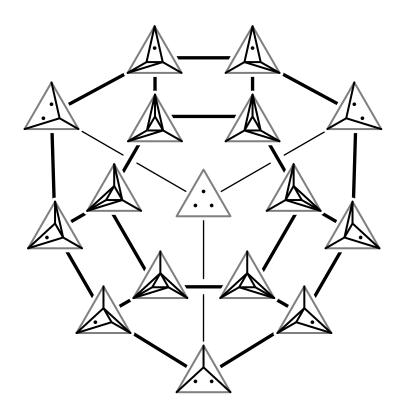
Triangulations



V. PILAUD

MPRI 2-38-1. Algorithms and combinatorics for geometric graphs Thursday October 29th, 2020

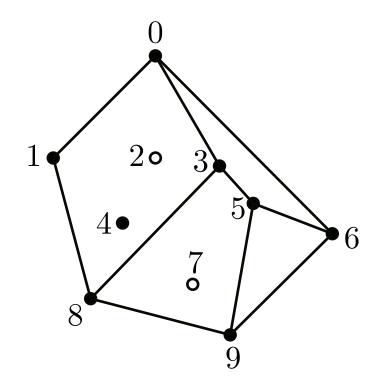
TRIANGULATIONS & SUBDIVISIONS

SUBDIVISIONS

DEF. $P = \text{point set in } \mathbb{R}^d$.

polyhedral subdivision of $oldsymbol{P}=$ collection ${\mathcal S}$ of subsets of $oldsymbol{P}$ st:

- ullet closure property: if $\operatorname{conv}(\boldsymbol{X})$ is a face of $\operatorname{conv}(\boldsymbol{Y})$ and $\boldsymbol{Y} \in \mathcal{S}$, then $\boldsymbol{X} \in \mathcal{S}$,
- union property: $conv(P) = \bigcup_{X \in S} conv(X)$,
- intersection property: conv(X) and conv(Y) have disjoint relative interiors and intersect along a face of both, for any $X, Y \in S$.

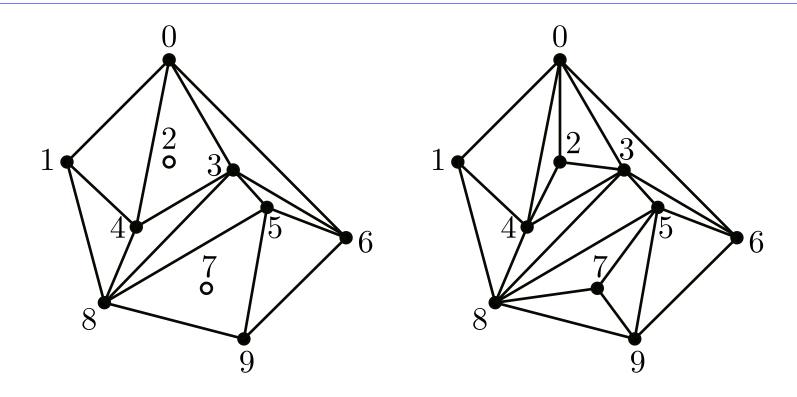


 $S = \{01348, 0356, 3589, 569\} + \text{all faces...}$

TRIANGULATIONS

DEF. <u>triangulation</u> = subdivision \mathcal{T} where all subsets are affinely independent. (in particular, $conv(\mathbf{X})$ is a simplex for all $\mathbf{X} \in \mathcal{T}$).

full triangulation = each point belongs to at least one simplex.



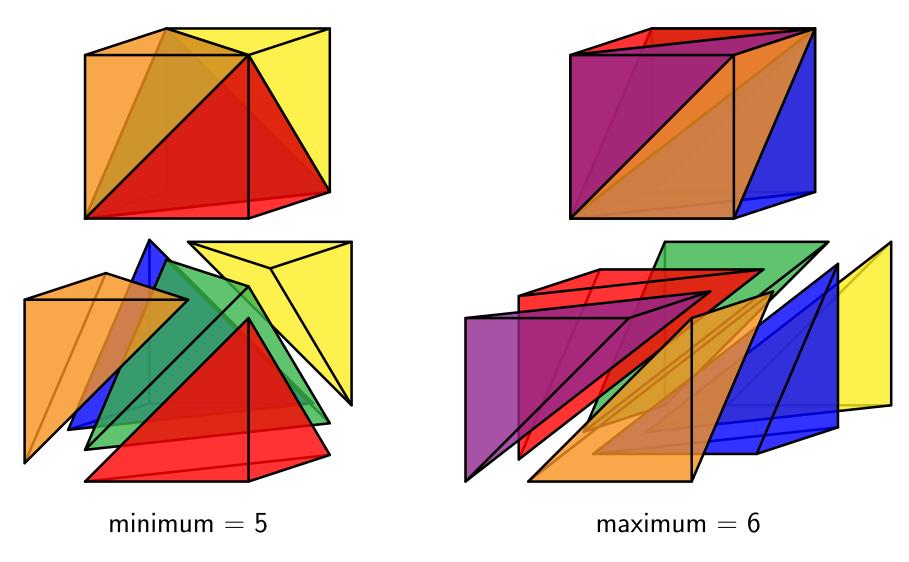
QU. Show that any full triangulation of a planar point set with i interior and b boundary points has i + b vertices, 3i + 2b - 3 edges, and 2i + b - 2 triangles.

TRIANGULATIONS IN 3 DIMENSION

QU. What is the minimum / maximum number of simplices that triangulate the 3-cube?

TRIANGULATIONS IN 3 DIMENSION

QU. What is the minimum / maximum number of simplices that triangulate the 3-cube?



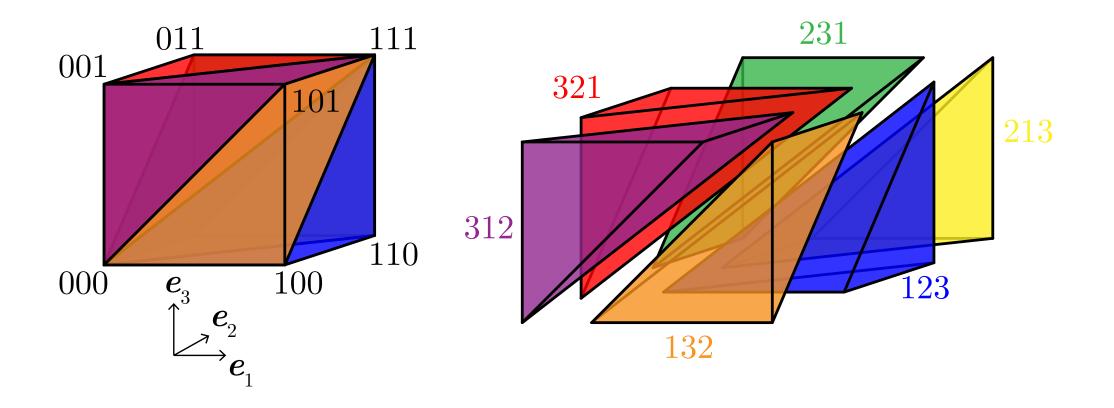
In dimension d, minimum is very difficult, maximum is d!

FREUDENTHAL TRIANGULATION

DEF. Freudenthal triangulation of the d-cube \square_d = triangulation with a simplex

$$\triangle_{\sigma} = \left\{ \sum_{i \leq j} \mathbf{e}_{\sigma(i)} \mid 0 \leq j \leq d \right\} = \left\{ \mathbf{x} \in \square_d \mid x_{\sigma(1)} \geq x_{\sigma(2)} \geq \cdots \geq x_{\sigma(d)} \right\}$$

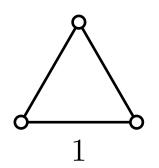
for each permutation $\sigma \in \mathfrak{S}_d$.

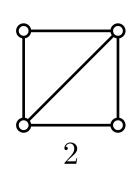


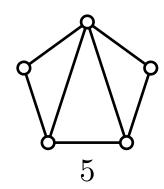
NUMBER OF TRIANGULATIONS

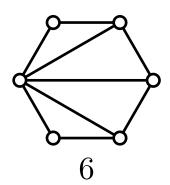
CONVEX POSITION & CATALAN NUMBERS

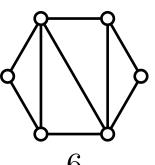
PROP. number triangulations convex n-gon = Catalan number $C_{n-2} = \frac{1}{n-1} \binom{2n-4}{n-2}$

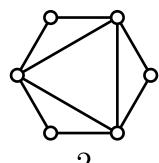












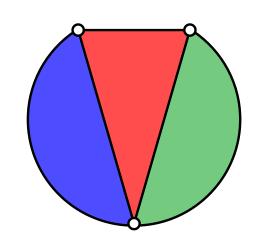
CONVEX POSITION & CATALAN NUMBERS

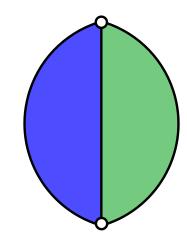
PROP. number triangulations convex
$$n$$
-gon = Catalan number $C_{n-2} = \frac{1}{n-1} \binom{2n-4}{n-2}$

proof A: in the triangulations of the (n-1)-gon:

- number of edges = 2n 5
- ullet average degree of a vertex =2(2n-5)/(n-1)

Thus, contracting the triangle containing 1 and n, we get the induction formula





$$T_n = \frac{2(2n-5)}{n-1}T_{n-1}$$
 thus $T_n = \frac{2^{n-3}(2n-5)(2n-7)\dots 3}{(n-1)(n-2)\dots 2}T_3 = \frac{1}{n-1}\binom{2n-4}{n-2}.$

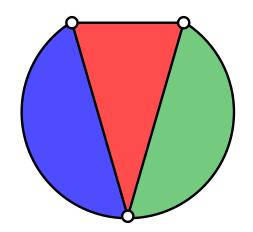
CONVEX POSITION & CATALAN NUMBERS

PROP. number triangulations convex n-gon = Catalan number $C_{n-2} = \frac{1}{n-1} \binom{2n-4}{n-2}$

<u>proof B</u>: decomposing the triangulation by the triangle containing 1 and n, we have the summation formula

$$T_n = \sum_{2 \le j \le n-1} T_j \cdot T_{n-j+1}$$

For the generating function $T(x) = \sum_{j\geq 2} T_j x^{j-2}$, this gives

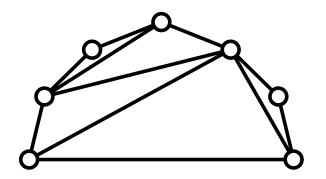


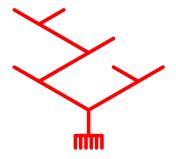
$$T(x) = 1 + x \cdot T(x)^2$$
 thus $T(x) = \frac{1 + \sqrt{1 - 4x}}{2x}$.

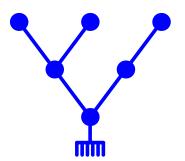
We then get T_j developing the series.

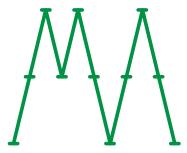
CATALAND

- QU. Show that the following are Catalan families (ie. counted by Catalan numbers):
 - (i) triangulations of a convex n-gon,
 - (ii) binary trees with n-2 internal nodes,
- (iii) rooted plane trees with n-1 nodes,
- (iv) Dyck paths of length 2n-4 (ie. paths with up steps \nearrow and down steps \searrow starting at (0,0) finishing at (2n-4,0) and which never go below the horizontal axis),
- (v) valid bracketings of a non-associative product on n-1 elements.



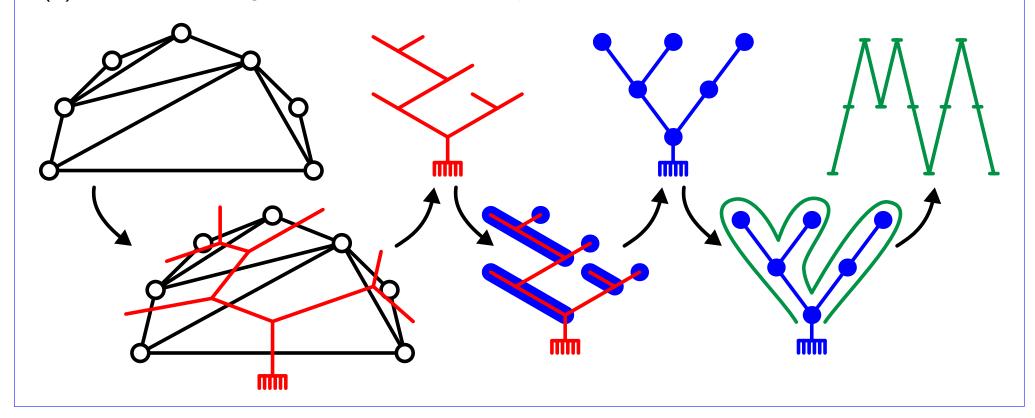




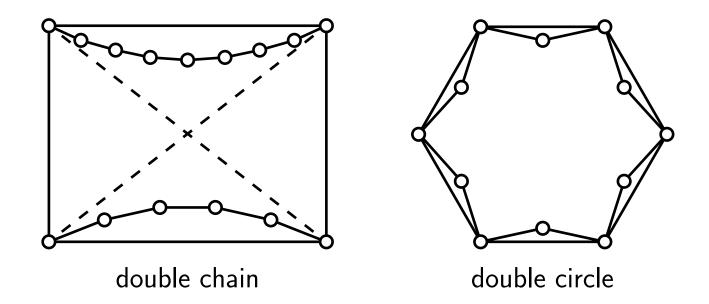


CATALAND

- PRO. The following are Catalan families (ie. counted by Catalan numbers):
 - (i) triangulations of a convex n-gon,
 - (ii) binary trees with n-2 internal nodes,
- (iii) rooted plane trees with n-1 nodes,
- (iv) Dyck paths of length 2n-4 (ie. paths with up steps \nearrow and down steps \searrow starting at (0,0) finishing at (2n-4,0) and which never go below the horizontal axis),
- (v) valid bracketings of a non-associative product on n-1 elements.

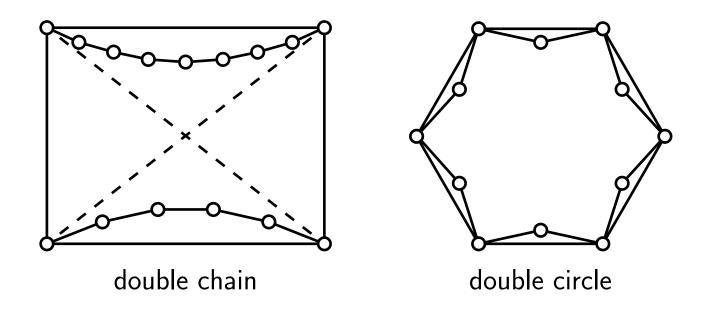


DOUBLE CHAIN AND DOUBLE CIRCLE



QU. Compute the numbers of full triangulations of the double chain and double circle.

DOUBLE CHAIN AND DOUBLE CIRCLE



PROP. The numbers of full triangulations of the double chain and double circle are

$$C_m C_n \binom{m+n+2}{m+1}$$
 and $\sum_{i \in [n]} (-1)^i \binom{n}{i} C_{n+i-2}$.

proof:

- db chain: all edges of the chains belong to full triangulations...
- db circle: inclusion-exclusion for triangulations of convex polygon with no even ear.

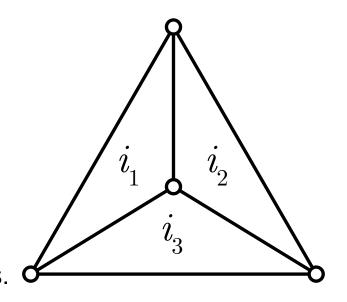
QU. What about all triangulations?

UPPER AND LOWER BOUNDS

THM. Any planar point set in general position with i interior and b boundary points has at least $C_{b-2}2^{i-b+2} = \Omega(2^n n^{-3/2})$ and at most $59^i \, 7^b / \binom{i+b+6}{6} \le 59^n$ full triangulations.

proof: For the lower bound:

- 1. if b = 3:
 - check it for $i \leq 8$. This is a combinatorial problem!
 - use stacked triangulations: each point separates the triangle into three regions with $i=i_1+i_2+i_3+1$, thus defines at least $2^{i_1-1}\cdot 2^{i_2-1}\cdot 2^{i_3-1}=2^{i-4}$ stacked triangulations thus in total, at least $i2^{i-4}\geq 2^{i-1}$ stacked triangulations.



2. if $b \ge 4$, choose a triangulation of the boundary, and stack in all triangles.

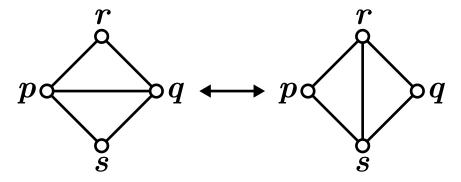
For the upper bound: see poly...

FLIPS

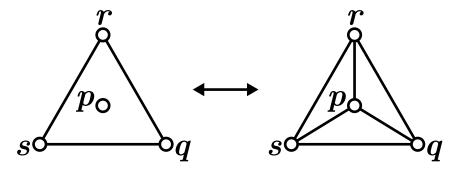
FLIPS

DEF. flip = local operation on triangulations of P defined as:

ullet diagonal flip = if pqr and prs form a convex quadrilateral pqrs, replace the diagonal pr by the other diagonal qs of pqrs.

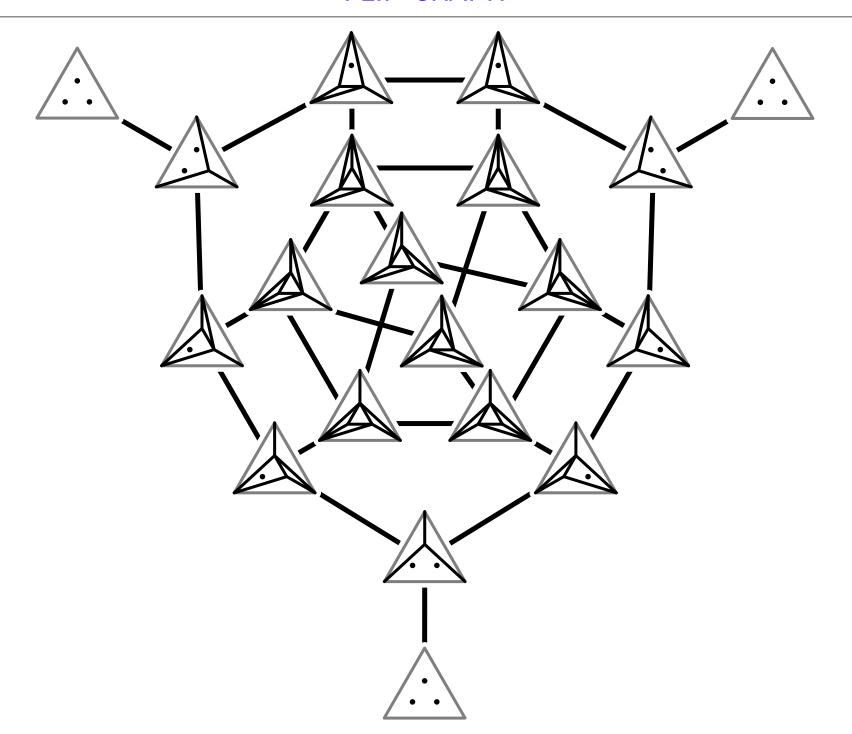


• insertion/deletion flip = if a point p is contained in the interior of a triangle uvw, then insert the edges pu, pv, and pw or vice-versa.



DEF. flip graph = graph with vertices = triangulations and edges = flips.

FLIP GRAPH



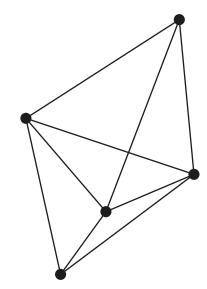
THM. For any set X of d+2 points in \mathbb{R}^d , there exists a partition $X = X^+ \sqcup X^- \sqcup X^\circ$ such that $\operatorname{conv}(X^+) \cap \operatorname{conv}(X^-) \neq \emptyset$.

<u>proof:</u> There is an affine dependence $\sum_{x \in X} \lambda_x x = 0$ with $\sum_{x \in X} \lambda_x = 0$ (to see it, linearize).

Let
$$X^+ = \{ x \in X \mid \lambda_x > 0 \}$$
 $X^- = \{ x \in X \mid \lambda_x < 0 \}$ $X^\circ = \{ x \in X \mid \lambda_x = 0 \}$.

Then
$$\Lambda = \sum_{{\boldsymbol x}^+ \in {\boldsymbol X}^+} \lambda_{{\boldsymbol x}^+} = \sum_{{\boldsymbol x}^- \in {\boldsymbol X}^-} (-\lambda_{{\boldsymbol x}^-}) \text{ and } \frac{1}{\Lambda} \sum_{{\boldsymbol x}^+ \in {\boldsymbol X}^+} \lambda_{{\boldsymbol x}^+} \, {\boldsymbol x}^+ = \frac{1}{\Lambda} \sum_{{\boldsymbol x}^- \in {\boldsymbol X}^-} (-\lambda_{{\boldsymbol x}^-}) \, {\boldsymbol x}^-.$$

• • • • • •

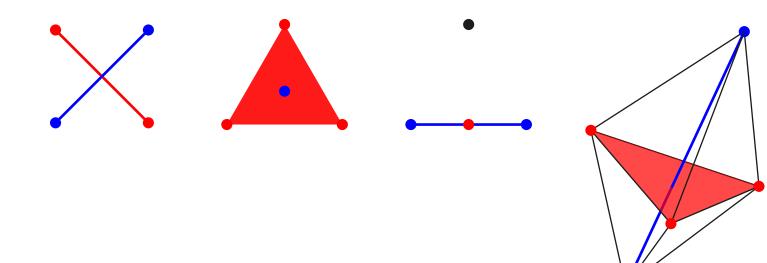


THM. For any set X of d+2 points in \mathbb{R}^d , there exists a partition $X = X^+ \sqcup X^- \sqcup X^\circ$ such that $\operatorname{conv}(X^+) \cap \operatorname{conv}(X^-) \neq \emptyset$.

<u>proof:</u> There is an affine dependence $\sum_{x \in X} \lambda_x x = 0$ with $\sum_{x \in X} \lambda_x = 0$ (to see it, linearize).

Let
$$X^+ = \{x \in X \mid \lambda_x > 0\}$$
 $X^- = \{x \in X \mid \lambda_x < 0\}$ $X^\circ = \{x \in X \mid \lambda_x = 0\}$.

Then
$$\Lambda = \sum_{{\boldsymbol x}^+ \in {\boldsymbol X}^+} \lambda_{{\boldsymbol x}^+} = \sum_{{\boldsymbol x}^- \in {\boldsymbol X}^-} (-\lambda_{{\boldsymbol x}^-}) \text{ and } \frac{1}{\Lambda} \sum_{{\boldsymbol x}^+ \in {\boldsymbol X}^+} \lambda_{{\boldsymbol x}^+} \, {\boldsymbol x}^+ = \frac{1}{\Lambda} \sum_{{\boldsymbol x}^- \in {\boldsymbol X}^-} (-\lambda_{{\boldsymbol x}^-}) \, {\boldsymbol x}^-.$$

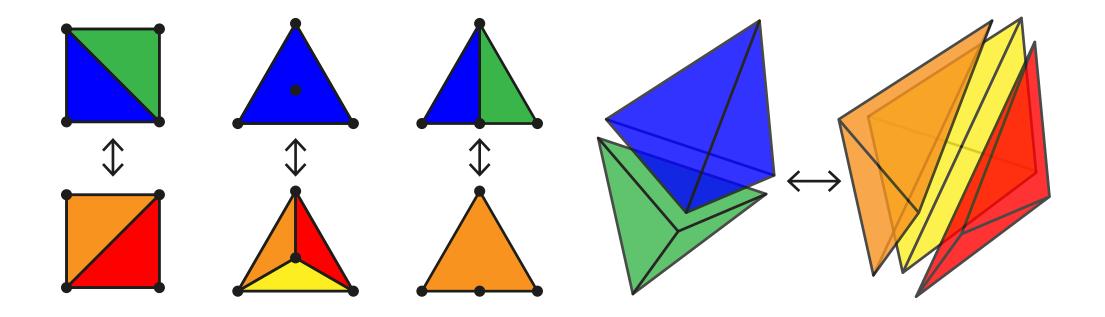


THM. For any set X of d+2 points in \mathbb{R}^d , there exists a partition $X = X^+ \sqcup X^- \sqcup X^\circ$ such that $\operatorname{conv}(X^+) \cap \operatorname{conv}(X^-) \neq \emptyset$.

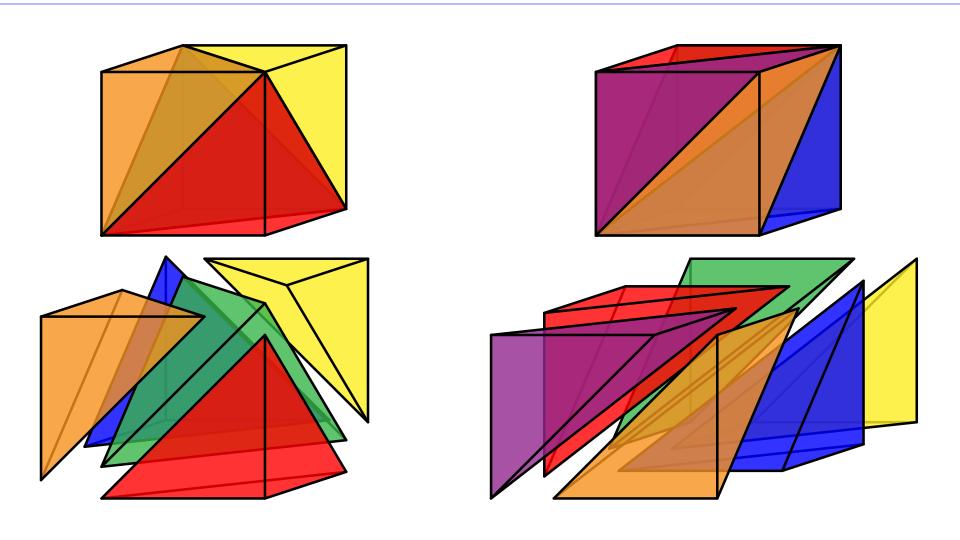
DEF. X set of d+2 points in \mathbb{R}^d .

 $m{X} = m{X}^+ \sqcup m{X}^- \sqcup m{X}^\circ$ Radon partition of $m{X}$ with (inclusion) maximal $m{X}^\circ$.

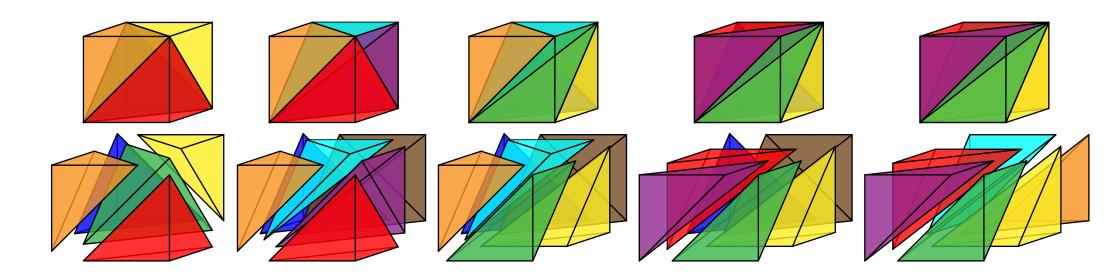
$$\underline{\mathsf{Bistellar\;flip}} = \left\{ \hspace{0.1cm} \mathsf{conv}(\boldsymbol{X} \smallsetminus \{\boldsymbol{x}\}) \hspace{0.1cm} \middle| \hspace{0.1cm} \boldsymbol{x} \in \boldsymbol{X}^{+} \right\} \hspace{0.3cm} \longleftrightarrow \hspace{0.3cm} \left\{ \hspace{0.1cm} \mathsf{conv}(\boldsymbol{X} \smallsetminus \{\boldsymbol{x}\}) \hspace{0.1cm} \middle| \hspace{0.1cm} \boldsymbol{x} \in \boldsymbol{X}^{+} \right\}$$



QU. How many flips to connect these triangulations of the 3-cube?



QU. How many flips to connect these triangulations of the 3-cube?



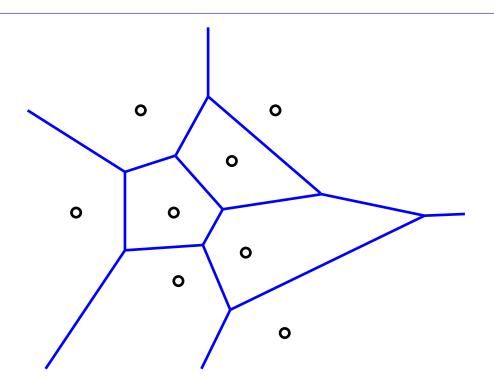
DELAUNAY TRIANGULATION (AGAIN)

VORONOI DIAGRAM

DEF. $P = \text{set of sites in } \mathbb{R}^n$.

 $\underline{\mathsf{Voronoi\ region}}\ \mathrm{Vor}(\boldsymbol{p},\boldsymbol{P}) = \left\{\boldsymbol{x} \in \mathbb{R}^2 \ \middle| \ \lVert \boldsymbol{x} - \boldsymbol{p} \rVert \leq \lVert \boldsymbol{x} - \boldsymbol{q} \rVert \ \mathsf{for\ all}\ \boldsymbol{q} \in \boldsymbol{P} \right\}.$

Voronoi diagram $Vor(\boldsymbol{P}) = partition of \mathbb{R}^n$ formed by $Vor(\boldsymbol{p}, \boldsymbol{P})$ for $\boldsymbol{p} \in \boldsymbol{P}$.

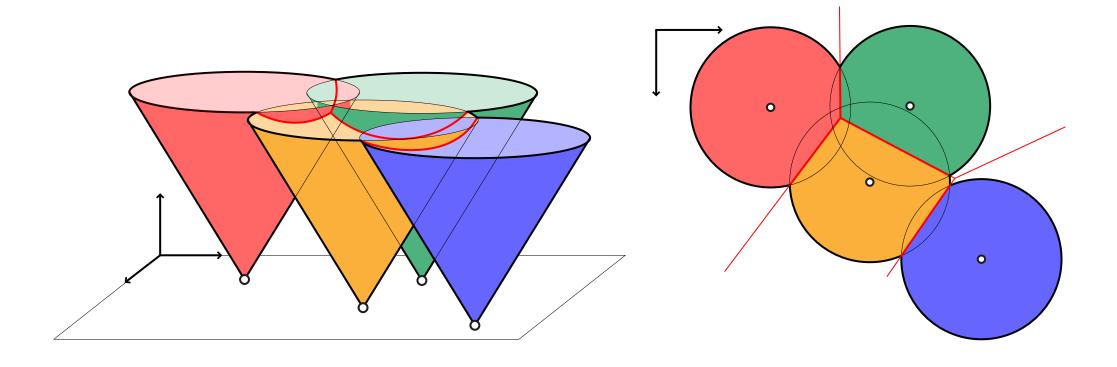


VORONOI DIAGRAM

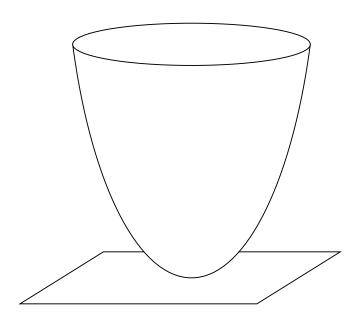
DEF. $P = \text{set of sites in } \mathbb{R}^n$.

 $\underline{\mathsf{Voronoi\ region}}\ \mathrm{Vor}(\boldsymbol{p},\boldsymbol{P}) = \left\{\boldsymbol{x} \in \mathbb{R}^2 \ \middle| \ \lVert \boldsymbol{x} - \boldsymbol{p} \rVert \leq \lVert \boldsymbol{x} - \boldsymbol{q} \rVert \ \mathsf{for\ all}\ \boldsymbol{q} \in \boldsymbol{P} \right\}.$

Voronoi diagram $Vor(\boldsymbol{P}) = partition of \mathbb{R}^n$ formed by $Vor(\boldsymbol{p}, \boldsymbol{P})$ for $\boldsymbol{p} \in \boldsymbol{P}$.

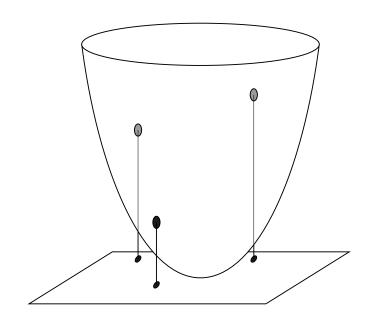


<u>paraboloïd</u> \mathcal{P} with equation $x_{d+1} = \sum_{i \in [d]} x_i^2$.



paraboloïd \mathcal{P} with equation $x_{d+1} = \sum_{i \in [d]} x_i^2$.

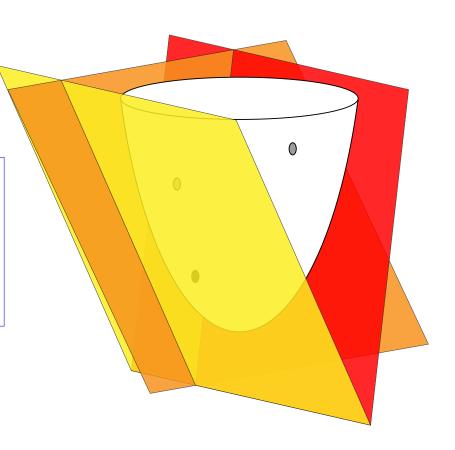
<u>lifting function</u> $\mathbf{p} \in \mathbb{R}^d \longmapsto \hat{\mathbf{p}} = (\mathbf{p}, ||\mathbf{p}||^2) \in \mathbb{R}^{d+1}$.



paraboloïd \mathcal{P} with equation $x_{d+1} = \sum_{i \in [d]} x_i^2$.

<u>lifting function</u> $\mathbf{p} \in \mathbb{R}^d \longmapsto \hat{\mathbf{p}} = (\mathbf{p}, \|\mathbf{p}\|^2) \in \mathbb{R}^{d+1}$.

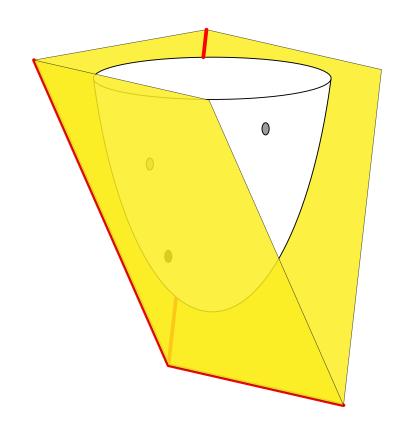
PROP. The Voronoi diagram Vor(P) is the vertical projection of the upper enveloppe of the planes tangent to the paraboloïd $\mathcal P$ at the lifted points $\hat{\boldsymbol p}$ for $\boldsymbol p \in P$.



paraboloïd \mathcal{P} with equation $x_{d+1} = \sum_{i \in [d]} x_i^2$.

<u>lifting function</u> $\mathbf{p} \in \mathbb{R}^d \longmapsto \hat{\mathbf{p}} = (\mathbf{p}, ||\mathbf{p}||^2) \in \mathbb{R}^{d+1}$.

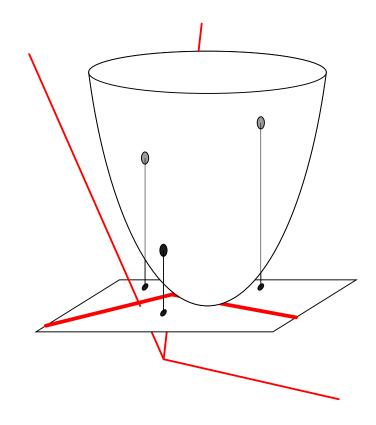
PROP. The Voronoi diagram $Vor(\boldsymbol{P})$ is the vertical projection of the upper enveloppe of the planes tangent to the paraboloïd \mathcal{P} at the lifted points $\hat{\boldsymbol{p}}$ for $\boldsymbol{p} \in \boldsymbol{P}$.



paraboloïd \mathcal{P} with equation $x_{d+1} = \sum_{i \in [d]} x_i^2$.

<u>lifting function</u> $\mathbf{p} \in \mathbb{R}^d \longmapsto \hat{\mathbf{p}} = (\mathbf{p}, ||\mathbf{p}||^2) \in \mathbb{R}^{d+1}$.

PROP. The Voronoi diagram $Vor(\boldsymbol{P})$ is the vertical projection of the upper enveloppe of the planes tangent to the paraboloïd \mathcal{P} at the lifted points $\hat{\boldsymbol{p}}$ for $\boldsymbol{p} \in \boldsymbol{P}$.



paraboloïd \mathcal{P} with equation $x_{d+1} = \sum_{i \in [d]} x_i^2$.

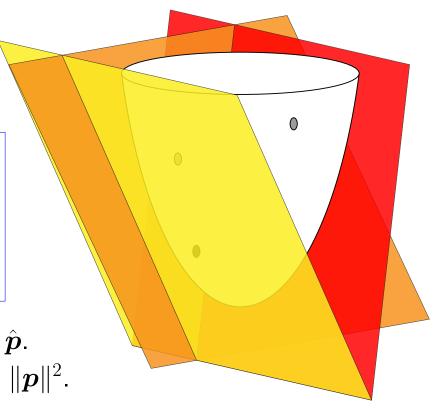
 $\underline{ \text{lifting function} } \; \boldsymbol{p} \in \mathbb{R}^d \longmapsto \hat{\boldsymbol{p}} = \left(\boldsymbol{p}, \|\boldsymbol{p}\|^2\right) \in \mathbb{R}^{d+1}.$

PROP. The Voronoi diagram $\mathrm{Vor}(\boldsymbol{P})$ is the vertical projection of the upper enveloppe of the planes tangent to the paraboloïd \mathcal{P} at the lifted points $\hat{\boldsymbol{p}}$ for $\boldsymbol{p} \in \boldsymbol{P}$.

<u>proof:</u> $H(\mathbf{p}) = \text{tangent plane to the paraboloïd } \mathcal{P} \text{ at } \hat{\mathbf{p}}.$

= plane of equation $x_{d+1} = 2 \langle \boldsymbol{p} | \boldsymbol{x} \rangle - ||\boldsymbol{p}||^2$.

Therefore, $H(\mathbf{p})$ above $H(\mathbf{q})$ at point $\mathbf{x} \iff \|\mathbf{x} - \mathbf{p}\| \le \|\mathbf{x} - \mathbf{q}\|$.

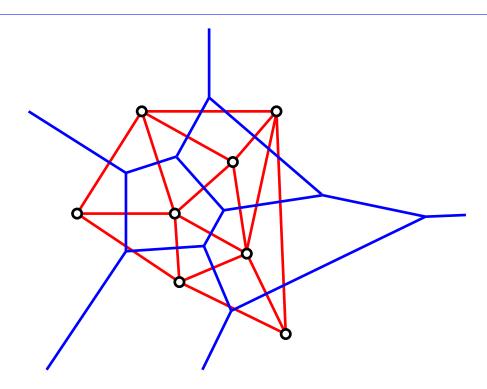


DELAUNAY COMPLEX

DEF. $P = \text{set of sites in } \mathbb{R}^n$.

 $\underline{\mathsf{Voronoi\ region}}\ \mathrm{Vor}(\boldsymbol{p},\boldsymbol{P}) = \left\{\boldsymbol{x} \in \mathbb{R}^2 \ \middle| \ \lVert \boldsymbol{x} - \boldsymbol{p} \rVert \leq \lVert \boldsymbol{x} - \boldsymbol{q} \rVert \ \mathsf{for\ all}\ \boldsymbol{q} \in \boldsymbol{P} \right\}.$

Voronoi diagram $Vor(\boldsymbol{P}) = partition of \mathbb{R}^n$ formed by $Vor(\boldsymbol{p}, \boldsymbol{P})$ for $\boldsymbol{p} \in \boldsymbol{P}$.



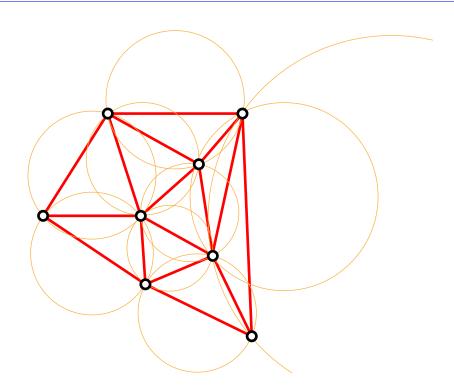
DEF. Delaunay complex $Del(\mathbf{P}) = \text{intersection complex of } Vor(\mathbf{P})$

$$\mathrm{Del}(m{P}) = \big\{ \mathrm{conv}(m{X}) \mid m{X} \subseteq m{P} \text{ and } \bigcap_{m{p} \in m{X}} \mathrm{Vor}(m{p}, m{P})
eq \varnothing \big\}.$$

EMPTY CIRCLES

PROP. For any three points p, q, r of P,

- ullet pq is an edge of $\mathrm{Del}(m{P}) \iff$ there is an empty circle passing through $m{p}$ and $m{q}$,
- ullet pqr is a triangle of $\mathrm{Del}(P) \iff$ the circumcircle of p,q,r is empty.

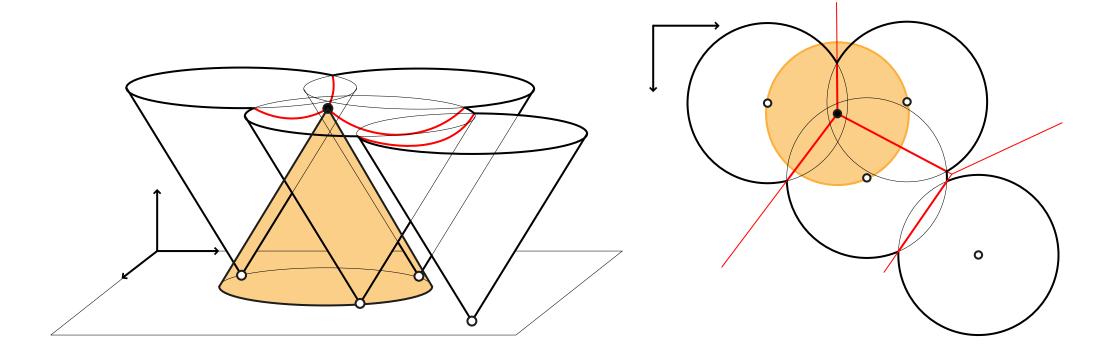


<u>proof idea:</u> consider the circle centered at the intersection of the Voronoi regions and passing through the Voronoi sites.

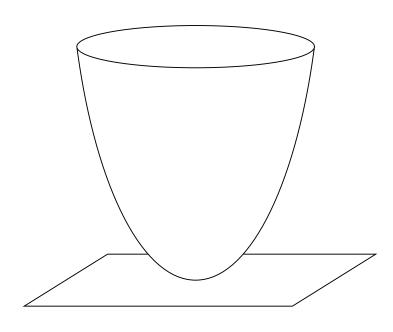
EMPTY CIRCLES

PROP. For any three points p, q, r of P,

- ullet pq is an edge of $\mathrm{Del}(oldsymbol{P}) \iff$ there is an empty circle passing through $oldsymbol{p}$ and $oldsymbol{q}$,
- ullet pqr is a triangle of $\mathrm{Del}(m{P}) \iff$ the circumcircle of $m{p},m{q},m{r}$ is an empty circle.

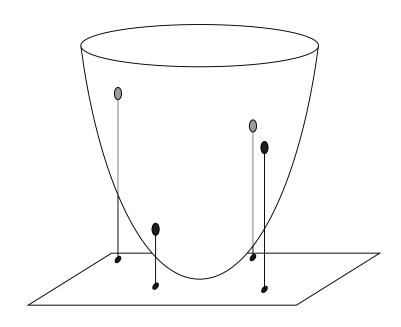


<u>paraboloïd</u> \mathcal{P} with equation $x_{d+1} = \sum_{i \in [d]} x_i^2$.



paraboloïd \mathcal{P} with equation $x_{d+1} = \sum_{i \in [d]} x_i^2$.

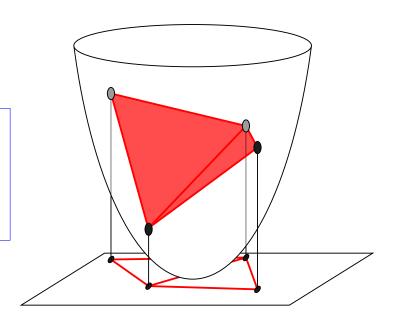
<u>lifting function</u> $\mathbf{p} \in \mathbb{R}^d \longmapsto \hat{\mathbf{p}} = (\mathbf{p}, ||\mathbf{p}||^2) \in \mathbb{R}^{d+1}$.



paraboloïd \mathcal{P} with equation $x_{d+1} = \sum_{i \in [d]} x_i^2$.

<u>lifting function</u> $\mathbf{p} \in \mathbb{R}^d \longmapsto \hat{\mathbf{p}} = (\mathbf{p}, \|\mathbf{p}\|^2) \in \mathbb{R}^{d+1}$.

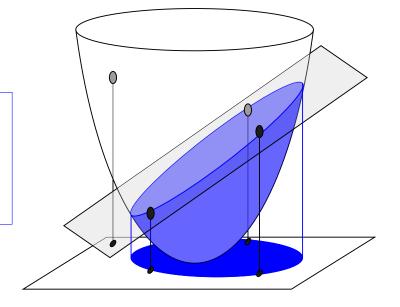
PROP. The Delaunay complex $\mathrm{Del}(\boldsymbol{P})$ is the vertical projection of the lower convex hull of the lifted points $\hat{\boldsymbol{p}}$ for $\boldsymbol{p} \in \boldsymbol{P}$.



paraboloïd \mathcal{P} with equation $x_{d+1} = \sum_{i \in [d]} x_i^2$.

Lifting function $\mathbf{p} \in \mathbb{R}^d \longmapsto \hat{\mathbf{p}} = (\mathbf{p}, ||\mathbf{p}||^2) \in \mathbb{R}^{d+1}$.

PROP. The Delaunay complex $\mathrm{Del}(\boldsymbol{P})$ is the vertical projection of the lower convex hull of the lifted points $\hat{\boldsymbol{p}}$ for $\boldsymbol{p} \in \boldsymbol{P}$.



proof: Paraboloïd cap below a hyperplane:

$$x_{d+1} = \sum_{i \in [d]} x_i^2$$
 and $x_{d+1} \le \sum_{i \in [d]} \lambda_i x_i$.

Projection of this cap:

$$\sum_{i \in [d]} (x_i - \lambda_i/2)^2 \le \sum_{i \in [d]} \lambda_i^2/4.$$

paraboloïd \mathcal{P} with equation $x_{d+1} = \sum_{i \in [d]} x_i^2$.

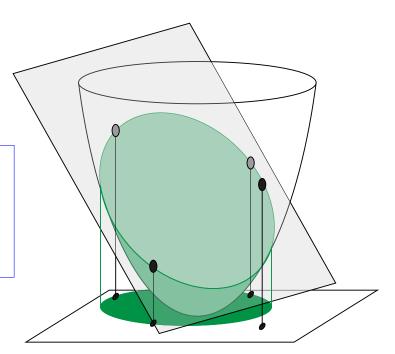
<u>lifting function</u> $\mathbf{p} \in \mathbb{R}^d \longmapsto \hat{\mathbf{p}} = (\mathbf{p}, ||\mathbf{p}||^2) \in \mathbb{R}^{d+1}$.

PROP. The Delaunay complex $\mathrm{Del}(\boldsymbol{P})$ is the vertical projection of the lower convex hull of the lifted points $\hat{\boldsymbol{p}}$ for $\boldsymbol{p} \in \boldsymbol{P}$.

$$x_{d+1} = \sum_{i \in [d]} x_i^2 \quad \text{and} \quad x_{d+1} \le \sum_{i \in [d]} \lambda_i \, x_i.$$

Projection of this cap:

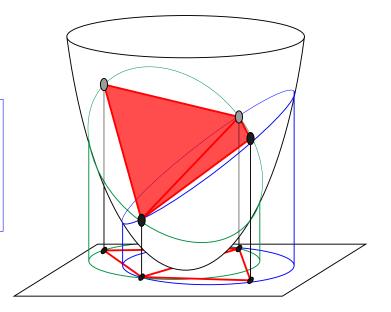
$$\sum_{i \in [d]} (x_i - \lambda_i/2)^2 \le \sum_{i \in [d]} \lambda_i^2/4.$$



paraboloïd \mathcal{P} with equation $x_{d+1} = \sum_{i \in [d]} x_i^2$.

Lifting function $\mathbf{p} \in \mathbb{R}^d \longmapsto \hat{\mathbf{p}} = (\mathbf{p}, ||\mathbf{p}||^2) \in \mathbb{R}^{d+1}$.

PROP. The Delaunay complex $\mathrm{Del}(\boldsymbol{P})$ is the vertical projection of the lower convex hull of the lifted points $\hat{\boldsymbol{p}}$ for $\boldsymbol{p} \in \boldsymbol{P}$.



proof: Paraboloïd cap below a hyperplane:

$$x_{d+1} = \sum_{i \in [d]} x_i^2$$
 and $x_{d+1} \le \sum_{i \in [d]} \lambda_i x_i$.

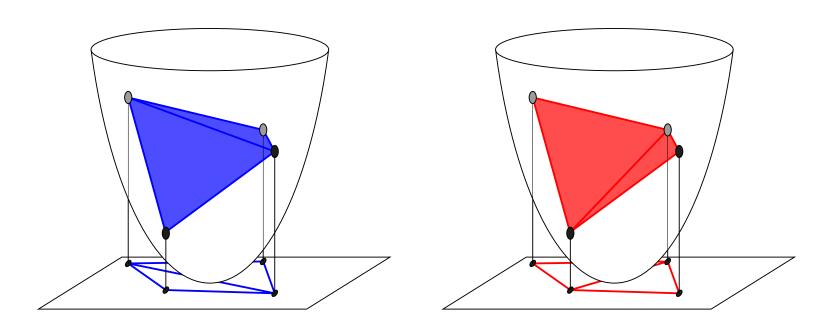
Projection of this cap:

$$\sum_{i \in [d]} (x_i - \lambda_i/2)^2 \le \sum_{i \in [d]} \lambda_i^2/4.$$

LAWSON FLIPS IN DIMENSION 2

DEF. Lawson flip = flip of an edge pq contained in two triangles pqr and pqs such that s is inside the circumcircle of pqr and r is inside the circumcircle of pqs.

PROP. Lawson flips are always possible, and lead to the Delaunay triangulation.



CORO. For any 2-dimensional point configuration, the flip graph is connected.

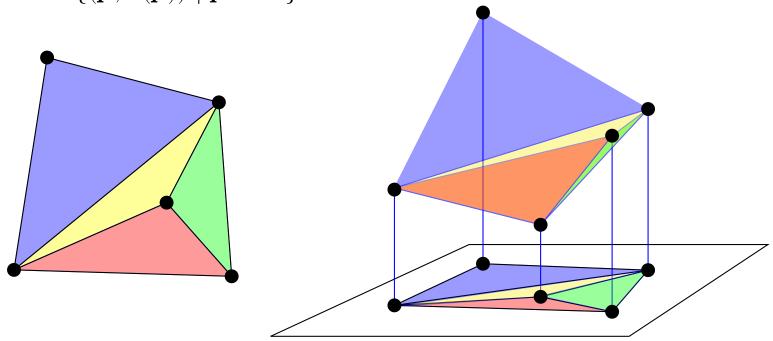
THM. (Santos) In dimension ≥ 5 , some point sets have disconnected flip graphs.

REGULAR TRIANGULATIONS & SUBDIVISIONS

LIFTINGS AND REGULAR SUBDIVISIONS

DEF. P = point configuration. $h: P \to \mathbb{R}$ height function.

 $S(\mathbf{P}, h) = \text{subdivision of } \mathbf{P} \text{ obtained as the projection of the lower convex hull of the lifted point set } \{(\mathbf{p}, h(\mathbf{p})) \mid \mathbf{p} \in \mathbf{P}\}.$



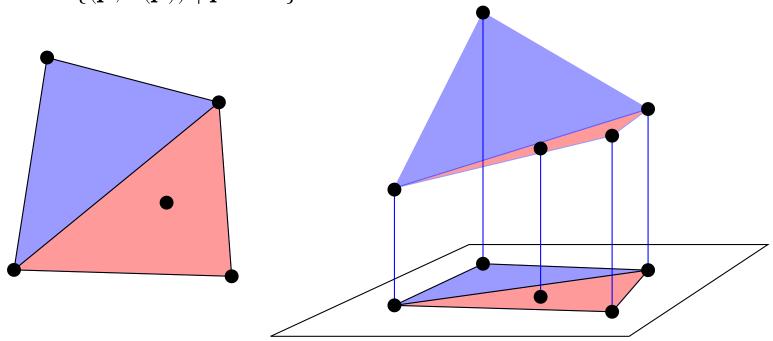
A subdivision S is regular if there is a height function $h: \mathbf{P} \to \mathbb{R}$ st $S = S(\mathbf{P}, h)$.

PROP. If $g: \mathbb{R}^n \to \mathbb{R}$ is affine, then $\mathcal{S}(\mathbf{P}, g + h) = \mathcal{S}(\mathbf{P}, h)$ for any $h: \mathbf{P} \to \mathbb{R}$.

LIFTINGS AND REGULAR SUBDIVISIONS

DEF. P = point configuration. $h: P \to \mathbb{R}$ height function.

 $S(\mathbf{P}, h) = \text{subdivision of } \mathbf{P} \text{ obtained as the projection of the lower convex hull of the lifted point set } \{(\mathbf{p}, h(\mathbf{p})) \mid \mathbf{p} \in \mathbf{P}\}.$



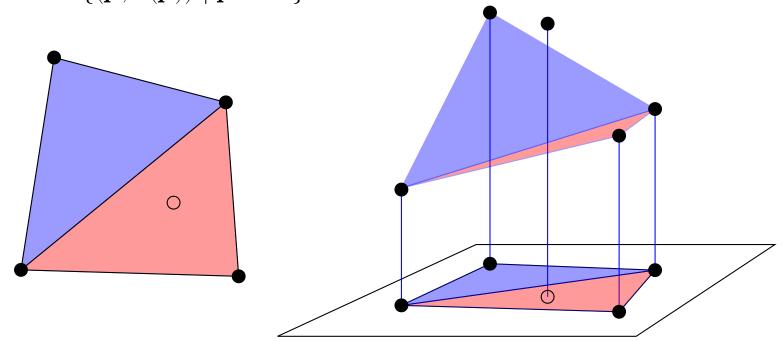
A subdivision S is regular if there is a height function $h: \mathbf{P} \to \mathbb{R}$ st $S = S(\mathbf{P}, h)$.

PROP. If $g: \mathbb{R}^n \to \mathbb{R}$ is affine, then $\mathcal{S}(\mathbf{P}, g + h) = \mathcal{S}(\mathbf{P}, h)$ for any $h: \mathbf{P} \to \mathbb{R}$.

LIFTINGS AND REGULAR SUBDIVISIONS

DEF. P = point configuration. $h: P \to \mathbb{R}$ height function.

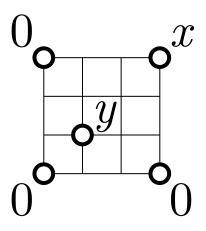
 $S(\mathbf{P}, h) = \text{subdivision of } \mathbf{P} \text{ obtained as the projection of the lower convex hull of the lifted point set } \{(\mathbf{p}, h(\mathbf{p})) \mid \mathbf{p} \in \mathbf{P}\}.$

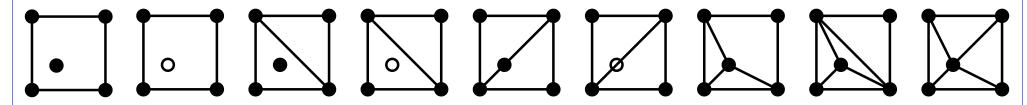


A subdivision S is regular if there is a height function $h: \mathbf{P} \to \mathbb{R}$ st $S = S(\mathbf{P}, h)$.

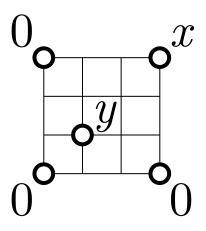
PROP. If $g: \mathbb{R}^n \to \mathbb{R}$ is affine, then $\mathcal{S}(\mathbf{P}, g + h) = \mathcal{S}(\mathbf{P}, h)$ for any $h: \mathbf{P} \to \mathbb{R}$.

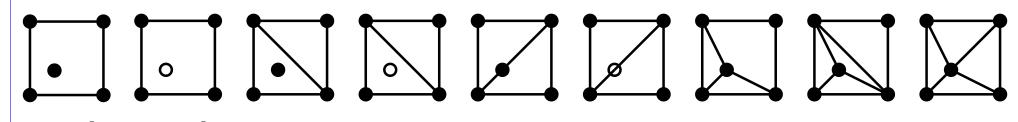
Point configuration $P = \{(0,0), (3,0), (0,3), (3,3), (1,1)\}.$ Restrict to height functions h with h((0,0)) = h((3,0)) = h((0,3)) = 0.Let x = h((3,3)) and y = h((1,1)).





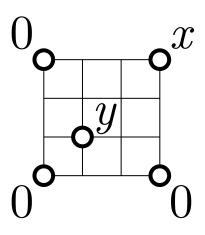
Point configuration $P = \{(0,0), (3,0), (0,3), (3,3), (1,1)\}.$ Restrict to height functions h with h((0,0)) = h((3,0)) = h((0,3)) = 0.Let x = h((3,3)) and y = h((1,1)).

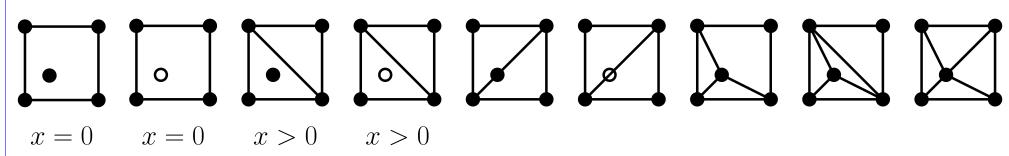




$$x = 0 \qquad x = 0$$
$$y = 0 \qquad y > 0$$

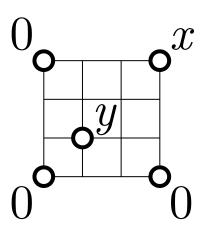
Point configuration $P = \{(0,0), (3,0), (0,3), (3,3), (1,1)\}.$ Restrict to height functions h with h((0,0)) = h((3,0)) = h((0,3)) = 0.Let x = h((3,3)) and y = h((1,1)).

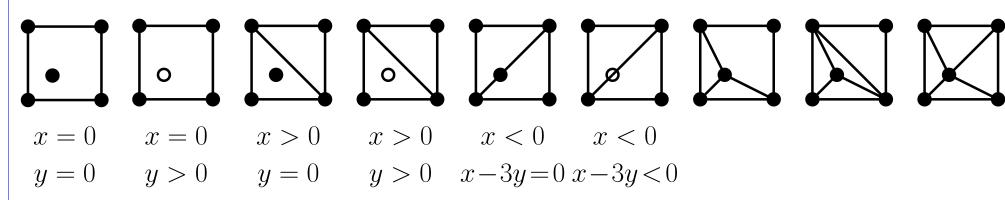




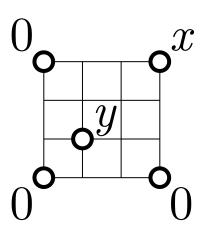
$$y = 0 \qquad y > 0 \qquad y = 0 \qquad y > 0$$

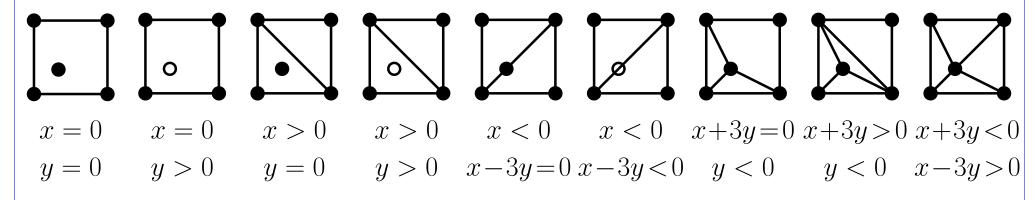
Point configuration $P = \{(0,0), (3,0), (0,3), (3,3), (1,1)\}.$ Restrict to height functions h with h((0,0)) = h((3,0)) = h((0,3)) = 0.Let x = h((3,3)) and y = h((1,1)).





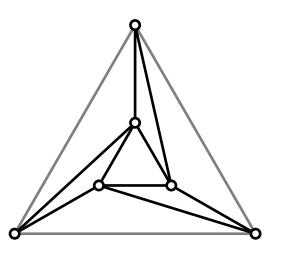
Point configuration $P = \{(0,0), (3,0), (0,3), (3,3), (1,1)\}.$ Restrict to height functions h with h((0,0)) = h((3,0)) = h((0,3)) = 0.Let x = h((3,3)) and y = h((1,1)).

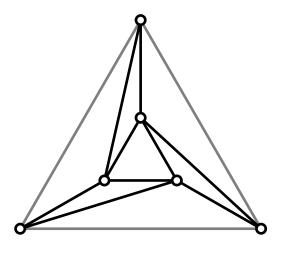




NON REGULAR TRIANGULATIONS

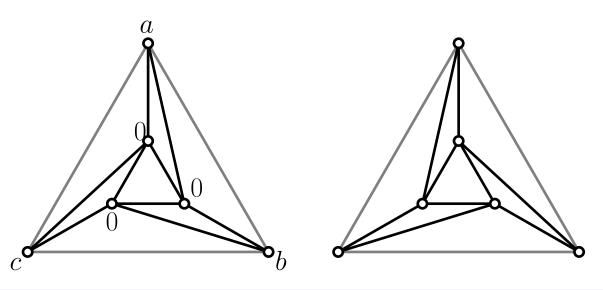
QU. Show that the following two triangulations are not regular:





NON REGULAR TRIANGULATIONS

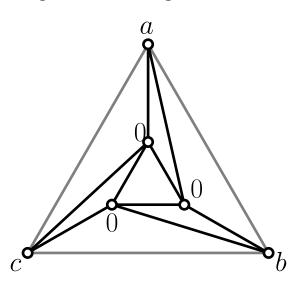
PROP. The following two triangulations are not regular:

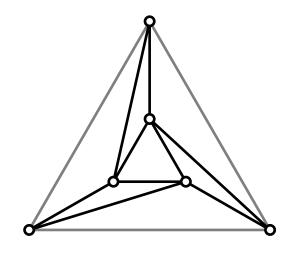


proof: assume the left one regular, and pick a height function. Up to an affine function, height 3 for the 3 internal vertices. The heights of the 3 external vertices satisfy: a < b < c < a. Contradiction.

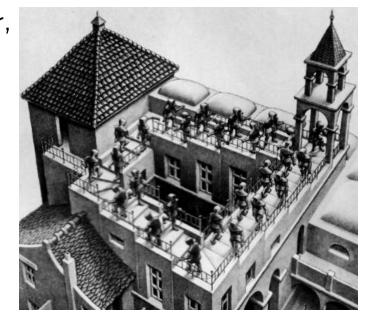
NON REGULAR TRIANGULATIONS

PROP. The following two triangulations are not regular:



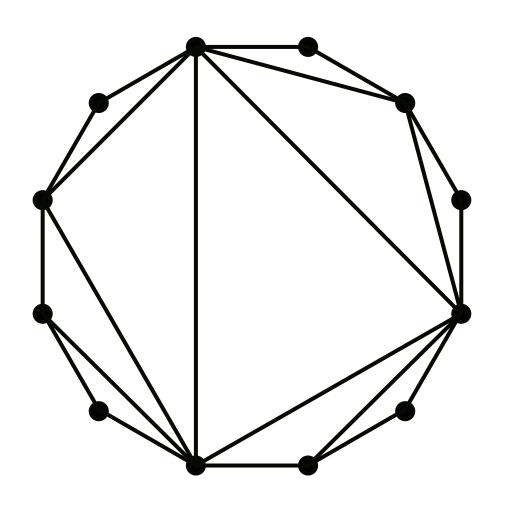


proof: assume the left one regular, and pick a height function. Up to an affine function, height 3 for the 3 internal vertices. The heights of the 3 external vertices satisfy: a < b < c < a. Contradiction.



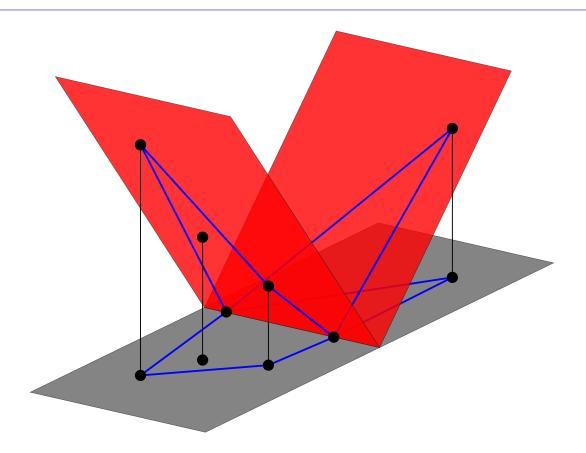
CONVEX POSITION

QU. Show that all subdivisions of a planar point set in convex position are regular.



CONVEX POSITION

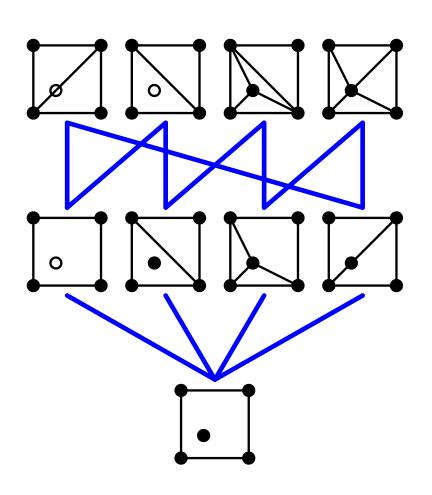
PROP. All subdivisions of a planar point set in convex position are regular.



Use $h(\mathbf{p}) = \sum_{\delta \in \mathcal{S}} d(\delta, \mathbf{p})$ where $d(\delta, \mathbf{p})$ is the distance of \mathbf{p} to the line spanned by δ .

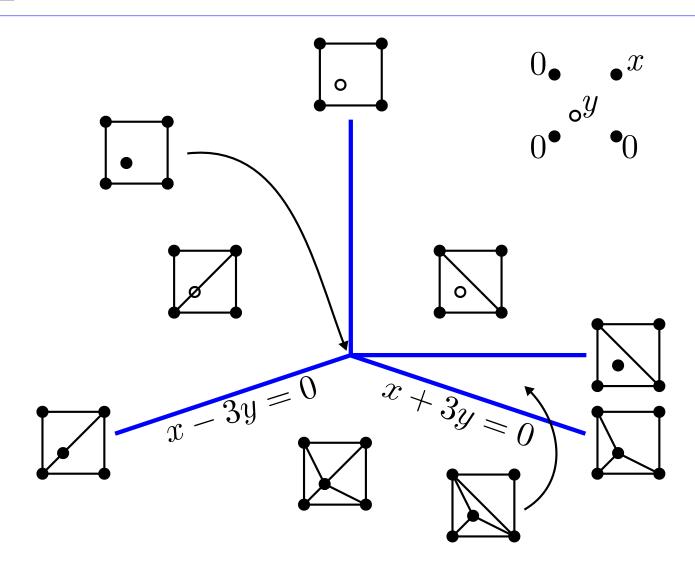
REGULAR SUBDIVISION LATTICE

DEF. S refines S' when for any $X \in S$, there is $X' \in S'$ st $X \subseteq X'$. regular subdivision lattice = regular subdivisions of P ordered by refinement.



SECONDARY FAN

DEF. secondary cone of subdivision S of $P = \Sigma \mathbb{C}(S) = \{h \in \mathbb{R}^P \mid S(P, h) = S\}$. secondary fan of P = fan formed by the secondary cones of all (regular) subdivisions.



SECONDARY POLYTOPE

DEF. \mathcal{T} triangulation of a point set $\mathbf{P} \subseteq \mathbb{R}^d$. volume vector of \mathcal{T} :

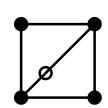
$$\Phi(\mathcal{T}) = \left(\sum_{p \in \triangle \in \mathcal{T}} \operatorname{vol}(\triangle)\right)_{p \in P}$$

secondary polytope of P:

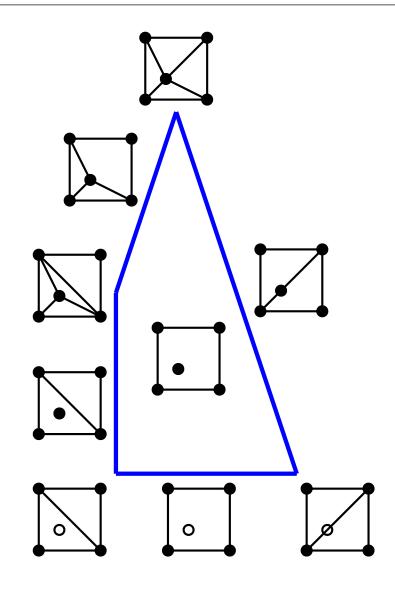
 $\Sigma \mathbb{P}(\mathbf{P}) := \operatorname{conv} \{ \Phi(\mathcal{T}) \mid \mathcal{T} \text{ triangulation of } \mathbf{P} \}.$

exm:

(6, 15, 15, 9, 9) (6, 9, 9, 12, 18)

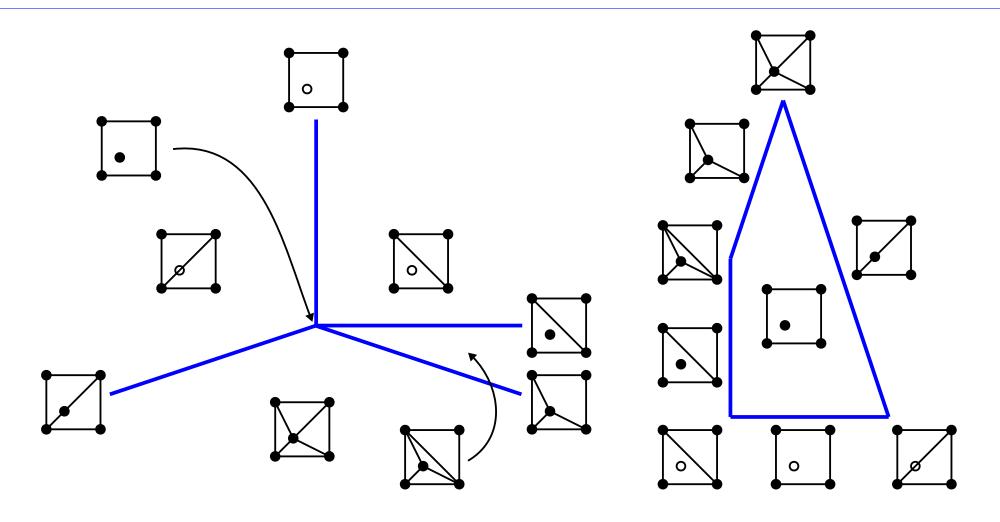


(9, 18, 18, 9, 0) (18, 9, 9, 18, 0)



THM. (Gelfand, Kapranov, and Zelevinsky) For P in general position in \mathbb{R}^d ,

- \bullet $\Sigma \mathbb{P}(\boldsymbol{P})$ has dimension $|\boldsymbol{P}| d 1$,
- $\Sigma \mathcal{F}(\boldsymbol{P})$ is the inner normal fan of $\Sigma \mathbb{P}(\boldsymbol{P})$,
- The face lattice of $\Sigma \mathbb{P}(\mathbf{P})$ is isomorphic to the regular subdivisions lattice of \mathbf{P} .



THM. (Gelfand, Kapranov, and Zelevinsky) For P in general position in \mathbb{R}^d ,

- $\Sigma \mathbb{P}(\mathbf{P})$ has dimension $|\mathbf{P}| d 1$,
- $\Sigma \mathcal{F}(\boldsymbol{P})$ is the inner normal fan of $\Sigma \mathbb{P}(\boldsymbol{P})$,
- The face lattice of $\Sigma \mathbb{P}(\mathbf{P})$ is isomorphic to the regular subdivisions lattice of \mathbf{P} .

proof: lower bound on $\dim(\Sigma \mathbb{P}(\mathbf{P}))$ by induction on $|\mathbf{P}|$:

- ullet when $|{m P}|=d$, $\Sigma {\mathbb P}({m P})$ is a single point,
- ullet for $|m{P}| \geq d+1$ and any $m{p} \in m{P}$, $\Sigma \mathbb{P}(m{P} \smallsetminus m{p}) = \Sigma \mathbb{P}(m{P}) \cap \left\{ m{x} \in \mathbb{R}^{m{P}} \; \middle| \; x_{m{p}} = lpha
 ight\}$ where

$$\alpha = \begin{cases} 0 & \text{if } \boldsymbol{p} \text{ inside } \operatorname{conv}(\boldsymbol{P}), \\ \operatorname{vol}(\operatorname{conv}(\boldsymbol{P})) - \operatorname{vol}(\operatorname{conv}(\boldsymbol{P} \smallsetminus \boldsymbol{p})) & \text{if } \boldsymbol{p} \text{ on the boundary of } \operatorname{conv}(\boldsymbol{P}). \end{cases}$$

THM. (Gelfand, Kapranov, and Zelevinsky) For P in general position in \mathbb{R}^d ,

- $\Sigma \mathbb{P}(\boldsymbol{P})$ has dimension $|\boldsymbol{P}| d 1$,
- $\Sigma \mathcal{F}(\boldsymbol{P})$ is the inner normal fan of $\Sigma \mathbb{P}(\boldsymbol{P})$,
- ullet The face lattice of $\Sigma \mathbb{P}(\boldsymbol{P})$ is isomorphic to the regular subdivisions lattice of \boldsymbol{P} .

proof: lower bound on $\dim(\Sigma \mathbb{P}(\mathbf{P}))$ by induction on $|\mathbf{P}|$:

- when |P| = d, $\Sigma \mathbb{P}(P)$ is a single point,
- ullet for $|m{P}| \geq d+1$ and any $m{p} \in m{P}$, $\Sigma \mathbb{P}(m{P} \smallsetminus m{p}) = \Sigma \mathbb{P}(m{P}) \cap \left\{ m{x} \in \mathbb{R}^{m{P}} \mid x_{m{p}} = lpha
 ight\}$ where

$$\alpha = \begin{cases} 0 & \text{if } \boldsymbol{p} \text{ inside } \operatorname{conv}(\boldsymbol{P}), \\ \operatorname{vol}(\operatorname{conv}(\boldsymbol{P})) - \operatorname{vol}(\operatorname{conv}(\boldsymbol{P} \smallsetminus \boldsymbol{p})) & \text{if } \boldsymbol{p} \text{ on the boundary of } \operatorname{conv}(\boldsymbol{P}). \end{cases}$$

upper bound on $\dim(\Sigma \mathbb{P}(\mathbf{P}))$ from the volume and center of mass of $\operatorname{conv}(\mathbf{P})$:

$$\operatorname{vol}(\boldsymbol{P}) = \sum_{\Delta \in \mathcal{T}} \operatorname{vol}(\Delta) = \sum_{\Delta \in \mathcal{T}} \sum_{\boldsymbol{p} \in \Delta} \frac{\operatorname{vol}(\Delta)}{d+1} = \frac{1}{d+1} \sum_{\boldsymbol{p} \in \boldsymbol{P}} \sum_{\boldsymbol{p} \in \Delta \in \mathcal{T}} \operatorname{vol}(\Delta) = \frac{1}{d+1} \sum_{\boldsymbol{p} \in \boldsymbol{P}} \Phi(\mathcal{T})_{\boldsymbol{p}}.$$

$$\operatorname{vol}(\boldsymbol{P}) \cdot \operatorname{cm}(\boldsymbol{P}) = \sum_{\Delta \in \mathcal{T}} \operatorname{vol}(\Delta) \cdot \operatorname{cm}(\Delta) = \sum_{\Delta \in \mathcal{T}} \operatorname{vol}(\Delta) \cdot \left(\frac{1}{d+1} \sum_{\boldsymbol{p} \in \Delta} \boldsymbol{p}\right) = \frac{1}{d+1} \sum_{\boldsymbol{p} \in \boldsymbol{P}} \Phi(\mathcal{T})_{\boldsymbol{p}} \cdot \boldsymbol{p}.$$

THM. (Gelfand, Kapranov, and Zelevinsky) For P in general position in \mathbb{R}^d ,

- $\Sigma \mathbb{P}(\boldsymbol{P})$ has dimension $|\boldsymbol{P}| d 1$,
- $\Sigma \mathcal{F}(\boldsymbol{P})$ is the inner normal fan of $\Sigma \mathbb{P}(\boldsymbol{P})$,
- The face lattice of $\Sigma \mathbb{P}(\mathbf{P})$ is isomorphic to the regular subdivisions lattice of \mathbf{P} .

proof: $\mathcal T$ triangulation of m P and a height vector $m h \in \mathbb R^{m P}$.

 $f_{\mathcal{T},h} : \operatorname{conv}(\boldsymbol{P}) \to \mathbb{R} = \operatorname{piecewise}$ linear map on the simplices of \mathcal{T} such that $f_{\mathcal{T},h}(\boldsymbol{p}) = \boldsymbol{h}_{\boldsymbol{p}}$. Then the volume below the hypersurface defined by $f_{\mathcal{T},h}$ is

$$\int_{\text{conv}(\mathbf{P})} f_{\mathcal{T},\omega}(\mathbf{x}) d\mathbf{x} = \sum_{\Delta \in \mathcal{T}} \int_{\Delta} f_{\mathcal{T},\omega}(\mathbf{x}) d\mathbf{x} = \sum_{\Delta \in \mathcal{T}} \frac{\text{vol}(\Delta)}{d+1} \sum_{\mathbf{p} \in \Delta} \mathbf{h}_{\mathbf{p}}$$
$$= \frac{1}{d+1} \sum_{\mathbf{p} \in \mathbf{P}} \mathbf{h}_{\mathbf{p}} \cdot \sum_{\mathbf{p} \in \Delta \in \mathcal{T}} \text{vol}(\Delta) = \frac{\langle \Phi(\mathcal{T}) | \mathbf{h} \rangle}{d+1}.$$

THM. (Gelfand, Kapranov, and Zelevinsky) For P in general position in \mathbb{R}^d ,

- $\Sigma \mathbb{P}(\boldsymbol{P})$ has dimension $|\boldsymbol{P}| d 1$,
- $\Sigma \mathcal{F}(\boldsymbol{P})$ is the inner normal fan of $\Sigma \mathbb{P}(\boldsymbol{P})$,
- The face lattice of $\Sigma \mathbb{P}(\mathbf{P})$ is isomorphic to the regular subdivisions lattice of \mathbf{P} .

proof: $\mathcal T$ triangulation of m P and a height vector $m h \in \mathbb R^P$.

 $f_{\mathcal{T},h} : \operatorname{conv}(\mathbf{P}) \to \mathbb{R} = \operatorname{piecewise}$ linear map on the simplices of \mathcal{T} such that $f_{\mathcal{T},h}(\mathbf{p}) = h_{\mathbf{p}}$. Then the volume below the hypersurface defined by $f_{\mathcal{T},h}$ is

$$\int_{\text{conv}(\mathbf{P})} f_{\mathcal{T},\omega}(\mathbf{x}) d\mathbf{x} = \sum_{\Delta \in \mathcal{T}} \int_{\Delta} f_{\mathcal{T},\omega}(\mathbf{x}) d\mathbf{x} = \sum_{\Delta \in \mathcal{T}} \frac{\text{vol}(\Delta)}{d+1} \sum_{\mathbf{p} \in \Delta} \mathbf{h}_{\mathbf{p}}$$
$$= \frac{1}{d+1} \sum_{\mathbf{p} \in \mathbf{P}} \mathbf{h}_{\mathbf{p}} \cdot \sum_{\mathbf{p} \in \Delta \in \mathcal{T}} \text{vol}(\Delta) = \frac{\langle \Phi(\mathcal{T}) \mid \mathbf{h} \rangle}{d+1}.$$

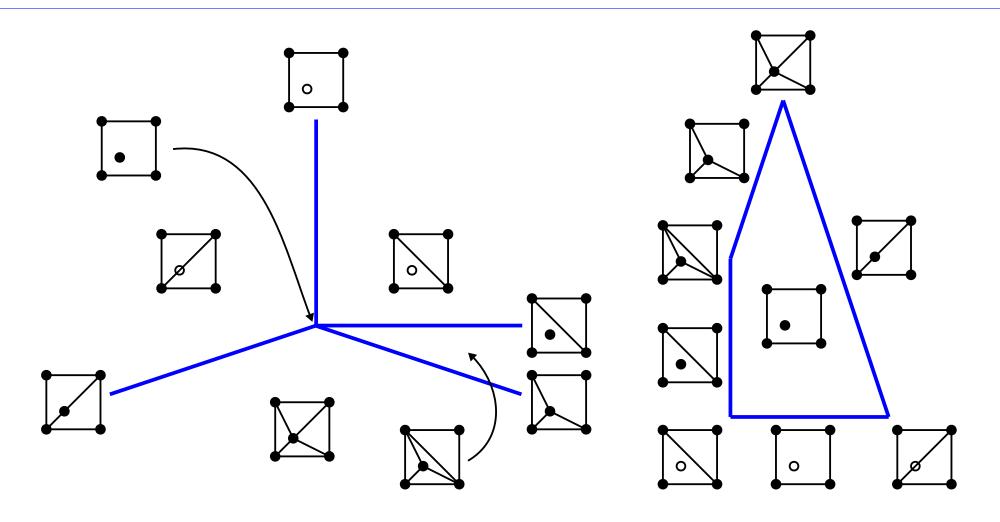
Therefore, if $\mathcal{T} = \mathcal{S}(\boldsymbol{P}, \boldsymbol{h}) \neq \mathcal{T}'$ then

$$\langle \Phi(\mathcal{T}) \mid \boldsymbol{h} \rangle < \langle \Phi(\mathcal{T}') \mid \boldsymbol{h} \rangle.$$

In other words, the normal cone of $\Phi(\mathcal{T})$ in $\Sigma \mathbb{P}(\mathbf{P})$ is the secondary cone of \mathcal{T} .

THM. (Gelfand, Kapranov, and Zelevinsky) For P in general position in \mathbb{R}^d ,

- \bullet $\Sigma \mathbb{P}(\boldsymbol{P})$ has dimension $|\boldsymbol{P}| d 1$,
- $\Sigma \mathcal{F}(\boldsymbol{P})$ is the inner normal fan of $\Sigma \mathbb{P}(\boldsymbol{P})$,
- The face lattice of $\Sigma \mathbb{P}(\mathbf{P})$ is isomorphic to the regular subdivisions lattice of \mathbf{P} .



THM. (Gelfand, Kapranov, and Zelevinsky) For P in general position in \mathbb{R}^d ,

- $\Sigma \mathbb{P}(\mathbf{P})$ has dimension $|\mathbf{P}| d 1$,
- $\Sigma \mathcal{F}(\mathbf{P})$ is the inner normal fan of $\Sigma \mathbb{P}(\mathbf{P})$,
- ullet The face lattice of $\Sigma \mathbb{P}(\boldsymbol{P})$ is isomorphic to the regular subdivisions lattice of \boldsymbol{P} .

CORO. For any point set P in \mathbb{R}^d (arbitrary dimension), the flip graph on regular triangulations is connected.

QU. Locate the volume vectors of the non-regular triangulations in

SOME REFERENCES

SOME REFERENCES

- Jesus A. De Loera, Jörg Rambau, and Francisco Santos.
 Triangulations: Structures for Algorithms and Applications.
 Vol. 25 of Algorithms and Computation in Mathematics. Springer Verlag, 2010.
- Günter M. Ziegler. *Lectures on polytopes*. Vol. 152 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 1995.