FEUILLE D'EXERCICES, COURS MPRI 2-38-1
 À RENDRE LE VENDREDI 21 OCTOBRE 2022

Recall that a polytope is simplicial when all its facets are simplices. In this problem, we are interested in polytopes that are not simplicial, but almost. A d-dimensional polytope P is called

- k-simplicial if all its faces of dimension k are simplices,
- s-almost simplicial if all its facets are simplices, except one which has $d+s$ vertices.

Q1. What is a d-simplicial polytope? Explain the equivalences:
P is simplicial $\Longleftrightarrow P$ is $(d-1)$-simplicial $\Longleftrightarrow P$ is 0 -almost simplicial.
The goal of the problem is to construct k-simplicial and s-almost simplicial polytopes with many faces, using constructions similar to that of the cyclic polytope seen in the course.

1. $(d-k)$-SIMPLICIAL POLYTOPE

In this section, we construct a $(d-k)$-simplicial polytope with many faces (generalizing the cyclic polytope seen in the course).

Let $\mathbf{p}=\left(p_{1}, \ldots, p_{k}\right)$ be a k-tuple of continuous functions $p_{i}: \mathbb{R} \rightarrow \mathbb{R}$. Define a curve $\chi_{p}: \mathbb{R} \rightarrow \mathbb{R}^{d}$ by $\chi_{\underline{p}}(t):=\left(t, t^{2}, t^{3}, \ldots, t^{d-k}, p_{1}(t), \ldots, p_{k}(t)\right)$. We fix some numbers $t_{1}<\cdots<t_{n}$ and consider the polytope $Q:=\operatorname{conv}\left(\left\{\chi_{\underline{p}}\left(t_{1}\right), \ldots, \chi_{\underline{p}}\left(t_{n}\right)\right\}\right)$.
Q2. Show that any $d-k+1$ points on the curve $\chi_{\underline{p}}$ are affinely independent, and deduce that Q is $(d-k-1)$-simplicial.
[Hint: compute the rank of the $(d+1) \times(d-k+1)$-matrix $\left[\begin{array}{ccc}1 & \cdots & 1 \\ \chi_{\underline{p}}\left(t_{1}\right) & \cdots & \chi_{\underline{p}}\left(t_{d-k+1}\right)\end{array}\right]$ and conclude.]
Q3. Show that any subset of at most $\lfloor(d-k) / 2\rfloor$ vertices of Q form a face of Q.
[Hint: use a well choosen polynomial to define a supporting hyperplane of this face.]

2. Almost simplicial polytope

In this section, we construct an s-almost simplicial polytope with many faces, using some results of the previous questions (which can now be admitted if needed).

We consider the real function $p(t):=(n-1)^{(t-1)(d-1)} t(t+1) \ldots(t+d+s-1)$, we define the curve $\xi(t):=\left(t, t^{2}, \ldots, t^{d-1}, p(t)\right)$, and we consider the polytope $Q:=\operatorname{conv}\left(\left\{\xi\left(t_{1}\right), \ldots, \xi\left(t_{n}\right)\right\}\right)$, where we have chosen this time $t_{i}:=-s-d+i$ for all $i \in[n]$.

To analyse this polytope, for any d-tuple of indices $\underline{i}=\left(i_{1}, \ldots, i_{d}\right) \in[n]$ and for any d-tuple of variables $\underline{z}=\left(z_{1}, \ldots, z_{d}\right)$, we define the determinant

$$
D(\underline{i}, \underline{z}):=\operatorname{det}\left[\begin{array}{ccccc}
1 & 1 & \ldots & 1 & 1 \\
\xi\left(t_{i_{1}}\right) & \xi\left(t_{i_{2}}\right) & \ldots & \xi\left(t_{i_{d}}\right) & \underline{z}
\end{array}\right]=\operatorname{det}\left[\begin{array}{ccccc}
1 & 1 & \ldots & 1 & 1 \\
t_{i_{1}} & t_{i_{2}} & \ldots & t_{i_{d}} & z_{1} \\
t_{i_{1}}^{2} & t_{i_{2}}^{2} & \ldots & t_{i_{d}}^{2} & z_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
t_{i_{1}}^{d-1} & t_{i_{2}-1}^{d-1} & \ldots & t_{i_{d}}^{d-1} & z_{d-1} \\
p\left(t_{i_{1}}\right) & p\left(t_{i_{2}}\right) & \cdots & p\left(t_{i_{d}}\right) & z_{d}
\end{array}\right] .
$$

and the half-space

$$
H_{\underline{i}}:=\left\{\underline{z} \in \mathbb{R}^{d} \mid D(\underline{i}, \underline{z}) \geq 0\right\} .
$$

We denote by $V(\underline{i})$ the Vandermonde determinant

$$
V(\underline{i}):=\operatorname{det}\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
t_{i_{1}} & t_{i_{2}} & \ldots & t_{i_{d}} \\
t_{i_{1}}^{2} & t_{i_{2}}^{2} & \ldots & t_{i_{d}}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
t_{i_{1}}^{d-1} & t_{i_{2}}^{d-1} & \ldots & t_{i_{d}}^{d-1}
\end{array}\right]=\prod_{k<\ell}\left(t_{i_{\ell}}-t_{i_{k}}\right)
$$

Q4. Observe that $p\left(t_{1}\right)=p\left(t_{2}\right)=\cdots=p\left(t_{d+s}\right)=0$ and $p\left(t_{i}\right)>0$ for $d+s+1 \leq i \leq n$. Deduce that the hyperplane $H_{(1, \ldots, d)}$ defines a facet of the polytope Q containing precisely the vertices $\xi\left(t_{1}\right), \ldots, \xi\left(t_{d+s}\right)$.

Q5. Consider now $i_{1}<i_{2}<\cdots<i_{d}<i_{d+1}$ with $i_{d+1}>d+s$. For any $j \in[d+1]$, we consider the Vandermonde determinant $W_{j}:=V\left(i_{1}, \ldots, i_{j-1}, i_{j+1}, \ldots, i_{d+1}\right)$. Show that

$$
D\left(\underline{i}, \xi\left(t_{i_{d+1}}\right)\right)=\sum_{j=1}^{d+1}(-1)^{d+1-j} p\left(t_{i_{j}}\right) W_{j} .
$$

To evaluate this sum, we group terms two by two (leaving the first alone when $d+1$ is odd) and thus consider the term $p\left(t_{i_{d+1-2 k}}\right) W_{d+1-2 k}-p\left(t_{i_{d-2 k}}\right) W_{d-2 k}$ for any $0 \leq k \leq\lfloor(d+1) / 2\rfloor$. Observe that the definition of $t_{i}:=-s-d+i$ implies that $1 \leq t_{i_{q}}-t_{i_{p}} \leq n-1$ for any $1 \leq p<q \leq d+1$. Use these inequalities to show that for any $1<j \leq d+1$, we have

- $p\left(t_{i_{j}}\right) / p\left(t_{i_{j-1}}\right) \geq(n-1)^{d-1}$ with a strict inequality when $j=d+1$,
- $W_{j-1} / W_{j} \leq(n-1)^{d-1}$,
and conclude that $D\left(\underline{i}, \xi\left(t_{i_{d+1}}\right)\right)>0$ for any choice of $i_{1}<i_{2}<\cdots<i_{d}<i_{d+1}$ with $i_{d+1}>d+s$.
Q6. Deduce from Question 5 that except the facet of Question 4, all other facets of the polytope Q are simplices, and conclude that the polytope Q is a s-almost simplicial polytope.
Q7. Using the computation of determinant of Question 5, show that a subset $I:=\left\{i_{1}<\cdots<i_{d}\right\}$ with $i_{d}>d+s$ defines a facet of Q if and only if the number of elements of I between any two elements of $[n] \backslash I$ is even.

