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GRAPH DRAWINGS & EMBEDDINGS

DEF. drawing of G = (V,E) in the plane R2 =

• an injective map φV : V → R2

• a continuous map φe : [0, 1]→ R2 for each e ∈ R
such that

• φe(0) = u and φe(1) = v for any edge e = (u, v),

• φe(]0, 1[) ∩ φV (V ) = ∅ for edge e.

DEF. topological drawing if

• no edge has a self-intersection,

• two edges with a common endpoint do not cross,

• two edges cross at most once.

DEF. embedding if φe(x) 6= φe′(x
′) for (e, x) 6= (e′, x′) with e, e′ ∈ E and x, x′ ∈ ]0, 1[.



PLANAR GRAPHS



PLANAR GRAPHS

DEF. planar graph = admits an embedding in the plane R2.

DEF. faces = connected components of the complement of an embedding.

Planar graphs are very special:

• combinatorially (few edges, Euler relation, 4-colorable, ...),

• algorithmically (use planar structure to design more efficient algorithms).



EULER’S FORMULA

THM. (Euler’s formula)

v − e + f = 2

for any connected planar graph with v vertices, e edges, and f faces.



EULER’S FORMULA

THM. (Euler’s formula)

v − e + f = 2

for any connected planar graph with v vertices, e edges, and f faces.

proof 1: Induction on e

• valid for a tree,

• adding an edge separates a face

into two (Jordan’s theorem),

• hence v − e + f is constant.



EULER’S FORMULA

THM. (Euler’s formula)

v − e + f = 2

for any connected planar graph with v vertices, e edges, and f faces.

proof 1: Induction on e

• valid for a tree,

• adding an edge separates a face

into two (Jordan’s theorem),

• hence v − e + f is constant.

proof 2: pair of spanning trees

• G and G? dual planar graphs,

• T and T ? dual spanning trees,

• eT = vT − 1 = v − 1,

• eT ? = vT ? − 1 = f − 1,

• e = eT+eT ? = v−1+f−1 = v+f−2.



EULER’S FORMULA

THM. (Euler’s formula)

v − e + f = 2

for any connected planar graph with v vertices, e edges, and f faces.

CORO. For a simple planar graph with v ≥ 3,

• e ≤ 3v − 6,

• e ≤ 2v − 4 if no triangular face,

• e ≤ (v − 2)(k + 1)/(k − 1) if no face has degree ≤ k.

proof:∑
e∈E

# {f ∈ F | e ∈ f} = # {(e, f ) ∈ E × F | e ∈ f} =
∑
f∈F

# {e ∈ E | e ∈ f}

2e = ≥ (k + 1)f

= (k + 1)e− (k + 1)(v − 2)

hence

(k − 1)e ≤ (k + 1)(v − 2).



EULER’S FORMULA

THM. (Euler’s formula)

v − e + f = 2

for any connected planar graph with v vertices, e edges, and f faces.

CORO. For a simple planar graph with v ≥ 3,

• e ≤ 3v − 6,

• e ≤ 2v − 4 if no triangular face,

• e ≤ (v − 2)(k + 1)/(k − 1) if no face has degree ≤ k.

CORO. The minimum degree of a planar graph is at most 5.



EULER’S FORMULA

THM. (Euler’s formula)

v − e + f = 2

for any connected planar graph with v vertices, e edges, and f faces.

CORO. For a simple planar graph with v ≥ 3,

• e ≤ 3v − 6,

• e ≤ 2v − 4 if no triangular face,

• e ≤ (v − 2)(k + 1)/(k − 1) if no face has degree ≤ k.

CORO. The complete graph K5, the complete bipartite graph K3,3, and the Petersen

graph are not planar.



KURATOWSKI’S THEOREM

CORO. The complete graph K5, the complete bipartite graph K3,3, and the Petersen

graph are not planar.

THM. (Kuratowski’s theorem)

A graph is planar if and only if it contains no subdivision of K5 and K3,3.



COLORABILITY OF PLANAR GRAPHS

DEF. a graph is k-colorable if there is a coloring of its vertices by k colors such that no

edge is monochromatic.
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EXO. Show that any planar graph is 6-colorable.

EXO. Show that any planar graph is 5-colorable.

EXO. Show that any planar graph is 4-colorable.



SOME APPLICATIONS TO DISCRETE GEOMETRY

THM. (Sylvester–Gallai thm) If n ≥ 3 points in the plane are not all on a line, there

always exists a line containing exactly two points.

THM. There is always a monochromatic line in a bicolored planar point configuration.



TOPOLOGICAL GRAPHS



CROSSING NUMBER

DEF. crossing number of G = minimal number of crossings in a drawing of G.

QU. What is the crossing number of these graphs?



CROSSING NUMBER OF COMPLETE GRAPH

QU. What is the crossing number of the complete graph?
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QU. What is the crossing number of the complete graph?
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CROSSING NUMBER OF COMPLETE GRAPH

QU. What is the crossing number of the complete graph?

double circle:

n = 2ν cr(Kn) ≤
ν(ν − 1)2(ν − 2)
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CROSSING NUMBER OF COMPLETE GRAPH

QU. What is the crossing number of the complete graph?

double circle:

n = 2ν cr(Kn) ≤
ν(ν − 1)2(ν − 2)

4
' n4

64
' 3

8

(
n

4

)
.

hints: Ei = edges joining ai to bj with j 6= i

• #Ei ∩ Ej = (|i− j| − 1)|i− j|/2 + (ν − |i− j| − 1)(ν − |i− j|)/2,

• # crossings on Ei = ν(ν − 1)2(ν − 2)/3.



CROSSING NUMBER OF COMPLETE GRAPH

QU. What is the crossing number of the complete graph?

double circle:

cr(Kn) ≤
1
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CONJ. (Guy ’60) cr(Kn) =
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CROSSING LEMMA

LEM. For a graph G with v vertices and e edges, cr(G) ≥ e− 3v + 6.

THM. For a graph G with v vertices and e ≥ 4v edges, cr(G) ≥ e3/64v2.

rem: this bound is tight up to a constant as

v(Kn) = n e(Kn) =

(
n

2

)
and cr(Kn) ≤

3
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(
n

4

)
' e3

8v2
.



CROSSING LEMMA

LEM. For a graph G with v vertices and e edges, cr(G) ≥ e− 3v + 6.

THM. For a graph G with v vertices and e ≥ 4v edges, cr(G) ≥ e3/64v2.

proof: Consider an optimal drawing of G, and a random induced subgraph H of G

obtained by picking independently each vertex of G with probability p.

The expected number of vertices, edges, and crossings of H are

E(v(H)) = p · v(G), E(e(H)) = p2 · e(G), and E(cr(H)) = p4 · cr(G).

Hence

p4 · cr(G) ≥ p2 · e(G)− 3 · p · v(G) + 6 ≥ p2e− 3pv.

Fix probability p = 4v/e (thus the assumption e ≥ 4v). Then

cr(G) ≥ e/p2 − 3v/p3 = e3/64v2.



APPLICATIONS TO INCIDENCE PROBLEMS

THM. (Szemerédi–Trotter) The maximum number

I(p, `) := max
#P=p
#L=`

# {(p, l) | p ∈ P , l ∈ L, p ∈ l}

of incidences between p points and ` lines in the plane is bounded by

I(p, `) ≤ 3.2 p2/3`2/3 + 4p + 2`.

THM. (Unit distances in the plane) The maximum number

U(p) := max
#P=p

#
{
(p, q) ∈ P 2

∣∣ ‖p− q‖ = 1
}

of unit distances between p points in the plane is bounded by

U(p) ≤ 4 p4/3.



GEOMETRIC GRAPHS



GEOMETRIC GRAPHS

DEF. geometric drawing = vertices are points in R2 and edges are straight segments.

rem: sometimes,“geometric graphs” is used for“graphs defined by geometric means” like:

• graphs of polytopes,

• intersection graphs (intervals, disks, etc),

• visibility graph between objects,

• incidence graphs (point – line incidences),

• etc



RECTILINEAR CROSSING NUMBER

DEF. rectilinear crossing number of G = minimal number of crossings in a geometric

drawing of G.

n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

cr(Kn) 0 1 3 9 19 36 62 102 153 229 324 447 603 798 1029 1318



RECTILINEAR CROSSING NUMBER OF COMPLETE GRAPH

REM. Since any 5 points determine a convex quadrilateral,
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We will prove that

cr(Kn) ≥
1

4
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)
.

Using more sophisticated arguments, one can show that:

PROP.
cr(Kn) ≥

(3
8
+ ε
)(n

4

)
.

CORO. For n large enough, cr(Kn) < cr(Kn).



CONCLUSION & REFERENCES



CONCLUSION & REFERENCES

Planar graphs are very special:

• combinatorially (few edges, Euler relation, 4-colorable, ...),

• algorithmically (use planar structure to design more efficient algorithms).

topological graphs 6= geometric graphs

for instance, different asymptotic crossing numbers
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