
Examen du cours 2-38-2 du MPRI 2020

Algorithmique et combinatoire des graphes géométriques

The duration of this exam is 3 hours. You have a 15 minutes buffer at the end of the
exam, so until 4pm, to scan it and send it to both of us: arnaud.demesmay@u-pem.fr and
vincent.pilaud@lix.polytechnique.fr.

This is an open-book exam: you are free to consult the lecture notes or any source online.
You are not allowed to communicate with each other.

The language can be either English or French.
The exercises are independent and can be treated in any order.

1 Graphs on surfaces (ADM)

Exercice 1. Recall that a cellular embedding is an embedding where all the faces are disks, and
that a non-orientable surface of genus g is a surface with polygonal scheme a1a1a2a2 . . . agag.
A convenient way to represent a graph on a non-orientable surface is to draw it on top of this
polygonal scheme. For example, here is a cellular embedding of K5 on a non-orientable surface
of genus two.

a1
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a2
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1. Provide an explicit cellular embedding of the graph pictured below on a non-orientable
surface of genus 3.

2. Let G be a simple graph with v vertices, e edges cellularly embedded on a non-orientable
surface of genus g. Prove that g ≤ e− v + 1.

3. Let G be a simple graph with v vertices and e edges, and let g1 be the smallest genus of
a non-orientable surface on which G embeds. Prove that for any g such that g1 ≤ g ≤
e− v + 1, G can be cellularly embedded on a non-orientable surface of genus g.

4. In particular, G can always be cellularly embedded on a non-orientable surface of genus
e− v + 1. Provide a linear-time algorithm to compute such an embedding.

1

arnaud.demesmay@u-pem.fr
vincent.pilaud@lix.polytechnique.fr


Exercice 2. In this exercise, we look at a graph G cellularly embedded on an orientable surface
of genus g, where each edge uv has an orientation from its start to its end: either u → v or
v → u1. This induces an orientation on the edges of the dual graph, as pictured in Figure 1. We
will only be considering oriented cycles in this exercise: a cycle in G is a sequence of oriented
edges (v1 → v2), (v2 → v3) . . . (vk → v1) with no repeated vertices. Recall that a cycle is
contractible if it can be continuously deformed to a point on the surface, or equivalently if it
bounds a closed disk.

u v

f1

f2

Figure 1: The start of the dual edge (here f1) lies to the left of the primal edge.

1. List all the cycles of the toroidal graph pictured below, as well as all the cycles of its dual.
To make this easier, edges are named. Which of these cycles are contractible?
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Figure 2: An oriented graph (in red) embedded on a torus. To be clear: the black edges are
not part of the graph and are just here to represent the torus (top identified to bottom and left
identified to right).

2. Let e be an edge so that the dual edge e∗ belongs to a cycle. Prove that e can not belong
to a contractible cycle.

3. Suppose that the dual graph G∗ has no cycle. Prove that if G has a contractible cycle,
G∗ has a sink, i.e., a vertex v where all the incident edges are oriented towards v, or a
source, i.e., a vertex v where all the incident edges are oriented away from v.

4. Still supposing that the dual graph G∗ has no cycle, deduce that if G has a contractible
cycle, then it has a face whose boundary is a cycle.

5. Provide a linear-time algorithm to test whether an oriented graph G embedded on an
orientable surface contains a contractible cycle.

1Orientations of loops are a bit annoying to define. To keep things simple, for the purpose of this exercise, we
use the same definition: a loop based at u is oriented u → u. In particular it has a unique possible orientation.
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Exercice 3. We consider the following way of representing non-planar graphs with boxes.
There are k disjoint squares called boxes drawn in the plane, and each side acts as a teleporter
to the same point on the opposite side. A graph is embedded in the plane with k boxes if it is
drawn without crossings in the plane when the edges are allowed to use these teleporters: when
an edge intersects a point on the box, it continues on the same point on the opposite side. Note
that each edge is allowed to use the same box any number of times. For example, here is a
picture of a graph embedded in the plane with four boxes (left picture). Equivalently, a box is
a way to hide a grid of crossings (see the right picture).

1. Provide an embedding of K5 in the plane with a single box.

2. Prove that a graph can be embedded in the plane with g boxes if and only if it can be
embedded on a surface of genus g.

3. Let G be a graph embedded on a surface of genus g. By the previous question, G can
be embedded in the plane with g boxes. Find a function f(g) so that the following
strengthening holds (and prove it): G can be embedded in the plane with g boxes so that
each edge of G crosses at most f(g) boxes (counted with multiplicity). Any function (even
non-polynomial) will do, but the smaller ones are worth more points.

2 Polytopes and geometry of binary trees (VP)

Exercice 4. For a polytope P , let pk(P ) be its number of k-gonal 2-faces for each k ≥ 3.

(1) Show that for a simple 3-polytope P , we have
∑

k≥3(6− k) · pk(P ) = 12.

(2) Show that every simple 3-polytope contains at least four 2-faces each of which has at most
five edges.

(3) Let C ⊂ R3 be the set of points (p3(P ), p4(P ), p5(P )) for all simple 3-polytopes P . Show
that C is contained in the intersection X of the positive orthant R3

≥0 with the half-space
defined by 3 p3 + 2 p4 + p5 ≥ 12. Compute the vertices of the polyhedron X and provide
simple polytopes P such that (p3(P ), p4(P ), p5(P )) correspond to these vertices.

(4) Provide simple polytopes P such that (p3(P ), p4(P ), p5(P )) correspond to other integer
points in the hyperplane 3 p3 + 2 p4 + p5 = 12 (no need to find a polytope for each integer
point, but give as much as you can).

Exercice 5. A binary tree is either the empty tree, or a node (called root) with two children
(called left and right) which are themselves binary trees. We denote by Bn the set of binary
trees with n nodes. Recall that the inorder (resp. postorder) on a binary tree T is the order
obtained by labeling the root of T between (resp. after) labeling the left and right subtrees of T
in inorder (resp. postorder). See Figure 3.
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Figure 3: A tree, its inorder and postorder labelings, and its depths.

We call depth of a node n the number of nodes along the path from n to the root r (counting r
and n, so that the root has depth 1). See Figure 3. The depth vector din(T ) (resp. dpost(T ))
is the vector whose jth coordinate is the depth of the jth node of T in inorder (resp. pos-
torder). For example, for the binary tree T of Figure 3, we have din(T ) = (3, 2, 1, 4, 3, 4, 2, 3, 4)
and dpost(T ) = (3, 2, 4, 4, 3, 4, 3, 2, 1). We denote by Din(n) (resp. Dpost(n)) the convex hull of
the depth vectors din(T ) (resp. dpost(T )) for all binary trees T ∈ Bn with n nodes. The objective
of this problem is to study the number of vertices of the polytopes Din(n) and Dpost(n).

1. List all binary trees T with 3 nodes and the corresponding depth vectors din(T ) and dpost(T ).
What are the polytopes Din(3) and Dpost(3).

2. Recall why the numbers bn = |Bn| satisfy bn+1 =
∑n

i=0 bi · bn−i and that the correspond-

ing generating function B(x) =
∑

n≥0 bnx
n is given by B(x) = 1−

√
1−4x
2x . Compute bn

for n ≤ 6.

3. Show that Din(n) has bn vertices.

A unary-binary tree is a rooted tree where each node has either zero, one or two children. In
other words, from a binary tree T , we obtain a unary-binary tree T̄ by forgetting for each node
with no sibling whether it was a left or a right child. We denote by UBn the set of unary-binary
trees with n nodes. We define the postorder, the depth and the depth vector dpost(U) on a
unary-binary tree U as for binary trees. See Figure 4, where dpost(T1) = dpost(T2) = dpost(U) =
(3, 2, 4, 3, 4, 3, 2, 1).
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Figure 4: Two binary trees T1 and T2 sent on the same unary-binary tree U , the postorder
on U , and the depth on U .

4. List all unary-binary trees T with at most 5 nodes and the corresponding depth vec-
tors dpost(T ).

5. Give a recurrence formula for the numbers ubn = |UBn| and a closed expression for the
corresponding generating function UB(x) =

∑
n≥0 ubnx

n similar to that of Question 2.
Compute ubn for n ≤ 6.

6. Show that the cardinality of the set {dpost(T ) | T ∈ Bn} is ubn.
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We say that a unary-binary tree is monotone when any node with no sibling has zero or one
child. For instance, the unary-binary tree U of Figure 4 is monotone. We denote by MUBn
the set of monotone unary-binary trees with n nodes.

7. List all monotone unary-binary trees T with at most 5 nodes and the corresponding depth
vectors dpost(T ).

8. Give a recurrence formula for the numbers mubn = |MUBn| and a closed expression
for the corresponding generating function MUB(x) =

∑
n≥0mubnx

n similar to that of
Questions 2 and 5. Compute mubn for n ≤ 6.

9. Show that Dpost(n) has mubn vertices.

Exercice 6. The integer point transform of a subset A of Rn is the abstract multivariate
generating series

IPT(A) =
∑

a∈A∩Zn

xa,

where xa = xa11 · · ·xann .

(1) Show that IPT is a valuation.

(2) Recall that a vector is primitive if its coordinates are relatively prime numbers. Show that
the integer point transform of a polyhedral cone C generated by n linearly independent
primitive integer vectors v1, . . . , vn is given by

IPT(C) =
1∏

i∈[n](1− xvi)
.

For a poset ≺ on [n], we define the polyhedral cone

C(≺) =

{
x ∈ Rn≥0

∣∣∣∣ xi ≤ xj for all i ≺ j with i < j
xi < xj for all i ≺ j with i > j

}
.

As usual, we see

• a permutation π of [n] as the total order ≺π defined by π1 ≺π π2 ≺π · · · ≺π πn

• a binary tree T with n nodes as the poset ≺T where i ≺T j if and only if i is a descendant
of j in T when labeled in infix labeling (label first the left child in infix labeling, then the
root, and then the right child in infix labeling).

(3) Compute IPT(≺π) for all permutations π of [3] and IPT(≺T ) for all binary trees T with 3
nodes.

(4) Show that the integer point transform of the cone C(≺π) given by a permutation π of [n],

IPT(C(≺π)) =

∏
i∈[n−1]
πi>πi+1

xπi · · ·xπn

∏
i∈[n]

(1− xπi · · ·xπn)

(5) Give and prove a similar formula for the integer point transform of the cone C(≺T ) given
by a binary tree T with n nodes.

(6) Connect the integer point transforms of C(≺T ) and C(≺π) for certain permutations π.
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