

(n/2− k − 1)2 ek(P)− 3

4

(
n

3

)
.

Proof. We double-count the number Z of (ordered) quadruples (p,q, r, s) of P such that the
points r and s lie respectively on the right and left side of the directed line from p to q. On the
one hand, a quadruple in convex position contributes 4 to Z, while a quadruple in non-convex
position contributes 6. Therefore,

Z = 64(P) + 4�(P) = 6

(
n

4

)
− 2�(P).

On the other hand, a k-edge defines k(n− 2− k) such quadruples, so that

Z =

n−2∑
k=0

k(n− 2− k) ek(P).

Since
∑
k ek = n(n− 1), we therefore obtain

�(P) +
3

4

(
n

3

)
=
n(n− 1)(n− 2)2

8
− Z

2

=
1

2

n−2∑
k=0

(
(n− 2)2

4
− k(n− 2− k)

)
ek(P)

=

n
2−1∑
k=0

(
n

2
− 1− k

)
ek(P). �

Corollary 22. The numbers �(P) of convex quadrilaterals in P and Ek(P) of (≤ k)-edges of P
are connected by

�(P) =

n
2−1∑
k=0

(n− 2k − 3)Ek(P) +O(n3).

Proof. Replace ek(P) by Ek(P) − Ek−1(P) in Proposition 21 and simplify using the equality
(n/2− k − 1)2 − (n/2− k − 2)2 = n− 2k − 3. �

Theorem 23. For any point set P in general position in the plane, �(P) ≥ 1
4

(
n
4

)
.

Proof. The proof uses the dual pseudoline arrangement P∗ of the point set P, which is described
later in Section 6.4. Observe that:

(i) The k-edges in P correspond to the crossings of P∗ at level k + 1 or n − 1 − k. Therefore,
Ek(P) is the number of crossings in the first and last k levels of P∗.
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(ii) For j ≤ k or n− k ≤ j, the jth pseudoline has at least 2(k− j) such crossings. However, we
might count each such crossing twice this way.

It follows that
Ek(P) ≥ 2

∑
j≤k

(k − j) = k(k + 1).

Using Corollary 22, we derive

�(P) ≥
∑

k<n/2−1

(n− 2k − 3) · k(k + 1) ≥ n4

96
≥ 1

4

(
n

4

)
. �

Remark 24. Using slightly more sophisticated arguments, one can bound the number of crossings
counted twice in the previous proof, and derive that the number of (≤ k)-edges is bounded by

Ek(P) ≥ 3

(
k + 2

2

)
.

Using Corollary 22, this bound yields the following lower bound on the rectilinear crossing number:

cr(Kn) ≥ 3

8

(
n

4

)
.

This bound can even be improved to reach

cr(Kn) ≥
(

3

8
+ ε

)(
n

4

)
,

which is strictly bigger than the upper bound on the topological crossing number of Kn obtained
in Exercice 11. The first value of n for which cr(Kn) < cr(Kn) is n = 8 for which

18 = cr(K8) < cr(K8) = 19.

This approach is due to [LVWW04] and is nicely presented in [Fel04, p. 64–65].
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2. Schnyder woods and planar drawings

This section presents a very relevant structure on planar maps: Schnyder woods and their
application to graph embedding, orthogonal surfaces, and geometric spanners. This structure was
introduced by Schnyder in [Sch89] for planar triangulations in connection to order dimension and
graph embedding. It was later extended to arbitrary 3-connected planar maps independently by
Felsner [Fel04, Chap. 2], Di Battista, Tamassia and Vismara [DBTV99], and Miller [Mil02]. We
follow here the presentation in [Fel04, Chap. 2].

2.1. Schnyder labelings and Schnyder woods. Let M be a planar map (i.e. an embedded
connected planar graph) with three distinguished vertices v1, v2, v3 in clockwise order on the outer
face, where a half-edge is pending in the outer face. See Figure 5 (left).

Definition 25. A Schnyder labeling of M is a labeling of the angles of M with labels {1, 2, 3}
satisfying the following rules (see Figure 4):

(L1) The two angles at the half-edge of vi are labeled by i+ 1 and i− 1 in clockwise order.
(L2) The labels of the angles clockwise around a vertex form non-empty intervals of 1’s, 2’s and 3’s.
(L3) The labels of the angles clockwise around a face form non-empty intervals of 1’s, 2’s and 3’s.

1

23 1 1

2
2

3
3

111
1
2 2 3

3
3 1

2 3
2 2

3

Figure 4. Rules (L2), (L3), and (W3).

Definition 26. A Schnyder wood of M is an orientation and coloring of the edges of M with
colors {1, 2, 3} satisfying the following rules:

(W1) Each edge is oriented in one or two directions. Bioriented edges get two distinct colors.
(W2) The half-edge at vi is directed outwards and colored i.
(W3) Each vertex v has outdegree one in each label. The edges are arranged as in Figure 4 (right).
(W4) There is no interior face whose boundary is a directed cycle in one color.

Figure 5 illustrates an example of a map with a Schnyder labeling and a Schnyder wood.

v1

v2
v3

1 2

3
1

1

1

1
1

2

2

2
2

23

3
3

3

31

1

1
1

1

1
12

2
2

22

2

2

3

3

3
3
3

3

3
3

3

Figure 5. A map (left), a Schnyder labeling (middle), and a Schnyder wood (right).

Lemma 27. In a Schnyder labeling, the three labels {1, 2, 3} appear among the four angles sur-
rounding any edge.
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Proof. By Rules (L2) and (L3), there are precisely three label changes around each vertex and
around each face. The total number of label changes is thus 3|V |+3|F | = 3|E|+6 by Euler relation.
Since each half-edge contribute to two label changes, the average number of label changes per edge
is three. Since each edge can have either zero or three label changes, it follows that each edge has
precisely three label changes. �

This lemma leads to the following theorem, illustrated on Figure 5.

Theorem 28. The transformation given by

i
i

i ‒1
i+1

i

i i
i ‒1i+1

i ‒1 i+1

is a bijection from Schnyder labelings to Schnyder woods.

Proof. Exercice. The only difficulty is to show that Rule (L3) holds when we construct a Schnyder
labeling from a Schnyder wood. Use an argument similar to that of the proof of Lemma 27. �

Remark 29. If the map M is a triangulation, then the bottom situation in the previous picture
cannot happen, except for the three external edges. It follows that all internal edges are oriented in
a unique direction. This is the usual context for Schnyder woods, as defined by Schnyder in [Sch89].
The double orientation is required to treat arbitrary 3-connected maps [Fel04, Chap. 2].

2.2. Regions, coordinates, and straightline embedding. Consider a planar map M with
a Schnyder wood, and let Ti denote the directed graph formed by the edges colored by i. The
digraphs T1, T2, T3 form three trees, which justifies the name Schnyder woods. In general, the
bioriented edges are shared by two of the trees T1, T2, T3. However, if the map is a triangulation,
and if we forget about the external edges, then the trees T1, T2, T3 are edge disjoint spanning trees.

Proposition 30. For i ∈ [3], the digraph Ti is a directed tree rooted at vi.

Proof. Since any vertex except vi has outdegree one in Ti, it is sufficient to prove that Ti is acyclic.
In fact, even the digraph Di :=Ti∪T rev

i−1∪T rev
i+1 is acyclic (where Grev denotes the digraph obtained

by reversing all edges of G), if we ignore bidirected edges or paths. Assume for contradiction
that Di has a cycle and consider an area minimal cycle Z. We observe that

• Z bounds a single face F : it cannot have a chord, and a vertex inside the bounded surface
could be connected to Z by a path in Ti and in Ti−1, thus creating a shorter path.

• If Z is clockwise (resp. counterclockwise), then no angle of F has label i+ 1 (resp. i− 1).

We get a contradiction. �

For a vertex v of M , we denote

• by Pi(v) the directed path in Ti to the root vi;
• by Ri(v) the region bounded by the two paths Pi−1(v) and Pi+1(v);
• by ri(v) the number of faces in region Ri(v).

For example, Figure 6 shows the three regions R1(v), R2(v), and R3(v) of a vertex v in the
Schnyder wood of Figure 5.

Lemma 31. Let u, v be two adjacent vertices in the map M . Then

(R1) if there is a unidirected edge colored i from u to v, then

Ri(u) ( Ri(v), Ri−1(u) ) Ri−1(v), and Ri+1(u) ) Ri+1(v),

(R2) if there is a bidirected edge colored i+ 1 from u to v and colored i− 1 from v to u, then

Ri(u) = Ri(v), Ri−1(u) ) Ri−1(v), and Ri+1(u) ( Ri+1(v).
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Figure 6. The three Schnyder regions R1(v), R2(v), and R3(v) of the black vertex v.

Proof. The two situations are schematized below:

B
C

D

A Ev

u

i ‒1 i+1

i ‒1 i+1

i

F
G

H

I
u v

i i

i ‒1 i+1

i ‒1i+1

Ri(u) = C ( B ∪ C ∪D = Ri(v) Ri(u) = H = Ri(v)
Ri−1(u) = D ∪ E ) E = Ri−1(v) Ri−1(u) = G ∪ I ) I = Ri−1(v)
Ri+1(u) = A ∪B ) A = Ri+1(v) Ri+1(u) = F ( F ∪G = Ri+1(v)

�

The next section is devoted to the proof of the following statement, due to Schnyder in the
context of triangulations [Sch89] and extended by Felsner in this setting, see [Fel04, Chap. 2].

Theorem 32. Let M be a planar map with f faces (including the unbounded one), and with a
Schnyder wood. Let p1,p2,p3 be three arbitrary non-colinear points in the plane. Then the map

µ : v 7→ 1

f − 1

(
r1(v) · p1 + r2(v) · p2 + r3(v) · p3

)
defines a straightline embedding of M in the plane where all faces are convex.

Up to the existence of Schnyder woods which will be established for 3-connected planar maps
in Section 2.4, we obtain the following statement by choosing p1 = (f − 1, 0), p2 = (0, f − 1)
and p3 = (0, 0).

Corollary 33. Every 3-connected planar map with f faces admits a convex drawing on the
(f − 1)× (f − 1) grid.

2.3. Geodesic maps on orthogonal surfaces. Dominance (or componentwise) order in R3 is
defined by u ≤ v iff ui ≤ vi for i ∈ [3]. We denote by u ∨ v and u ∧ v the join (componen-
twise maximum) and meet (componentwise minimum) of u,v ∈ R3. For y ∈ R3, we denote
by ∆y :=

{
z ∈ R3

∣∣ y ≤ z
}

the cone dominating y and by ∇y :=
{
x ∈ R3

∣∣ x ≤ y
}

the cone dom-

inated by y. For an antichain V ⊂ Z3, consider the filter

〈V〉 :=
{
z ∈ R3

∣∣ v ≤ z for some v ∈ V
}

=
⋃
v∈V

∆v

of V under dominance order. The boundary SV of this set is the orthogonal surface generated
by V. Note that the following conditions are equivalent for x ∈ R3:

• x belongs to SV,
• for all v ∈ V, there exists i ∈ [3] such that xi ≤ vi, but there exists v ∈ V and i ∈ [3]

such that xi = vi,
• ∇̊x ∩V = ∅ and ∂∇x ∩V 6= ∅ (where ∇̊x is the interior and ∂∇x the boundary of ∇x).
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Figure 7. Embedding a map on an orthogonal surface, and the resulting Schny-
der embedding.

On this surface, we call

• elbow geodesic the union of the two segments connecting points u,v ∈ V to their meet u∨v;
• coordinate arcs the (not always bounded) segments from a point in V in the direction of

an axis.

The antichain V is called axial if there are only three unbounded coordinate arcs, one in each
direction.

Definition 34. A geodesic embedding of a map M on the orthogonal surface SV generated by an
antichain V is a drawing of M on SV such that

(G1) There is a bijection between V and the vertices of M .
(G2) Every edge of M is an elbow geodesic in SV and every bounded coordinate arc is part of an

edge of M .
(G3) The drawing is crossing-free.

An example is illustrated on Figure 7 (left).

Theorem 35. If V is an axial antichain, then a geodesic embedding of a map M on SV induces
a Schnyder wood on M . Conversely, given a Schnyder wood W on a planar map M , the region
vectors of the vertices of M with respect to W form an axial antichain V inducing a geodesic
embedding of M on SV.

Proof. Consider an axial antichain V and a geodesic embedding of a map M on SV. There are
two ways to see a Schnyder structure on M :

(i) Orient and color the edges according to the three axis. An elbow geodesic can get one or
two colors depending on whether it contains one or two bounded coordinate arcs.

(ii) label the angles according to the color of the flat region containing it.

Proving that these colorings yield Schnyder woods and Schnyder labelings is left as an exercice.
Conversely, consider a Schnyder wood on a planar map M . The set V of region vectors of the

vertices ofM live in the hyperplane v1+v2+v3 = f−1, so that V is an antichain in dominance order
and we get automatically (G1). For any edge e = {u, v} of M and any vertex w of M distinct
from u, v, the edge e is contained in a certain region Ri(w). This implies that ri(u) ≤ ri(w)
and ri(v) ≤ ri(w) and thus that the elbow geodesic connecting u to v lies on the surface SV.
Moreover the elbow geodesic corresponding to the three outgoing edges at v will contain the three
coordinate arcs at its region vector v. This yields (G2). The only difficulty is thus to prove that
the resulting drawing of M is crossing-free. Assume that two elbow geodesics {u, v} and {x, y}
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cross. Since an elbow geodesic cannot transversally intersect a coordinate arc, we can assume up
to symmetry that the crossing between {u, v} and {x, y} looks like

u

vy

x

1

2

3 2

3
23

In other words, we can assume that v1 = y1, u2 < x2, v2 > y2, u3 > x3, and v3 < y3. Since
there is a path P between v and y consisting of orthogonal paths only, (G2) ensures that y is on
the path P3(v). Let w denote the first vertex common to P3(u) and P3(v). This vertex w cannot
lie on P , since otherwise uvw would define a cycle in T1 ∪ T rev

2 ∪ T rev
3 . Hence, w lies on P3(y)

and w 6= y. This shows that y lies in the interior of the region R2(u), and thus that x lies in R2(u)
since {x, y} is an edge. This contradicts our assumption that u2 < x2. �

We need the following technical lemma. Remind that we have denoted by∇y :=
{
x ∈ R3

∣∣ x ≤ y
}

the cone of R3 dominated by y.

Lemma 36. Consider the orthogonal surface SV, where V is the set of region vectors of a map M
with respect to an arbitrary Schnyder wood. Then

(i) For any edge {u, v} of M , the region vectors u and v of u and v lie on the boundary of ∇u∨v
and there is no other point of V in ∇u∨v.

(ii) For any face F of M , the join ∨F := v1∨· · ·∨vp of the region vectors of the vertices v1, . . . , vp
of F is a maximum of the surface SV. Moreover, all region vectors of the vertices of F lie
on the boundary of ∇∨F and there is no other point of V in ∇∨F .

Proof. We have already shown that if {u, v} is an edge of M , then the elbow geodesic between u
and v lies on the surface SV. In particular, u ∨ v ∈ SV, which implies (i).

For (ii), consider any vertex w of M , and let i ∈ [3] be such that F lies in region Ri(w). Hence,
for any vertex v of the face F , we have ri(v) ≤ ri(w), and thus (∨F )i ≤ ri(w). Moreover, for
any vertex v of F , we have ri(v) = (∨F )i while ri−1(v) > (∨F )i−1 and ri+1(v) > (∨F )i+1 for the
color i ∈ [3] such that F lies in region Ri(v). Finally, for each i ∈ [3], there is a vertex v of F such
that F lies in region Ri(v). It follows that ∨F is a maximum of the surface SV, that all region
vectors of the vertices of F lie on the boundary of ∇∨F and that there is no other point of V
in ∇∨F . �

Using this result, one can then derive the proof of Theorem 32. It is illustrated on Figure 7.

Proof of Theorem 32. The projection of the geodesic embedding given by Theorem 35 onto the
plane v1 + v2 + v3 = f − 1 gives a planar drawing of M whose edges are bended segments.
See Figure 7 (middle). Replacing them by straight segments preserves the non-crossing-freeness
(because of Lemma 36 (i)) and leads to convex faces (applying Lemma 36 (ii), the vertices of a
face F lie on the triangle obtained as the intersection of ∇∨F with the plane v1 + v2 + v3 = f − 1).
See Figure 7 (right). �

Remark 37. The dual map of M can also be visualized on the orthogonal surface. It is illustrated
on Figure 8 (right). It corresponds to the duality between the dominance order and its reverse
order. More details can be found in [Fel04, Sect. 2.4].
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Figure 8. Embedding a map and its dual on an orthogonal surface.

2.4. Existence of Schnyder labelings. A graph G is k-connected if we need to delete k vertices
of G to disconnect it. In this section, we prove the existence of Schnyder woods for sufficiently
connected maps:

Proposition 38. Any 3-connected planar map admits a Schnyder wood.

Different proofs of this statement are possible. The original proof of Schnyder [Sch89] for
triangulations and of Felsner [Fel04, Sect. 2.6] for 3-connected planar maps is based on edge
contractions. The idea is to choose an edge e of M , construct recursively a Schnyder labeling
of M/e, and expand this labeling of M/e to a Schnyder labeling of M . The realization of this
idea is however not immediate since contracting an edge in a 3-connected map does not always
produces a 3-connected map. The details are carefully written in [Fel04, Sect. 2.6].

In these notes, we prefer an alternative proof based on certain canonical orderings of the vertex
set of the map. We start with the special situation when M is a triangulation. The following
statement was already seen in the other part of the course [dV].

Proposition 39. Let M be a triangulated planar map, and v1, v2 be two distinguished vertices
on its outer face. Then there exists an ordering v1, . . . , vn of the vertices of M such that for
each k ≥ 3, the submap Mk of M induced by {v1, . . . , vk} satisfies the following properties:

(i) Mk is connected and its boundary is a simple cycle,
(ii) Mk is triangulated,

(iii) vk+1 is in the outer face of Mk.

We use these canonical orderings to obtain a Schnyder wood on M . Namely, we start from
the edge v1v2, add points one by one in the order given by the canonical ordering, and color and
orient at each step the edges incident to the new point as illustrated in Figure 9

For general 3-connected maps, similar canonical orderings exists and a similar construction can
be performed. The proof of the following statement can be found in [Kan96].

Proposition 40. Let M be a 3-connected planar map, and v1v2 be a distinguished edge on its outer
face. Then there exists an ordered partition V1, . . . , VN of the vertices of M such that V1 = {v1, v2}
and for each k ≥ 2, the submap Mk of M induced by V1∪· · ·∪Vk satisfies the following properties:

(i) Mk is 2-connected, internally 3-connected, and its boundary is a simple cycle,
(ii) either of the following happens:

• Vk is a singleton {v}, v belongs to the boundary of Mk, and has at least one neighbor
in M rMk;
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v1

v2
v5

v3

v4

v1

v2
v5

v3

v4

v1

v2
v5

v3

v4

v1

v2
v5

v3

v4

Figure 9. A canonical ordering of a triangulation (left), and the resulting Schny-
der wood (right).

• Vk is a chain v1, . . . , vp, where each vi has at least one neighbor in M rMk, and where
both v1 and vp have one neighbor in the boundary of Mk−1, and these are the only two
neighbors of Vk in Mk−1.

Again, we can use these canonical orderings to construct a Schnyder wood on M . Namely, we
start from the edge v1v2, add points one by one in the order given by the canonical ordering, and
color and orient at each step the edges incident to the new point as follows:

v v1

2.5. Connection to td-Voronoi and td-Delaunay diagrams. We remind in Section 4.4 the
definition of Voronoi diagram and Delaunay triangulation of a point set in the Euclidean plane.
The reader unfamiliar with these classical notions is invited to take a break to see the definitions in
Section 4.4. An intuitive way to think of the Voronoi diagram of a point set P is as follows: consider
circles centered at the points of P that grow simultaneously. They start from the points themself
and end by covering the entire plane. The Voronoi diagram is the partition of the plane where a
point q is colored according to which circle first reached q. If we represent the time in an additional
direction z, we can therefore see the Voronoi diagram of a point set P as the projection down to the
plane z = 0 of the lower envelope of the union of the cones C(p) :=

{
(q, z) ∈ R3

∣∣ ‖p− q‖ ≤ z
}

for all points p ∈ P. This is illustrated on Figure 10.

Figure 10. The Voronoi diagram of P (right) obtained as the projection of the
lower envelope of the union of the cones C(p) for p ∈ P.
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In this section, we relate Schnyder woods and orthogonal surfaces to Voronoi and Delaunay
diagrams for a different notion of distance. Namely, we define the triangular distance on the
plane H :=

{
w ∈ R3

∣∣ x1 + x2 + x3 = c
}

to be the quasi-metric td whose ball is the equilateral
triangle 4 := conv(ce1, ce2, ce3). In other words, for any points v,w ∈ H,

td(v,w) := min {λ ∈ R≥0 | v ∈ w + λ(4− c11/3)} .
Observe that this quasi-metric is not a metric as it is not symmetric. Given a point set V in H,
the td-Voronoi region of a point v ∈ V is the region

Vortd(v,V) := {x ∈ H | td(v,x) ≤ td(w,x) for all w ∈ V}
of all points closer to v than to any other site of V for the triangular distance. The td-
Voronoi diagram Vortd(V) of V is the diagram formed by the td-Voronoi regions Vortd(v,V)
for all v ∈ V. As in the Euclidean case, we can interpret it using a dynamic process: let ho-
mothetic copies of the triangle 4 grow simultaneously around the points of V, starting from
the points themself and growing until they cover the entire plane H. The td-Voronoi diagram
is the partition of the plane H where a point w is colored according to which triangle first
reached w. Thus, it can as well be seen as the projection of the lower envelope of the union of the
cones Ctd(v) := {w + t11 | td(v,w) ≤ t} = v + (R≥0)3 for all points v ∈ V. It should be clear
that this lower envelope coincides with the orthogonal surface SV. See Figure 11.

1

23

Figure 11. The td-Voronoi diagram of V (left) is the projection of the lower
envelope of the union of the cones Ctd(v) for v ∈ V (right).

The td-Delaunay diagram Deltd(V) of V is the dual of the td-Voronoi diagram Vortd(V): its
vertex set is the point set V and its edges connect two points v,w ∈ V if the td-Voronoi re-
gions Vortd(v,V) and Vortd(w,V) intersect. We can even orient and color the edges of Deltd(V):
for any two neighbors v,w in Deltd(V), consider the moment when the two growing homothetic
copies of 4 around v and w meet. We then orient and color the edge of Deltd(V) between v
and w according to which triangle “pins” the other and in which direction. We obtain the following
statement.

Proposition 41. Consider a Schnyder wood W on a planar map M , and let V denote the set of
region vectors of the vertices of M with respect to W . Then the oriented and colored td-Delaunay
diagram of V coincides with the Schnyder wood W .

Finally, as in the Euclidean case (see Section 4.4), one can characterize the edges and the
triangles in the Delaunay diagram by “empty witnesses”. An empty reverse triangle is an homo-
thetic copy of the reverse triangle 5 := −4 whose interior contains no point of V. The following
statement is similar to Proposition 108.
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1

23

1

23

Figure 12. The td-Delaunay diagram of V (left) with its witness empty reverse
triangles. These triangles are centered at projections of maximums of SV (right).

Proposition 42. Let u,v be points of V, and W ⊆ V.

(i) vw is a td-Delaunay edge iff there exists an empty reverse triangle passing through v and w.
(ii) W belongs to a td-Delaunay face iff its circumscribed reversed triangle is empty.

Proof. Exercice. (Hint: see Lemma 36). �

Exercice 43 (td-Delaunay realizations of stacked triangulations). We say that a triangulation T
is stacked if

• either T is reduced to a triangle,
• or T is obtained from a stacked triangulation refining a triangle pqr into three trian-

gles pqt, qrt, and prt (one can imagine that we stacked a flat tetrahedron pqrt on the
triangle pqr).

The construction tree of T is the tree whose nodes correspond to triangles of T and where the
children of triangle pqr are the three triangles pqt, qrt, prt refining it. Note the color code for
the letters and edges in the construction tree of T in Figure 13.

a

bc d

f i h e

g

abc

bcdabd acd

bde abe ade acf cdf adf

bdg beg deg adh aeh deh adi afi dfi

Figure 13. A stacked triangulation (left) and its construction tree (right).

(1) Show that a stacked triangulation admits a unique Schnyder labeling and a unique Schny-
der wood. Describe them both explicitely.

(2) Describe explicit coordinates for a td-Delaunay triangulation realizing a stacked triangu-
lation in terms of its construction tree. Illustrate on the triangulation of Figure 13 (left).
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In contrast, Exercice 112 shows that not all stacked triangulations can be realized as Euclidean
Delaunay triangulations. Exercice 113 characterizes precisely the stacked triangulations that can.
Stacked triangulations are also related to stacked polytopes (see Section 3.4.2).

Exercice 44 (Voronoi diagrams and Delaunay triangulations for quasi-distances). Consider a
quasi-metric δ on a set Q, i.e. a function δ : Q2 → R≥0 which

(i) vanishes exactly on the diagonal: δ(p, q) = 0 ⇐⇒ p = q for all p, q ∈ Q and
(ii) satisfies the triangular inequality: δ(p, r) ≤ δ(p, q) + δ(q, r) for all p, q, r ∈ Q.

Define the δ-Voronoi diagram Vorδ(P ) of a subset P of Q as the partition of Q formed by the
δ-Voronoi regions

Vorδ(p, P ) := {r ∈ Q | δ(p, r) ≤ δ(q, r) for all q ∈ Q}
of all sites p ∈ P . Define the δ-Delaunay Delδ(P ) complex of P as the intersection complex of the
δ-Voronoi diagram of P :

Delδ(P ) :=

{
X ⊆ P

∣∣∣∣ ⋂
p∈X

Vorδ(p, P ) 6= ∅
}
⊆ 2P .

Show that

(i) The δ-Voronoi diagram Vorδ(P ) is the projection of the lower envelope of the union of cones⋃
p∈P
{(q, t) ∈ Q× R≥0 | δ(p, q) ≤ t} .

(ii) A subset X of P belongs to the δ-Delaunay complex of P iff there exists q ∈ Q and z ∈ R≥0
such that intersection of the reversed cone {(r, t) ∈ Q× R≥0 | δ(r, q) ≤ z − t} with P × {0}
is precisely X × {0}.

Assume that Q = Rd and δ is invariant by translation, i.e. δ(p,q) = δ(0,q−p) for all p,q ∈ Rd.
Interpret the previous statements in terms of the cones

C+
δ

:=
{

(p, t) ∈ Rd × R≥0
∣∣ δ(0,p) ≤ t

}
,

and C−δ := − C+
δ =

{
(p, t) ∈ Rd × R≤0

∣∣ δ(p,0) ≤ −t
}
.

2.6. Geometric spanners. Let G be an edge weighted graph. The distance between two vertices
of G is the minimal weight of a path between them. Here, the graph G will be a geometric graph
and the weight of an edge {u, v} is the Euclidean distance |uv|. A subgraph H of a graph G is a
t-spanner of G if the quotient of distances in H and in G between any two vertices is at most t.
The smallest possible constant t is called the stretch factor. A geometric spanner of a point set P
is a spanner of the complete geometric graph with vertices P. For example, it is known that
the Euclidean Delaunay triangulation is a geometric spanner, but the precise value of its stretch
factor is unknown: it is upper bounded by 1.998 (see [Xia13] and [KG92]) and lower bounded
by 1.5846 < π/2 (see [BDL+11]). The stretch factor of the td-Delaunay triangulation is given by
the following statement.

Theorem 45 (Chew [Che89]). The td-Delaunay triangulation of a planar point set is a geometric
2-spanner.

Proof. The proof of [Che89] is rather technical and we prefer a proof based on Schnyder woods,
using ideas of [BGHP10]. Consider a point set P and its td-Delaunay triangulation Deltd(P).
Color and orient this triangulation with the Schnyder wood described in Section 2.5. Consider
two distinct points p,q ∈ P, and let 5 denote the smallest reversed triangle passing through p
and q. Without loss of generality, we assume that p is at the bottom vertex, while q lies on
the top edge of 5 (the other cases are similar). Then the path P1(p) has to cross one of the
paths P2(q) and P3(q). Assume by symmetry that P1(p) crosses P2(q). This situation is illustrated
in Figure 14. In this picture, the Euclidean length of the path from p to q in Deltd(P) is bounded
by the Euclidean length of the orange path, which projects to the boundary of the triangle 5. It
is now easy to see that the ratio of the Euclidean length of the path from p to q in Deltd(P) by
the Euclidean distance between p and q is at most 2. �
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Figure 14. The td-Delaunay triangulation is a geometric 2-spanner: the two
paths P1(p) and P2(q) intersect (left), the Euclidean length of the path from p
to q in Deltd(P) is bounded by the Euclidean length of the orange thick path
(middle), and the latter projects to the boundary of the triangle 5 (right).

The td-Delaunay triangulation has a surprizingly good stretch factor for a planar graph. But
both the Euclidean Delaunay triangulation and the td-Delaunay triangulation have an important
drawback: their vertex degrees are unbounded. This is a real problem in practice where spanners
are used for example for designing wireless networks, in which the degree is bounded by physical
limitations of the devices. Bluetooth scatternets, for example, can be modeled as geometric
spanners where master nodes must have at most 7 slave nodes.

In [BGHP10], Bonichon, Gavoille, Hanusse, and Perkovic consider a subgraph of the td-
Delaunay triangulation Deltd(P) constructed as follows. Color and orient the edges of Deltd(P)
as explained in Section 2.5. For any i ∈ [3] and any point p ∈ P, denote by

• parenti(p) the target of the unique outgoing edge of Deltd(P) colored by i.
• childreni(p) all points q ∈ P such that p = parenti(q).
• closesti(p) the point of childreni(p) closest to p for the triangular distance.
• firsti(p) and lasti(p) the first and last points of childreni(p) in clockwise order around p.

Note that closesti(p), firsti(p) and lasti(p) may be undefined (if childreni(p) = ∅) or may coincide.
Consider the subgraph H of the td-Delaunay triangulation of P obtained by erasing at each
vertex p all incoming arcs except the arcs firsti(p), lasti(p) and closesti(p) for i ∈ [3] (if they
exist). It turns out that this subgraph H is a good spanner of Deltd(P) and it clearly has bounded
degree.

Proposition 46 (Bonichon, Gavoille, Hanusse, and Perkovic [BGHP10]). The subgraph H is a
3-spanner of the td-Delaunay triangulation Deltd(P) and it has degree at most 12.

Proof. The degree of any vertex p is at most 12 since we erased all but at most 9 incoming arcs,
and it has at most 3 outgoing arcs (some may have been deleted).

To prove that H is a 3-spanner of Deltd(P), consider an arc from p to q in Deltd(P). By
symmetry, we can assume that q = parent1(p). Since we kept firsti(r) and lasti(r) for all r ∈ P
and i ∈ [3], the children children1(q) form a path P in H. We consider the path from p to q in H
using P to reach closest1(q). Using similar arguments as in the proof of Theorem 45, we obtain
that the ratio of the Euclidean length of the path from p to q in H by the Euclidean distance
between p and q is at most 3. This is illustrated on Figure 15. It shows that H is a 3-spanner
of Deltd(P). �

Corollary 47 (Bonichon, Gavoille, Hanusse, and Perkovic [BGHP10]). The subgraph H of the
td-Delaunay triangulation P is a planar geometric 6-spanner with maximum degree 12.

Improving on this naive construction, Bonichon, Gavoille, Hanusse, and Perkovic obtain in fact
a planar geometric 6-spanner with maximum degree 6. The proof of this result can be found
in [BGHP10].
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p

q

p

q

Figure 15. The subgraph H is a 3-spanner of the td-Delaunay triangula-
tion Deltd(P): the Euclidean length of the path from p to q through closest1(q)
in the subgraph H (left) is bounded by the Euclidean length to the orange thick
path (right), which is at most 3 times the Euclidean distance between p and q.

2.7. Triangle contact representation of planar maps. A triangle contact system is a set
of triangles in the plane whose interiors are disjoint, but which can have vertex – edge contacts
(however, vertex – vertex and edge – edge contacts are forbidden) [dFdMR94]. We suppose that
the system is maximal, i.e. that any bounded connected component of the complement of the
union of the triangles is adjacent to precisely 3 triangle edges. We associate to a triangle contact
system T its contact graph T # whose nodes correspond to the triangles of T and whose edges
connect pairs of triangles in contact. If a vertex of triangle 4 touches an edge of triangle 4′, then
we orient the edge from 4 to 4′ in the contact graph T #. With this orientation, the contact
graph has outdegree precisely 3 at each internal node, and we can naturally get a Schnyder wood
on T #. See Figure 16.

Reciprocally, suppose thatM is a triangulated map endowed with a canonical ordering v1, . . . , vn,
i.e. such that

• v1v2 is an edge of the external face of M ,
• the subgraph Mk of M induced by v1, . . . , vk is a triangulation of a disk,
• vk+1 is on the external face of Gk and its neighbors in Gk form an interval on the boundary

of Gk of length at least 2.

Let {T1, T2, T3} be the Schnyder wood constructed from this canonical order as in Section 2.4.
Here, the roots of T1, T2 and T3 are vn, v1 and v2 respectively. We denote by πi(k) the index of
the parent of vk in the tree Ti.

We then construct a set of triangles T = {41, . . . ,4k}, such that the basis of 4k is parallel to
the horizontal axis and lies at ordinate k for all k ∈ [n], and the apex of 4k is at ordinate π1(k)
for all 2 < k < n. We proceed as follows:

• We start with two triangles 41 et 42 at ordinate 1 and 2 respectively, of height at least n,
and in contact.

• Suppose that the triangles 41, . . . ,4k−1 are already constructed. Denote by gk the ab-
scissa of the point of ordinate k on the right edge of the triangle 4π3(k), by dk the
abscissa of the point of ordinate k on the left edge of the triangle 4π2(k), and de-
fine mk = αgk + (1 − α) dk (where α ∈ [0, 1] is a parameter to be chosen later). We
then define 4k to be the triangle with vertices (gk, k), (mk, π1(k)), and (dk, k).

• Finally, we close with a triangle 4n at ordinate n in contact with both 41 and 42.

The resulting triangles form a triangle contact system T whose contact graph T # is the map M
[dFdMR94]. An example is illustrated in Figure 16.

Exercice 48. What choice of parameter α yields isosceles/rectangle triangles?

Exercice 49. Show that any triangulated map can be realized as the contact graph of

T

shapes,
or of

Y

shapes. See Figure 17.
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3 2

1

Figure 16. A triangle contact system T (top) and its contact graph T # (bottom).

Figure 17. Contact graphs of

T

shapes (top) and of

Y

shapes (bottom).
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3. Basic notions on polytopes

This section covers basic and classical knowledge from the theory of polytopes, needed later in
these lecture notes for polytopal structures on triangulations and geometric graphs. Sections 3.3
and 3.4 are not needed later but present classical results in polytope theory. The reader is invited
to consult [Zie95] for a more detailed reference on polytopes.

3.1. V-polytopes versus H-polytopes. Polytopes are the high-dimensional generalizations of
polygons in R2 and polyhedral solids in R3 (such as e.g. the classical Platonic solids). They can
be defined in two (equivalent) ways.

Definition 50. A V-polytope is the convex hull of finitely many points in Rd. A H-polyhedron is
the intersection of finitely many half-spaces in Rd, and a H-polytope is a bounded H-polyhedron.

Theorem 51. A subset of Rd is a V-polytope if and only if it is a H-polytope.

Definition 52. We call convex polytope (or just polytope) a subset of Rd which is a V-polytope, or
equivalently a H-polytope. The dimension of a polytope P is the dimension of the affine hull of P .

Proof of Theorem 51. Different proofs are possible. A classical algorithmic proof follows from the
Fourier-Motzkin elimination procedure, which proceeds by projections on coordinate hyperplanes
(see e.g. [Zie95, Lect. 1]). Here, we follow the proof presented in [Mat02, Section 5.2], attributed
to Edmonds.

We first prove that a H-polytope is a V-polytope by induction on the dimension d. It is clear
when d = 1 since 1-dimensional polytopes are just line segments, so we assume that d ≥ 2.
Consider a H-polytope P , defined as the intersection of a finite collection H of half-spaces in Rd.
For H ∈ H the intersection FH :=P ∩∂H is again a H-polytope, and therefore a V-polytope by in-
duction hypothesis. Let VH be a finite point set such that FH = conv(VH). We claim that P is the
convex hull of V :=

⋃
H∈H Vh. Let x ∈ P and ` be a line passing through x. The intersection P ∩ `

is a line segment [y, z] and there exists H,K ∈ H such that y ∈ FH and z ∈ FK (otherwise,
if y is not on the boundary of one half-space, we could continue a little further on `). It follows
that y ∈ conv(VH) and z ∈ conv(VK) and thus that x ∈ conv{y, z} ⊆ conv(VH ∪ VK) ⊆ conv(V).

Conversely, we use duality to prove that a V-polytope is a H-polytope. This follows from the
fact that a H-polytope is a V-polytope and that the dual of a V-polytope containing the origin is
a H-polytope and reciprocally. �

Although mathematically equivalent, the V-description and the H-description are not computa-
tionally equivalent. Namely it is not immediate to pass from one to the other description. In fact,
the size of one description can even be exponentially large with respect to the size of the other
description. Examples will be presented soon. In any case, it is always interesting to understand
the differences and the advantages of both descriptions.

Theoretically, the equivalence between V-polytopes and H-polytopes is helpful to prove prop-
erties of polytopes, such as the following four statements:

(i) Any projection of a polytope is a polytope.
(ii) The Minkowski sum of two polytopes is a polytope.
(iii) The intersection of a polytope with a polyhedron is a polytope.
(iv) Any section of a polytope (by an affine subspace) is a polytope.

The first two are immediate using V-descriptions, while the last two are immediate using H-
descriptions.

Example 53. Classical families of polytopes include (see Figure 18):

(1) A d-dimensional simplex is the convex hull of d + 1 affinely independent points in Rd, or
equivalently the intersection of d + 1 affinely independent half-spaces in Rd. The standard
d-dimensional simplex is

4d := conv{e1, . . . , ed+1} =
{
x ∈ Rd+1 | xi ≥ 0, ∀i ∈ [d+ 1] and

∑
i∈[d+1]

xi = 1
}
.
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Figure 18. The 3-dimensional simplex (left), cube (middle), and octahedron (right).

(2) The standard d-dimensional cube is the polytope

�d := [−1, 1]d = conv{±1}d =
{
x ∈ Rd

∣∣ −1 ≤ xi ≤ 1 for all i ∈ [d]
}
.

(3) The standard d-dimensional cross-polytope is the polytope

3d := conv {±ei | i ∈ [d]} =
{
x ∈ Rd |

∑
i∈[d]

εixi ≤ 1 for all ε ∈ {±1}d
}
.

Exercice 54. Show that any polytope is a projection of a sufficiently high dimensional simplex.

Interesting examples arise from combinatorial objects, as illustrated by the following exercices.

Exercice 55. The matching polytope M(G) of a graph G = (V,E) is defined as the convex hull
of the characteristic vectors χM ∈ RE of all matchings M on G.

(1) Show that the matching polytope is contained in the polytope N(G) defined by

xe ≥ 0 for all e ∈ E, and
∑
e3v

xe ≤ 1 for all v ∈ V.

(2) If G is bipartite, show that the polytopes M(G) and N(G) coincide. (Hint: Consider a
point x ∈ N(G). If x has integer coordinates, show that it is the characteristic vector of a
matching on G. Otherwise, show that one can slightly perturb the coordinates of x that are
not integer, and conclude that x is not a vertex of N(G)).

Exercice 56. Given a supply function µ : M → R≥0 on a source set M and a demand func-
tion ν : N → R≥0 on a sink set N , the transportation polytope P (µ, ν) is the polytope of RM×N
defined by:

∀m ∈M, ∀n ∈ N, xm,n ≥ 0,
∑

n′∈N
xm,n′ = µ(m), and

∑
m′∈M

xm′,n = ν(n).

Call support of a point x ∈ P (µ, ν) the subgraph of KM,N consisting of the edges (m,n) for
which xm,n > 0. Show the following properties:

(1) P (µ, ν) is non-empty if and only if
∑
m∈M µ(m) =

∑
n∈N ν(n).

(2) Provided it is non-empty, P (µ, ν) has dimension (|M | − 1)(|N | − 1).
(3) A point of P (µ, ν) is a vertex of P (µ, ν) if and only if its support is a forest (i.e. contains no

cycle). Moreover, a vertex of P (µ, ν) is determined by its support.
(4) The supports of two adjacent vertices of P (µ, ν) differ in precisely two edges.

The Birkhoff polytope of size m is a particular example of transportation polytope, whose supply
and demand functions are both constant to m. Its vertices are precisely the permutation matrices.

Exercice 57. LetG = (V,E) be a directed graph with incidence matrixMG ∈ RV×E . For β ∈ RV ,
the orientation polytope P (G, β) is the polytope defined by

P (G, β) :=
{
x ∈ RE

∣∣ −1 ≤ x ≤ 1 and MG · x = β
}
.

Show that

(1) the vertices of P (G, β) are β-orientations on G, i.e. orientations on G such that the difference
of the indegree and outdegree of any vertex v of G is equal to βv,

(2) the edges of P (G, β) are given by reorientations of oriented cycles in β-orientations on G.



GEOMETRIC GRAPHS, TRIANGULATIONS AND POLYTOPES 25

Figure 19. The face lattice of the 3-dimensional cube.

Later in these lecture notes, we describe families of polytopes related to combinatorial objects,
in particular geometric graphs: the secondary polytope in Section 4.6, the permutahedron in Sec-
tion 5.3, the associahedron in Section 5.4, the polytope of pseudotriangulations in Section 6.1, and
the brick polytope in Section 6.6.

3.2. Faces. Given a polytope, we are interested in the combinatorics of its faces.

Definition 58. A face of a convex polytope P is defined to be

• either the polytope P itself,
• or the intersection of P with a supporting hyperplane of P ,
• or the empty set.

The 0-, 1-, (d−2)-, and (d−1)-dimensional faces of a d-dimensional polytope P are called vertices,
edges, ridges, and facets of P respectively.

The following intuitive facts are proved for example in [Zie95, Lect. 2].

Proposition 59. (1) Every polytope is the convex hull of its vertices. Conversely, any point
set W contains the vertices of the convex hull of W .

(2) A face F of a polytope P is a polytope. The vertices of F are the vertices of P that lie in F .
More generally, the faces of F are exactly the faces of P that lie in F .

(3) The inclusion poset F(P ) of faces of a polytope P has the following properties:
• F(P ) is a graded lattice of rank dim(P ) + 1, with rank function rk(F ) = dim(F ) + 1;
• F(P ) is both atomic (i.e. every face is the join of its vertices) and coatomic (i.e. every

face is the meet of the facets containing it);
• every interval of F(P ) is the face lattice of a polytope;
• it has the diamond property: every interval of rank 2 has 4 elements.

Definition 60. Two polytopes P and Q are combinatorially equivalent if their face lattices F(P )
and F(Q) are isomorphic.

Exercice 61. Describe the faces of the d-dimensional simplex, cube, and cross-polytope. What
are their face lattices? See Figure 19.

The polar of a polytope P = conv(V ) =
{
x ∈ Rd

∣∣ Ax ≤ 11
}

containing the origin is defined

as the polytope P � := conv(A) =
{
x ∈ Rd

∣∣ V x ≤ 11
}

. Its face lattice is the opposite of the face
lattice of P . For example, the d-dimensional cube and cross-polytope are polar to each other.

A d-dimensional polytope is

• simplicial if all its facets contain d vertices, and
• simple if all its vertices are contained in d facets.

For example, the simplex is both simple and simplicial, the cube is simple, and the cross-polytope
is simplicial. The polar of a simple polytope is simplicial, and reciprocally.
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Figure 20. The normal fan of a polygon.

Exercice 62. Show that a polytope that is both simple and simplicial is either a simplex or a
polygon.

Exercice 63. Describe the faces of the Cartesian product P ×Q := {(p, q) | p ∈ P, q ∈ Q} of two
polytopes P,Q in terms of the faces of P and Q.

The boundary complex ∂P of a polytope P is the polytopal complex formed by all its proper
faces. In particular, if P is simplicial, then its boundary complex ∂P is simplicial complex, i.e. a
collection of subsets of V closed by subsets: A ⊂ B ∈ ∂P =⇒ A ∈ ∂P .

The normal cone of a face F of a polytope P of Rd is the set

C�(F ) :=
{
γ ∈ Rd | 〈γ|x〉 = max

p∈P
〈γ|p〉 for all x ∈ F

}
.

Note that the normal cone of a k-dimensional face has dimension d− k, and that maximal normal
cones are the domains of linearity of the function γ → maxp∈P 〈γ|p〉. The normal fan of P is the
collection of the normal cones of all faces of P . See Figure 20.

Exercice 64. What are the normal fan of the d-dimensional simplex, cube and cross-polytope.

3.3. f-vector, h-vector, and Dehn-Sommerville relations. The f -vector of the polytope P
is the sequence f(P ) :=

(
f0(P ), . . . , fd(P )

)
, where fi(P ) denotes the number of i-dimensional faces

of P . The f -polynomial of P is

f(P, x) :=

d∑
i=0

fi(P )xi.

Exercice 65. What are the f -vectors of the d-dimensional simplex, cube, and cross-polytope?

Exercice 66. Show that f(P �, x) = xdf(P, 1/x), where P � denote the polar polytope of P .

Let P be a simple polytope in Rd. Consider a generic linear functional φ : Rd → R, meaning
that φ takes distinct values on distinct vertices of P . Orient the 1-skeleton of P in the φ-increasing
direction. Finally, let hj(P ) denote the number of vertices of P with indegree j in this directed
graph. The h-vector of P is the sequence h(P ) :=

(
h0(P ), . . . , hd(P )

)
and the h-polynomial of P is

h(P, x) :=

d∑
j=0

hj(P )xj

A priori, the h-vector and h-polynomial seem to depend not only on P but also on the chosen
linear functional φ. The next lemma shows however that the linear functional φ is not relevant.

Lemma 67. The f - and h-vectors of a simple polytope P satisfy the relations

∀ 0 ≤ i ≤ d, fi(P ) =

d∑
j=0

(
j

i

)
hj(P ) and ∀ 0 ≤ j ≤ d, hj(P ) =

d∑
i=0

(−1)i+j
(
i

j

)
fi(P )

which translates on the f - and h-polynomials to the relation f(P, x) = h(P, x+ 1). In particular,
there is no dependence in the linear functional φ.
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Proof. The equivalence between these three relations is the subject of the next exercice. We only
prove the expression of the f -vector in terms of the h-vector. For this, we double count the number
of pairs (v, F ), where F is an i-face of P and v is the φ-maximal vertex of F . Once F is fixed,

there is a unique such vertex v. Conversely, once v is fixed, there are
(
j
i

)
choices for F if v has

indegree i in the directed 1-skeleton of P . The result immediately follows. �

Exercice 68. Let (fi)0≤i≤d and (hj)0≤j≤d be integer sequences and let f(x) :=
∑d
i=0 fix

i and

h(x) :=
∑d
j=0 hjx

j denote the corresponding counting polynomials. Show that

f(x) = h(x+ 1) ⇐⇒ ∀i, fi =

d∑
j=0

(
j

i

)
hj ⇐⇒ ∀j, hj =

d∑
i=0

(−1)i+j
(
i

j

)
fi.

Exercice 69. What are the h-vectors of the d-dimensional simplex and cube?

Theorem 70 (Dehn-Sommerville relations). For a simple polytope P , the h-vector is symmetric:
hj(P ) = hd−j(P ) for all 0 ≤ j ≤ d. This translates in terms of f -vectors to

d∑
i=j

(−1)i+j
(
i

j

)
fi(P ) =

d∑
i=d−j

(−1)d+i−j
(

i

d− j

)
fi(P ) for all 0 ≤ j ≤ d.

Proof. Consider the linear functionals φ and −φ. The sum of the indegree in the graph oriented
by φ and the indegree in the graph oriented by −φ is constant to d. This shows the relation on
the h-entries. The relation on the f entries then follow from Lemma 67. �

Exercice 71. Write down the Dehn-Sommerville relations for a simplicial polytope.

Corollary 72 (Euler’s relation). For a simple or simplicial polytope P ,

d∑
i=0

(−1)ifi(P ) = 1.

3.4. Extreme polytopes. In this section, we discuss the maximal and minimal face numbers for
a polytope with n vertices.

3.4.1. Many faces: cyclic polytopes.

Definition 73. A d-dimensional cyclic polytope is the convex hull of finitely many points on the
d-dimensional moment curve, parametrized by µd : t 7→ (t, t2, . . . , td).

Proposition 74. (i) Cyclic polytopes are simplicial.
(ii) For j ≤ bd/2c, all j-subsets of vertices define a (j−1)-face of a d-dimensional cyclic polytope.

Proof. To prove (i), we prove that any d + 1 points on the moment curve are affinely inde-
pendent. Assume by contradiction that µ(t1), . . . , µ(td+1) lie on a common hyperplane of equa-

tion
∑
i∈[d] αixi = −α0. Since µ(tk) = (tk, . . . , t

d
k), it implies that the polynomial

∑d
i=0 αit

i has

at least d+ 1 roots t1, . . . , td+1 although it has degree d, a contradiction.
To prove (ii), let µ(t1), . . . , µ(tj) be j vertices of a cyclic polytope, and consider the hyper-

plane of equation
∑
i∈[d] αixi = −α0, where the coefficients αi are the coefficients of the poly-

nomial
∏
i∈[j](t − ti)

2 =
∑d
i=0 αit

i. The points µ(t1), . . . , µ(tj) clearly lie on this hyperplane,

while all other points of the moment curve lie on the positive side of this hyperplane. It follows
that µ(t1), . . . , µ(tj) defines a face, and thus a (j − 1)-face by simpliciality. �

A polytope where all (≤ k)-subset of vertices define a face is called k-neighborly. The cyclic
polytope is therefore bd/2c-neighborly.

Exercice 75. If k > bd/2c, the d-dimensional simplex is the only k-neighborly d-dimensional
polytope.
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Corollary 76. The h-vector of the polar of a d-dimensional cyclic polytope with n vertices is
given by

hj =

(
n− d+ j − 1

j

)
for j ≤ bd/2c and hj =

(
n− j − 1

d− j

)
for j > bd/2c.

Proof. Since the cyclic polytope is neighborly, it has
(
n
i

)
faces of dimension i ≤ bd/2c. Therefore,

its polar has
(
n
d−i
)

faces of dimension i > bd/2c. We therefore obtain for j > bd/2c that

(?)

d∑
i=j

(−1)i+j
(
i

j

)(
n

d− i

)
=

(
n− j − 1

d− j

)
.

Finally, the values for j ≤ bd/2c are derived from the symmetry of the h-vector. �

Exercice 77. Consider Equality (?).

(1) Show that it holds when j = 0 and j = d.
(2) Show that if it holds for (j, d) and (j + 1, d) then it holds for (j + 1, d + 1). (Hint: use the

relation
(
x+1
y+1

)
=
(
x
y+1

)
+
(
x
y

)
).

(3) Conclude that it is always valid.

Exercice 78. Consider the cyclic polytope Cd(n) = conv {µd(ti) | i ∈ [n]} for t1 < t2 < · · · < tn.
Identify a d-subset F ⊂ [n] with the point set {µd(ti) | i ∈ F}. Call block of F ∈ [n] the intervals
of F , and say that a block is internal if it does not contain 1 or n.

(1) Show that a point µ(r) is located on one or the other side of the affine hyperplane passing
through F according to the sign of the VanDerMonde determinant

det


1 . . . 1 1
t1 . . . td r
...

. . .
...

...
td1 . . . tdd rd

 .
(2) Remind and prove the product formula for this determinant.
(3) Deduce that a d-subset F of [n] defines a facet of Cd(n) if and only if all internal blocks have

even size (Gale’s evenness criterion).
(4) Deduce the following facts on cyclic polytopes:

(a) Cd(n) is neighborly.
(b) All cyclic polytope are combinatorially equivalent.
(c) The number of facets of Cd(n) is

fd−1(Cd(n)) =

(
n− dd2e
bd2c

)
+

(
n− 1− dd−12 e
bd−12 c

)
.

(Hint: Prove first that the number of ways to choose a 2k-subset of [n] such that all blocks

are even is
(
n−k
k

)
. To obtain the formula, distinguish the cases when the first block is

even or odd).

Theorem 79 (Upper Bound Theorem, McMullen [McM70]). The h-vector of any simple poly-
tope P with n facets is bounded by:

hj(P ) ≤
(
n− d+ j − 1

j

)
for j ≤ bd/2c and hj(P ) ≤

(
n− j − 1

d− j

)
for j > bd/2c.

Therefore, the number of i-dimensional faces of P is bounded by

fi(P ) ≤
bd/2c∑
j=i

(
j

i

)(
n− d+ j − 1

j

)
+

∑
j>bd/2c

(
j

i

)(
n− j − 1

d− j

)
.

Exercice 80. Write down the Upper Bound Theorem for simplicial polytopes.

Proof. The proof is based on the following two claims:
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(1) hi(F ) ≤ hi(P ) for any facet F of P . To see this inequality, consider a linear functional φ
obtained by a small perturbation of the linear functional defining the facet F and containing P
in its positive side. Since all edges leaving face F are φ-increasing, the indegrees of any vertex
of F are identical in the graph of F and in the graph of P both directed by φ.

(2)
∑
F hi(F ) = (d − i)hi(P ) + (i + 1)hi+1(P ), where F ranges over all facets of P . Consider a

generic linear functional φ and orient the graphs of P and it facets accordingly. We check that
the contribution of each vertex is identical on both sides. For this, we consider a vertex v of
a facet F of P , and we denote by e the edge incident to v and not in F . We write indeg(v, P )
for the indegree of v in the graph of P and indeg(v, F ) for the indegree of v in the graph of F .
There are three cases according to indeg(v, P ):

(i) if indeg(v, P ) = i, then indeg(v, F ) = i if e is outgoing F , and indeg(v, F ) = i − 1
otherwise;

(ii) if indeg(v, P ) = i + 1, then indeg(v, F ) = i if e is incoming F , and indeg(v, F ) = i + 1
otherwise;

(iii) otherwise, indeg(v, F ) 6= i.
The formula immediately follows.

Using these two claims, we obtain

(d− i)hi(P ) + (i+ 1)hi+1(P ) ≤ nhi(P ),

and therefore

hi+1(P ) ≤ n+ d− i
i+ 1

hi(P ).

The Upper Bound Theorem follows by induction. �

3.4.2. Few faces: stacked polytopes. Let P be a d-dimensional polytope, and F be a facet of P .
The operation of stacking onto F consists of constructing the polytope P ′ = P ∪ (F ? p), where
p is a point beyond the facet F but beneath all other facets of P , and F ? p denotes the pyramid
conv(F ∪ {p}).

P

F p

Figure 21. Stacking onto a facet of a polytope (left) and two combinatorially
distinct stacked polytopes (right).

Observe that during this operation, we destroy the facet F , and create one new i-face for all
(i− 1)-face of F . In other words, the f -vector of the resulting polytope P ′ is given by:

f0(P ′) = f0(P ) + 1,

fi(P
′) = fi(P ) + fi−1(F ), for 0 ≤ i ≤ d− 2,

fd−1(P ′) = fd−1(P ) + fd−2(F )− 1.

Definition 81. A stacked polytope on d + n vertices arises from a d-simplex by stacking (n − 1)
times onto a facet (n ≥ 1).

In other words, we obtain a (convex) tree of n d-dimensional simplices, and thus, a stacked
polytope is simplicial. The f -vector of a stacked polytope on d+ n vertices is given by:

f0 = d+ n,

fi =

(
d

i+ 1

)
+ n

(
d

i

)
, for 0 ≤ i ≤ d− 2,

fd−1 = 2 + n(d− 1).
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Exercice 82. A rooted stacked polytope is a stacked polytope where we have chosen a facet of
which we have colored the vertices with d colors.

(1) Show that the choice of a facet an a d-coloring of its vertices induces a (d+ 1)-coloring of the
graph of the stacked polytope. Deduce a bijection between the rooted stacked d-dimensional
polytopes with d+ n vertices and the plane d-ary trees with n internal nodes. The latter are
counted by the Fuss-Catalan number (see also Section 5.1):

1

(d− 1)n+ 1

(
dn

n

)
.

(2) Conclude that the number X of combinatorially distinct d-dimensional stacked polytopes
on d+ n vertices is bounded by

1

d!
(
2 + n(d− 1)

) (
(d− 1)n+ 1

)(dn
n

)
≤ X ≤ 1

(d− 1)n+ 1

(
dn

n

)
.

How good are these bounds?

Theorem 83 (Lower Bound Theorem, Barnette [Bar73]). The f -vector of a simplicial d-dimensional
polytope P with n vertices is componentwise larger or equal to the f -vector of a stacked d-
dimensional polytope with n vertices. Furthermore, equality holds for some f -vector entries iff
d = 3, or d ≥ 4 and P is stacked.

3.5. Graphs of polytopes. The graph of a polytope P is the graph with same vertices and edges
as P . It is often called 1-skeleton of P . More generally, the k-skeleton of P is the collection
of (≤ k)-dimensional faces of P . A natural question is to determine necessary and sufficient
conditions for a graph to be polytopal. It is easy in dimension ≤ 3, but becomes difficult in higher
dimension.

3.5.1. Dimension 3.

Theorem 84 (Steinitz [Ste22]). A graph is the 1-skeleton of a 3-dimensional polytope if and only
if it is planar and 3-connected.

Proof. The graph of a 3-dimensional polytope is planar (project it to a sphere surrounding it)
and 3-connected (special case of Balinski’s theorem below). For the reverse statement, different
proofs are possible. [Zie95, Lect. 4] presents a proof base on ∆Y operations (replacing a triangular
face by a star with three edges), which preserve realizability. We refer to the other half of this
course [dV] for a proof based on Tutte’s barycentric embeddings of planar 3-connected graphs. �

Theorem 85 (Whitney [Whi32]). Let G be the graph of a 3-dimensional polytope P . The graphs
of the 2-dimensional faces of P are precisely the induced cycles in G that do not separate G.

In contrast to the easy 2- and 3-dimensional situations, d-dimensional polytopality becomes
much more involved as soon as d ≥ 4. For example, neighborly 4-dimensional polytopes illustrate
the difference between the behavior of 3- and 4-dimensional polytopes:

(i) Starting from a neighborly 4-dimensional tope, and stacking vertices on undesired edges, Per-
les observed that every graph is an induced subgraph of the graph of a 4-dimensional polytope
(while only planar graphs are induced subgraphs of graphs of 3-dimensional polytopes).

(ii) The existence of combinatorially different neighborly polytopes proves that the 2-dimensional
faces of a 4-dimensional polytope cannot be derived from its graph (compare with Whitney’s
Theorem).

As a consequence of his work on realization spaces of 4-dimensional polytopes, Richter-Gebert
underlined several deeper negative results: among others, 4-dimensional polytopality is NP-hard
and cannot be characterized by a finite set of “forbidden minors” (see [RG96, Chap. 9]).

Exercice 86. Show that every graph is an induced subgraph of the graph of a 4-dimensional
polytope. (Hint: start from a cyclic polytope and stack vertices on undesired edges).
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3.5.2. Necessary conditions for polytopality. Although no reasonable characterization of polytopal
graphs is possible [RG96], we gather in the following statement some interesting necessary condi-
tions.

Proposition 87. A d-dimensional polytopal graph G satisfies the following properties:

(1) Balinski’s Theorem: G is d-connected [Bal61].
(2) Principal Subdivision Property (d-PSP): Every vertex of G is the principal vertex of a principal

subdivision of Kd+1. Here, a subdivision of Kd+1 is obtained by replacing edges by paths, and
a principal subdivision of Kd+1 is a subdivision in which all edges incident to a distinguished
principal vertex are not subdivided [Bar67].

(3) Separation Property: The maximal number of components into which G may be separated by
removing n > d vertices equals fd−1

(
Cd(n)

)
, the maximum number of facets of a d-dimensional

polytope with n vertices [Kle64].

Exercice 88. Show that the complete bipartite graph Km,n is not polytopal for any n,m ≥ 3.
(Hint: if a polytope P realizes Km,n, the graph of any 3-dimensional face of P should contain
a K3,3 subgraph, which is non-planar).

Exercice 89. Which of the following graphs are polytopal? In which dimension?

(i) the complete graph K8 where we delete the edges of a perfect matching,
(ii) the complete graph K7 where we delete a 7-cycle,
(iii) the complete graph K6 where we delete a 6-cycle,
(iv) the Cartesian product of two complete graphs Kn ×Km,
(v) the graphs of Figure 22.

Figure 22. Are these graphs polytopal?

3.5.3. Simple polytopes. Simple polytopes (where every vertex contained in dimensional-many
facets) have somehow much nicer properties than general polytopes. In particular, the following
statement affirms that a simple polytope is determined by its graph:

Theorem 90 (Blind and Mani-Levitska [BML87], Kalai [Kal88]). Two simple polytopes with
isomorphic graphs are combinatorially equivalent.

Proof. We follow the proof of Kalai [Kal88]. The idea is to recognize the graphs of the faces of
a simple polytope P in terms of certain acyclic orientations of the graph of P . We say that an
acyclic orientation of the graph of P is good if the graph of each face of P has a unique sink. The
result follows from two observations:

(1) Good acyclic orientations of P can be recognized from the graph of P . For any acyclic
orientation O of the graph of P , denote by hj(O) the number of vertices of P with indegree j
for O, and define F (O) :=h0(O)+2h1(O)+· · ·+2d hd(O). Since each face of P has at least one
sink for O and each indegree j vertex of P is the sink of 2j faces of P (because P is simple!),
F (O) is greater or equal to the number of non-empty faces of P , with equality if and only if O
is a good orientation. Good acyclic orientations are therefore those which minimize F (O).
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(2) A regular induced subgraph of the graph of P is the graph of a face of P if and only if its
vertices are initial with respect to some good acyclic orientation of P . The “only if” direction
is immediate: slightly perturb a linear functional defining a face F to obtain a good acyclic
orientation for which the vertices of F form an initial subset. Conversely, for the “if” direction,
consider a k-regular subgraph H of the graph of P induced by an initial subset of vertices
with respect to a good orientation O. Let v be a sink of H directed by O, and let F be the
k-dimensional face containing the k edges of H incident to v. Since O is a good orientation,
v is the unique sink of the graph of F directed by O. Therefore, all vertices of F are vertices
of H. This implies that H coincides with the graph of F since both are k-regular and one is
a subgraph of the other. �

Remark 91. Although the proof of Theorem 90 is not constructive, it was later turned to a
polynomial algorithm in [Fri09].

Exercice 92. Prove that all induced cycles of length 3, 4 and 5 in the graph of a simple d-
dimensional polytope P are graphs of 2-dimensional faces of P . Is it still true for cycles of
length 6? (Hint: 3-dimensional cube).

3.5.4. Diameters of polytopes. The diameter of a graph G is the minimal number δ(G) such that
any two vertices of G can be connected by a path with at most δ(G) edges. The diameter of
a polytope P is the diameter of its 1-skeleton. Denote by ∆(d, n) the maximal diameter of a
d-dimensional polytope with at most n facets.

Diameters of polytopes are closely related to linear programming and its resolution via the
classical simplex algorithm. Indeed, the value of ∆(d, n) is a lower bound for the number of
iterations needed by the simplex algorithm with any pivot rule. A longstanding open question is
to determine whether ∆(d, n) is polynomial in both d and n. This question is called “Polynomial
Hirsch Conjecture”. The name comes from a much stronger conjecture, recently disproved by
Santos [San12]:

Theorem 93 (Santos [San12]). The Hirsch conjecture is wrong: there exists d-dimensional poly-
topes with n facets whose diameter is strictly more than n− d.

Santos’ proof goes beyond the focus of these lecture notes. Let us just mention that his first
counterexample was a 43-dimensional polytope with 86 facets and diameter at least 44! The same
method was then improved to reach 20-dimensional counterexamples to the Hirsch conjecture.

For now, the current best bound on ∆(d, n) is polynomial in n but exponential in d:

Theorem 94 (Kalai and Kleitman [KK92]). The maximal diameter of a d-dimensional polytope
with n facets is bounded by

∆(d, n) ≤ nlog2(d)+1.

In fact, there is even a linear upper bound in n for fixed dimension (although the dependence
in d is not as good):

Theorem 95 (Barnette [Bar74], Larman [Lar70]). The maximal diameter of a d-dimensional
polytope with n facets is bounded by

∆(d, n) ≤ 2d−2

3
n.

3.6. The incidence cone of a directed graph. Let (e1, . . . , en) be the canonical basis of Rn
and 11 :=

∑
ei.

Definition 96. The incidence configuration of the directed multigraph G is the vector configura-
tion I(G) := {ej − ei | (i, j) ∈ G} ⊂ Rn. The incidence cone of G is the cone C(G) ⊂ Rn generated
by I(G), i.e. its positive span.

In other words, the incidence configuration of a directed multigraph consists of the column
vectors of its incidence matrix. Observe that the incidence cone is contained in the linear subspace
of equation 〈11|x〉 = 0.
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Lemma 97. Consider a subgraph H of G. Then the vectors of I(H):

(i) are independent if and only if H has no (not necessarily oriented) cycle, that is, if H is a
forest;

(ii) span the hyperplane 〈11|x〉 = 0 if and only if H is connected and spanning;
(iii) form a basis of the hyperplane 〈11|x〉 = 0 if and only if H is a spanning tree;
(iv) form a circuit if and only if H is a (not necessarily oriented) cycle; the positive and negative

parts of the circuit correspond to the subsets of edges oriented in one or the other direction
along this cycle; in particular, I(H) is a positive circuit if and only if H is an oriented cycle;

(v) form a cocircuit if and only if H is a minimal (not necessarily oriented) cut; the positive and
negative parts of the cocircuit correspond to the edges in one or the other direction in this
cut; in particular, I(H) is a positive cocircuit if and only if H is an oriented cut.

Lemma 98. Consider a subgraph H of G. The incidence configuration I(H) is the set of vectors
of I(G) contained in a k-face of C(G) if and only if H has n − k connected components and the
quotient graph G/H is acyclic. In particular:

(i) The cone C(G) has dimension n−1 (since we assumed that the undirected graph underlying G
is connected).

(ii) The cone C(G) is pointed if and only if G is an acyclic directed graph.
(iii) If G is acyclic, it induces a partial order on its set of nodes. The rays of C(G) correspond

to the edges of the Hasse diagram of G. The cone is simple if and only if the Hasse diagram
of G is a tree.

(iv) The facets of C(G) correspond to the complements of the minimal directed cuts in G. Given
a minimal directed cut in G, the characteristic vector of its sink is a normal vector of the
corresponding facet.
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4. Triangulations, flips, and the secondary polytope

This section is devoted to triangulations of planar point sets: minimal and maximal numbers
of triangulations of an n-point set, regular triangulations and secondary polytope. Although
presented here in the plane, the construction and properties of the secondary polytope extend in
higher dimension. A very clear and interesting presentation can be found in [DRS10, Chap. 5].

4.1. Triangulations. Let P be a point set (in general position) in the plane. A triangulation
of P is a set T of triangles with corners in P such that

(i) the union of the triangles of T covers the convex hull of P,
(ii) any two triangles of P intersect in a proper face of both (possibly empty).

We often consider that a triangulation is a set of edges rather than triangles. A triangulation T
is full if no point of P is in the interior of a triangle of T . Equivalently, a full triangulation of P
can be seen as a maximal crossing free geometric graph on P.

Exercice 99. Show that any full triangulation of a point set with i interior points and b boundary
points has i+ b vertices, 3i+ 2b− 3 edges, and 2i+ b− 2 triangles. (Hint: apply Euler’s formula).

Exercice 100. Let T be a triangulation of a point set, with ik interior vertices and bk boundary
vertices of degree k for each k. Show that∑

k≥3

(6− k)ik +
∑
k≥2

(4− k)bk = 6.

(Hint: apply Euler’s formula and double counting). Observe that it implies that

6 +
∑
k≥7

ik +
∑
k≥5

bk ≤ 3i3 + 2i4 + i5 + 2b2 + b3.

4.2. The number of triangulations. We now give examples of point sets for which we can
compute the number of (full) triangulations.

Exercice 101 (Catalan number). Show that the number of triangulations of a convex n-gon is
the (n− 2)-Catalan number Cn−2 := 1

n−1
(
2n−4
n−2

)
. (Hint: see Section 5.1).

Exercice 102 (Double chain). Show that the number of full triangulations of the double chainXm,n

with m+n vertices, represented in Figure 23 (left), is Cm−2Cn−2
(
m+n−2
n−1

)
. (Hint: Observe that any

triangulation of Xn contains all edges of the two chains, and thus is formed by three independent
triangulations). Deduce that the total number of triangulations of Xm,n is∑

0≤i≤m−2
0≤j≤n−2

(
m− 2

i

)(
n− 2

j

)
CiCj

(
i+ j + 2

i+ 1

)
.

Exercice 103 (Double circle). Using the inclusion-exclusion formula, show that the number
of full triangulations of the double circle On with 2n vertices, represented in Figure 23 (right),
is
∑
i∈[n](−1)i

(
n
i

)
Cn+i−2. (Hint: a triangulation of On can be seen a triangulation of a convex

2n-gon containing none of the even ears). What about all triangulations?

Figure 23. The double chain X9,6 (left) and the double circle O6 (right) config-
urations. Marked edges are forced in all full triangulations.
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In general, we cannot give explicit formulas for the number of (full) triangulations of an arbitrary
point set. However, we can give upper and lower bounds on the number of triangulations of a set
of n points.

Proposition 104. Any set of n points in general position in the plane, with i interior and b
boundary points, has at least Cb−22i−b+2 = Ω(2nn−3/2) and at most 59i 7b/

(
i+b+6

6

)
≤ 59n full

triangulations.

Proof. We closely follow the presentation of [DRS10, p. 112 & 115] and refer the reader to the
references and improvements discussed therein.

For the lower bound, denote by m(i, b) the minimum number of triangulations of a point set
with i interior points and b boundary points. We prove by induction that m(i, 3) ≥ 2i−1. The
result can be checked by case analysis or order type enumeration for up to 7 interior points, so
we can assume that i = 8. For each interior point p, we join p to the three boundary points
and triangulate the three resulting triangles. If these three triangles contain i1, i2, and i3 interior
points respectively, induction hypothesis ensures that there are at least 2i1−12i2−12i3−1 = 2i−4

such triangulations. We thus obtain that m(i, b) ≥ i2i−4 ≥ 2i−1 since i ≥ 8. Finally, if b ≥ 4, we
first choose a triangulation of the boundary points and then fill each triangle with a triangulation
of the interior points. We get m(i, b) ≥ Cb−22i−b+2.

For the upper bound, denote by M(i, b) the maximum number of triangulations of a point
set with i + b points at most i are interior. For a point p in a point set P, we say that a
triangulation T of P is obtained by inserting p in a triangulation T ′ of P r p, and that T ′ is
obtained by deleting p in T , if all triangles of T not incident to p appear in T ′. Observe that
the number hk of triangulations of P obtained by inserting p in a given triangulation T ′ and in
which p has degree k is bounded by

• h3 = 1, h4 ≤ 3, h5 ≤ 9 and h6 ≤ 28 if p is an interior point (since we need to remove k−3
edges of T ′ and connect the vertices of the resulting region to p),

• h2 ≤ 1, h3 ≤ 1 and h4 ≤ 2 if p is a boundary point (since we need to remove k − x edges
of T ′ when x vertices of conv(P r p) are visible from p).

Using this observation, we now show by induction that M(i, b) ≤ 59i 7b/
(
i+b+6

6

)
. The result is

clear for b = 3 and i = 0 as M(0, 3) = 1 ≤ 49/12 = 590 73/
(
0+3+6

6

)
. Now let P be a configuration

of i+ b points, at most i of them being interior, and denote by T (P) the number of triangulations
of P, and by Ik(P) (resp. Bk(P)) the sum over all triangulations of P of the number of interior
(resp. boundary) vertices of degree k. Deleting a point p of P yields a configuration of i + b − 1
points with at most i−1 interior points if p is an interior point of P, and of i+b−1 points with at
most i interior points if p is a boundary point of P. Moreover, the number of triangulations of P in
which p has degree k is at most the number of ways of inserting p with degree k in triangulations
of P r p. Therefore, using the observations above,

I3(P) ≤ iM(i− 1, b), I4(P) ≤ 3iM(i− 1, b), I5(P) ≤ 9iM(i− 1, b), I6(P) ≤ 28iM(i− 1, b),

B2(P) ≤ bM(i, b− 1), B3(P) ≤ bM(i, b− 1), B4(P) ≤ 2bM(i, b− 1).

Moreover, summing over all triangulations of P the last inequality of Exercice 100, we have

6T (P) +
∑
k≥7

Ik(P) +
∑
k≥5

Bk(P) ≤ 3 I3(P) + 2 I4(P) + I5(P) + 3B2(P) +B3(P)

≤ 18iM(i− 1, b) + 3bM(i, b− 1).

Adding all these inequalities together, we get

(6 + i+ b)T (P) = 6T (P) +
∑
k≥3

Ik(P) +
∑
k≥2

Bk(P) ≤ 59iM(i− 1, b) + 7bM(i, b− 1).
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The result follows by induction hypothesis:

(6 + i+ b)M(i, b) ≤ 59iM(i− 1, b) + 7bM(i, b− 1) ≤ 59i
59i−1 7b(
i+b+5

6

) + 7b
59i 7b−1(
i+b+5

6

)
= (i+ b)

59i 7b(
i+b+5

6

) = (6 + i+ b)
59i 7b(
i+b+6

6

) . �

4.3. Flips. A flip is an operation on triangulations of P defined as follows (see Figure 24):

diagonal flip: if two triangles pqr and prs form a convex quadrilateral pqrs, replace the
diagonal pr by the other diagonal qs of pqrs.

insertion/deletion flip: If a point p is contained in the interior of a triangle uvw, then
insert the edges pu, pv, and pw or vice versa.

Figure 24. A diagonal flip (left) and an insertion/deletion flip (right).

The flip graph is the graph whose vertices are the triangulations of P and whose edges are flips
between them. An example is illustrated on Figure 25.

Figure 25. The flip graph on triangulations of a point configuration. The three
copies of the trivial triangulation should coincide.



GEOMETRIC GRAPHS, TRIANGULATIONS AND POLYTOPES 37

Proposition 105. The flip graph is connected.

Proof. This property will follow from Proposition 109 as any triangulation can be flipped to the
Delaunay triangulation, even when using only diagonal flips. �

Exercice 106. The placing triangulation of P = {p1, . . . ,pn} is constructed iteratively by placing
the points p1, . . . ,pn one by one. The point pi remains isolated if it lies in the convex hull
of {p1, . . . ,pi−1}. Otherwise, pi gets connected to the points of conv{p1, . . . ,pi−1} visible from it.

Show that any triangulation of a planar point set P can be flipped to the placing triangulation,
and deduce Proposition 105.

Remark 107. Proposition 105 is no longer true in higher dimension. In fact, Santos proved that
it already fails in dimension 5 [San00].

4.4. Delaunay triangulation. Let P be a point set in the plane. The Voronoi region Vor(p,P)
of a point p ∈ P is the region of the plane closer to p than to any other point of P, that is,

Vor(p,P) :=
{
x ∈ R2

∣∣ ‖x− p‖ ≤ ‖x− q‖ for all q ∈ P
}
.

The Voronoi regions are polygonal regions, they are pairwise internally disjoint and they cover
the complete plane. The Voronoi diagram Vor(P) of P is the polygonal diagram formed by the
Voronoi regions Vor(p,P) for all p ∈ P. See Figure 26 (left).

Figure 26. The Voronoi diagram (left) and the Delaunay triangulation (right)
of a planar point set.

The Delaunay triangulation Del(P) of P is the dual geometric triangulation to the Voronoi
diagram Vor(P): its vertex set is the point set P and its edges connect two points p and q if the
Voronoi regions Vor(p,P) and Vor(q,P) intersect. Note that it is a triangulation given that no
circle contains four or more point of the set P. The following statement characterizes the edges
and the triangles in the Delaunay triangulation. An empty circle is a circle whose interior disk
contains no point of P. See Figure 26 (right).

Proposition 108. Let p,q, r be points of P.

(i) pq is a Delaunay edge iff there exists an empty circle passing through p and q.
(ii) pqr is a Delaunay triangle iff the circumcircle of p,q, r is an empty circle.

Proof. Exercice. (Hint: Consider the circle centered at a point of the intersection of the Voronoi
regions and passing through the Voronoi sites). �

In any triangulation, if pqr and pqs are two triangles such that s is contained in the circumcircle
of pqr, then the flip of edge pq to edge rs is always possible and is called a Lawson flip.

Proposition 109. From any initial triangulation T of a planar point set P, repeatedly performing
Lawson flips leads to the Delaunay triangulation Del(P).
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Figure 27. The Voronoi diagram by projection of the upper enveloppe of the
tangent planes to the paraboloid.

Figure 28. The Delaunay triangulation by projection of the lower convex hull
of the points on the paraboloid.

This result will follow from the following interpretation of the Delaunay triangulation and of
the corresponding flips. See the illustrations in Figure 27 and Figure 28.

Proposition 110. Let P denote the parabolöıd of equation z = x2 + y2. For p = (x, y) ∈ R2, we
denote by p̂ = (x, y, x2 + y2) its lifted point to the parabolöıd P.

(i) The Voronoi diagram Vor(P) is the vertical projection of the upper convex hull of the planes
tangent to the parabolöıd P to the lifted points p̂ for p ∈ P.

(ii) The Delaunay triangulation Del(P) is the vertical projection of the lower convex hull of the
lifted points p̂ for p ∈ P.

Proof. The plane H(p) tangent to the parabolöıd at the lifted point p̂ is defined by the equa-
tion z = 2〈p|x〉 − ‖p‖2. Therefore, for two points p,q ∈ P, the hyperplane H(p) is above the
hyperplane H(q) iff ‖p− x‖ ≤ ‖q− x‖. This proves (i).

To prove (ii), we show that the portion of the parabolöıd below the plane defined by the
lifted points p̂, q̂, r̂ projects to the disk circumscribed to p,q, r. Indeed, for a point (x, y, z) in
this portion, we have z = x2 + y2 and z ≤ λx + µy for some λ, µ ∈ R. This leads to the
equation (x − λ/2)2 + (y − µ/2)2 ≤ λ2/4 + µ2/4 of a disk. Finally, the circle defining this disk
clearly contains p,q, r. �

Exercice 111. Using Proposition 110, prove Proposition 109. What is the maximal possible
number of Lawson flips required to reach the Delaunay triangulation?

Exercice 112 (A non-Delaunay triangulation). Prove that the triangulated map illustrated on
Figure 29 (left) cannot be realized as a Delaunay triangulation (Hint: The sum of the angles
marked a, b, or c in a Delaunay realization cannot exceed 3π, so that one of the angles marked d
would exceed π).

Exercice 113 (Stacked Delaunay triangulations). We say that a triangulation T is stacked if

• either T is reduced to a triangle,
• or T is obtained from a stacked triangulation refining a triangle pqr into three trian-

gles pqt, qrt, and prt (one can imagine that we stacked a flat tetrahedron pqrt on the
triangle pqr).
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a a
b

b c

c
d d

d

Figure 29. A triangulated map M (left), a geometric realization of M (middle)
that is not Delaunay Delaunay (the red point violates the circumcircle to the blue
points), an a Delaunay realization of M minus a vertex (right).

The construction tree of T is the tree whose nodes correspond to triangles of T and where the
children of triangle pqr are the three triangles pqt, qrt, prt refining it. See Figure 30 (we just
forgot colors from Figure 13).

a

bc d

f i h e

g

abc

bcdabd acd

bde abe ade acf cdf adf

bdg beg deg adh aeh deh adi afi dfi

Figure 30. A stacked triangulation (left) and its construction tree (right).

(1) Consider a Delaunay triangulation T with an internal vertex t of degree 3, and denote
by p, q and r the three vertices adjacent to t and by R the triangles of T distinct from pqt,
qrt, and prt. Since t lies in the exterior of all circumcircles to the triangles of R, there
exists a small disk D centered at t and disjoint from the circumcircles to the triangles of R.
Choose a point u in D ∩pqt and v in prt both on the tangent to the circumcircle of qrt
at t. Show that the triangulation obtained by refining pqt with u and/or prt with v is
still a Delaunay triangulation.

(2) Deduce that a stacked triangulation is realizable as a Delaunay triangulation if and only
if its construction tree has no ternary node after deletion of its leaves (Note: in contrast,
Exercice 43 describes a td-Delaunay realization for any stacked triangulation).

(3) Generalize these results to arbitrary dimension.
(4) Using stereographic projection, derive a characterization of the stacked polytopes (see

Section 3.4.2) which are inscribable in a sphere (i.e. realizable by a polytope with all
vertices on the sphere).

4.5. Regular triangulations and subdivisions. Let P be a planar point set and ω : P→ R a
height function. We denote by S(P, ω) the polyhedral subdivision of P obtained as the projection
of the lower convex hull of the lifted point set {(p, ω(p)) | p ∈ P}. A triangulation (or a polyhedral
subdivision) T is regular if there exists a height function ω : P→ R such that T = S(P, ω).

When a point lies in the interior of a polygonal region of S(P, ω), it can be lifted on or above
the lower envelope of the lifted points. We distinguish these subdivisions by drawing the point or
not in the projection. See Figure 32.
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Figure 31. Two regular triangulations with some valid height functions.

Example 114. Consider the point configuration P = {(0, 0), (3, 0), (0, 3), (3, 3), (1, 1)}. It has
nine regular polyhedral subdivisions, four of which are triangulations

Figure 32. Regular subdivisions of the point set {(0, 0), (3, 0), (0, 3), (3, 3), (1, 1)}.
We only mark the central point when it lies on the lower hull of the lifted points.

Exercice 115. Find a height function for each of these regular subdivisions. How can you be
sure that we did not forget any regular subdivision? (Hint: see the next section).

Examples of regular triangulations of P are the placing and the pulling triangulations:

(1) The placing triangulation (see Exercice 106) is the regular triangulation obtained from a lifted
function ω : P→ R such that ω(pi+1) >> ω(pi) > 0.

(2) The pulling triangulation is the regular triangulation obtained from a lifted function ω such
that ω(pi+1) << ω(pi) < 0.

However, not all triangulations are regular. The classical example (called “mother of all exam-
ple” in [DRS10]) is represented on Figure 33. The refinement poset on regular subdivisions of this
point configuration is represented in Figure 34.

Figure 33. Two non-regular triangulations.

Exercice 116. Show that the triangulations of Figure 33 are not regular. (Hint: suppose their
exists a height function whose lower envelope projects to one of these triangulations. Up to an
affine function, assume that the height of the three interior vertices is 0, and give inequalities on
the height of the remaining three vertices to find a cyclic contradiction).

Exercice 117. Show that all triangulations of a point set in convex position are regular.

4.6. Secondary polytope. We now study the secondary polytope and secondary fan of a planar
point set. These objects were introduced by Gelfand, Kapranov, and Zelevinsky [GKZ94]. The
results presented here for planar point sets extend to higher dimension. See [DRS10].
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Figure 34. The refinement poset on regular subdivisions of the mother of all configuration.

Definition 118. The volume vector of a triangulation T of a point set P is the vector of RP

defined by

Φ(T ) :=

( ∑
p∈4∈T

vol(4)

)
p∈P

In other words, the coordinate corresponding to point p ∈ P is the area of the star of p in T . The
secondary polytope ΣPoly(P) of P is the convex hull of the volume vectors of all triangulations of P,

ΣPoly(P) := conv {Φ(T ) | T triangulation of P} .

For example, the secondary polytope of the mother of all example is represented in Figure 35.

Definition 119. The secondary cone of a subdivision S of a point set P is the polyhedral cone

C(S) :=
{
ω ∈ RP

∣∣ S refines S(P, ω)
}
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Figure 35. The secondary polytope of the mother of all example.

corresponding to all height functions whose lower convex hull projects to S. The secondary
fan ΣFan(P) of P is collection of the secondary cones of all subdivisions of P,

ΣFan(P) := {C(S) | S subdivision of P} .
It is a complete polyhedral fan.

Example 120. Consider the point configuration P = {(0, 0), (3, 0), (0, 3), (3, 3), (1, 1)} of Exam-
ple 114. The volume vectors of the four triangulations are given by:

(9, 9/2, 9/2, 9, 0) (9/2, 9, 9, 9/2, 0) (3, 15/2, 15/2, 9/2, 9/2) (3, 9/2, 9/2, 6, 9).

The projection of the secondary polytope ΣPoly(P) on the plane generated by the last two coordi-
nate vectors is represented in Figure 36 (left). We look at what height functions produce the nine
regular subdivisions of Figure 32. Without loss of generality (affine invariance), we restrict our
attention to the height functions ω : P→ R with ω1 = ω2 = ω3 = 0. The nine regular subdivisions
of Figure 32 then correspond to the following inequalities:

(i) ω4 = ω5 = 0,
(ii) ω4 = 0, ω5 > 0,
(iii) ω4 > 0, ω5 = 0,
(iv) ω4 + 3ω5 = 0, ω5 < 0,
(v) ω4 < 0, ω4 − 3ω5 = 0,

(vi) ω4 < 0, ω4 − 3ω5 < 0,
(vii) ω4 > 0, ω5 > 0,
(viii) ω4 + 3ω5 > 0, ω5 < 0,

(ix) ω4 + 3ω5 < 0, ω4 − 3ω5 > 0.

The corresponding secondary fan ΣFan(P) is represented in Figure 36 (middle). Finally, the re-
finement poset of regular subdivisions of P is represented in Figure 36 (right).
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Figure 36. The secondary polytope (left), the secondary fan (middle), and the
poset of regular subdivisions (right) of the set {(0, 0), (3, 0), (0, 3), (3, 3), (1, 1)}.

Theorem 121 (Gelfand, Kapranov, and Zelevinsky [GKZ94]). Let P be a planar point set in
general position.

(i) The dimension of the secondary polytope ΣPoly(P) is |P| − 3.
(ii) The secondary fan ΣFan(P) is the inner normal fan of the secondary polytope ΣPoly(P).

(iii) The face lattice of the secondary polytope ΣPoly(P) is isomorphic to the refinement poset of
regular subdivisions of P.

Proof. We start with (i). The lower bound on dim(ΣPoly(P)) is obtained by induction on |P|.
It is clear when |P| = 3 since the secondary polytope is reduced to a single point. For |P| ≥ 4,
consider an arbitrary point p ∈ P. If p lies in the convex hull of P r p, a triangulation T of P is
a triangulation of P r p iff Φ(T )p = 0. Therefore,

ΣPoly(P r p) = ΣPoly(P) ∩
{
x ∈ RP

∣∣ xp = 0
}
.

Similarly, if p is on the convex hull of P, we obtain that

ΣPoly(P r p) = ΣPoly(P) ∩
{
x ∈ RP

∣∣ xp = vol(conv(P))− vol(conv(P r p))
}
.

It immediately follows by induction that dim(ΣPoly(P)) ≥ |P|−3. To prove the reverse inequality,
we exhibit three independent linear relations satisfied by the volume vectors of the triangulations
of P. First, since a triangulation T of P decomposes the convex hull of P into triangles, we obtain:

vol(conv(P)) =
∑
4∈T

vol(4) =
∑
4∈T

∑
p∈4

vol(4)

3
=

1

3

∑
p∈P

∑
p∈4∈T

vol(4) =
1

3

∑
p∈P

Φ(T )p.

The other two linear relations are obtained from the center of mass cm(conv(P)) of the convex
hull of P:

vol(conv(P)) · cm(conv(P)) =
∑
4∈T

vol(4) · cm(4) =
∑
4∈T

vol(4) ·
(

1

3

∑
p∈4

p

)
=

1

3

∑
p∈P

Φ(T )p · p,

since the center of mass of a triangle pqr coincides with its vertex barycenter (p + q + r)/3. Note
that this equality between two points in the plane gives two independent relations.

We now prove (ii). Consider a lifting function ω : P → R and a triangulation T of P. Let
fT,ω : R2 → R denote the piecewise linear map such that fT,ω(p) = ω(p) for p ∈ P, and which is
affine on each triangle of T . Then the volume below the surface defined by fT,ω is∫
conv(P)

fT,ω(x) dx =
∑
4∈T

∫
4
fT,ω(x) dx =

∑
4∈T

vol(4)

3

∑
p∈4

ω(p) =
1

3

∑
p∈P

ω(p) ·
∑

p∈4∈T

vol(4) =
〈Φ(T )|ω〉

3
.



44 VINCENT PILAUD

It follows that for any lifting function ω : P→ R and any triangulation T of P distinct from the
regular triangulation S(P, ω) induced by ω, we have

〈Φ(S(P, ω))|ω〉 < 〈Φ(T )|ω〉.
Said differently, for any regular triangulation T of P, the normal cone of Φ(T ) in ΣPoly(P) is the
secondary cone C(T ) of T . This achieves the proof of Point (ii).

Finally, Point (iii) is immediate from (ii) and the definition of the secondary fan. �

Exercice 122. Compute the volume vectors of all triangulations of the mother of all configuration.
What happens to the volume vectors of the two non-regular triangulations? What happens if we
slightly rotate the three outer vertices clockwise? (Hint: show that one of the two triangulations of
Figure 33 becomes regular while the other remains non-regular). Deduce that some triangulations
are non-regular even under small perturbations of their vertex sets.
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5. Permutahedra and associahedra

This section focusses on the associahedron. The boundary complex of its polar is isomorphic
to the simplicial complex of crossing-free internal diagonals of a convex polygon. In particular,
its vertices correspond to triangulations of the polygon, and its edges correspond to flips between
triangulations. Such a polytope can be constructed as the secondary polytope of a convex poly-
gon. We present in this section an alternative construction of the associahedron [Lod04], with
a more combinatorial flavor. It connects the associahedron to the braid arrangement and to the
permutahedron.

5.1. Catalan families. This section is devoted to triangulations of a convex polygon, which are
combinatorially equivalent to other relevant Catalan families. The following proposition provides
some classical examples. A list of Catalan families can be found in [Sta12, Exercice 6.19].

Proposition 123. The following Catalan families are in bijective correspondence:

(i) triangulations of a convex (n+ 3)-gon,
(ii) binary trees with n+ 1 internal nodes,

(iii) rooted plane trees with n+ 2 nodes,
(iv) Dyck paths of length 2n+ 2 (i.e. paths with up steps ↗ and down steps ↘ starting at (0, 0)

finishing at (n+ 1, n+ 1) and which never go below the horizontal axis),
(v) valid bracketings of a non-associative product on n+ 2 elements.

Proof. The bijections between the first four families are illustrated on Figure 37. Finally, a binary
tree gives a bracketing of its leafs. For example, the binary tree of Figure 37 corresponds to the
bracketing ((x1((x2x3)x4)(x5x6)).

Figure 37. Bijections between Catalan families. �

Remark 124. It is not difficult (exercice) to work out what does a flip between two triangulations
translates through these bijections to the different Catalan families. In particular, it is called a
rotation on binary trees. This is illustrated on Figure 38.

Figure 38. Flips on the different Catalan families.
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Proposition 125. The number of triangulations of the (n+3)-gon is the (n+1)st Catalan number

Cn+1 =
1

n+ 2

(
2n+ 2

n+ 1

)
.

Proof. There are several different possible proofs of this result. Here, we use a recursion formula
on the number Tn of triangulations of the (n+ 3)-gon. This formula translates the fact that one
can transform a triangulation of the (n+3)-gon into a triangulation of the (n+2)-gon by flattening
the triangle containing the boundary edge [0, n + 2]. This transformation is not one-to-one: the
number of triangulations of the (n+ 3)-gon that could give rise to a given triangulation T of the
(n+ 2)-gon is the degree of vertex 0 in T . Since the average degree of vertex 0 in a triangulation
of the (n+ 2)-gon is 2(2n+ 1)/(n+ 2), we get the induction formula

Tn =
2(2n+ 1)

n+ 2
Tn−1.

From this, we deduce that

Tn =
2n+1(2n+ 1)(2n− 1) . . . 3 · 1

(n+ 2)(n+ 1) . . . 2 · 1
=

(2n+ 2)!

(n+ 2)!(n+ 1)!
=

1

n+ 2

(
2n+ 2

n+ 1

)
= Cn+1. �

Exercice 126. (1) Prove that the number Tn of triangulations of the (n+ 3)-gon satisfies

Tn =
∑

j∈[n+1]

Tj−2 · Tn−j .

(Hint: Decompose any triangulation of the (n+3)-gon as the triangle 0, j, n+2 containing the
boundary edge [0, n+ 2] together with a triangulation of the (j + 1)-gon and a triangulation
of the (n+ 3− j)-gon).

(2) Derive from this equation that the generating function

T (x) :=
∑
n∈N

Tn−1 x
n

satisfies the functional equation

T (x) = 1 + xT (x)2.

(3) Deduce that

T (x) =
1 +
√

1− 4x

2x
.

(4) Using that

(1 + y)1/2 =
∑
n∈N

(
1/2

n

)
yn, where

(
1/2

n

)
=

1/2(1/2− 1)(1/2− 2) . . . (1/2− n+ 1)

n!
,

deduce the formula for the Catalan number.

Exercice 127. Show directly that the inductive formula in the proof of Proposition 125 holds for
the other families of Proposition 123.

Proposition 128. The number of non-crossing sets of k diagonals of the (n+ 3)-gon is

1

n+ 3 + k

(
n+ 3 + k

k + 1

)(
n

k

)
.

Exercice 129. Check that Proposition 128 indeed gives the expected number of diagonals, flips,
and triangulations.
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5.2. The associahedron as a simplicial complex. The simplicial associahedron is the simpli-
cial complex of crossing-free subsets of diagonals of the (n+ 3)-gon. We have

• vertices ←→ diagonals of the (n+ 3)-gon,
• ridges ←→ flips between triangulations,
• facets ←→ triangulations of the (n+ 3)-gon.

This simplicial complex was defined by Stasheff in [Sta63].

Exercice 130. What is the number of vertices, ridges, facets of the simplicial associahedron?
What is the number of k-dimensional faces. (Hint: check Proposition 128).

The 2-dimensional simplicial associahedron and its dual are represented in Figure 39. The
simplicial associahedron can be realized as the boundary complex of the secondary polytope of
a convex polygon, see e.g. Figure 40 (left). We present below other relevant constructions of the
associahedron, with a more combinatorial flavor.

Figure 39. The 2-dimensional simplicial associahedron (left) and its dual (right).

0 5

1 42 3

Figure 40. Two realizations of the 3-dimensional associahedron: as the sec-
ondary polytope of a regular hexagon (left) and using Loday’s coordinates (right).
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The facet-ridge graph of the associahedron is the flip graph on triangulations of a polygon. The
diameter of this graph has been extensively studied. The following exercices prepare the recent
result of Pournin [Pou14] which is too technical to be proven in these notes.

Exercice 131. Show that the diameter of the n-dimensional associahedron is at most 2n − 4
for n ≥ 10. (Hint: Denote by Ti the triangulation of the (n + 3)-gon where all diagonal are
incident to vertex i. Show that any triangulation T can be flipped to Ti using at most |T r Ti|
flips. Using that the average degree of a vertex in the union of two triangulations is 4−12/(n+3),
conclude to obtain the bound 2n− 4).

Exercice 132. Show that the diameter of the n dimensional associahedron is at least 3n/2. (Hint:
show that any two triangulations of a 2m-gon containing respectively all even and all odd ears,
are at distance at least 3m).

Theorem 133 (Pournin [Pou14]). The diameter of the n-dimensional associahedron is pre-
cisely 2n− 4 for n > 9.

5.3. The permutahedron and the braid arrangement. The following polytope is a classical
polytope with applications to algebraic combinatorics and Coxeter groups [Hum90]. We denote
by (e1, . . . , en+1) the canonical basis of Rn+1.

Definition 134. The permutahedron Perm(n) is the convex polytope obtained equivalently as

(i) either the convex hull of the vectors
∑
i∈[n+1] σiei ∈ Rn+1 for all permutations σ ∈ Sn+1,

(ii) or the intersection of the hyperplane H := H=([n + 1]) with the half-spaces H≥(R) for
∅ 6= R ⊂ [n+ 1], where

H=(R) :=

{
x ∈ Rn+1

∣∣∣∣ ∑
r∈R

xr =

(
|R|+ 1

2

)}
and H≥(R) :=

{
x ∈ Rn+1

∣∣∣∣ ∑
r∈R

xr ≥
(
|R|+ 1

2

)}
,

(iii) or the Minkowski sum of all segments [er, es] for r 6= s ∈ [n+ 1].

The normal fan of the permutahedron is the fan defined by the braid arrangement in H, i.e. the
arrangement of the hyperplanes {x ∈ H | xr = xs} for r 6= s ∈ [n + 1]. Its k-dimensional cones
correspond to the surjections from [n + 1] to [k + 1], or equivalently to the ordered partitions
of [n+ 1] into k + 1 parts.

Exercice 135. (1) Show that the set of surjections from [n+ 1] to [k+ 1] is in bijection with the
set of ordered partitions of [n+ 1] into k + 1 parts. (Hint: partition [n+ 1] according to the
images under a surjection).

(2) Show that the number of surjections from a finite set A to a finite set B, with |A| ≥ |B| is
given by

|B|∑
p=0

(−1)p
(
|B|
p

)
(|B| − p)|A|.

(Hint: Apply the inclusion-exclusion formula to the setsXb := {f : A→ B | b /∈ f(A)} for b ∈ B
to compute the number of applications from A to B that are not surjections, and conclude).

(3) Deduce the number of k-dimensional faces of the permutahedron.

The 3-dimensional permutahedron and braid arrangement are represented in Figures 41 and 42
respectively.

5.4. Loday’s associahedron. Let P denote a convex (n+3)-gon whose vertices are labeled from
left to right by 0, . . . , n+ 2 and such that [0, n+ 2] is the top boundary edge.

For a triangulation T of P, we denote by T ∗ the corresponding binary tree, whose nodes
are labeled in infix search labeling. Equivalently (exercice), the node dual to triangle ijk with
i < j < k is labeled by j∗. The Loday vector of the triangulation T is the vector Lod(T ) whose
jth coordinate is the product of the number of leaves in the left subtree by the number of leaves
in the right subtree of node j∗ in the dual tree T ∗.
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Figure 41. The 3-dimensional permutahedron Perm(3), with faces labeled by
surjections (left) or ordered partitions (right).
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Figure 42. The 3-dimensional braid fan, with cones labeled by surjections (left)
or ordered partitions (right).

For a diagonal δ of P, we denote by B(δ) the labels of the points of P below δ. We denote
by H≥(δ) the half-space H≥(B(δ)) and by H=(δ) the hyperplane H=(B(δ)).

Finally, for a subset R ⊂ [n+ 1], we denote by 4R := conv {er | r ∈ R} the face of the standard
n-dimensional simplex 4[n+1].

Proposition 136 (Loday [Lod04]). Let δ be either an internal diagonal or the upper boundary
edge [0, n+ 2] of P, and let T be a triangulation of P.

(i) The point Lod(T ) is contained in the half-space H≥(δ).
(ii) The point Lod(T ) lies on the hyperplane H=(δ) if and only if δ belongs to T .

Proof. For any j ∈ [n + 1], the coordinate Lod(T )j is the product of the number of leaves in the
left subtree by the number of leaves in the right subtree of node j∗ in the dual tree T ∗. We can
also interpret it as the number of paths between two leaves of T ∗ whose maximum is reached at j∗.

Assume first that δ belongs to T . Consider a path π between two leaves of T ∗. Then the
maximum of π is below δ if and only if the two endpoints of π are below δ. Therefore,∑

j∈B(δ)

Lod(T )j =

(
|B(δ)|+ 1

2

)
since it counts precisely all paths between two leaves of T ∗ below δ.
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Assume now that δ does not belong to T . We prove by induction on |B(δ)| that Lod(T ) lies
in the half-space H≥(δ) but not on the hyperplane H=(δ). Let uvw be any triangle of T which
crosses δ and such that v ∈ B(δ). Let δ1 and δ2 denote the two diagonals connecting the endpoints
of δ to v. By induction hypothesis, we obtain∑

j∈B(δ)

Lod(T )j =
∑

j∈B(δ1)

Lod(T )j + Lod(T )v +
∑

j∈B(δ2)

Lod(T )j

>

(
|B(δ1)|+ 1

2

)
+
(
B(δ1) + 1

)(
B(δ2) + 1

)
+

(
|B(δ2)|+ 1

2

)
=

(
|B(δ)|+ 1

2

)
,

since |B(δ)| = |B(δ1)|+ |B(δ2)|+ 1. �

Theorem 137 (Loday [Lod04]). The following equivalent descriptions define an n-dimensional
associahedron Asso(n):

(i) the convex hull of the points Lod(T ) for all triangulations T of P,
(ii) the intersection of the hyperplane H with the half-spaces H≥(δ) for all diagonals δ of P,

(iii) the Minkowski sum of the faces 4I of the standard simplex, for I interval of [n+ 1].

Proof. Consider the convex hull conv{Lod(T )} of the points Lod(T ), for all triangulations T of P.
For any internal diagonal δ of P, the hyperplane H=(δ) supports a priori a face of conv{Lod(T )}.
For a triangulation T of P containing the diagonal δ, consider the triangulations T1, . . . , Tn−1
of P obtained by flipping each internal diagonal δ1, . . . , δn−1 of T distinct from δ. By Proposi-
tion 136, the point Lod(Ti) is contained in all H=(δj) for j 6= i but not in H=(δi). Therefore,
the points Lod(T ),Lod(T1), . . . ,Lod(Tn−1) are affine independent, and they are all contained in
the hyperplane H=(δ). The face supported by H=(δ) is thus a facet of conv{Lod(T )}. It fol-
lows that each point Lod(T ) is in fact a vertex of conv{Lod(T )}, as the intersection of at least n
facets. The lattice of crossing-free sets of internal diagonals of P thus injects in the face lattice
of conv{Lod(T )}, since the vertex-facet incidences are respected. Since both are face lattices of
n-dimensional polytopes, they must be isomorphic. As a consequence, conv{Lod(T )} is indeed an
associahedron and its facet supporting hyperplanes are precisely the hyperplanes H=(δ), for all
internal diagonals δ of P. This proves Parts (i) and (ii) of the statement.

For Part (iii), recall that the minimum of a linear functional f : Rn+1 → R on a Minkowski
sum is the sum of the minimums of f on each summand. For any I, J ⊆ [n + 1], The minimum
of the functional fJ(x) =

∑
j∈J xj on the face 4I of the standard simplex is 1 if I ⊆ J and 0

otherwise. It follows that for an interval J , the minimum of fJ on the Minkowski sum
∑
I 4I ,

for I non-empty interval of [n + 1], is the number of non-empty subintervals of J , thus
(|J|+1

2

)
.

We conclude that the Minkowski sum
∑
I 4I for I non-empty interval of [n + 1] coincides with

the intersection of the hyperplane H with the half-spaces H≥(δ) for all diagonals δ of P. �

For example, Loday’s 2-dimensional associahedron is represented in Figure 43 (right) and Lo-
day’s 3-dimensional associahedron is represented in Figure 40 (right).

5.5. Normal fan. The normal fan of Loday’s associahedron Asso(n) is closely related to the braid
arrangement discussed in Section 5.3. We need the following lemma, whose proof is immediate
from the definition of the Loday vector.

Lemma 138. Let T and T̃ be two triangulations of P related by a flip, let δ ∈ T and δ̃ ∈ T̃ be

the two diagonals of P such that T r δ = T̃ r δ̃, and let i < j ∈ [n+ 1] label the two intermediate

vertices of the quadrilateral with diagonals δ and δ̃. If δ∗ is directed from i∗ to j∗, then δ̃∗ is

directed from j∗ to i∗, and the difference Lod(T̃ )− Lod(T ) is a positive multiple of ei − ej.

Proof. A flip in the triangulation T is a rotation in its dual binary tree T ∗. Any node k∗ of T ∗

not incident to the rotated edge is preserved: it keeps the same children, and thus the coordi-
nate Lod(T )k is preserved. Since the sum of all coordinates is preserved, it follows that the vec-

tor Lod(T̃ )−Lod(T ) is a multiple of ei−ej . Finally, it is easy to check that Lod(T̃ )i−Lod(T )i > 0
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Figure 43. The 2-dimensional permutahedron Perm(2) (left) and Loday’s asso-
ciahedron Asso(2) (right).

since it is the product of the number of leaves in the left child of i by the number of leaves in the
right child of j. �

Proposition 139. For any triangulation T of P, the cone C(T ) of the vertex Lod(T ) of the
associahedron Asso(n) is the incidence cone of the dual tree T ∗ while the normal cone C�(T )
of Lod(T ) is the braid cone of the dual tree T ∗, that is,

C(T ) = cone {ei − ej | i∗j∗ ∈ T ∗} and C�(T ) =
⋂

i∗j∗∈T∗
{u ∈ H | ui ≤ uj} ,

where i∗j∗ ∈ T ∗ means that i∗j∗ is an oriented arc of T ∗.

Proof. Lemma 138 ensures that C(T ) = cone {ei − ej | i∗j∗ ∈ T ∗}. It then follows by polarity
that C�(T ) =

⋂
i∗j∗∈T∗ {u ∈ H | ui ≤ uj}. �

Given a triangulation T of P, its dual binary tree T ∗, oriented towards its root, is an acyclic
graph labeled by [n+ 1] and its transitive closure defines a partial order ≺T on [n+ 1]. Remember
that a linear extension of ≺T is a linear order ≺L such that i ≺T j implies i ≺L j. Equivalently,
it can be seen as a permutation σ of [n+ 1] such that i ≺T j implies σ(i) < σ(j).

Proposition 140. For any triangulation T of P, the normal cone C�(T ) in Asso(n) is the union
of the normal cones C�(σ) in Perm(n) of all linear extensions σ of the transitive closure of T ∗.

This proposition defines a surjection κ from the permutations of [n + 1] to the triangulations
of P, which sends a permutation σ of [n+ 1] to the unique triangulation T of P such that C�(T )
contains C�(σ). By Proposition 140, the fiber κ−1(T ) of a triangulation T of P is the set of
linear extensions of the dual tree T ∗. The surjection κ can be expressed combinatorially either on
triangulations or on binary trees as follows:

(1) Fix a permutation σ of [n+ 1]. For i ∈ {0, . . . , n+ 1}, define πi(σ) to be the x-monotone path
in P joining the vertices 0 and n+2 and passing through the vertices of [n+1]rσ−1([i]), with
the convention that [0] = ∅. The sequence of paths π0(σ), π1(σ), . . . , πn+1(σ) sweeps the poly-
gon P, starting from the lower hull of P and ending with the single edge [0, n+2]. The triangu-
lation κ(σ) associated to the permutation σ is the union of the paths π0(σ), π1(σ), . . . , πn+1(σ).

(2) The dual binary tree of κ(σ) can also be obtained by successive insertion in binary search tree
of the values of the permutation σ, read from right to left.
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Figure 44. Two triangulations T ex and T̃ ex of the polygon Pex and their spines.

Exercice 141. For a triangulation T of P and a permutation σ of [n+1], prove that the following
assertions are equivalent:

(i) The dual tree T ∗ is a directed path (with blossoms) labeled by σ.
(ii) The transitive closure ≺T of the dual tree T ∗ is the linear order defined by σ.
(iii) The fiber of T with respect to the map κ is the singleton κ−1(T ) = {σ}.
(iv) The vertex Lod(T ) of Asso(n) coincides with the vertex (σ(1), . . . , σ(n+ 1)) of Perm(n).
(v) The cone C(T ) of Asso(n) coincides with the cone C(σ) of Perm(n).

(vi) The normal cone C�(T ) of Asso(n) coincides with the normal cone C�(σ) of Perm(n).

5.6. Further realizations of the associahedron. In [HL07], Hohlweg and Lange extend Lo-
day’s construction of the associahedron to obtain many relevant realizations of the associahedron,
which all fulfill the properties discussed in the last two sections.

Consider a convex (n + 3)-gon P with no two points on the same vertical line. We label
the vertices of P from 0 to n + 2 by increasing x-coordinate. We call up and down points the
vertices of the upper and lower hull of P respectively, and we call up labels U ⊆ [n+ 1] and down
labels D ⊆ [n+ 1] their respective label sets. See Example 142 and Figure 44.

Let δ be a diagonal of P (internal or not). We denote by A(δ) the set of labels j ∈ [n+ 1] of
the points above the line supporting δ where we include the endpoints of δ if they are down, and
exclude them if they are up. Similarly, we denote by B(δ) the set of labels j ∈ [n+ 1] of the points
below the line supporting δ where we include the endpoints of δ if they are up, and exclude them
if they are down.

Let T be a triangulation of P. The spine of T is its oriented and labeled dual tree T ∗, with

• an internal node j∗ for each triangle ijk of T where i < j < k,
• an arc δ∗ for each internal diagonal δ of T , oriented from the triangle below δ to the

triangle above δ, and
• an outgoing (resp. incoming) blossom δ∗ for each top (resp. bottom) boundary edge δ of P.

The up nodes and down nodes are the internal nodes of T ∗ labeled by up and down labels re-
spectively. Observe that an up node has indegree one and outdegree two, while a down node has
indegree two and outdegree one. See Example 142 and Figure 44.

Example 142. To illustrate these definitions, consider the decagon Pex with U ex = {2, 3, 5, 7} and
Dex = {1, 4, 6, 8} represented in Figure 44. We have e.g. A(27) = {3, 5} and B(28) = {1, 2, 4, 6}.
Two triangulations T ex (left) and T̃ ex (right) of Pex and their spines are represented.The vertices of
the polygon are represented with dots •, while the up and down nodes of the spines are respectively
represented with up and down triangles N and H.
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As in Loday’s construction, we can use these spines to construct a relevant realization Asso(P)
of the associahedron. We describe the vertices of Asso(P), which correspond to triangulations
of P. Consider a triangulation T of P with spine T ∗. Let Π be the set of all undirected maximal
paths in T ∗, that is, undirected paths connecting two blossoms of T ∗. Note that a path π ∈ Π is
not directed although each edge of π is oriented (as an arc of the spine T ∗). For any j ∈ [n+ 1],
we denote by R(j) the set of paths of Π whose edge orientation is reversed at node j∗. In other
words, if j is a down (resp. up) label, then R(j) is the set of paths of Π which use the two incoming
(resp. outgoing) arcs of j∗. It follows that |R(j)| is the product of the number of blossoms in the
two incoming (resp. outgoing) subtrees of j∗ in T ∗. Associate to the triangulation T of P the
point HL(T ) ∈ Rn+1 with coordinates

xj(T ) :=

{
|R(j)| if j ∈ D,
n+ 2− |R(j)| if j ∈ U.

The following statement, as well as results similar to the properties of Loday’s associahedron
described in the previous section, are proved in [HL07]. See also [LP13] for a presentation using
spines.

Theorem 143 (Hohlweg and Lange [HL07]). The following equivalent descriptions define an
associahedron Asso(P):

(i) the convex hull of the points HL(T ) for all triangulations T of P,
(ii) the intersection of the hyperplane H with the half-spaces H≥(δ) for all diagonals δ of P.

For example, Figure 40 illustrates two 3-dimensional associahedra of Hohlweg and Lange.
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Figure 45. Two Hohlweg-Lange’s associahedra. The left one is Loday’s associahedron.
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6. Further flip graphs and brick polytopes

The last section of these lecture notes explores a more specific topic. We first interpret two
relevant graphs of flips on geometric graphs (on pseudotriangulations and on multitriangulations)
as flip graphs on pseudoline arrangements with contact points supported by a given sorting net-
work. We then construct the brick polytope of a sorting network N . Under certain conditions on
the network N , this polytope realizes the flip graph on pseudoline arrangements supported by N .
This section is based on [PP12] and [PS12].

6.1. Pseudotriangulations. In this section, P denotes a planar point set in general position
with i interior points and b boundary points, and n = i+ b. A set of edges with endpoints in P is
pointed if all edges incident to a given point of P are contained in an open half-space (thus, they
form a pointed cone). Equivalently, each point of P is incident to an angle greater than π.

Definition 144. A pseudotriangle is a simple polygon ∆ with precisely three convex corners,
connected by three concave chains. A line is said to be tangent to ∆ if:

(i) either it passes through a corner of ∆ and separates its two incident edges;
(ii) or it passes through a concave vertex of ∆ and does not separate its two incident edges.

Figure 46 (left) shows three pseudotriangles with their pairwise common tangents.

Figure 46. Three pseudotriangles and their common tangents (left), and two
pseudotriangulations of a point set connected by a flip (right).

Definition 145. A pseudotriangulation of the point set P is a set T of edges between points of P
which satisfies the following four equivalent properties:

(i) T decomposes the convex hull of P into n− 2 non-overlapping pseudotriangles;
(ii) T decomposes the convex hull of P into non-overlapping pseudotriangles and has minimal

cardinality for this property;
(iii) T is a crossing-free and pointed set of 2n− 3 edges;
(iv) T is a maximal crossing-free and pointed set of edges.

Examples of pseudotriangulations are illustrated on Figure 46 (right).

Proof. We need to prove that these four properties are indeed equivalent. Assume that T decom-
poses the convex hull of P into non-overlapping polygons. Let f denote the number of polygons
of T and let p denote the number of pointed vertices of P in T . For p ∈ P, let deg(p) and cor(p)
denote the degree and the number of convex corners incident to p. Note that cor(p) = deg(p)− 1
if p is pointed in T , and cor(p) = deg(P) otherwise. We have

2e =
∑
p∈P

deg(p) =
∑
p∈P

cor(p) + p ≥ 3f + p.

By application of Euler’s formula, we therefore get that

e ≤ 3n− 3− p and f ≤ 2n− 2− p,
with equality if all bounded faces of T are pseudotriangles. These inequalities ensure that
(i) =⇒ (ii) and (iii) =⇒ (iv).
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We claim moreover that there exists a crossing-free pointed set of 2n−3 edges that decomposes
the convex hull of P into n−2 non-overlapping pseudotriangles. It can be constructed by induction
on |P|: delete temporarily a point p of the convex hull of P, construct a suitable set of edges
for Prp, and add the point P together with the two tangents from p to the convex hull of Prp.
Together with the above inequalities, this ensures that (ii) =⇒ (i) and (iv) =⇒ (iii).

Finally, we obtain that (i)⇐⇒ (iii) by one more application of the previous inequalities. �

Proposition 146. For any internal edge e in a pseudotriangulation T of P, there is a unique
pseudotriangulation T ′ of P distinct from T and containing T re. Moreover, the edge e′ in T ′rT
can be equivalently characterized as follows:

• e′ is the unique common tangent between the two pseudotriangles of T incident to e;
• the two pseudotriangles of T incident to e form a pseudoquadrangle; the edges e and e′

are the only interior edges on the two geodesics between pairs of opposite angles of this
pseudoquadrangle.

The transformation from T to T ′ is called a flip. See Figure 46 (right) for an illustration.

Proof. By edge count, T r e decomposes the convex hull of P into n − 4 pseudotriangles and a
pseudoquadrangle, obtained by glueing the two pseudotriangles of T incident to e. There is only
two ways to pseudotriangulate a pseudoquadrangle: include either of the two geodesics between
opposite corners of the pseudoquadrangle. �

Exercice 147. Flip all the internal edges of the pseudotriangulation of Figure 46.

Exercice 148. Show that the flip graph on pseudotriangulations of a planar point set P with i
interior points and b boundary points is (2i+ b− 3)-regular and connected.

It turns out that the flip graph on pseudotriangulations of P is polytopal. The proof, based
on rigidity properties of pseudotriangulations and the polyhedron of expansive motions of a point
set, is omitted in these notes.

Theorem 149 (Rote, Santos and Streinu [RSS03]). For any planar point set P with i interior
points and b boundary points, there exists an (2i + b − 3)-dimensional polytope, called pseudo-
triangulation polytope, whose vertices correspond to pseudotriangulations of P and whose edges
correspond to flips between them. More generally, the boundary complex of the polar of this polytope
is isomorphic to the simplicial complex of crossing-free and pointed sets of internal edges of P.

Two examples of pseudotriangulation polytopes are represented in Figure 47. We refer to the
survey article of Rote, Santos and Streinu [RSS08] for more details and references on pseudotri-
angulations and their applications.

Figure 47. Two pseudotriangulation polytopes [RSS03]. The rightmost picture
represents the Schlegel diagram of a 4-dimensional polytope (see [Zie95, Chap. 5]).
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6.2. Multitriangulations. Let P denote the vertex set of a convex n-gon. We are interested in
the following generalization of triangulations, introduced by Capoyleas and Pach [CP92] in the
context of extremal theory for geometric graphs. See Figure 48.

Definition 150. For ` ∈ N, an `-crossing is a set of ` mutually crossing edges of P. A k-
triangulation of the n-gon is a maximal (k + 1)-crossing-free set of edges of P.

Figure 48. 1-, 2-, and 3-triangulations of the octogon. Relevant, boundary, and
irrelevant edges are in red, green and blue respectively.

Observe that an edge can be involved in a (k+1)-crossing only if there remain at least k vertices
on each side. Such an edge is called k-relevant. An edge with exactly (resp. strictly less than)
k − 1 vertices on one side is a k-boundary edge (resp. a k-irrelevant edge). By maximality, every
k-triangulation consists of all the nk k-irrelevant plus k-boundary edges and some k-relevant edges
of P.

Exercice 151. What are the 1-triangulations of the n-gon P? Describe the k-triangulations of
the n-gon for n ≤ 2k + 3.

In [PS09], the triangles and their bisectors are generalized for k-triangulations as follows.

Definition 152. A k-star is a star polygon of type
{

2k+ 1/k
}

, that is, a set of edges of the form
{sjsj+k | j ∈ Z2k+1}, where s0, s1, . . . , s2k are cyclically ordered around the unit circle. A (strict)
bisector of a k-star is a (strict) bisector of one of its angles sj−ksjsj+k.

Figure 49. The four 2-stars of the 2-triangulation of Figure 48.

As for k = 1, where triangles provide a powerful tool to study triangulations, k-stars are useful
to understand k-triangulations. In the following theorem, we point out five properties of stars
proved in [PS09]. Figures 49 and 50 illustrate these results on the 2-triangulation of Figure 48.

Theorem 153 (Pilaud and Santos [PS09]). Let T be a k-triangulation of the n-gon. Then

(i) T contains exactly n− 2k k-stars and k(n− 2k − 1) k-relevant edges.
(ii) Each edge of T belongs to zero, one, or two k-stars, depending on whether it is k-irrelevant,

k-boundary, or k-relevant.
(iii) Every pair of k-stars of T has a unique common strict bisector.
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(iv) Flipping any k-relevant edge e of T into the common strict bisector f of the two k-stars
containing e produces a new k-triangulation T4{e, f} of the n-gon. T and T4{e, f} are the
only two k-triangulations of the n-gon containing T r {e}.

(v) The flip graph on k-triangulations of the n-gon is connected and regular of degree k(n−2k−1).

Figure 50. Two 2-triangulations of the octogon connected by a flip.

Exercice 154. Prove (i) assuming (ii) in Theorem 153. (Hint: double counting).

6.3. Pseudoline arrangements in the Möbius strip. LetM :=R2/(x, y) ' (x+π,−y) denote
the Möbius strip (without boundary). A pseudoline is the image λ under the canonical projec-
tion π : R2 → M of the graph {(x, f(x)) | x ∈ R} of a continuous and π-antiperiodic function
f : R → R (that is, which satisfies f(x + π) = −f(x) for all x ∈ R). When we consider two
pseudolines, we always assume that they have a finite number of intersection points. Thus, these
intersection points can only be either crossing points or contact points. Any two pseudolines always
have an odd number of crossing points (in particular, at least one). A pseudoline arrangement
with contact points is a finite set Λ of pseudolines such that any two of them have exactly one
crossing point and possibly some contact points. See Figure 51.

We are only interested in simple arrangements, that is, where no three pseudolines meet in a
common point. The support of Λ is the union of its pseudolines. Observe that Λ is completely
determined by its support together with its set of contact points. The first level of Λ is the external
hull of the support of Λ, i.e. the boundary of the external face of the complement of the support
of Λ. We define inductively the kth level of Λ as the external hull of the support of Λ minus its
first k − 1 levels.

Figure 51. Two pseudoline arrangements in the Möbius strip, one without and
one with contact points (white circles)

Remark 155. The usual definition of pseudoline arrangements does not allow contact points.
Here, they play a crucial role since we are interested in all pseudoline arrangements which share a
common support, and which only differ by their sets of contact points. To simplify the exposition,
we omit to specify that we work with pseudoline arrangements with contact points. Pseudoline
arrangements are also classically defined on the projective plane rather than the Möbius strip.
The projective plane is obtained from the Möbius strip by adding a point at infinity.
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There is a natural flip operation on pseudoline arrangements with contact points: exchange a
contact between two pseudolines λ and µ with the unique crossing between λ and µ. The flip graph
on pseudoline arrangements with the same support is connected and c-regular, where c denotes
the number of contact points (or equivalently, the number of vertices of the support minus

(
n
2

)
).

Figure 52. A flip in a pseudoline arrangement on the Möbius strip.

In fact, the flip graph on pseudotriangulations supported by S is the facet-ridge graph of the
simplicial complex ∆(S) whose ground set is the set of vertices of the support S and whose facets
are the sets of contact points of pseudoline arrangements supported by S. This simplicial complex
is pure of dimension c and it is known to be a sphere. An interesting open question is to determine
whether this sphere is polytopal:

Question 156. Is the simplicial complex ∆(S) the boundary complex of a simplicial polytope?
(This question is still open in general.)

6.4. Duality. In this section, we connect triangulations, pseudotriangulations, multitriangula-
tions and flip graphs on pseudoline arrangements. This connection appeared in [PP12]. We start
with the classical point-line duality in the plane.

Point-line duality — To a given oriented line in the Euclidean plane, we associate its an-
gle θ ∈ R/2πZ with the horizontal axis and its algebraic distance d ∈ R to the origin (i.e. the
value of 〈(−v, u)|·〉 on the line, where (u, v) is its unitary direction vector). Since the same line
oriented in the other direction gives an angle θ + π and a distance −d, this parametrization
naturally associates a point of the Möbius strip M :=R2/(θ, d) ∼ (θ + π,−d) to each line of the
Euclidean plane. In other words, the line space of the Euclidean plane is (isomorphic to) the
Möbius strip.

Via this parametrization, the set of lines passing through a point p forms a pseudoline p∗. The
pseudolines p∗ and q∗ dual to two distinct points p and q have a unique crossing point, namely
the line (pq). Thus, for a finite point set P in the Euclidean plane, the set P∗ := {p∗ | p ∈ P}
is a pseudoline arrangement without contact points (see Figure 53). Note that we always assume
general position in the remaining of the text to avoid triple point intersections.
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Figure 53. Two point sets and their dual pseudoline arrangements.
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Exercice 157. Describe the successive orders of the pseudolines from bottom to top directly in
the primal. These sequence of permutations is called the allowable sequence of the point set.

Exercice 158. Compare the k-edges of a point set P and the kth level in the dual pseudoline
arrangement P∗.

Triangulations — Let T be a triangulation of the convex polygon P. Then:

(i) the set ∆∗ of all bisectors to a triangle ∆ of T is a pseudoline;
(ii) the dual pseudolines ∆∗1,∆

∗
2 of any two triangles ∆1,∆2 of T have a unique crossing point

(the unique common bisector to ∆1 and ∆2) and possibly a contact point (when ∆1 and ∆2

share a common edge);
(iii) the set T ∗ := {∆∗ | ∆ triangle of T} is a pseudoline arrangement (with contact points);
(iv) T ∗ is supported by P∗ minus its first level (see Figure 54 (right)).

The next statement asserts that there is in fact a duality between triangulations of the convex
polygon P and pseudoline arrangements supported by the dual arrangement P∗ minus its first level.
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Figure 54. A triangulation T of a convex polygon P and the dual arrange-
ment T ∗ of T , drawn on the dual arrangement P∗ of P of Figure 53 (right). Each
pseudoline of T ∗ corresponds to a triangle of T ; each contact point in T ∗ cor-
responds to an edge in T ; each crossing point in T ∗ corresponds to a common
bisector in T .

Proposition 159. Let P be the vertex set of a convex polygon, and P∗1 denote the support of its
dual pseudoline arrangement minus its first level. Then:

(1) The dual arrangement T ∗ := {∆∗ | ∆ triangle of T} of a triangulation T of P is supported by P∗1.
(2) The primal set of edges E := {[p,q] | p,q ∈ P, p∗ ∧ q∗ contact point of Λ} of a pseudoline

arrangement Λ supported by P∗1 is a triangulation of P.

The first point was discussed above. We give two independent proofs for the second point:

Proof 1. Observe first that

|E| =
(
|P∗|

2

)
−
(
|Λ|
2

)
=

(
|P|
2

)
−
(
|P| − 2

2

)
= 2|P| − 3.

Let p,q, r, s be four points of P in cyclic order. Let t be the intersection of [p, r] and [q, s]. We
use the pseudoline t∗ as a witness to prove that [p, r] and [q, s] cannot both be in E. For this, we
count crossings of t∗ with P∗ and Λ respectively:

(i) Since the point t is not in P, the set P∗ ∪ {t∗} = (P ∪ {t})∗ is a (non-simple) pseudoline
arrangement, and t∗ crosses P∗ exactly |P| times.

(ii) Since t∗ is a pseudoline, it crosses each pseudoline of Λ at least once. Thus, it crosses Λ at
least |Λ| = |P| − 2 times.

(iii) For each of the points p∗ ∧ r∗ and q∗ ∧ s∗, replacing the crossing point by a contact point
removes two crossings with t∗.

Thus, [p, r] and [q, s] cannot both be in E, and E is crossing-free. �
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Proof 2. A flip on a triangulation T of P translates in the dual to a flip on the dual pseudoline
arrangement T ∗. Thus, the flip graph on triangulations of P is a subgraph of the flip graph on
pseudoline arrangements supported by P∗1. Since both are connected and regular of degree |P|−3,
they coincide. In particular, any pseudoline arrangement supported by P∗1 is the dual of a
pseudotriangulation of P. �

Pseudotriangulations — Let T be a pseudotriangulation of a point set P in general posi-
tion. Then:

(i) the set ∆∗ of all tangents to a pseudotriangle ∆ of T is a pseudoline;
(ii) the dual pseudolines ∆∗1,∆

∗
2 of any two pseudotriangles ∆1,∆2 of T have a unique crossing

point (the unique common tangent to ∆1 and ∆2) and possibly a contact point (when ∆1

and ∆2 share a common edge);
(iii) the set T ∗ := {∆∗ | ∆ pseudotriangle of T} is a pseudoline arrangement (with contact points);
(iv) T ∗ is supported by P∗ minus its first level (see Figure 55 (right)).

The next statement asserts that there is in fact a duality between pseudotriangulations of a point
set P and pseudoline arrangements supported by the dual arrangement P∗ minus its first level.
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Figure 55. A pseudotriangulation T of the point set P of Figure 53 (left), and
the dual arrangement T ∗ of T , drawn on the dual arrangement P∗ of P of Fig-
ure 53 (right). Each pseudoline of T ∗ corresponds to a pseudotriangle of T ; each
contact point in T ∗ corresponds to an edge in T ; each crossing point in T ∗ corre-
sponds to a common tangent in T .

Proposition 160. Let P be a finite point set in general position in the plane, and P∗1 denote the
support of its dual pseudoline arrangement minus its first level. Then:

(1) The dual arrangement T ∗ := {∆∗ | ∆ pseudotriangle of T} of a pseudotriangulation T of P is
supported by P∗1.

(2) The primal set of edges E := {[p,q] | p,q ∈ P, p∗ ∧ q∗ contact point of Λ} of a pseudoline
arrangement Λ supported by P∗1 is a pseudotriangulation of P.

Exercice 161. Adapt the two proofs of Proposition 159 to the case of pseudotriangulations.

Multitriangulations — Let T be a k-triangulation of a convex polygon P. Then:

(i) the set S∗ of all bisectors to a k-star S of T is a pseudoline;
(ii) the dual pseudolines S∗1 , S

∗
2 of any two k-stars S1, S2 of T have a unique crossing point (the

unique common bisector to S1 and S2) and possibly some contact points (when S1 and S2

share some common edges);
(iii) the set T ∗ := {S∗ | S k-star of T} is a pseudoline arrangement (with contact points);
(iv) T ∗ is supported by P∗ minus its first k levels (see Figure 56 (right)).

The next statement asserts that there is in fact a duality between multitriangulations of the
convex polygon P and pseudoline arrangements supported by the dual arrangement P∗ minus its
first k levels.
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Figure 56. A 2-triangulation T of the octogon and the dual arrangement T ∗ of T ,
drawn on the dual arrangement P∗ of P . Each pseudoline of T ∗ corresponds to a
2-star of T ; each contact point in T ∗ corresponds to an edge in T ; each crossing
point in T ∗ corresponds to a common bisector in T .

Proposition 162. Let P be the vertex set of a convex polygon, and P∗k denote the support of its
dual pseudoline arrangement minus its first k levels. Then:

(1) The dual arrangement T ∗ := {S∗ | S k-star of T} of a k-triangulation T of P is supported
by P∗k.

(2) The primal set of edges E := {[p,q] | p,q ∈ P, p∗ ∧ q∗ contact point of Λ} of a pseudoline
arrangement Λ supported by P∗k is a k-triangulation of P.

Exercice 163. Adapt the two proofs of Proposition 159 to the case of multitriangulations.

6.5. Pseudoline arrangements on (sorting) networks. A network N is a set of n horizontal
lines (called levels, and labeled from bottom to top), together with m vertical segments (called
commutators, and labeled from left to right) joining two consecutive horizontal lines, such that
no two commutators have a common endpoint — see e.g. Figure 57. The bricks of N are its
m−n+ 1 bounded cells. We say that a network is alternating when the commutators adjacent to
each intermediate level are alternatively located above and below it.

Figure 57. Three networks with 5 levels, 14 commutators and 10 bricks. The
first two are alternating, while the last one is not.

A pseudoline is an abscissa monotone path on the network N . A contact between two pseu-
dolines is a commutator whose endpoints are contained one in each pseudoline, and a crossing
between two pseudolines is a commutator traversed by both pseudolines. A pseudoline arrange-
ment (with contacts) is a set of n pseudolines supported by N such that any two of them have
precisely one crossing, some (perhaps zero) contacts, and no other intersection — see Figure 58.
Observe that in a pseudoline arrangement, the pseudoline which starts at level ` necessarily ends
at level n+1− ` and goes up at n− ` crossings and down at `−1 crossings. We denote by Arr(N )
the set of pseudoline arrangements supported by N . We say that a network is sorting when it
supports at least one pseudoline arrangement.

The flip operation on pseudoline arrangements on N is defined as in the previous section. An
example is illustrated on Figure 58.
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Figure 58. Two pseudoline arrangements, both supported by the rightmost net-
work N of Figure 57, and related by a flip. The left one is the greedy pseudoline
arrangement Γ(N ), whose flips are all decreasing. It is obtained by sorting the
permutation (5, 4, 3, 2, 1) according to the network N .

6.6. Brick polytopes. We denote by ∆(N ) the simplicial complex whose ground set is the set
of commutators of N and whose facets are the sets of contacts of the pseudoline arrangements
supported byN . It is known that this simplicial complex is a sphere, and a natural open question is
to determine whether it is the boundary complex of a polytope. This section answers this question
for a special family of sorting networks. The construction presented here appeared in [PS12].

Definition 164. Let N be a sorting network with n levels. The brick vector of a pseudoline
arrangement Λ supported by N is the vector ω(Λ) ∈ Rn whose ith coordinate is the number of
bricks of N located below the ith pseudoline of Λ (the one which starts at level i and finishes at
level n+ 1− i). The brick polytope Ω(N ) ⊂ Rn of the sorting network N is the convex hull of the
brick vectors of all pseudoline arrangements supported by N :

Ω(N ) := conv {ω(Λ) | Λ ∈ Arr(N )} ⊂ Rn.

We start by observing that the brick polytope is not full dimensional. Define the depth of a
brick of N to be the number of levels located above it, and let D(N ) be the sum of the depths of
all the bricks of N . Since any pseudoline arrangement supported by N covers each brick as many
times as its depth, all brick vectors are contained in the following hyperplane:

Lemma 165. The brick polytope Ω(N ) is contained in the hyperplane of equation
∑n
i=1 xi = D(N ).

Exercice 166. Describe the action of the vertical and horizontal reflections of the network on
the brick polytope.

Exercice 167. Describe the simplicial complex ∆(N ) and the brick polytope Ω(N ) for the net-
work N with 2 levels and m commutators.

Definition 168. The contact graph of a pseudoline arrangement Λ is the directed multigraph Λ#

with a node for each pseudoline of Λ and an arc for each contact of Λ oriented from the pseudoline
passing above the contact to the pseudoline passing below it.

2
1

5
4
3

2
1

5
4
3

Figure 59. The contact graphs of the pseudoline arrangements of Figure 58.
The connected components are preserved by the flip.

Lemma 169. The contact graphs of all pseudoline arrangements supported by N have the same
connected components.
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We call a sorting network reducible (resp. irreducible) when the contact graphs of the pseudoline
arrangements it supports are disconnected (resp. connected). We call irreducible components of a
sorting network N the networks obtained by restriction of N to the connected components of the
contact graphs of the pseudoline arrangements supported by N . We restrict to irreducible sorting
networks due to the following statement.

Proposition 170. Let N be a sorting network whose irreducible components are N1, . . . ,Np. Then
the simplicial complex ∆(N ) is isomorphic to the join of the simplicial complexes ∆(N1), . . . ,∆(Np)
and the brick polytope Ω(N ) is a translate of the product of the brick polytopes Ω(N1), . . . ,Ω(Np).

Among irreducible sorting networks, the following networks have the fewest commutators:

Definition 171. An irreducible sorting networkN is minimal if it satisfies the following equivalent
conditions:

(i) N has n levels and m =
(
n
2

)
+ n− 1 commutators.

(ii) The contact graph of a pseudoline arrangement supported by N is a tree.
(iii) The contact graphs of all pseudoline arrangements supported by N are trees.

For example, the networks of Figure 57 all have 5 levels and 14 commutators. The right-
most is reducible, but the other two are minimal. To be convinced, draw the greedy pseudoline
arrangement on these networks, and check that its contact graph is connected.

We use the contact graph Λ# to describe the cone of the brick polytope Ω(N ) at the brick
vector ω(Λ):

Theorem 172. The cone of the brick polytope Ω(N ) at the brick vector ω(Λ) is precisely the
incidence cone C(Λ#) of the contact graph Λ# of Λ:

cone {ω(Λ′)− ω(Λ) | Λ′ ∈ Arr(N )} = cone
{
ej − ei

∣∣ (i, j) ∈ Λ#
}
.

Proof. Assume that Λ′ is obtained from Λ by flipping a contact from its ith pseudoline to its jth

pseudoline. Then the difference ω(Λ′) − ω(Λ) is a positive multiple of ej − ei. This immediately
implies that the incidence cone C(Λ#) is included in the cone of Ω(N ) at ω(Λ).

Reciprocally, we have to prove that any facet F of the cone C(Λ#) is also a facet of the brick
polytope Ω(N ). According to Lemma 98 (iv), there exists a minimal directed cut from a source
set U to a sink set V (which partition the vertices of Λ#) such that 11V :=

∑
v∈V ev is a normal

vector of F . We denote by γ the commutators of N which correspond to the arcs of Λ# between U
and V . We claim that for any pseudoline arrangement Λ′ supported by N , the scalar product
〈11V |ω(Λ′)〉 equals 〈11V |ω(Λ)〉 when γ is a subset of the contacts of Λ′, and is strictly bigger than
〈11V |ω(Λ)〉 otherwise.

Remember first that the set of all pseudoline arrangements supported by N and whose set of
contacts contains γ is connected by flips. Since a flip between two such pseudoline arrangements
necessarily involves either two pseudolines of U or two pseudolines of V , the corresponding inci-
dence vector is orthogonal to 11V . Thus, the scalar product 〈11V |ω(Λ′)〉 is constant on all pseudoline
arrangements whose set of contacts contains γ.

Reciprocally, we consider a pseudoline arrangement Λ′ supported by N which minimizes the
scalar product 〈11V |ω(Λ′)〉. There is clearly no arc from U to V in Λ′#, otherwise flipping the
corresponding contact in Λ′ would decrease the value of 〈11V |ω(Λ′)〉. We next prove that we can
join Λ to Λ′ by flips involving two pseudolines of U or two pseudolines of V . As a first step, we
show that we can transform Λ and Λ′ into pseudoline arrangements Λ̂ and Λ̂′ in which the first
pseudoline coincide, using only flips involving two pseudolines of U or two pseudolines of V . We
can then conclude by induction on the number of levels of N .

Assume first that the first pseudoline (the one which starts at level 1 and ends at level n) of Λ
and Λ′ is in U . We sweep this pseudoline from left to right in Λ. If there is a contact above and
incident to it, the above pseudoline must be in U . Otherwise we would have an arc between V
and U in Λ#. Consequently, we are allowed to flip this contact. By doing this again and again
we obtain a pseudoline arrangement Λ̂ whose first pseudoline starts at the bottom leftmost point
and goes up whenever possible until getting to the topmost level. Since this procedures only relies
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on the absence of arc from V to U in Λ#, we can proceed identically on Λ′ to get a pseudoline
arrangement Λ̂′ with the same first pseudoline. Finally, if the first pseudoline of Λ and Λ′ is in V ,
then we can argue similarly but sweeping the pseudoline from right to left. �

Corollary 173. The brick polytope of an irreducible sorting network with n levels has dimension
n−1. In general, the brick polytope of a sorting network with n levels and p irreducible components
has dimension n− p.

Proof. Direct application of Lemma 98 (i), Proposition 170, and Theorem 172. �

Corollary 174. The brick vector ω(Λ) is a vertex of the brick polytope Ω(N ) if and only if the
contact graph Λ# of Λ is acyclic.

Proof. Direct application of Lemma 98 (ii) and Theorem 172. �

Theorem 175. For any minimal irreducible sorting network N , the simplicial complex ∆(N ) is
the boundary complex of the polar of the brick polytope Ω(N ). In particular, the graph of Ω(N ) is
the flip graph G(N ).

Proof. Since the contact graphs of the pseudoline arrangements supported by N are trees (see
Definition 171), the brick polytope Ω(N ) has one vertex for each pseudoline arrangement sup-
ported by N . Moreover, the 1-skeleton of the brick polytope is the flip graph on these pseudoline
arrangements. We conclude using for example Theorem 90. �

In the following two examples, we denote by B` the bubble sorting network with ` levels.

Example 176 (Triangulations). The brick polytope of the sorting network B1n+2 (obtained
from Bn+2 by erasing the top and bottom levels), is a translate of Loday’s associahedron.

Example 177 (Multitriangulations). The f -vectors of the brick polytopes Ω(B27), Ω(B28), Ω(B29)
and Ω(B210) are (6, 6), (22, 33, 13), (92, 185, 118, 25) and (420, 1062, 945, 346, 45) respectively. We
have represented Ω(B28) and Ω(B29) in Figures 60 and 61. The polytopes Ω(B27) and Ω(B28) are simple
while the polytope Ω(B29) has two non-simple vertices (which are contained in the projection facet
of the Schlegel diagram on the right of Figure 61) and the polytope Ω(B210) has 24 non-simple
vertices.

Exercice 178. Consider a reduced network N with n levels and
(
n
2

)
commutators. For any

distinct i, j ∈ [n], we labeled by {i, j} the commutator of N where the ith and jth pseudolines of
the unique pseudoline arrangement supported by N cross. Let Γ be a connected graph on [n]. We
define Z(Γ) to be the network with n levels and m =

(
n
2

)
+ |Γ| commutators obtained from N by

duplicating the commutators labeled by the edges of Γ. We say that Z(Γ) is a duplicated network.

(1) Describe the pseudoline arrangements supported by Z(Γ) as well as their contact graphs
(2) What is the simplicial complex ∆(Z(Γ)) and the flip graph on pseudoline arrangements sup-

ported by Z(Γ)?
(3) Describe the brick polytope of Z(Γ).
(4) When does the brick polytope Ω(Z(Γ)) realize the simplicial complex ∆(Z(Γ))?
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Figure 60. The 3-dimensional polytope Ω(B28). Only 22 of the 84 2-triangula-
tions of the octagon appear as vertices.
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Figure 61. Two Schlegel diagrams of the 4-dimensional polytope Ω(B29). On the
second one, the two leftmost vertices of the projection facet are non-simple ver-
tices.
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