Planar \& geometric graphs

V. PILAUD

MPRI 2-38-1. Algorithms and combinatorics for geometric graphs
Friday September 16th, 2022
slides available at: http://www.lix.polytechnique.fr/~pilaud/enseignement/MPRI/MPRI-2-38-1-VP-1.pdf Course notes available at: https://www.lix.polytechnique.fr/~pilaud/enseignement/MPRI/notesCoursMPRI22.pdf

GRAPH DRAWINGS \& EMBEDDINGS

DEF. drawing of $G=(V, E)$ in the plane $\mathbb{R}^{2}=$

- an injective map $\phi_{V}: V \rightarrow \mathbb{R}^{2}$
- a continuous map $\phi_{e}:[0,1] \rightarrow \mathbb{R}^{2}$ for each $e \in R$ such that
- $\phi_{e}(0)=u$ and $\phi_{e}(1)=v$ for any edge $e=(u, v)$,
- $\phi_{e}(] 0,1[) \cap \phi_{V}(V)=\varnothing$ for edge e.

DEF. topological drawing if

- no edge has a self-intersection,
- two edges with a common endpoint do not cross,
- two edges cross at most once.

DEF. embedding if $\phi_{e}(x) \neq \phi_{e^{\prime}}\left(x^{\prime}\right)$ for $(e, x) \neq\left(e^{\prime}, x^{\prime}\right)$ with $e, e^{\prime} \in E$ and $\left.x, x^{\prime} \in\right] 0,1[$.

PLANAR GRAPHS

PLANAR GRAPHS

DEF. planar graph $=$ admits an embedding in the plane \mathbb{R}^{2}.
DEF. faces $=$ connected components of the complement of an embedding.

Planar graphs are very special:

- combinatorially (few edges, Euler relation, 4-colorable, ...),
- algorithmically (use planar structure to design more efficient algorithms).

EULER'S FORMULA

THM. (Euler's formula)

$$
v-e+f=2
$$

for any connected planar graph with v vertices, e edges, and f faces.

EULER'S FORMULA

THM. (Euler's formula)

$$
v-e+f=2
$$

for any connected planar graph with v vertices, e edges, and f faces.
proof 1: Induction on e

- valid for a tree,
- adding an edge separates a face into two (Jordan's theorem),
- hence $v-e+f$ is constant.

EULER'S FORMULA

THM. (Euler's formula)

$$
v-e+f=2
$$

for any connected planar graph with v vertices, e edges, and f faces.
proof 1: Induction on e

- valid for a tree,
- adding an edge separates a face into two (Jordan's theorem),
- hence $v-e+f$ is constant.
proof 2: pair of spanning trees
- G and G^{\star} dual planar graphs,
- T and T^{\star} dual spanning trees,
- $e_{T}=v_{T}-1=v-1$,
- $e_{T^{\star}}=v_{T^{\star}}-1=f-1$,
- $e=e_{T}+e_{T^{\star}}=v-1+f-1=v+f-2$.

EULER'S FORMULA

THM. (Euler's formula)

$$
v-e+f=2
$$

for any connected planar graph with v vertices, e edges, and f faces.

CORO. For a simple planar graph with $v \geq 3$,

- $e \leq 3 v-6$,
- $e \leq 2 v-4$ if no triangular face,
- $e \leq(v-2)(k+1) /(k-1)$ if no face has degree $\leq k$.
proof:

$$
\begin{aligned}
\sum_{e \in E} \#\{f \in F \mid e \in f\}=\#\{(e, f) \in E \times F \mid e \in f\} & =\sum_{f \in F} \#\{e \in E \mid e \in f\} \\
2 e= & \geq(k+1) f \\
& =(k+1) e-(k+1)(v-2)
\end{aligned}
$$

hence

$$
(k-1) e \leq(k+1)(v-2)
$$

EULER'S FORMULA

THM. (Euler's formula)

$$
v-e+f=2
$$

for any connected planar graph with v vertices, e edges, and f faces.

CORO. For a simple planar graph with $v \geq 3$,

- $e \leq 3 v-6$,
- $e \leq 2 v-4$ if no triangular face,
- $e \leq(v-2)(k+1) /(k-1)$ if no face has degree $\leq k$.

CORO. The minimum degree of a planar graph is at most 5 .

EULER'S FORMULA

THM. (Euler's formula)

$$
v-e+f=2
$$

for any connected planar graph with v vertices, e edges, and f faces.

CORO. For a simple planar graph with $v \geq 3$,

- $e \leq 3 v-6$,
- $e \leq 2 v-4$ if no triangular face,
- $e \leq(v-2)(k+1) /(k-1)$ if no face has degree $\leq k$.

CORO. The complete graph K_{5}, the complete bipartite graph $K_{3,3}$, and the Petersen graph are not planar.

KURATOWSKI'S THEOREM

CORO. The complete graph K_{5}, the complete bipartite graph $K_{3,3}$, and the Petersen graph are not planar.

THM. (Kuratowski's theorem)
A graph is planar if and only if it contains no subdivision of K_{5} and $K_{3,3}$.

COLORABILITY OF PLANAR GRAPHS

DEF. a graph is k-colorable if there is a coloring of its vertices by k colors such that no edge is monochromatic.

EXO. Show that any planar graph is 6 -colorable.

EXO. Show that any planar graph is 5 -colorable.

EXO. Show that any planar graph is 4-colorable.

SOME APPLICATIONS TO DISCRETE GEOMETRY

THM. (Sylvester-Gallai thm) If $n \geq 3$ points in the plane are not all on a line, there always exists a line containing exactly two points.

THM. There is always a monochromatic line in a bicolored planar point configuration.

TOPOLOGICAL GRAPHS

CROSSING NUMBER

DEF. crossing number of $G=$ minimal number of crossings in a drawing of G.

QU. What is the crossing number of these graphs?

CROSSING NUMBER OF COMPLETE GRAPH

QU. What is the crossing number of the complete graph?

CROSSING NUMBER OF COMPLETE GRAPH

QU. What is the crossing number of the complete graph? circle:

$$
\operatorname{cr}\left(K_{n}\right) \leq\binom{ n}{4}
$$

CROSSING NUMBER OF COMPLETE GRAPH

QU. What is the crossing number of the complete graph? double circle:

$$
n=2 \nu
$$

$$
\operatorname{cr}\left(K_{n}\right) \leq \frac{\nu(\nu-1)^{2}(\nu-2)}{4} \simeq \frac{n^{4}}{64} \simeq \frac{3}{8}\binom{n}{4} .
$$

CROSSING NUMBER OF COMPLETE GRAPH

QU. What is the crossing number of the complete graph? double circle:

$$
n=2 \nu \quad \operatorname{cr}\left(K_{n}\right) \leq \frac{\nu(\nu-1)^{2}(\nu-2)}{4} \simeq \frac{n^{4}}{64} \simeq \frac{3}{8}\binom{n}{4} .
$$

hints: $E_{i}=$ edges joining a_{i} to b_{j} with $j \neq i$

- $\# E_{i} \cap E_{j}=(|i-j|-1)|i-j| / 2+(\nu-|i-j|-1)(\nu-|i-j|) / 2$,
- \# crossings on $E_{i}=\nu(\nu-1)^{2}(\nu-2) / 3$.

CROSSING NUMBER OF COMPLETE GRAPH

QU. What is the crossing number of the complete graph? double circle:

$$
\operatorname{cr}\left(K_{n}\right) \leq \frac{1}{4}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor \simeq \frac{n^{4}}{64} \simeq \frac{3}{8}\binom{n}{4} .
$$

CONJ. (Guy '60)

$$
\operatorname{cr}\left(K_{n}\right)=\frac{1}{4}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor .
$$

CROSSING LEMMA

LEM. For a graph G with v vertices and e edges, $\operatorname{cr}(G) \geq e-3 v+6$.

THM. For a graph G with v vertices and $e \geq 4 v$ edges, $\operatorname{cr}(G) \geq e^{3} / 64 v^{2}$.
rem: this bound is tight up to a constant as

$$
v\left(K_{n}\right)=n \quad e\left(K_{n}\right)=\binom{n}{2} \quad \text { and } \quad \operatorname{cr}\left(K_{n}\right) \leq \frac{3}{8}\binom{n}{4} \simeq \frac{e^{3}}{8 v^{2}}
$$

CROSSING LEMMA

LEM. For a graph G with v vertices and e edges, $\operatorname{cr}(G) \geq e-3 v+6$.

THM. For a graph G with v vertices and $e \geq 4 v$ edges, $\operatorname{cr}(G) \geq e^{3} / 64 v^{2}$.
proof: Consider an optimal drawing of G, and a random induced subgraph H of G obtained by picking independently each vertex of G with probability p.
The expected number of vertices, edges, and crossings of H are

$$
\mathbb{E}(v(H))=p \cdot v(G), \quad \mathbb{E}(e(H))=p^{2} \cdot e(G), \quad \text { and } \quad \mathbb{E}(\operatorname{cr}(H))=p^{4} \cdot \operatorname{cr}(G)
$$

Hence

$$
p^{4} \cdot \operatorname{cr}(G) \geq p^{2} \cdot e(G)-3 \cdot p \cdot v(G)+6 \geq p^{2} e-3 p v
$$

Fix probability $p=4 v / e$ (thus the assumption $e \geq 4 v$). Then

$$
\operatorname{cr}(G) \geq e / p^{2}-3 v / p^{3}=e^{3} / 64 v^{2}
$$

APPLICATIONS TO INCIDENCE PROBLEMS

THM. (Szemerédi-Trotter) The maximum number

$$
I(p, \ell):=\max _{\substack{\# \boldsymbol{P}=p \\ \# \boldsymbol{L}=\ell}} \#\{(\boldsymbol{p}, \boldsymbol{l}) \mid \boldsymbol{p} \in \boldsymbol{P}, \boldsymbol{l} \in \boldsymbol{L}, \boldsymbol{p} \in \boldsymbol{l}\}
$$

of incidences between p points and ℓ lines in the plane is bounded by

$$
I(p, \ell) \leq 3.2 p^{2 / 3} \ell^{2 / 3}+4 p+2 \ell
$$

THM. (Unit distances in the plane) The maximum number

$$
U(p):=\max _{\# \boldsymbol{P}=p} \#\left\{(\boldsymbol{p}, \boldsymbol{q}) \in \boldsymbol{P}^{2} \mid\|p-q\|=1\right\}
$$

of unit distances between p points in the plane is bounded by

$$
U(p) \leq 4 p^{4 / 3}
$$

GEOMETRIC GRAPHS

GEOMETRIC GRAPHS

DEF. geometric drawing $=$ vertices are points in \mathbb{R}^{2} and edges are straight segments.

rem: sometimes, "geometric graphs" is used for "graphs defined by geometric means" like:

- graphs of polytopes,
- intersection graphs (intervals, disks, etc),
- visibility graph between objects,
- incidence graphs (point - line incidences),
- etc

RECTILINEAR CROSSING NUMBER

DEF. rectilinear crossing number of $G=$ minimal number of crossings in a geometric drawing of G.

n	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
$\overline{\operatorname{cr}}\left(K_{n}\right)$	0	1	3	9	19	36	62	102	153	229	324	447	603	798	1029	1318

RECTILINEAR CROSSING NUMBER OF COMPLETE GRAPH

REM. Since any 5 points determine a convex quadrilateral,

$$
\frac{1}{5}\binom{n}{4} \leq \overline{\operatorname{cr}}\left(K_{n}\right) \leq\binom{ n}{4}
$$

We will prove that

$$
\overline{\operatorname{cr}}\left(K_{n}\right) \geq \frac{1}{4}\binom{n}{4}
$$

Using more sophisticated arguments, one can show that:

$$
\begin{aligned}
& \text { PROP. } \\
& \quad \overline{\operatorname{cr}}\left(K_{n}\right) \geq\left(\frac{3}{8}+\varepsilon\right)\binom{n}{4} ~ . ~
\end{aligned}
$$

CORO. For n large enough, $\quad \operatorname{cr}\left(K_{n}\right)<\overline{\operatorname{cr}}\left(K_{n}\right)$.

CONCLUSION \& REFERENCES

CONCLUSION \& REFERENCES

Planar graphs are very special:

- combinatorially (few edges, Euler relation, 4-colorable, ...),
- algorithmically (use planar structure to design more efficient algorithms).

```
topological graphs }\not=\mathrm{ geometric graphs
for instance, different asymptotic crossing numbers
```


References:

- Stefan Felsner. Geometric graphs and arrangements. Advanced Lectures in Mathematics. Friedr. Vieweg \& Sohn, Wiesbaden, 2004.
- Richard K. Guy. A combinatorial problem.

Nabla, 7:68-72, 1960.

- László Lovász, Katalin Vesztergombi, Uli Wagner, and Emo Welzl. Convex quadrilaterals and k-sets. In Towards a theory of geometric graphs, volume 342 of Contemp. Math., pages 139-148. Amer. Math. Soc., Providence, RI, 2004.

