
Exam of the course 2-38-2 of MPRI 2021

Algorithms and combinatorics of geometric graphs

Handouts and handwritten course notes allowed. Electronic devices prohibited.
Prepare three separate copies for the three parts of the exam.
You can skip the questions that block you. However, it is recommended that you try to

deal with a coherent part of the topic, even incomplete, rather than dealing sporadically with
questions that seem easier.

The writting and presentation of your solutions will be an important criterion of the evalu-
ation.

1 Planar graphs and Schnyder woods:
number of constrained edge orientations

Our goal is to provide a few upper bounds on the number of distinct constrained edge orienta-
tions that a plane graph can have, focusing in particular on the number of Schnyder woods of
plane triangulations.
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Figure 1:

In this exercise we will consider a plane graph G = (V,E) provided with a planar embedding
(also called planar map): we will denote by n the number of its vertices and by m the number
of its edges. Given a function α : V −→ N, a α-orientation X of G is an edge orientation of
G such as for each vertex v ∈ V the number of edges outgoing from v is exactly α(v) (observe
that α(v) ≤ d(v), where d(v) denotes the degree of v in G).

1. Let us consider a subset A ⊂ E of edges which is cycle-free and a function α : V −→ N. Let
X be a given edge orientation of E \ A. Show that X can be extended to an α-orientation
of G in at most one way. Show that the number of α-orientations of G is at most 2m−|A|.
[Hint: Proceed by induction on the size of A.]

2. Using previous question, show that a plane graph G with n vertices admits at most 4n

distinct α-orientations.
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We are going to illustrate how to improve the bound above.

3. Let us consider an independent set 1 of G, denoted by I2, consisting of n2 vertices which
have degree 2 in G. Show that G has at most (3n− 6)− (n2 − 1) edges.

4. Let us consider an independent set I = I1 ∪ I2 of G, where I2 is the subset of degree 2
vertices in I. Show that G has at most (3n− 6)− (c− 1)− (|I2| − 1) edges, where c is the
number of connected components of the sub-graph G′ induced by the vertex set V ′ = V \ I.

5. Let us consider a plane graph G provided with an independent set I = I1∪I2 and a function
α : V −→ N as defined above. Show that G admits at most

22n−4−|I2| ·
∏
v∈I1

(
1

2d(v)−1

(
d(v)

α(v)

))
distinct α-orientations.
[Hint: Use the results stated in previous questions.] Pascal’s formula could be useful:

(
a
b

)
=(

a−1
b−1
)

+
(
a−1
b

)
.

Let us remind (recall lectures) that any plane triangulation T with root face 2 f = (v0, v1, v2)
(we will denote the rooted triangulation with the pair (T, f)) can be endowed with a Schnyder
wood. Such a Schnyder wood defines an orientation of the inner edges 3 of T such that every
inner vertex has exactly three outgoing edges. It is possible to prove a stronger result, as stated
below

Proposition 1. Let us consider a plane triangulation T with root face f = (v0, v1, v2). Then
there exists a bijection between the Schnyder woods of (T, f) and the α-orientations of T \
{(v0, v1), (v1, v2), (v2, v0)} such that α(v) = 3 for each v ∈ V \ {v0, v1, v2} and α(v) = 0 for
v ∈ {v0, v1, v2}.

The statement above involves a rooted triangulation, with a root face (v0, v1, v2). We will
show that the number of Schnyder woods actually does not depend on the choice of the root
face.

6. Let us consider two neighboring f = (v0, v1, v2) and f ′ = (v′0, v1, v2) (sharing the edge
(v1, v2)) of a plane triangulation T . Show that it is possible to transform in a bijective way
each Schnyder wood of (T, f) into a Schnyder wood of (T, f ′).

7. Let us consider two arbitrary faces f = (v0, v1, v2) and f ′ = (v′0, v
′
1, v
′
2) of a plane triangu-

lation T . Show that there is a bjection between the Schnyder woods of T having f as root
face and the Schnyder woods of T as f ′ as root face.

8. Show that a plane triangulation T with n vertices admits at most 22n−4(58)
n
4 distinct Schny-

der woods.
[Hint: recall the result stated in question 5 and the bound 21−d

(
d
3

)
≤ 5

8 , which holds for any
integer value d ≥ 3. Remark: planar graphs do admit a 4-coloration of the vertices (by the
Four colors theorem).]

1A subset of vertices I ⊂ V is independent if the vertices of I are pairwise non adjacent.
2In our drawings the root face does coincide sometimes with the (infinite) outer face: observe that the choice

of the root face is arbitrary.
3The inner edges of (T, f) are the edges not lying on the root face: all the edges but (v0, v1), (v1, v2), (v2, v0).
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2 Polytopes and triangulations (VP) :
Minimal number of partial triangulations

Recall that a partial triangulation of a planar point set P is a set of triangles whose interiors are
disjoint, which cover the convex hull conv(P ) of P , and whose vertices all belong to P (but not
all points of P need to be vertices of triangles). The goal of the problem is to show4 that any
set of n + 2 points in general position in the plane has at least as many partial triangulations
as a set of n+ 2 points in convex position.5

1. We denote by Tn the number of triangulations of a set of n+ 2 points in convex position in
the plane.

(a) Give a formula for Tn and an idea of proof in less than 3 lines (details should be omitted).
(b) Prove that Tn1 · Tn2 · · ·Tnk

≤ Tn1+···+nk
for any n1, . . . , nk ∈ N.

[Hint: The formula of Point (i) is not needed to prove Point (ii).]

2. Let P be a set of n + 2 points in general position in the plane. We say that an interior
point p of P is almost exterior if there exists an edge qr of conv(P ) such that any triangle qrs
with s ∈ P contains p. We say that P is almost convex if all its interior points are almost
exterior. See Figure 2.

(a) Give two examples of almost convex sets studied in class.
(b) Show that an almost convex set with n+ 2 points has Tn partial triangulations.6
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Figure 2: An interior point p which is not almost exterior (left), an interior point p almost
exterior (middle), and an almost convex set with two interior points (right).

3. We now consider an arbitrary set P of n + 2 points in general position in the plane. We
choose an arbitrary vertex p of conv(P ) and we denote by p0, . . . , pn the other points of P in
counterclockwise order around p in such a way that p0 and pn are the neighbors of p on the
boundary of conv(P ). See Figure 3 (left). We call polyline any polygonal line connecting p0 to
pn in counterclockwise order, or said differently any sequence of points π = p0, pi1 , . . . , pik , pn
with 0 < i1 < · · · < ik < n. We call signature of the polyline π = p0, pi1 , . . . , pik , pn the word
σ(π) = σ(π)1 . . . σ(π)n−1 with n − 1 letters on the alphabet {u, d} defined as follows. For
any 1 ≤ j ≤ n− 1, we denote by ` and r the indices such that i` < j < ir and r − ` is
minimal, and we define

• if pj is a point of π, then σ(π)j = u if the segments [p, pj ] and [pi` , pir ] cross, and
σ(π)j = d otherwise,

4Following the recent proof of A. Kupavskii, A. Volostnov and Y. Yarovikov in arxiv:2104.05855.
5In fact, the result still holds if we consider
• only regular triangulations of the points sets,
• all polyhedral subdivisions of the points sets.

We thus obtain that the f -vector of the secondary polytope of a set of n + 2 points in general position in the
plane is (componentwise) larger or equal to the f -vector of the associahedron of dimension n−1. This result was
recently proved by A. Fernandez and F. Santos in arxiv:2110.00544.

6One can even show that a set of n + 2 points in general position in the plane has exactly Tn partial triangu-
lations if and only if it is almost convex. See arxiv:2104.05855.
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• if pj is not a point of π, then σ(π)j = d if the segments [p, pj ] and pi` , pir ] cross, and
σ(π)j = u otherwise.

Intuitively, if we place nails at the points of P and an elastic strip connecting p0 to pn and
passing between p and pj if and only if σ(π)j = d, then we obtain π by stretching the elastic
strip. See Figure 3 (middle and right).

(a) What is the number of different polylines connecting p0 to pn?
(b) Describe the signatures of the polylines p0, pn and p0, p1, . . . , pn−1, pn.
(c) Describe the polylines of signature un−1 and dn−1.
(d) Show that σ defines a bijection between the polylines connecting p0 to pn and the words

with n− 1 letters on the alphabet {u, d}.
[Hint: To show that any signature σ corresponds to a polyline, we could give an intuitive
argument based on the elastic strip, but we will prefer a proof by induction considering
the point pk which minimizes the angle p̂p0pk and distinguishing two cases according
to σk.]
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Figure 3: A point set P ordered counterclockwise around p (left), a polyline of signature
ddduududd (middle), et its interpretation by an elastic strip (right).

4. We now consider a partial triangulation T of P . We call polyline of T the polygonal line
formed by the point of P adjacent to p in T . We call signature of T the signature of the
polyline of T . See Figure 4 (left). We fix a signature σ ∈ {u, d}n−1. Let n1 < · · · < nk−1
denote the positions 0 < nj < n such that σnj = u, and let n0 = 0 and nk = n by convention.

(a) Prove that if P is in convex position, then it admits exactly
∏

j∈[k] Tnj−nj−1 partial
triangulations of signature σ.

(b) Assume now that P is not in convex position. Let π be the polyline of P with signature σ.
Let m1 < · · · < m`−1 denote the indices 0 < mj < n such that σmj = u and pmj is a
point of π, and let m0 = 0 and m` = n by convention. In other words, the polyline π
is convex (with respect to the point p) at the points pm1 , . . . , pm`−1

and concave (with
respect to the point p) between these points. Let S be the subdivision of conv(P ) whose
edges are

• all the boundary edges of conv(P ),
• all edges connecting p to a points of π,
• for any 1 ≤ j ≤ `, the edges of the convex hull of

{pmj−1} ∪ {pi | mj−1 < i < m` and σi = d} ∪ {pmj}.

See Figure 4 (right). Prove that the number of partial triangulations of S with signature σ
is at least

∏
j∈[`] Tmj−mj−1 .

(c) Using Question 1 (ii), prove that∏
j∈[k]

Tnj−nj−1 ≤
∏
j∈[`]

Tmj−mj−1 .
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(d) Deduce that any set P of n + 2 points in general position in the plane has at least as
many partial triangulations as a set of n+ 2 points in convex position in the plane.
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Figure 4: The polyline of a partial triangulation T of P (left) and the subdivision S of the
polyline π, where the convex hulls of the {pmj−1} ∪ {pi | mj−1 < i < m` and σi = d} ∪ {pmj}
are highlighted (right).
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3 Graphs on surfaces (ECdV):
Shortest non-contractible cycles

Let S be a compact, orientable surface without boundary of genus g. Let G be a graph cellularly
embedded on S , with complexity n. Here, G is unweighted; the length of a path (closed or
not) in G is simply the number of edges of G that are used (with multiplicity, if the path uses
some edges several times). Questions 1, 2, and 3 are independent.

1. Show that a shortest non-contractible closed path in G uses each vertex of G at most once.

2. Let s be an arbitrary vertex of G.

(a) Justify that one can, in O(gn) time, compute a shortest system of loops based at s in
the cross-metric surface (S , G∗) where G∗ is the dual graph of G.

Reminder: This system of loops is made of 4g loops, all obtained by the concatenation
of a shortest path from s, a path crossing a single edge of G∗, and a shortest path to s.

(b) Show that each non-contractible closed path in G intersects at least one loop of the
system of loops.

(c) Deduce that one can, in O(gn) time, compute a set of vertices S of G such that:

i. each closed path in G that is non-contractible goes through a vertex of S;

ii. for each integer i, there are at most 4g vertices in S whose distance to s is exactly i.

3. (a) Let T be the set of edges of a spanning tree of G. For each edge e ∈ G \ T , let σ(e)
be the closed path that is the concatenation of e and of the path in T connecting the
endpoints of e. Show that one can, in O(n) time, determine the edges e of G \ T such
that σ(e) is non-contractible.

(b) Let k ≥ 1 be an integer. Let V be a set of vertices of G such that the distance between
any pair of distinct points in V is at least k + 1.

Show that one can, in O(n) time, compute a shortest non-contractible closed path among
those passing through a vertex of V , if there exists a such a path of length at most k,
or determine that each non-contractible closed path passing through a vertex of V has
length at least k + 1.

Hint: Choose T such that it contains, for each v ∈ V , a shortest path between v and
any vertex at distance at most bk/2c of v.

4. Using Questions 2 and 3, show that one can, for each k, determine in O(gnk) time a shortest
non-contractible closed path in G, if there is such a path of length at most k.

5. Deduce an algorithm that computes a shortest non-contractible closed path in G in time
O(gnk), where k is the (initially unknown) length of such a path.
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