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RÉSUMÉ

Ce document présente un tour d’horizon de mes recherches qui gravitent autour de deux polytopes
classiques appelés permutaèdre et associaèdre et illustrés à la figure 1.

Le permutaèdre est un polytope dont la structure faciale est décrite par le groupe symétrique Sn :
ses sommets correspondent aux permutations de [n] := {1, . . . , n} ; ses arêtes correspondent aux
paires de permutations reliées par une transposition simple ; et ses faces correspondent aux partitions
ordonnées de [n] (ou de manière équivalente aux classes à gauches des sous-groupes paraboliques
de Sn). De nombreuses propriétés du groupe symétrique Sn se lisent géométriquement sur le per-
mutaèdre : le diagramme de Hasse de l’ordre faible sur Sn (où les permutations sont ordonnées par
inclusion de leurs ensembles d’inversions) est donné par une orientation linéaire du graphe du permu-
taèdre, les expressions réduites des permutations en produits de transpositions simples correspondent
aux chemins dans ce graphe orienté ; les relations de tresses entre ces expressions réduites corres-
pondent au balayage de faces de dimension 2 du permutaèdre ; etc.

L’associaèdre est un polytope “mythique” [Hai84] dont la structure faciale peut se décrite par
différentes structures de Catalan : ses sommes correspondent aux parenthésages d’un produit non-
associatif, aux triangulations d’un polygone convexe, ou aux arbres binaires ; ses arêtes correspondent
aux applications de la règle associativité dans les produits, aux flips de diagonales dans les trian-
gulations, ou aux rotations dans les arbres binaires ; et ses faces correspondent aux parenthésages
partiels, aux dissections du polygone, ou aux arbres de Schröder. De plus, une orientation bien choi-
sie du graphe de l’associaèdre donne le diagramme de Hasse du classique treillis de Tamari [Tam51].
L’associaèdre est une structure fondamentale dans diverses branches des mathématiques, en parti-
culier pour les espaces modulaires et la topologie [Sta63, Kel01], les operades et la théorie de la
réécriture [Str12, MTTV19], les algèbres de Hopf combinatoires [LR98, CP17, Pil18], les algèbres
amassées [FZ02, FZ03a], la théorie des harmoniques diagonaux [BPR12, PRV17], la physique mathe-
matique [AHBHY18], etc. La structure combinatoire et topologique de l’associaèdre a été introduite
dans les travaux originaux de D. Tamari [Tam51] et J. Stasheff [Sta63], et un premier modèle polytopal
3-dimensionnel a été réalisé par J. Milnor pour la soutenance de doctorat de J. Stasheff. Les premières
réalisations polytopales systématiques ont été construites par M. Haiman [Hai84] et C. Lee [Lee89].
Depuis, l’associaèdre a été largement “démystifié” avec de nombreuses constructions polytopales, ba-
sées sur la théorie des polytopes secondaires [GKZ08, BFS90], les éventails de d-vecteurs [CFZ02,
CSZ15, MP17], les éventails de g-vecteurs [Lod04, HL07, LP18, HLT11, HPS18], les polytopes de
briques [PS12, PS15a], etc.

Ces polytopes peuvent être étudiés sous différentes perspectives : par la combinatoire avec leur
structure de treillis, par la géométrie discrète avec leur structure polytopale, ou par l’algèbre avec leurs
connexions aux algèbres de Hopf combinatoires et aux algèbres amassées. De plus, ces structures sur
les permutaèdres et les associaèdres sont fortement liées. Ces connexions prototypiques ainsi que les
prérequis nécessaires à la lecture de ce document sont présentés au chapitre 1.

Le but de ce document est de présenter diverses généralisations du permutaèdre et de l’associaèdre
naturellement motivées par différentes perspectives. Le document traite quatre directions spécifiques,
résumées ci-dessous :

• Partie I : Congruences de treillis, polytopes et algèbres de Hopf.
• Partie II : Au delà de l’ordre faible.
• Partie III : Algèbres amassées et associaèdres généralisés.
• Partie IV : Complexes platoniques des carquois aimables.

Résumé Vincent Pilaud ix
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FIGURE 1 : Le permutaèdre (à gauche) et l’associaèdre (à droite) de dimension 3.

Partie I : Congruences de treillis, polytopes et algèbres de Hopf. Cette première partie est
motivée par les interactions entre les structures combinatoire, géométrique et algébrique provenant
des congruences de treillis de l’ordre faible. Le prototype est la congruence sylvestre [HNT05], qui
peut être définie par une règle de réécriture sur les permutations ou comme les fibres de l’insertion des
permutations dans des arbres binaires de recherche. Cette congruence donne une perspective éclairante
sur le treillis de Tamari [Tam51], sur l’éventail normal de l’associaèdre de J.-L. Loday [Lod04], et sur
l’algèbre de J.-L. Loday et M. Ronco sur les arbres binaires [LR98]. Cette perspective a été largement
étendue par N. Reading dans [Rea05] : le message général est que les congruences de treillis de
l’ordre faible permettent de construire des treillis, des éventails et (parfois) des algèbres de Hopf.
Dans la première partie de ce document, nous étudions cette direction pour trois généralisations de la
congruence sylvestre :

Chapitre 2. Polytopes de briques. Nous considérons une famille des congruences de treillis moti-
vée par certaines multitriangulations [PS09] et leurs connexions [PP12] avec certaines familles
d’arrangements de tuyaux [BB93, KM05]. Ces congruences correspondent à la géométrie des
éventails normaux de certains polytopes de briques [PS12] et permettent de construire l’algèbre
de briques [Pil18]. Elle fournissent un exemple intéressant de la théorie de N. Reading [Rea05].

Chapitre 3. Permutarbrèdres. Nous étudions les permutarbres [PP18], objets combinatoires qui
généralisent et interpolent entre les permutations, les arbres binaires, et les séquences binaires.
Nous construisons des structures de treillis sur les permutarbres, des réalisations géométriques
appelées permutarbrèdres, et définissons l’algèbre de Hopf des permutarbres. Il s’agit d’un pre-
mier pas au delà de la théorie de N. Reading puisque nous considérons simultanément 4n

congruences de l’ordre faible sur Sn pour tout n ∈ N et notre algèbre de Hopf permet de
calculer des produits et des coproduits entre les permutarbres de toutes ces congruences.

Chapitre 4. Quotientopes. Finalement, nous traitons simultanément toutes les congruences de
treillis de l’ordre faible. Nous construisons des réalisations géométriques appelées quotien-
topes [PS19] et nous construisons des structures d’algèbres de Hopf contenant toutes les congru-
ences de treillis simultanément [Pil19].
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Partie II : Au delà de l’ordre faible. L’objectif de cette deuxième partie est d’étendre les struc-
tures étudiées dans la partie I au delà de l’ordre faible dans deux directions différentes : remplacer
d’une part l’arrangement de tresses par l’arrangement de Coxeter d’un groupe de Coxeter fini quel-
conque, ou même par un arrangement d’hyperplans arbitraire ; et remplacer d’autre part l’ordre faible
sur les permutations par des ordres similaires sur toutes les faces du permutaèdre, sur tous les inter-
vals de l’ordre faible, ou même sur tous les ordres partiels sur des entiers. Ces généralisations sont
organisées en deux étapes :

Chapitre 5. Ordre faible facial. Nous considérons d’abord une structure de treillis naturelle sur
toutes les faces du permutaèdre, appelée pseudopermutaèdre dans [KLN+01], qui étend l’ordre
faible sur les permutations. Nous étudions la généralisation de cet ordre à tout groupe de Coxe-
ter fini W : suivant les traces de [PR06], nous définissons un ordre sur toutes les faces du
W -permutaèdre qui étend l’ordre faible sur W , et que nous appelons donc ordre faible fa-
cial [DHP18]. En outre, nous définissons et étudions l’ordre faible facial d’un arrangement d’hy-
perplans arbitraire [DHMP19], étendant ainsi l’ordre des régions de l’arrangement [BEZ90].
Dans ces deux situations, nous fournissons plusieurs interprétations de l’ordre faible facial, qui
sont fondamentales pour montrer que l’ordre faible facial est un treillis dès que l’ordre des ré-
gions est un treillis. Finalement, nous observons que toute congruence de l’ordre faible s’étend
en une congruence de treillis de l’ordre faible facial, ce qui permet de définir une structure de
treillis sur les faces de l’éventail quotient correspondant.

Chapitre 6. Ordre faible sur les ordres partiels entiers. Suivant la direction donnée par le cha-
pitre 5, nous définissons l’ordre faible sur les relations binaires entières (i.e. les relations binaires
sur [n] := {1, . . . , n}), et ses restrictions aux ordres partiels entiers [CPP19]. Cet ordre définit
encore une structure de treillis qui nous permet de réinterpréter les structures de treillis sur les
sommets, les intervalles et les faces du permutaèdre et de l’associaèdre (et plus généralement
des permutarbrèdres) comme des sous-ordres (et parfois des sous-treillis) de l’ordre faible sur
les ordres partiels entiers. En suivant le même modèle, nous définissons également une algèbre
de Hopf sur les ordres partiels entiers [PP20] qui nous permet de réinterpréter certaines (ou
définir de nouvelles) algèbres de Hopf sur les sommets, les intervalles ou les faces du permuta-
èdre et de l’associaèdre (et plus généralement des permutarbrèdres). Finalement, nous discutons
l’extension de cet ordre faible sur les ordres partiels entiers aux sous-ensembles antisymétriques
et clos d’un système de racines d’un groupe de Coxeter fini arbitraire [GP18]. Pour un groupe
de Weyl W , nous obtenons à nouveau une structure de treillis qui contient comme sous-ordre
l’ordre faible sur les éléments, les intervalles et les faces du W -permutaèdre (présenté au cha-
pitre 5) et des W -associaèdres. En revanche, cette construction échoue étonnamment à définir
une structure de treillis au delà des systèmes de racines crystallographiques.

Partie III : Algèbres amassées et associaèdres généralisés. Cette troisième partie est centrée
sur les algèbres amassées et les associaèdres généralisés. Les algèbrees amassées ont été introduites
par S. Fomin et A. Zelevinsky dans [FZ02] avec des motivations provenant de la positivité totale
et des bases canoniques, et se sont rapidement révélées comme une structure fondamentale dans
de nombreux domaines des mathématiques (théorie des représentations de carquois, géométrie de
Poisson, systèmes intégrables, etc). Les algèbres amassées de type fini ont été rapidement classifiées
dans [FZ03a], et des réalisations polytopales des complexes d’amas de type fini, appelées associaèdres
généralisés, ont été construites dans [CFZ02, HLT11, Ste13]. Les complexes d’amas de type fini ont
aussi été réinterprétés plus tard dans [CLS14] en termes de complexes de sous-mots sur des groupes
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de Coxeter finis définis par A. Knutson et E. Miller dans [KM04]. Cette partie du document étudie les
réalisations polytopales des complexes d’amas et des complexes de sous-mots :

Chapitre 7. Réalisations polytopales des éventails de g-vecteurs de type fini. Nous présentons
d’abord une réponse définitive à la question de la polytopalité de l’éventail des g-vecteurs
d’une algèbre amassée de type fini par rapport à une graine initiale (cyclique ou acyclique).
En fait, nous rapportons deux approches différentes : la première utilise l’associaèdre univer-
sel de [HPS18] qui contient simultanément tous les éventails de g-vecteurs, la deuxième uti-
lise le cône de type de [PPPP19] qui décrit toutes les réalisations polytopales d’un éventail de
g-vecteurs donné.

Chapitre 8. Polytopes de briques des complexes de sous-mots. Nous présentons ensuite la cons-
truction et les propriétés des polytopes de briques des complexes de sous-mots [PS15a]. En uti-
lisant la connexion entre les complexes d’amas et les complexes de sous-mots [CLS14], nous
obtenons une construction alternative des associaèdres généralisés de [HLT11], qui fournit en
particulier une description explicite de leurs sommets et permet de prouver une propriété in-
trigante de leurs barycentres [PS15b]. Contrairement aux méthodes développées au chapitre 7,
l’approche par polytopes de briques ne réalise que les éventails de g-vecteurs des algèbres amas-
sées de type fini par rapport à une graine initiale acyclique, mais couvre aussi des complexes de
sous-mots au delà des complexes d’amas.

Partie IV : Complexes platoniques des carquois aimables. Cette quatrième partie étudie une
généralisation très riche de l’associaèdre, appelée associaèdre aimable. La motivation initiale provient
de deux generalisations récentes de l’associaèdre : les associaèdres de grilles [PPS10, SSW17, McC17,
GM17a] et les accordéoèdres [Bar01, Cha16, GM18, MP19]. Il s’agit de réalisations géométriques
des complexes platoniques (sans bisous) de sous-ensembles de la grille et des complexes parallèles
(sans croisements) de dissections de polygones convexes. Nous avons observé dans [PPP17] que ces
complexes simpliciaux sont des cas particuliers des complexes platoniques de carquois aimables. Ces
derniers fournissent des modèles combinatoires pour les complexes support τ -basculants [AIR14]
des algèbres aimables [BR87], une notion algébrique définie par la théorie des représentations des
carquois et essentiellement omise dans ce document. Cette famille de complexes simpliciaux partage
de nombreuses propriétés avec les associaèdres classiques, en particulier ils ont de riches structures
de treillis et peuvent être réalisés par des polytopes convexes. Nous avons seulement réalisé plus
tard dans [PPP19] que les complexes platoniques des algèbres aimables peuvent aussi s’interpréter
comme des complexes parallèles de dissections sur des surfaces. Dans ce document, nous inversons
la chronologie et présentons ces complexes dans l’ordre logique :

Chapitre 9. Platonique contre parallèle. Nous définissons d’abord le complexe platonique (sans
bisous) d’un carquois localement aimable et le complexe parallèle (sans croisements) d’une
surface orientée à bords munie d’une paire de dissections cellulaires duales. Nous montrons
ensuite une bijection entre les carquois localement aimables et les surfaces orientées à bords
munies de paires de dissections cellulaires duales, qui envoie naturellement les complexes pla-
toniques de carquois localement aimables sur les complexes parallèles des surfaces orientés
munies de dissections.

Chapitre 10. Treillis platoniques et associaèdres platoniques. Nous nous concentrons ensuite sur
les complexes platoniques et montrons certaines de leurs propriétés structurelles développées
dans [PPP17] qui généralisent les propriétés classiques de l’associaèdre. Nous décrivons d’abord
l’opération d’échange sur les facettes platoniques, qui montre que le complexe platonique est
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une pseudo-variété. Suivant l’approche de [McC17], nous construisons ensuite une structure
de treillis sur le graphe d’échange platonique comme quotient de treillis d’un treillis de sous-
ensembles biclos de cordes, généralisant ainsi la connexion entre l’ordre faible sur les permu-
tations et le treillis de Tamari sur les arbres binaires. Finalement, nous construisons les asso-
ciaèdres platoniques réalisant les complexes platoniques et généralisant les associaèdres clas-
siques.

Nous concluons par quelques directions de recherche et problèmes ouverts motivés par le maté-
riel présenté dans ce document et qui offrent de bons points d’entrée sur le sujet et des projets de
recherches adaptés à des étudiants de master ou de doctorat. Ces problèmes sont organisés autour de
trois sujets : les permutarbreèdres et les quotientopes (section A), les arrangements de tuyaux et les
complexes de sous-mots (section B), et les algèbres aimables (section C).





INTRODUCTION

This document proposes an overview of my recent work gravitating around two famous and ubiquitous
polytopes, called permutahedron and associahedron.

The permutahedron is a polytope whose face structure is described by the symmetric group Sn:
its vertices correspond to permutations of [n] := {1, . . . , n}; its edges correspond to pairs of permu-
tations related by a simple transposition; and its faces correspond to ordered partitions of [n] (or
equivalently to parabolic cosets of Sn). Many algebraic properties of the symmetric group Sn can
be read geometrically on the permutahedron: the Hasse diagram of the weak order on Sn (where
permutations are ordered by inclusion of their inversion sets) is given by a linear orientation of the
graph of the permutahedron; reduced expressions of permutations as product of simple transpositions
correspond to paths in this oriented graph; braid relations among reduced expressions correspond to
sweeping 2-dimensional faces of the permutahedron; etc.

The associahedron is a “mythical polytope” [Hai84] whose face structure can be described by
different Catalan families: its vertices correspond to parenthesizations of a non-associative product,
triangulations of a convex polygon, or binary trees; its edges correspond to applications of the asso-
ciativity rule, diagonal flips, or edge rotations; and its faces correspond to partial parenthesizations,
diagonal dissections, or Schröder trees. Moreover, a suitable orientation of the graph of the asso-
ciahedron gives the Hasse diagram of the famous Tamari lattice [Tam51]. The associahedron ap-
pears as a fundamental structure in several mathematical theories, in particular moduli spaces and
topology [Sta63, Kel01], operads and rewriting theory [Str12, MTTV19], combinatorial Hopf alge-
bras [LR98, CP17, Pil18], cluster algebras [FZ02, FZ03a], diagonal harmonics [BPR12, PRV17],
mathematical physics [AHBHY18], etc. The combinatorial and topological structure of the associ-
ahedron was introduced in early works of D. Tamari [Tam51] and J. Stasheff [Sta63], and a first
3-dimensional polytopal model was realized by J. Milnor for the PhD defense of J. Stasheff. The
first systematic polytopal realizations were constructed by M. Haiman [Hai84] and C. Lee [Lee89].
Since then, the associahedron has been largely “demystified” with several polytopal constructions,
based on secondary polytopes [GKZ08, BFS90], d-vector fans [CFZ02, CSZ15, MP17], g-vectors
fans [Lod04, HL07, LP18, HLT11, HPS18], brick polytopes [PS12, PS15a], etc.

These polytopes can be considered from different perspectives: from combinatorics with their
lattice structure, from discrete geometry with their polytopal structure, and from algebra with their
connections to combinatorial Hopf algebras and cluster algebras. Moreover, these structures on the
permutahedra and associahedra are strongly related. These prototypical connections together with the
minimal background needed to read this document are presented in Chapter 1.

The aim of this document is to present various generalizations of the permutahedron and associa-
hedron that naturally arise from these different perspectives. We explore four specific directions that
we briefly summarize below:

• Part I: Lattice congruences, polytopes and Hopf algebras.
• Part II: Beyond the weak order.
• Part III: Cluster algebras and generalized associahedra.
• Part IV: Non-kissing and non-crossing complexes.
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2 Introduction

Part I: Lattice congruences, polytopes and Hopf algebras. This first part is motivated by
the interplay between the combinatorial, geometric and algebraic structures arising from lattice con-
gruences of the weak order. The prototype is the sylvester congruence [HNT05], which can be defined
by a rewriting rule on permutations or by the fibers of the binary search tree insertion of permutations.
This congruence provides an enlighting perspective on the Tamari lattice [Tam51], on the normal fan
of J.-L. Loday’s associahedron [Lod04], and on J.-L. Loday and M. Ronco’s Hopf algebra on binary
trees [LR98]. This perspective has been widely extended by N. Reading in [Rea05]: the general
message is that lattice congruences of the weak order enable to construct relevant lattices, fans, and
(sometimes) Hopf algebras. In the first part of this document, we investigate this direction for three
generalizations of the sylvester congruence:

Chapter 2. Brick polytopes. We consider a family of lattice congruences motivated by certain
multitriangulations [PS09] and their connection [PP12] to certain families of pipe dreams [BB93,
KM05]. These congruences correspond to the geometry of the normal fans of certain brick
polytopes [PS12] and enable to construct the brick algebra of [Pil18]. They provide a relevant
example of N. Reading’s setting [Rea05].

Chapter 3. Permutreehedra. We investigate permutrees [PP18], some combinatorial objects that
generalize and interpolate between permutations, binary trees, and binary sequences. We con-
struct lattice structures on permutrees, geometric realizations called permutreehedra, and define
the permutree Hopf algebra. This is our first step beyond N. Reading’s setting as we consider
simultaneously 4n lattice congruences of the weak order on Sn for each n ∈ N and our Hopf
algebra performs product and coproducts between all permutrees for all these congruences.

Chapter 4. Quotientopes. We finally deal simultaneously with all lattice congruences of the weak
order. We construct geometric realizations called quotientopes [PS19] and construct Hopf alge-
bra structures containing all lattice congruences simultaneously [Pil19].

Part I is mainly based on the following contributions:
• Vincent Pilaud. Brick polytopes, lattice quotients, and Hopf algebras. Journal of Combinatorial

Theory, Series A, vol. 155, pp. 418 – 457, 2018.
• Vincent Pilaud & Viviane Pons. Permutrees. Algebraic Combinatorics, vol. 1(2), pp. 173 – 224,

2018.
• Vincent Pilaud & Francisco Santos. Quotientopes. Bulletin of the London Mathematical

Society, vol. 51(3), pp. 406 – 420, 2019.
• Vincent Pilaud. Hopf algebras on decorated noncrossing arc diagrams. Journal of Combinato-

rial Theory, Series A, vol. 161, pp. 486 – 507, 2019.

The following contributions are also closely connected to this part:
• Vincent Pilaud & Francisco Santos. Multitriangulations as complexes of star-polygons. Dis-

crete & Computational Geometry, vol. 41(2), pp. 284 – 317, 2009.
• Vincent Pilaud & Michel Pocchiola. Multitriangulations, pseudotriangulations and primitive

sorting networks. Discrete & Computational Geometry, vol. 48(1), pp. 142 – 191, 2012.
• Vincent Pilaud & Francisco Santos. The brick polytope of a sorting network. European Journal

of Combinatorics, vol. 33(4), pp. 632 – 662, 2012.
• Carsten Lange & Vincent Pilaud. Associahedra via spines. Combinatorica, vol. 38(2),

pp. 443 – 486, 2018.
• Grégory Chatel & Vincent Pilaud. Cambrian Hopf Algebras. Advances in Mathematics,

vol. 311, pp. 598 – 633, 2017.
• Florent Hivert & Vincent Pilaud. Signaletic operads. Preprint, 97 pp., arXiv:1906.02228, 2019.

http://arxiv.org/abs/1906.02228
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Part II: Beyond the weak order. The objective of this second part is to extend the structures
studied in Part I beyond the weak order in two different directions: replacing on the one hand the
braid arrangement by Coxeter arrangements of arbitrary finite Coxeter groups, or even by arbitrary
hyperplane arrangements; and replacing on the other hand the weak order on permutations by similar
orders on all faces of the permutahedron, on all intervals of the weak order, or even on all integer
posets. These generalizations are organized in two steps:

Chapter 5. Facial weak order. We first consider a natural lattice structure on all faces of the per-
mutahedron, called pseudopermutahedron in [KLN+01], that extends the weak order on permu-
tations. We investigate the generalization of this order to any finite Coxeter group W : follow-
ing [PR06], we define an order on all faces of theW -permutahedron that extends the weak order
on W , and which we therefore call the facial weal order [DHP18]. We also define and study
the facial weak order of arbitrary hyperplane arrangements [DHMP19], extending the poset of
regions of the arrangement [BEZ90]. In both settings, we provide various interpretations of the
facial weak order, which are instrumental to prove that the facial weak order is a lattice when
the poset of regions is a lattice. Finally, we observe that any lattice congruence of the weak
order extends to a lattice congruence of the facial weak order, thus defining a lattice structure
on all faces of the corresponding quotient fan.

Chapter 6. Weak order on integer posets. Following the guiding line of Chapter 5, we then de-
fine the weak order on integer binary relations (i.e. binary relations on [n] := {1, . . . , n}), and its
restriction to integer posets [CPP19]. This order again defines a lattice structure which enables
to reinterpret the lattice structures on the vertices, the intervals and the faces of the permuta-
hedron and associahedron (and more generally permutreehedra) as subposets (and sometimes
sublattices) of the weak order on integer posets. Following the same template, we also define a
Hopf algebra on integer posets [PP20] that enables to reinterpret classical (or define new) Hopf
algebra structures on the vertices, the intervals and the faces of the permutahedron and associ-
ahedron (and more generally permutreehedra). Finally, we discuss the extension of the weak
order on integer posets to antisymmetric closed subsets of roots of the root system of an arbitrary
finite Coxeter group [GP18]. For a Weyl group W , we obtain again a lattice structure, which
contains as subposets the weak order on elements, intervals and faces of the W -permutahedron
(presented in Chapter 5) and W -associahedra. In contrast, it surprisingly fails to define a lattice
structure beyond crystallographic root systems.

Part II is based on the following contributions:

• Aram Dermenjian, Christophe Hohlweg & Vincent Pilaud. The facial weak order and its lattice
quotients. Transactions of the American Mathematical Society, vol. 370(2), pp. 1469 – 1507, 2018.

• Aram Dermenjian, Christophe Hohlweg, Thomas McConville & Vincent Pilaud. The facial
weak order on hyperplane arrangements. Preprint, 34 pp., arXiv:1910.03511, 2019.

• Grégory Chatel, Vincent Pilaud & Viviane Pons. The weak order on integer posets. Algebraic
Combinatorics, vol. 2(1), pp. 1 – 48, 2019.

• Vincent Pilaud & Viviane Pons. The Hopf algebra of integer binary relations. IRMA Lectures
in Mathematics and Theoretical Physics (Algebraic Combinatorics, Resurgence, Moulds and
Applications, CARMA), vol. 31, pp. 299 – 344, 2020.

• Joël Gay & Vincent Pilaud. The weak order on Weyl posets. Canadian Journal of Mathematics,
online first, 2019.

http://arxiv.org/abs/1910.03511
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Part III: Cluster algebras and generalized associahedra. This third part focusses on cluster
algebras and generalized associahedra. Cluster algebras were introduced by S. Fomin and A. Zelevin-
sky in [FZ02] with motivations from total positivity and canonical bases, and quickly appeared to be
a fundamental structure in many areas of mathematics (representation theory of quivers, Poisson ge-
ometry, integrable systems, etc). The finite type cluster algebras were soon classified in [FZ03a], and
polytopal realizations of finite cluster complexes, called generalized associahedra, were constructed
in [CFZ02, HLT11, Ste13]. Finite type cluster complexes were also reinterpreted later in [CLS14]
using subword complexes on finite Coxeter groups defined by A. Knutson and E. Miller in [KM04].
In this part of the document, we investigate further polytopal realizations of finite cluster complexes
and subword complexes:

Chapter 7. Polytopal realizations of finite type g-vector fans. We first provide a definitive an-
swer to the question of the polytopality of the g-vector fan of a finite type cluster algebra with
respect to any initial seed (acyclic or not). We actually report two approaches with different ad-
vantages: first using the universal associahedron of [HPS18] which contains simultaneously all
g-vector fans and then with the type cone approach of [PPPP19] which provides all polytopal
realizations of a given g-vector fan.

Chapter 8. Brick polytopes of subword complexes. We then present the construction and prop-
erties of brick polytopes of subword complexes [PS15a]. Using the connection between cluster
complexes and subword complexes [CLS14], we obtain an alternative interpretation of the gen-
eralized associahedra of [HLT11], which provides in particular their explicit vertex description
and yields the first proof of an intriguing property of their barycenter [PS15b]. In contrast to the
methods developed in Chapter 7, the brick polytope approach only realizes acyclic g-vector fans
of finite type cluster algebras, but also covers subword complexes beyond cluster complexes.

Part III is mainly based on the following contributions:
• Christophe Hohlweg, Vincent Pilaud & Salvatore Stella. Polytopal realizations of finite type
g-vector fans. Advances in Mathematics, vol. 328, pp. 713 – 749, 2018.

• Arnau Padrol, Yann Palu, Vincent Pilaud & Pierre-Guy Plamondon. Associahedra for finite type
cluster algebras and minimal relations between g-vectors. Preprint, 64 pp., arXiv:1906.06861,
2019.

• Vincent Pilaud & Christian Stump. Brick polytopes of spherical subword complexes and gener-
alized associahedra. Advances in Mathematics, vol. 276, pp. 1 – 61, 2015.

• Vincent Pilaud & Christian Stump. Vertex barycenter of generalized associahedra. Proceedings
of the American Mathematical Society, vol. 143(6), pp. 2623 – 2636, 2015.

The following contributions are also closely connected to this part:
• Vincent Pilaud & Christian Stump. EL-labelings and canonical spanning trees for subword

complexes. Discrete Geometry and Optimization, Fields Institute Communications Series,
Springer, pp. 213 – 248, 2013.

• Cesar Ceballos & Vincent Pilaud. Denominator vectors and compatibility degrees in clus-
ter algebras of finite type. Transactions of the American Mathematical Society, vol. 367,
pp. 1421 – 1439, 2015.

• Thibault Manneville & Vincent Pilaud. Compatibility fans for graphical nested complexes.
Journal of Combinatorial Theory, Series A, vol. 150C, pp. 36 – 107, 2017.

http://arxiv.org/abs/1906.06861
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Part IV: Non-kissing and non-crossing complexes. This fourth part investigates a rich gen-
eralization of the associahedron, called gentle associahedron. The initial motivation arises from two
recent generalizations of the associahedron: grid associahedra [PPS10, SSW17, McC17, GM17a] and
accordiohedra [Bar01, Cha16, GM18, MP19]. These are geometric realizations of the non-kissing
complexes of subsets of the grid and of the non-crossing complexes of dissections of convex polygons.
We observed in [PPP17] that these simplicial complexes are special cases of non-kissing complexes
of gentle quivers. The latter provide combinatorial models for support τ -tilting complexes [AIR14] of
gentle algebras [BR87], an algebraic notion defined from representation theory of quivers and essen-
tially omitted in this document. This family of simplicial complexes shares many properties with the
classical associahedra, in particular they have rich lattice structures and can all be realized as convex
polytopes. Only later we realized in [PPP19] that non-kissing complexes of gentle quivers can also
be interpreted as non-crossing complexes of dissection of surfaces. Here, we revert the chronology to
present these complexes in a logical order:

Chapter 9. Non-kissing versus non-crossing. We first define the non-kissing complex of a locally
gentle quiver and the non-crossing complex of an oriented surface with boundary endowed with
a pair of dual cellular dissections. We then show a bijection between locally gentle bound quiv-
ers and oriented surfaces with boundary endowed with a pair of dual cellular dissections, which
naturally sends non-kissing complexes on locally gentle quivers to non-crossing complexes of
oriented surfaces with dissections.

Chapter 10. Non-kissing lattices and non-kissing associahedra. We then focus on non-kissing
complexes and show some of their structural properties developed in [PPP17] that generalize
properties of the classical associahedron. First, we describe the flip operation on non-kissing
facets, which shows that the non-kissing complex is a pseudomanifold. Following the approach
of [McC17], we then construct a lattice structure on the non-kissing flip graph obtained as
a lattice quotient of a lattice of biclosed sets of strings, generalizing the connection between
the weak order on permutations and the Tamari lattice on binary trees. Finally, we construct
the non-kissing associahedra realizing the non-kissing complexes and generalizing the classical
associahedra.

Part IV is mainly based on the following contributions:
• Yann Palu, Vincent Pilaud & Pierre-Guy Plamondon. Non-kissing and non-crossing complexes

for locally gentle algebras. Journal of Combinatorial Algebra, vol. 3(4), pp. 401 – 438, 2019.
• Yann Palu, Vincent Pilaud & Pierre-Guy Plamondon. Non-kissing complexes and τ -tilting for

gentle algebras. To appear in Memoirs of the American Mathematical Society, 2018.
• Arnau Padrol, Yann Palu, Vincent Pilaud & Pierre-Guy Plamondon. Associahedra for finite type

cluster algebras and minimal relations between g-vectors. Preprint, 64 pp., arXiv:1906.06861,
2019.

The following contributions are also closely connected to this part:
• Thibault Manneville & Vincent Pilaud. Geometric realizations of the accordion complex of a

dissection. Discrete & Computational Geometry, vol. 61(3), pp. 507 – 540, 2019.
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We conclude with some research directions and open problems motivated by the material pre-
sented in this document that provide good entry points to the topic and research projects suitable for
Master and PhD students. These problems are organized in three topics: permutreehedra and quotien-
topes (Section A), pipe dreams and subword complexes (Section B), and gentle algebras (Section C).

To conclude this brief introduction, three disclaimers about this document:

• First, besides the organization and the articulation of the text, nothing is new in this document:
all results appeared in publications or preprints that I have (co-)authored. In fact, this document
is a compilation of these works and thus reproduces or paraphrases large passages from these
papers (either from their journal version or from their extended abstract version for conferences),
and borrows many of their figures. To avoid surcharging the text, definitions and statements
that appeared in my works are not systematically referenced one by one. However, both the
summaries presented above and the introduction of each chapter clearly indicate the origin of
the results. In contrast, definitions and statements due to other authors should all be attributed
individually.

• Second, to focus on the general philosophy of my research and avoid pedestrian details, all
proofs are omitted and only the statements appear in the document. The reader interested in the
proofs will find all necessary details in the corresponding long version papers.

• Finally, this document does not present all my research so far. I have in particular decided to
completely omit my works on polytopality of Cartesian products of graphs [MPP11, PPS12],
geometric configurations and oriented matroids [FPP11, BP14, BP15, BP16], graph associahe-
dra [MP15, MP17, Pil17], and combinatorics of type D cluster algebras [CP15a, CP16]. A
complete list of my publications is available in the next page.
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Permutahedra, associahedra, cubes. The motivation of this part is the fascinating interplay
between the combinatorial, geometric and algebraic structures of permutations, binary trees and binary
sequences (see Chapter 1 for a brief survey on these connections):

? Combinatorics: The recoil map from permutations to binary sequences factors via binary trees
through the binary search tree insertion and the canopy map. These maps define lattice morphisms
from the weak order via the Tamari lattice to the boolean lattice.

? Geometry: The permutahedron is contained in J.-L. Loday’s associahedron [Lod04] which is in
turn contained in the parallelepiped generated by the simple roots ei+1−ei. These polytopes are just
obtained by deleting inequalities from the facet description of the permutahedron. See Figure 1.4.

? Algebra: These maps translate to Hopf algebra inclusions from C. Malvenuto and C. Reutenauer’s
Hopf algebra on permutations [MR95] via J.-L. Loday and M. Ronco’s Hopf algebra on binary
trees [LR98] to the recoil Hopf algebra of [GKL+95].

Lattice quotients of the weak order. These connections were widely extended by N. Reading in
his work on “Lattice congruences, fans and Hopf algebras” [Rea05]. He starts from the combinatorics
of lattice congruences and lattice quotients of the weak order (see Section 1.1.1 for proper definitions).
The prototypical instance is the Tamari lattice seen as the quotient of the weak order by the sylvester
congruence [HNT05]. There are two important ways to see this congruence:

• its classes are the fibers of the binary search tree insertion algorithm (or equivalently the sets of
linear extensions of the standard binary search trees),

• it is the transitive closure of the rewriting rule UacV bW ≡sylv UcaV bW where a < b < c are
letters and U, V,W are words on [n].

It turns out that the combinatorial, geometric and algebraic properties of the permutations, binary trees,
and binary sequences mentioned above partially extend to all lattice quotients of the weak order:

? Combinatorics: This setting provides a plethora of lattice quotients in each dimension (like the
Tamari lattice for the sylvester congruence), coming with natural lattice morphisms between them.

? Geometry: N. Reading proves in [Rea05] that any lattice congruence ≡ of the weak order on the
permutations of Sn defines a complete simplicial fan F(≡) refined by the braid arrangement. This
raises the question to construct polytopes whose normal fans are F(≡) (like the associahedron for
the sylvester congruence).

? Algebra: N. Reading characterizes in [Rea05] in terms of simple rewriting rules the families
(≡n)n∈N of lattice congruences of the weak orders on (Sn)n∈N which yield Hopf subalgebras
of C. Malvenuto and C. Reutenauer’s Hopf algebra on permutations. This construction produces a
combinatorial Hopf algebra whose basis is indexed by the congruence classes of (≡n)n∈N. It opens
two natural questions:

• First, the product and coproduct in this Hopf algebra are performed extrinsically: the algebra is
embedded in C. Malvenuto and C. Reutenauer’s algebra on permutations and the computations
are performed at that level. The remaining challenge is to realize the resulting Hopf algebra
intrinsically by attaching a combinatorial object to each congruence class of (≡n)n∈N and
working out the rules for the product and coproduct directly on these combinatorial objects.

• Second, the conditions on the family (≡n)n∈N are quite strong. Although they provide very
relevant combinatorial families of congruences, it is somewhat frustrating that this conditions
disallow to multiply for instance a binary tree by a permutation. It is tempting to look for
Hopf algebra structures that would allow to manipulate simultaneously all lattice congruences
of the weak order.

This part of the document proposes some answers to these questions through three chapters that we
briefly present now.
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Brick polytopes. Chapter 2 provides a relevant example of N. Reading’s setting, studied in [Pil18].
Our motivation comes from k-triangulations of a convex polygon [PS09], that can be interpreted by
duality [PP12] as certain pipe dreams (pseudoline arrangements in a triangular shape) that we call
k-twists. These k-twists form the facets of a simplicial sphere, and it remains a challenging open
problem to realize this sphere as the boundary complex of a polytope. Motivated by this question, we
defined in [PS12] the brick polytope of a sorting network, whose vertices correspond to certain acyclic
k-twists. When k = 1, the brick polytope coincides with J.-L. Loday’s associahedron [Lod04], and
the 1-twists are all acyclic and correspond to all triangulations of the (n + 2)-gon, or equivalently to
the equivalence classes of the sylvester congruence. The above-mentioned properties of binary trees
extend to acyclic k-twists for k ≥ 1 as follows:

? Combinatorics: In Section 2.1, we show that the acyclic k-twists correspond to the equivalence
classes of the k-twist congruence≡k of the weak order. This congruence can be defined either as the
congruence whose classes are the fibers of the k-twist insertion, or as the transitive closure of the
rewriting rule UacV1b1V2b2 · · ·VkbkW ≡k UcaV1b1V2b2 · · ·VkbkW where a, b1, . . . , bk, c ∈ [n]
are such that a < bi < c for all i ∈ [k] and U, V1, . . . , Vk,W are words on [n]. The correspond-
ing lattice quotient of the weak order Sn/≡k is the increasing flip order on the acyclic k-twists,
generalizing the Tamari lattice. Moreover, this k-twist congruence ≡k refines the k-recoil congru-
ence already considered by N. Reading [Rea05] and by J.-C. Novelli, C. Reutenauer and J.-Y. Thi-
bon [NRT11].

? Geometry: In Section 2.2, we briefly survey the geometry of acyclic k-twists and k-recoil schemes.
The acyclic k-twists correspond to the vertices of some brick polytope, and the k-recoil schemes
correspond to the vertices of some graphical zonotope. Moreover, the normal fan of the permutahe-
dron refines that of the brick polytope, which refines that of the graphical zonotope. A more general
treatment on brick polytopes is presented in Chapter 8.

? Algebra: It turns out that the k-twist congruence satisfies the compatibility conditions of [Rea05] to
define a Hopf subalgebra of C. Malvenuto and C. Reutenauer’s Hopf algebra on permutations [MR95].
Our approach with k-twists provides a combinatorial interpretation for this Hopf subalgebra, and
we describe in Section 2.3 the product and the coproduct directly on acyclic k-twists. Moreover,
our Hopf algebra on acyclic k-twists contains as a Hopf subalgebra the k-recoil Hopf algebra of
J.-C. Novelli, C. Reutenauer and J.-Y. Thibon [NRT11].

Permutreehedra. Chapter 3 is our first step beyond N. Reading’s approach. It defines new combi-
natorial objects, called permutrees, introduced in a joint work with V. Pons [PP18]. They are labeled
and oriented trees where each vertex can have one or two parents and one or two children, and with
local rules around each vertex similar to the classical rule for binary trees (see Definition 3.1 for a pre-
cise statement). These trees generalize permutations, binary trees, and binary sequences, and actually
allow for interpolations between them: we obtain combinatorial objects that are structurally “half”
binary trees and “half” permutations. We explore the following properties of permutrees:

? Combinatorics: In Section 3.1, we describe a natural insertion map from decorated permutations
to permutrees similar to the binary tree insertion. The fibers of this map define a lattice congruence
of the weak order, which can also be described as the transitive closure of a rewriting rule that
depends on the decorations of the permutations. Therefore, there is a morphism from the weak
order on permutations to the rotation lattice on permutrees. This rotation lattice specializes to the
weak order on permutations, the Tamari order on binary trees, and the boolean lattice on binary
sequences.
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? Geometry: In Section 3.2, we provide vertex and facet descriptions of the permutreehedron, a poly-
tope whose graph is the Hasse diagram of the rotation lattice on permutrees. The permutreehedron
is obtained by deleting facets from the classical permutahedron. The permutreehedron specializes
to the classical permutahedron, to J.-L. Loday’s associahedron [Lod04], and to the parallelepiped
generated by the simple roots ei+1 − ei.

? Algebra: In Section 3.3, we construct a Hopf algebra on all permutrees as a Hopf subalgebra of a
decorated version of C. Malvenuto and C. Reutenauer Hopf algebra on permutations. We describe
the product and coproduct in this algebra and its dual in terms of cut and paste operations on
permutrees. It contains as Hopf subalgebras C. Malvenuto and C. Reutenauer’s Hopf algebra on
permutations [MR95], J.-L. Loday and M. Ronco’s Hopf algebra on binary trees [LR98], and the
recoil Hopf algebra on binary sequences of [GKL+95].

Quotientopes. In Chapter 4, we finally deal simultaneously with all lattice congruences of the
weak order. To manipulate these lattice congruences, we use the powerful combinatorial model of
non-crossing arc diagrams [Rea15], briefly reviewed in Section 4.1. We present progress in two
directions:

? Geometry: In Section 4.2, we show that the quotient fan F(≡) of any lattice congruence ≡ of
the weak order is the normal fan of a polytope QT(≡), that we call quotientope. The graph of
this polytope QT(≡), oriented in the appropriate direction, is the Hasse diagram of the lattice quo-
tient Sn/≡. This result of [PS19] closes the long-standing open question of N. Reading [Rea05].
We also report on a recent alternative construction [PPR20] based on Minkowski sums of associa-
hedra or of simpler pieces called shard polytopes.

? Algebra: In Section 4.3, we present the construction of [Pil19] for Hopf algebra structures on the
congruence classes of all lattice quotients of the weak order. Starting from a convenient notion of
decorated sets, we construct decorated versions of C. Malvenuto and C. Reutenauer Hopf algebra
on permutations [MR95]. We then study conditions on insertion algorithms such that the fibers
of this algorithm define a Hopf subalgebra of the decorated permutation Hopf algebra. Tuning
the choices of decoration sets and insertion algorithm, we obtain three relevant examples of Hopf
algebra structures on lattice quotients of the weak order:

• First, our conditions enable to recover the translational and insertional conditions of N. Read-
ing [Rea05] that characterize which families of lattice congruences (≡n)n∈N define a Hopf
subalgebra of C. Malvenuto and C. Reutenauer’s Hopf algebra on permutations.

• Then, we obtain a Hopf algebra on certain lattice congruences of the weak order defined by
arcs that cross certain walls at most a certain number of times. It contains as Hopf subalgebras
many Hopf algebras, in particular the k-twist Hopf algebra of [Pil18] (see Chapter 2) and the
permutree Hopf algebra of [PP18] (see Chapter 3).

• Finally, we construct a Hopf algebra that contains simultaneously the congruence classes of all
lattice congruences of the weak order, and which contains as a Hopf subalgebra the permutree
Hopf algebra of [PP18] (see Chapter 3).



1Chapter One

PERMUTAHEDRA, ASSOCIAHEDRA, CUBES

This chapter proposes a brief introduction to the combinatorial, geometric, and algebraic connections
between the permutahedra, associahedra and cubes presented in Table 1.1. These connections will be
extended in several directions in this document. All the material presented in this chapter is classical
and elementary, our main purpose here is to introduce classical notions on lattices, polytopes and Hopf
algebras, and to fix conventions and notations.

Combinatorics
Weak order on Tamari lattice on Boolean lattice on
permutations binary trees binary sequences

Geometry
Permutahedron Loday’s associahedron Parallelepiped Para(n)
Perm(n) Asso(n) [Lod04] generated by ei+1 − ei

Algebra
Malvenuto–Reutenauer Loday–Ronco Recoil Hopf
Hopf algebra [MR95] Hopf algebra [LR98] algebra [GKL+95]

Table 1.1: Related combinatorial, geometric and algebraic structures on permutations, binary trees,
and binary sequences.

1.1 LATTICES

1.1.1 Lattices and their congruences
Recall that a poset is a reflexive (a ≤ a), antisymmetric (a ≤ b and b ≤ a ⇒ a = b) and transitive
(a ≤ b and b ≤ c ⇒ a ≤ c) binary relation. A lattice is a poset where any subset admits a meet ∧
(greatest lower bound) and a join ∨ (least upper bound). For instance, the inclusion poset of subsets
of a given set is the boolean lattice where the meet is the intersection and the join is the union.

A lattice congruence of a lattice (L,≤,∧,∨) is an equivalence relation on L that respects the meet
and the join, i.e. such that x ≡ x′ and y ≡ y′ implies x∧y ≡ x′∧y′ and x∨y ≡ x′∨y′. Equivalently,
it is an equivalence relation on L such that:

(i) each equivalence class under ≡ is an interval of L,
(ii) the projection maps π↓ and π↑, which send an element of L to the minimal and maximal elements

of its equivalence class respectively, are both order preserving.
A lattice congruence ≡ automatically defines a lattice quotient L/≡ on the congruence classes of ≡
where the order relation is given by X ≤ Y if and only if there exists x ∈ X and y ∈ Y such
that x ≤ y. The meet X ∧ Y (resp. the join X ∨ Y ) of two congruence classes X and Y is the
congruence class of x ∧ y (resp. of x ∨ y) for arbitrary representatives x ∈ X and y ∈ Y .

Further lattice theoretic notions will be introduced along this document when needed, in particular
canonical join representations (Section 4.1.1) and congruence uniform lattices (Section 10.2).

Part I – Lattice congruences, polytopes and Hopf algebras Vincent Pilaud 15
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1.1.2 Three classical lattices

4321

4231 43123421

34123241 2431 4213 4132

1234

1324 12432134

21432314 3124 1342 1423

3142 2413 4123 14323214 2341

−−−

−+− +−−−−+

−++ +−+ ++−

+++

Figure 1.1: Weak order on S4 (left), Tamari lattice on T4 (middle), boolean lattice on B4 (right).

Weak order on permutations. We denote by Sn the set of permutations of [n] := {1, . . . , n}.
Besides its classical group structure, we focus on a fundamental lattice structure on Sn. A (left)
inversion in a permutation σ ∈ Sn is a pair of values 1 ≤ i < j ≤ n such that σ−1(i) > σ−1(j), i.e. i
appears after j in σ. The (left) inversion set of σ is the set inv(σ) of inversions of σ. For instance,
the inversion set of the permutation σ = 31542 is inv(σ) = {(1, 3), (2, 3), (2, 4), (2, 5), (4, 5)}. The
(right) weak order is the partial order ≤W on Sn defined by inclusion of inversion sets: σ ≤W τ if
and only if inv(σ) ⊆ inv(τ). Its cover relations are given by transpositions of two consecutive letters
(i.e. right multiplications by simple transpositions). It is a lattice on Sn. See Figure 1.1 (left).

A B

C
right−→

rotation A

B C

Tamari lattice on binary trees. We denote by Tn be the set of
rooted binary trees with n nodes. A tree T ∈ Tn is always labeled
in inorder: all vertices in the left (resp. right) subtree of a vertex v
of T receive a label smaller (resp. larger) than the label of v. See
Figure 1.2 (right). The Tamari lattice on Tn is the lattice ≤T whose cover relations are given by
right rotations on binary trees, i.e. the application of the local transformation illustrated above at any
node. See Figure 1.1 (middle). It was defined by D. Tamari [Tam51] and it is known to be a lattice.
By classical bijections between Catalan families (i.e. combinatorial objects counted by the Catalan
numbers), it can also be seen as applications of an associativity rule on all possible parenthesizations of
a non-associative product, as diagonal flips on all triangulations of a convex polygon, or as elementary
moves on all Dyck paths, see [Sta99, Exm. 6.19].

The Tamari lattice was reinterpreted in [BW91, Rea06] as a lattice quotient of the weak order as
follows. Consider the surjection bt which sends a permutation σ := σ1 . . . σn ∈ Sn to the binary
tree bt(σ) ∈ Tn obtained by successive insertions of σn, . . . , σ1 in a binary search tree (rather than a
formal definition, we prefer to recall this classical insertion procedure by the illustration of Figure 1.2).
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Figure 1.2: Inserting the permutation 6431572 in a binary search tree.
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The bt fiber of a tree T is precisely the set of linear extensions of T , i.e. all permutations σ such
that for any i, j ∈ [n], if i is a descendant of j in T , then i appears before j in σ. Each fiber is an
interval of the weak order whose minimal and maximal elements respectively avoid the patterns 312
and 132. The equivalence relation ≡sylv whose classes are these fibers is a lattice congruence of the
weak order, called sylvester congruence [HNT05]. It can be defined equivalently as the transitive
closure of the rewriting rule UacV bW ≡sylv UcaV bW where a < b < c are letters and U, V,W are
words on [n]. The Tamari lattice ≤T is the quotient ≤W /≡sylv of the weak order by this sylvester
congruence. In other words, for any T, T ′ ∈ Tn, we have T ≤T T

′ if and only if there exist σ, σ′ ∈ Sn

such that bt(σ) = T , bt(σ′) = T ′ and σ ≤W σ′.

Boolean lattice on binary sequences. We denote by Bn the set of binary sequences of n − 1
signs + or −. The boolean lattice on Bn is the lattice ≤B defined by χ ≤B ζ if and only if χi ≤ ζi
for all i ∈ [n− 1] for the natural order − ≤ +. See Figure 1.1 (right).

Again, this lattice can be understood via lattice congruences. We need two definitions:
• A recoil of a permutation σ is a value i ∈ [n− 1] such that σ−1(i) > σ−1(i+ 1), i.e. i appears

after i+ 1 in σ. Let rec(σ) be the binary sequence with + for each recoil of σ and − otherwise.
• The canopy of a binary tree T is the sequence can(T ) with a − if i appears below i + 1 and

a + if i appears above i + 1 in the tree T labeled in inorder. This map was already used by
J.-L. Loday in [LR98, Lod04], but the name “canopy” was coined by X. Viennot [Vie07].

The recoil and canopy maps define the following commutative diagram of lattice morphisms:

Sn Bn

Tn

rec

bt can

In other words, the fibers of these maps define lattice congruences of the weak order and of the Tamari
lattice, and the boolean lattice is a lattice quotient of both.

1.2 POLYTOPES

1.2.1 Fans and polytopes
Let (V, 〈· | ·〉) be a real Euclidean vector space1. We denote by R≥0R :=

{∑
r∈R λr r

∣∣λr ∈ R≥0

}
the positive span of a set R of vectors of V . A polyhedral cone is a subset of V defined equivalently
as the positive span of finitely many vectors or as the intersection of finitely many closed linear half-
spaces. The faces of a cone C are the intersections of C with the supporting hyperplanes of C. The
1-dimensional (resp. codimension 1) faces ofC are called rays (resp. facets) ofC. A cone is simplicial
if it is generated by a set of independent vectors.

A polyhedral fan is a collection F of polyhedral cones such that:
• if C ∈ F and F is a face of C, then F ∈ F ,
• the intersection of any two cones of F is a face of both.

The face lattice of a fan is the inclusion lattice of its cones (including the origin and adding the
complete space). See Figure 1.3 (top) for an example. A fan is simplicial if all its cones are, complete
if the union of its cones covers the ambient space V , and essential if the intersection of all its cones
is reduced to the origin. For two fans F ,G in V , we say that F refines G (and that G coarsens F) if
every cone of F is contained in a cone of G.

A polytope is a subset P of V defined equivalently as the convex hull of finitely many points
or as a bounded intersection of finitely many closed affine halfspaces. The dimension dim(P) is

1As we work in finite dimension, we always implicitly identify the Euclidean vector space V with its dual V ∗. In
particular, we consider that a polytope and its normal fan live in the same space.
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Figure 1.3: A complete simplicial fan (top), a simple polytope (bottom), and their face lattice (right).
The fan is the normal fan of the polytope.

the dimension of the affine hull of P. The faces of P are the intersections of P with its supporting
hyperplanes. The dimension 0 (resp. dimension 1, resp. codimension 1) faces are called vertices
(resp. edges, resp. facets) of P. The face lattice of a polytope is the inclusion lattice of its faces
(including the empty face and the polytope itself). See Figure 1.3 (bottom) for an example. A polytope
is simple if its supporting hyperplanes are in general position, meaning that each vertex is incident to
dim(P) facets (or equivalently to dim(P) edges).

The (inner) primal cone of a face F of P is the cone C(F ) generated by {u− v |u ∈ P, v ∈ F}.
The (outer) normal cone of a face F of P is the cone C�(F ) generated by the outer normal vectors
of the facets of P containing F . In other words, it is the cone of vectors c such that the linear
form x 7→ 〈c |x〉 on P is maximized by all points of the face F . Note that these two cones are polar
to each other: C�(F ) = {x ∈ V | 〈x |y〉 ≤ 0 for all y ∈ C(F )}. The (outer) normal fan of P is the
collection of the (outer) normal cones of all its faces. We say that a complete polyhedral fan in V is
polytopal when it is the normal fan of a polytope of V . See Proposition 7.28 for a characterization of
the realizations of a simplicial fan.

1.2.2 Three classical polytopes

34124312
4321 3421

3142

3241

3214

13421432

1423

1243 1234
2134

1324

4123

4132

2314
3124

2143

2413

4213

2431

4231

2341

+−+
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Figure 1.4: Permutahedron Perm(4) (left), J.-L. Loday’s associahedron Asso(4) (middle), paral-
lelepiped Para(4) (right). Shaded facets are preserved to get the next polytope.
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We denote by (ei)i∈[n] the canonical basis of Rn and 1 :=
∑

i∈[n] ei. All our polytopal construc-
tions will lie in the affine subspace H :=

{
x ∈ Rn | 〈1 |x〉 =

∑
i∈[n] xi =

(
n+1

2

)}
, and their normal

fans will lie in the vector subspace 1⊥ := {x ∈ Rn | 〈1 |x〉 = 0}. In particular, all our polytopes and
fans are (n− 1)-dimensional, even if they live in the ambient space Rn.

Permutahedron. The permutahedron Perm(n) is the polytope of Rn obtained equivalently as:
• the convex hull of the points

∑
i∈[n] i eσ(i) for all permutations σ ∈ Sn,

• or the intersection of the hyperplane H with the halfspaces
{
x ∈ Rn |

∑
i∈I xi ≥

(|I|+1
2

)}
for

all ∅ 6= I ( [n],
• or (a translate of) the Minkowski sum of all segments [ei, ej ] for all (i, j) ∈

(
[n]
2

)
(where the

Minkowski sum of two polytopesP,Q ⊆ Rn is the polytopeP+Q := {p+ q | p ∈ P, q ∈ Q}).
See Figure 1.4 (left). Oriented in the direction ω := (n, . . . , 1)− (1, . . . , n) =

∑
i∈[n](n+ 1− 2i) ei,

the graph of the permutahedron Perm(n) is the Hasse diagram of the weak order on Sn.
The normal fan of the permutahedron Perm(n) is the braid fan F(n) defined by the (type A)

Coxeter arrangement formed by the hyperplanes
{
x ∈ 1⊥

∣∣xi = xj
}

for all 1 ≤ i < j ≤ n. Namely,
each permutation σ ∈ Sn corresponds to a maximal coneC�(σ) :=

{
x ∈ 1⊥

∣∣xσ(1) ≤ · · · ≤ xσ(n)

}
of the braid fan F(n), formed by all points whose coordinates are ordered by the permutation σ.

The braid fan F(n) provides geometric interpretations for many combinatorial objects. In particu-
lar, posets on [n] are nothing else than convex cones in the braid arrangement F(n). Namely, the inci-
dence cone C(C) and the braid cone C�(C) of a poset C on [n] are the polyhedral cones defined by
C(C) := R≥0 {ei − ej | for all i C j} and C�(C) :=

{
x ∈ 1⊥

∣∣xi ≤ xj for all i C j
}

. These two
cones lie in the space 1⊥ := {x ∈ Rn | 〈x |1〉 = 0} and are polar to each other. Note that the braid
cone C�(C) is the union of the cones C�(σ) over all linear extensions σ of C and therefore C(C)
is the intersection of the cones C(σ) over all linear extensions σ of C. All along this document, we
denote by L(C) the set of linear extensions of C.

Associahedron. The associahedron Asso(n) is the polytope of Rn obtained equivalently as:
• the convex hull of the points

∑
i∈[n] `(T, i) r(T, i) ei for all binary trees T ∈ Tn, where `(T, i)

and r(T, i) respectively denote the numbers of leaves in the left and right subtrees of the ith
node of T in infix labeling, see [Lod04],

• or the intersection of the hyperplane H with the halfspaces
{
x ∈ Rn |

∑
i≤`≤j x` ≥

(
j−i+2

2

)}
for all 1 ≤ i ≤ j ≤ n, see [SS93],

• or (a translate of) the Minkowski sum of the faces 4[i,j] of the standard simplex 4[n] for all
1 ≤ i ≤ j ≤ n, where4X := conv {ex |x ∈ X} for X ⊆ [n], see [Pos09].

See Figure 1.4 (middle). Observe that the facet description of Asso(n) is a subset of inequalities of
the facet description ofPerm(n). Oriented in the direction ω, the graph of the associahedronAsso(n)
is the Hasse diagram of the Tamari lattice on Tn.

The normal fan of the associahedron Asso(n) is a coarsening of the braid fan F(n). Each binary
tree T ∈ Tn corresponds to a normal cone C�(T ) :=

{
x ∈ 1⊥

∣∣xi ≤ xj for i descendant of j in T
}

,
which is the union of the cones C�(σ) over all permutations σ such that bt(σ) = T .

Parallelepiped. Finally, we consider the parallelepiped Para(n) of Rn obtained equivalently as:
• the convex hull of the points n+1

2 1+n−1
2

∑
i∈[n−1] χi(ei−ei+1) for all binary sequences χ ∈ Bn,

• or the intersection of the hyperplane H with the halfspaces
{
x ∈ Rn |

∑
1≤`≤i x` ≥

(
i+1

2

)}
and

{
x ∈ Rn |

∑
i<`≤n x` ≥

(
n−i+1

2

)}
for all i ∈ [n− 1],

• or (a translate of) the Minkowski sum of the segments (n− 1) · [ei, ei+1] for i ∈ [n− 1].
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See Figure 1.4 (right). Observe that the facet description of Para(n) is a subset of inequalities of the
facet description of Asso(n), and therefore also of Perm(n). Oriented in the direction ω, the graph
of the parallelepiped Para(n) is the Hasse diagram of the boolean lattice on Bn. In other words,
Para(n) is combinatorially a (n− 1)-dimensional cube.

The normal fan of the parallalepipedPara(n) is a coarsening of that of the associahedronAsso(n),
and therefore also of that of the permutahedron Perm(n). Each binary sequence χ ∈ Bn corresponds
to a normal cone C�(χ) :=

{
x ∈ 1⊥

∣∣χi(xi − xi+1) ≥ 0 for all i ∈ [n− 1]
}

, which is the union of
the cones C�(T ) over all binary trees T such that can(T ) = χ, and thus also the union of the
cones C�(σ) over all permutations σ such that rec(σ) = χ.

1.3 HOPF ALGEBRAS

1.3.1 Combinatorial Hopf algebras
A combinatorial vector space is a graded vector space V :=

⊕
n∈N Vn where the dimension of Vn is

finite for any n ∈ N. Such combinatorial vector spaces are typically constructed as vector spaces with
a basis indexed by a combinatorial family.

A product on a vector space A is a linear operation · : A⊗A→ A and a coproduct on A is a linear
operation 4 : A→ A⊗ A. We often use the notation x · y instead of ·(x, y) to manipulate products,
and the notation 4(x) =

∑
x1 ⊗ x2 to manipulate coproducts. When A is graded, we furthermore

require the products and coproducts to be graded, i.e. such that Am · An ⊆ Am+n for any m,n ∈ N
and4Ap ⊆

⊕
m+n=pAm ⊗ An for any p ∈ N.

A combinatorial Hopf algebra is a combinatorial vector space A endowed with an associative
product · : A⊗ A → A and a coassociative coproduct4 : A → A⊗ A, subject to the compatibility
relation4(a·b) = 4(a)·4(b), where the right hand side product has to be understood componentwise.
More precisely, we require that the following commutative diagram commutes:

A⊗ A A A⊗ A

A⊗ A⊗ A⊗ A A⊗ A⊗ A⊗ A

·

4 ⊗4

4

I ⊗ swap⊗ I

· ⊗ ·

where swap(x⊗ y) = y ⊗ x is just a swap. Note that the existence of the antipode is automatical for
combinatorial Hopf algebras. While its properties are interesting to study in general, we ignore the
antipode in this document.

For a combinatorial Hopf algebra (A, ·,4), the dual Hopf algebra (A∗,4∗, ·∗) is the Hopf algebra
on the dual vector space A∗ of linear forms on A, endowed with the product 4∗ : A∗ ⊗ A∗ → A∗

defined by (f4∗g)(x) =
∑
f(x1) ⊗ f(x2) for any x ∈ A such that 4(x) =

∑
x1 ⊗ x2, and the

coproduct ·∗ = A∗ → A∗ ⊗ A∗ defined by ·∗(f)(x⊗ y) = f(x · y) for any x, y ∈ A.
A Hopf subalgebra of a Hopf algebra (A, ·,4) is a vector subspace B of A which is stable by the

product · and the coproduct4, i.e. such that B ·B ⊆ B and4B ⊆ B⊗B.

1.3.2 Three classical Hopf algebras
Malvenuto–Reutenauer Hopf algebra on permutations. We recall a fundamental combina-
torial Hopf algebra on permutations introduced by C. Malvenuto and C. Reutenauer [MR95]. There
are several ways to present it, we choose one that fits the rest of this document.

The standardization of a word w ∈ Nq with distinct entries is the permutation std(w) of [q]
whose entries are in the same relative order as the entries of w. For a permutation τ ∈ Sp and a sub-



Section 1.3 – Hopf algebras 21

1
2
3
4
5

54321

2

4

1

3

5

54321
1
2
3
4
5

54321
1
2
3
4
5

532 41

Figure 1.5: The tables of the products ρ\σ (left) and ρ/σ (middle left) have two blocks containing the
tables of ρ = 12 and σ = 231. Elements of the shifted shuffle product ρ �̄σ (middle right) and the
convolution product ρ ? σ (right) are obtained by shuffling the rows and columns of the table of ρ\σ.

set R ⊆ [p], we define stdp(τ,R) (resp. stdv(τ,R)) as the standardization of the word obtained by
deleting from τ the entries whose positions (resp. values) are not in R. For two permutations ρ ∈ Sm

and σ ∈ Sn, define the shifted shuffle ρ �̄σ and the convolution ρ ? σ by:

ρ �̄σ := {τ ∈ Sm+n | stdv(τ, [m]) = ρ and stdv(τ, [m+ n] r [m]) = σ} ,
and ρ ? σ := {τ ∈ Sm+n | stdp(τ, [m]) = ρ and stdp(τ, [m+ n] r [m]) = σ} .

E.g., 12 �̄ 231 = {12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312},
12 ? 231 = {12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231}.

These operations are illustrated in Figure 1.5 on the tables of the permutations. Note that to fit the
constructions of [LR98, HNT05, CP17], we use an unconventional orientation for the table of a per-
mutation: rows are labeled by positions from bottom to top and columns are labeled by values from
left to right. In other words, the table contains a dot at coordinates (σi, i) for all i ∈ [n].

Let S :=
⊔
n∈NSn be the set of all permutations (any size) and kS denote its k-vector span.

C. Malvenuto and C. Reutenauer’s Hopf algebra on permutations is defined as follows.

Theorem 1.1 ([MR95]). The combinatorial vector space kS with basis (Fτ )τ∈S endowed with the
product Fρ · Fσ =

∑
τ∈ρ �̄σ

Fτ and the coproduct4Fτ =
∑

τ∈ρ?σ
Fρ ⊗ Fσ is a Hopf algebra.

The product in kS behaves nicely with the weak order≤W on Sn. For two permutations ρ ∈ Sm

and σ ∈ Sn, consider the permutations ρ\σ and ρ/σ of Sm+n defined by:

ρ\σ(i) =

{
ρ(i) if i ∈ [m]

m+ σ(i−m) otherwise
and ρ/σ(i) =

{
m+ σ(i) if i ∈ [n]

ρ(i− n) otherwise.

These notations should be clear on the permutation tables of ρ\σ and ρ/σ, illustrated in Figure 1.5 (re-
member our unconventional orientation!). The shifted shuffle ρ �̄σ is then the interval between ρ\σ
and ρ/σ in the weak order≤W on Sm+n. This extends to a product of weak order intervals as follows.

Proposition 1.2. A product of weak order intervals in kS is a weak order interval: for two weak order
intervals [ρ, ρ]W ⊆ Sm and [σ, σ]W ⊆ Sn, we have

∑
ρ≤W ρ≤W ρ

Fρ·
∑

σ≤W σ≤W σ
Fσ =

∑
ρ\σ≤W τ ≤W ρ/σ

Fτ .

We refer to [MR95, AS05] for more properties of C. Malvenuto and C. Reutenauer’s Hopf alge-
bra kS on permutations. We also consider its dual Hopf algebra.

Definition 1.3. The dual Hopf algebra of kS is the Hopf algebra kS∗ with basis (Gτ )τ∈S endowed
with the product Gρ ·Gσ =

∑
τ∈ρ?σ

Gτ and the coproduct4Gτ =
∑

τ∈ρ �̄σ
Gρ ⊗Gσ.
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Loday–Ronco Hopf algebra on binary trees. We denote by kT the vector subspace of kS
generated by the elements PT :=

∑
τ∈S

bt(τ)=T

Fτ =
∑

τ∈L(T )

Fτ , for all binary trees T ∈ T of any size.

Theorem 1.4 ([LR98]). The vector subspace kT is a Hopf subalgebra of kS.

Again, the product in kT behaves nicely with the Tamari lattice ≤T on Tn. For two binary
trees R ∈ Tm and S ∈ Tn, consider the binary trees R\S and R/S of Tm+n obtained as follows:

• R\S is obtained by grafting R to the leftmost leaf of S,
• R/S is obtained by grafting S to the rightmost leaf of R.

See Figure 1.6.

R S R\S R/S

Figure 1.6: Two binary trees R ∈ T2 and S ∈ T3 and the graftings R\S and R/S of T5.

The product R · S is then the interval between R\S and R/S in the Tamari lattice ≤T on Tm+n. This
extends to a product of Tamari intervals as follows.

Proposition 1.5. A product of Tamari intervals in kT is a Tamari interval: for two Tamari inter-
vals [R,R]T ⊆ Tm and [S, S]T ⊆ Tn, we have

∑
R≤TR≤TR

FR ·
∑

S≤T S≤T S

FS =
∑

R\S≤T T ≤TR/S

FT .

One can also describe the coproduct in kT and both the product and the coproduct in the dual
Hopf algebra kT∗ in terms of cut and past operations in binary trees. We skip these descriptions
here as they will appear as special cases of those described for permutrees in Section 3.3. We refer
to [LR98, AS06, HNT05] for more properties of J.-L. Loday’s and M. Ronco’s Hopf algebra kT on
binary trees.

Recoil Hopf algebra on binary sequences. We denote by kB the vector subspace of kS
generated by the elements Xχ :=

∑
τ∈S

rec(τ)=χ

Fτ =
∑
T∈T

can(T )=χ

PT , for all binary sequences χ ∈ B of any size.

Theorem 1.6 ([GKL+95]). The vector subspace kB is a Hopf subalgebra of kS and of kT.

Again, the product in kB behaves nicely with the boolean lattice ≤B on Bn. For two binary se-
quences χ ∈ Bm and ζ ∈ Bn, consider the binary sequences χ\ζ := χ−ζ and χ/ζ := χ+ζ of Bm+n

(where we just concatenate the sequences). The product χ ·ζ is then the interval between χ\ζ and χ/ζ
in the boolean lattice ≤B on Bm+n. This extends to a product of boolean intervals as follows.

Proposition 1.7. A product of boolean intervals in kB is a boolean interval: for two boolean inter-
vals [χ, χ]B ⊆ Bm and [ζ, ζ]B ⊆ Bn, we have

∑
χ≤B χ≤B χ

Fχ ·
∑

ζ≤B ζ≤B ζ

Fζ =
∑

χ\ζ≤B ω≤B χ/ζ

Fω.

Again, the descriptions of the products and coproducts in the permutree Hopf algebra and its dual
provide classical descriptions of the coproduct in kB and the product and coproduct in the dual kB∗.



2Chapter Two

BRICK POLYTOPES

This chapter presents combinatorial, geometric and algebraic properties of certain pipe dreams, called
acyclic k-twists and studied in [Pil18]. They generalize binary trees and the Tamari lattice and were
motivated by the brick polytope construction of [PS12] for k-triangulations (a general version of the
brick polytope construction is reported in Chapter 8). They provide a relevant example of the setting
described by N. Reading in [Rea05]: the acyclic k-twists are endowed with a lattice structure arising
from a lattice congruence of the weak order generalizing the sylvester congruence (Section 2.1), cor-
respond to the vertices of a brick polytope (Section 2.2), and index the basis of a Hopf subalgebra of
C. Malvenuto and C. Reutenauer’s Hopf algebra on permutations (Section 2.3).

2.1 ACYCLIC TWIST LATTICES

2.1.1 Pipe dreams, (k, n)-twists and k-triangulations of the n-gon
A pipe dream is a filling of a triangular shape with crosses and elbows so that all pipes entering
on the left side exit on the top side. These objects were studied in the literature, under different names
including “pipe dreams” [KM05], “RC-graphs” [BB93], or as specific “pseudoline arrangements on
sorting networks” [PS12]. Here, we consider the following specific family of pipe dreams.

Definition 2.1. For k, n ∈ N, a (k, n)-twist is a pipe dream with n+ 2k pipes such that:
• no two pipes cross twice (the pipe dream is reduced),
• the pipe which enters in row i exits in column i if k + 1 ≤ i ≤ k + n, and n+ 2k + 1− i

otherwise. Note that rows are indexed from bottom to top and columns are indexed from left to
right.

Besides the first k and last k trivial pipes, a (k, n)-twist has n relevant pipes, labeled by [n] from
bottom to top, or equivalently from left to right (see Figure 2.1, where only relevant pipes are shown).

4 5321 4 5321 4 5321 4 5321

4 5321 4 5321 4 53214 5321

Figure 2.1: Some (k, 5)-twists (top) and their contact graphs (bottom) for k = 0, 1, 2, 3.
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Figure 2.2: Duality between (k, n)-twists and k-triangulations of the (n+ 2k)-gon.

Definition 2.2. The contact graph of a (k, n)-twist T is the directed multigraph T# with vertex set [n]
and with an arc from the SE-pipe to the WN-pipe of each elbow in T involving two relevant pipes (see
Figure 2.1). We say that a twist T is acyclic if its contact graph T# is (no oriented cycle), and we then
denote by CT the transitive closure of T#. We denote by ATkn the set of acyclic (k, n)-twists.

Remark 2.3. A k-triangulation of a convex (n+ 2k)-gon is a maximal set of diagonals such that no
k + 1 of them are pairwise crossing. Multitriangulations appeared in the context of extremal theory
for geometric graphs and were studied for their rich combinatorial structure, see references in [PS09].
Based on k-stars in k-triangulations [PS09], it is shown in [PP12] sending an elbow in row i and
column j of the (n+ 2k)× (n+ 2k) triangular shape to the diagonal [i, j] of a (n+ 2k)-gon gives a
bijection between the (k, n)-twists and the k-triangulations of the (n+ 2k)-gon (see Figure 2.2).

Example 2.4. When k = 1, a (1, n)-twist T corresponds to a triangulation T ? of an (n+ 2)-gon, and
the contact graph of T coincides with the dual binary tree of T ?.

2.1.2 k-twist correspondence
We now define a bijective correspondence between permutations of Sn and leveled (k, n)-twists. It
relies on an insertion operation in k-twists similar to the insertion operation in binary search trees (see
Figure 1.2). Given a permutation σ := σ1 . . . σn, we start from the empty triangular shape and insert
the pipes σn, . . . , σ1 such that each new pipe is as northwest as possible in the space left by the pipes
already inserted (see Figure 2.3). The result ltwik(σ) of this procedure is a leveled (k, n)-twist, i.e. an
acyclic (k, n)-twist endowed with a linear extension of its contact graph.

Proposition 2.5. The map ltwik is a bijection from permutations to leveled k-twists.

Example 2.6. For k = 1, the contact graph of the 1-twist ltwi1(σ) is the binary search tree obtained
by successive insertions of the entries of σ from right to left (see Figure 1.2). The 1-twist correspon-
dence is thus the sylvester correspondence [HNT05] between permutations and leveled binary trees.
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1
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1

4 5321

4
5

3
2
1

4 5321

Figure 2.3: Insertion of the permutation 31542 in a 2-twist.
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2.1.3 k-twist congruence
In the rest of the chapter, we forget the order of the leveled (k, n)-twist ltwik(σ) and we denote the
resulting (k, n)-twist by twik(σ). We are interested in the fibers of this map.

Proposition 2.7. The permutations σ such that twik(σ) = T are precisely the linear extensions of
(the transitive closure of) the contact graph T#. In particular, twik is surjective from Sn to ATkn.

We then characterize the permutations in the same fiber in terms of a congruence relation defined
by a rewriting rule, generalizing the sylvester congruence [HNT05] obtained for k = 1.

Definition 2.8. The k-twist congruence≡k on Sn is obtained as the transitive closure of the rewriting
rule UacV1b1V2b2 · · ·VkbkW ≡k UcaV1b1V2b2 · · ·VkbkW , where a, b1, . . . , bk, c are elements of [n]
such that a < bi < c for all i ∈ [k], while U, V1, . . . , Vk,W are (possibly empty) words on [n].

Proposition 2.9. The classes of ≡k are the fibers of twik, i.e. σ ≡k τ ⇐⇒ twik(σ) = twik(τ).

Proposition 2.10. The k-twist congruence ≡k is a lattice congruence of the weak order.

2.1.4 Flips and acyclic k-twist lattices
Definition 2.11. A flip in a k-twist is the exchange of an elbow between two relevant pipes with
the unique crossing between them. The flip is increasing if the initial elbow is located (largely)
south-west of the final elbow. See Figure 2.4.

Proposition 2.12. The transitive closure of the increasing flip graph on acyclic (k, n)-twists is a
lattice, called acyclic k-twist lattice. It isomorphic to the quotient of the weak order by the k-twist
congruence ≡k. The map twik is thus a morphism from the weak order to the acyclic k-twist lattice.

Example 2.13. When k = 1, the 1-twist lattice is isomorphic to the Tamari lattice on binary trees.

4321

4321

4321 43214321

43214321 4321 4321

4321

4321 43214321

4321

4321

4321 4321 4321

43214321 4321 4321 4321

4321 4321 4321 4321

4321 4321 4321

4321

4321

4321

4321 4321

4321

Figure 2.4: The increasing flip lattices on (k, 4)-twists for k = 1 (left) and k = 2 (right).
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2.1.5 k-recoils and k-canopy schemes

4 5321
4 5321

4 5321

4 5321

To prepare the definition of the canopy of acyclic k-twists, we first recall the
notion of k-recoil schemes of permutations already considered in [Rea05, NRT11].
We use a description in terms of acyclic orientations as it is closer to the description
of the vertices of the zonotope that we will use later in Section 2.2. We consider
the graph Gkn with vertex set [n] and edge set

{
{i, j} ∈ [n]2

∣∣ i < j ≤ i+ k
}

. See
for instance the graphs Gk5 for k = 0, 1, 2, 3 on the right. We let AOk

n be the set of
acyclic orientations of Gkn (no oriented cycle).

Definition 2.14. The k-recoil scheme of a permutation σ ∈ Sn is the orientation reck(σ) ∈ AOk
n

with an edge i → j for all i, j ∈ [n] such that |i − j| ≤ k and σ−1(i) < σ−1(j). The map
reck : Sn → AOk

n is called k-recoil map.

Example 2.15. When k = 1, the graph G1
n is just the n-path. The 1-recoil scheme of σ ∈ Sn thus

stores the recoils of σ, i.e. the values i ∈ [n− 1] such that σ−1(i) > σ−1(i+ 1).

Definition 2.16. The k-recoil congruence ≈k on Sn is the transitive closure of the rewriting rule
UijV ≈k UjiV , where i, j ∈ [n] are such that i+k < j while U, V are (possibly empty) words on [n].

Proposition 2.17. The classes of ≈k are the fibers of reck, i.e. σ ≈k τ ⇐⇒ reck(σ) = reck(τ).

Proposition 2.18. The k-recoil congruence ≈k is a lattice congruence of the weak order.

Definition 2.19. A flip in an acyclic orientation of Gkn is the switch of the direction of an edge of Gkn.
The flip is increasing if the initial direction was increasing (i.e. i→ j with i < j).

Theorem 2.20. The transitive closure of the increasing flip graph on acyclic orientations of Gkn is a
lattice, called k-recoil lattice. It isomorphic to the quotient of the weak order by the k-recoil congru-
ence ≈k. The map reck is thus a morphism from the weak order to the k-recoil lattice.

We can now extend the notion of canopy of binary trees to acyclic k-twists. To ensure that Defini-
tion 2.22 is valid, we need the following observation on comparisons of closed pipes in a k-twist.

Lemma 2.21. If |i− j| ≤ k, the ith and jth pipes in an acyclic k-twist T are comparable for CT .

Definition 2.22. The k-canopy scheme of a (k, n)-twist T is the orientation cank(T ) ∈ AOk
n with an

edge i→ j for all i, j ∈ [n] such that |i− j| ≤ k and i CT j. It indeed defines an acyclic orientation
of Gkn by Lemma 2.21. We call k-canopy the map cank : ATkn → AOk

n.

Example 2.23. When k = 1, the 1-canopy scheme of a (1, n)-twist T is the classical canopy of T#.

Finally, it is immediate from Definitions 2.8 and 2.16 that for k > `, the k-twist congruence ≡k
refines the `-twist congruence ≡` and the k-recoil congruence ≈k refines the `-recoil congruence ≈`.
This defines surjective restrictions resk→` : ATkn(n)→ AT`n(n) and resk→` : AOk

n(n)→ AO`
n(n).

The following statement concludes our lattice theoretic study of acyclic k-twists.

Proposition 2.24. We have the following commutative diagram of lattice morphisms:

ATkn(n) AT`n(n)

Sn

AOk
n(n) AO`

n(n)

twik twi`

reck rec`
cank can`

resk→`

resk→`
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2.2 BRICK POLYTOPES

This section is devoted to the polyhedral geometry of permutations of Sn, acyclic twists of ATkn, and
acyclic orientations of AOk

n. It is mainly based on properties of brick polytopes of sorting networks,
defined and studied in [PS12]. A more general treatment on brick polytopes is presented in Chapter 8.

2.2.1 Permutahedra, brick polytopes, zonotopes
We still denote by (ei)i∈[n] the canonical basis of Rn. We recall the definition of three families of
polytopes, which are illustrated in Figure 2.5:

Permutahedron. The permutahedron Perm(n) is the convex hull of
∑

i∈[n] ieσ(i) for all σ ∈ Sn.

Brick polytope. We call bricks the squares [i, i + 1] × [j, j + 1] of the triangular shape. The brick
area of a pipe p is the number of bricks located below p but inside the axis-parallel rectangle
defined by the two endpoints of p. The brick vector of a k-twist T is the vector of Rn whose
ith coordinate is the brick area of the ith relevant pipe of T . The brick polytope Brickk(n) is
the convex hull of the brick vectors of all (k, n)-twists. Its vertices correspond to the acyclic
(k, n)-twists of ATkn.

Zonotope. The graphical zonotope Zono(G) of a graph G is the Minkowski sum of the segments
[ei, ej ] for all edges {i, j} of G. We consider the zonotope Zonok(n) := Zono(Gkn). Its ver-
tices correspond to the acyclic orientations of AOk

n.

Example 2.25. When k = 1, the brick polytope Brick1(n) coincides (up to a translation) with
J.-L. Loday’s associahedron Asso(n) [Lod04] and the zonotope Zono1(n) coincides with the par-
allelepiped Para(n) generated by the simple roots ei+1 − ei. See Section 1.2.2.

The lattices studied in Section 2.1 naturally appear in the geometry of these polytopes. Namely,
recall the direction ω := (n, n− 1, . . . , 2, 1)− (1, 2, . . . , n− 1, n) =

∑
i∈[n](n+ 1− 2i) ei.

Proposition 2.26. When oriented in the direction ω, the 1-skeleta of the permutahedron Perm(n)
(resp. of the brick polytope Brickk(n), resp. of the zonotope Zonok(n)) is the Hasse diagram of the
weak order on permutations (resp. of the increasing flip lattice on acyclic (k, n)-twists, resp. of the
increasing flip lattice on acyclic orientations of Gkn).

2.2.2 The geometry of the surjections twik, cank, reck

The main geometric connection between the three polytopes Perm(n), Brickk(n) and Zonok(n)
is given by their normal fans. For a permutation σ ∈ Sn (resp. for a twist T ∈ ATkn, resp. for
an orientation O ∈ AOk

n), we denote by C(σ) (resp. C(T ), resp. C(O)) the incidence cone of the
chain σ1 C · · · C σn (resp. of the transitive closure CT of the contact graph T#, resp. of the tran-
sitive closure of O). We define similarly the braid cone C�(σ) (resp. C�(T ), resp. C�(O)). See
Section 1.2.2 for the general definitions of these cones for posets.

Proposition 2.27. Together with all their faces, the cones
{
C�(σ) | σ ∈ Sn

}
,
{
C�(T ) | T ∈ ATkn

}
,

and
{
C�(O) | O ∈ AOk

n

}
respectively form the normal fans of the permutahedron Perm(n), of the

brick polytope Brickk(n) and of the zonotope Zonok(n).

Using these normal fans, we interpret geometrically the maps twik, cank, and reck as follows.
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Figure 2.5: The permutahedron Perm(4) (left), the brick polytope Brickk(4) (middle) and the zono-
tope Zonok(4) (right) for k = 1 (top), k = 2 (middle) and k = 3 (bottom). For readibility, we
represent orientations of Gkn by pyramids of signs (a − sign means an increasing relation).

Proposition 2.28. The insertion map twik : Sn → ATkn, the k-canopy cank : ATkn → AOk
n and the

k-recoil map reck : Sn → AOk
n are characterized by:

T = twik(σ) ⇐⇒ C(T ) ⊆ C(σ) ⇐⇒ C�(T ) ⊇ C�(σ),

O = cank(T ) ⇐⇒ C(O) ⊆ C(T ) ⇐⇒ C�(O) ⊇ C�(T ),

O = reck(σ) ⇐⇒ C(O) ⊆ C(σ) ⇐⇒ C�(O) ⊇ C�(σ).
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Figure 2.6: The inclusions Perm(4) ⊆ Brickk(4) ⊆ Zonok(4) for k = 1 (left), k = 2 (middle)
and k = 3 (right). The permutahedron Perm(4) is in red, the brick polytope Brickk(4) in blue and
the zonotope Zonok(4) in green.

Remark 2.29. In fact, one can even visualize these normal fan inclusions at the level of polytopes. It
requires however to slightly transform the brick polytope Brickk(n) and the zonotope Zonok(n) to:

• the polytope Brickk(n) obtained by translating and scaling the brick polytope Brickk(n) so
that its minimal and maximal vertices in the direction ω coincide with the vertices (1, . . . , n)
and (n, . . . , 1) of Perm(n).

• the zonotope Zonok(n) obtained similarly from the Minkowski sum of the segments [ei, ej ]
dilated with certain suitable factors. The precise dilation factors are not relevant and can be
found in [Pil18, Sect. 1.2.1].

Note that these normalizations (translations, scalings and dilations) do not alter the normal fans of
these polytopes: Brickk(n) and Brickk(n) have the same normal fans, and Zonok(n) and Zonok(n)
have the same normal fans. These normalizations are chosen so that the polytopesPerm(n),Brickk(n)
and Zonok(n) all live in the hyperplaneH :=

{
x ∈ Rn |

∑
i∈[n] xi = 0

}
and fulfill the inclusions:

Brickk(n) Brick`(n)

Perm(n)

Zonok(n) Zono`(n)

⊆ ⊆

⊆ ⊆

⊆ ⊆

⊆

⊆

for k > `. Compare to Proposition 2.24. These inclusions are illustrated in Figures 2.5 to 2.7.
Moreover the rescaled polytopes Brickk(n) and Zonok(n) both converge to Perm(n) when k tend
to∞, as illustrated in Figure 2.7.

Figure 2.7: The inclusions of the brick polytopes Brickk(4) (left) and of the zonotopes Zonok(4)
(right) for k = 1 (blue), k = 2 (green) and k = 3 (orange). Both tend to the classical permutahe-
dron Perm(4) (red) when k tends to∞.
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2.3 THE TWIST HOPF ALGEBRA

We now use the twist congruences to construct some relevant Hopf subalgebras of C. Malvenuto and
C. Reutenauer’s algebra kS on permutations [MR95]. We describe the product and coproduct in these
Hopf algebras and their duals in terms of twists. Further algebraic directions, in particular product
decompositions, multiplicative bases and integer point transforms, are explored in [Pil18].

2.3.1 Hopf subalgebra
We denote by kATk the vector subspace of kS generated by the elements PT :=

∑
τ∈S

twik(τ)=T

Fτ =
∑
L(T#)

Fτ ,
for all acyclic k-twists T of any size. Here are some examples:

P 4 5321 =
∑
τ∈S5

Fτ P 4 5321 = F13542 + F15342

+ F31542 + F51342

+ F35142 + F53142

+ F35412 + F53412

P 4 5321 = F31542

+ F35142

P 4 5321 = F31542.

Theorem 2.30. The vector subspace kATk is a Hopf subalgebra of kS, called k-twist Hopf algebra.

Example 2.31. • For k = 0, the bijection which sends the unique (0, n)-twist to Xn/n! defines
an isomorphism from the 0-twist Hopf algebra kAT0 to the polynomial ring K[X].

• For k = 1, the bijection of Remark 2.3 defines an isomorphism from the 1-twist Hopf algebra
kAT1 to M. Ronco and J.-L. Loday’s Hopf algebra kT on planar binary trees [LR98, HNT05].

We now aim at understanding the product and the coproduct in kATk directly on k-twists. Al-
though they are not always as satisfactory, our descriptions naturally extend classical results on the
planar binary tree Hopf algebra described in [LR98, AS06, HNT05].

Product. To describe the product in kATk, we need the following notation, which is illustrated
in Figure 2.8. For a (k,m)-twist R and a (k, n)-twist S, we denote by R\S the (k,m + n)-twist
obtained by inserting R in the first rows and columns of S and by R/S the (k,m+ n)-twist obtained
by inserting S in the last rows and columns of R. The following statement is illustrated in Figure 2.9.

Proposition 2.32. For any acyclic k-twists R ∈ ATkm and S ∈ ATkn, we have PR · PS =
∑

T PT ,
where T runs over the interval between R\S and R/S in the acyclic (k,m+ n)-twist lattice.

Remark 2.33. The products of kS and kT are dendriform, meaning that they can be decomposed
into two operations ≺ and � satisfying x ≺ (y · z) = (x ≺ y) ≺ z, x � (y ≺ z) = (x � y) ≺ z
and x � (y � z) = (x · y) � z. It was observed in [Pil18] that the product of kATk admits a
decomposition into 2k operations satisfying similar relations. This motivated the introduction of the
signaletic operads and their Koszul dual citelangis operads. We refer to [HP19] without further details.

4321 65 4321 654321 21

R S R\S R/S

Figure 2.8: Two twists R,S (left) and the two twists R\S and R/S (right).
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P 4321 · P 21 = (F1423 + F4123) · F21

=

[
F142365

+F412365

]
+


F142635

+F146235

+F412635

+F416235

+F461235

+

 F164235

+F614235

+F641235

+


F142653

+F146253

+F412653

+F416253

+F461253

+

 F164253

+F614253

+F641253

+


F146523

+F416523

+F461523

+F465123

+


F164523

+F614523

+F641523

+F645123

+


F165423

+F615423

+F651423

+F654123


= P 4321 65 + P 4321 65 + P 4321 65 + P 4321 65 + P 4321 65 + P 4321 65 + P 4321 65 + P 4321 65

Figure 2.9: An example of product in the 2-twist Hopf algebra kAT2.

Coproduct. Our description of the coproduct in kATk is unfortunately not as simple as the coprod-
uct in the planar binary tree algebra. We need the following definition. A cut in a k-twist T is a set γ
of edges of the contact graph T# such that any path in T# from a leaf to the root contains precisely
one edge of γ. We then denote by A#(T, γ) (resp. B#(T, γ)) the restriction of the contact graph T#

to the nodes above (resp. below) γ. Moreover, A#(T, γ) is the contact graph of the k-twist A(T, γ)
obtained from T by deleting all pipes below γ in T#. Nevertheless, note that B#(T, γ) is not a priori
the contact graph of a k-twist. The following statement is illustrated in Figure 2.10.

Proposition 2.34. For any acyclic k-twist T ∈ ATkp , we have4PT =
∑

γ

(∑
τ Ptwik(τ)

)
⊗ PA(T,γ),

where γ runs over all cuts of T and τ runs over a set of representatives of the k-twist congruence
classes of the linear extensions of B#(T, γ).

4P 4 5321 = 4(F31542 + F35142)

= 1⊗ (F31542 + F35142) + F1 ⊗ (F1432 + F4132) + F21 ⊗ F321 + F12 ⊗ F132

+ F213 ⊗ F21 + F231 ⊗ F21 + F2143 ⊗ F1 + F2413 ⊗ F1 + (F31542 + F35142)⊗ 1

= 1⊗ P 4 5321 + P 1 ⊗ P 4321 + P 21 ⊗ P 321 + P 21 ⊗ P 321

+ P 321 ⊗ P 21 + P 321 ⊗ P 21 + P 4321 ⊗ P 1 + P 4321 ⊗ P 1 + P 4 5321 ⊗ 1

Figure 2.10: An example of coproduct in the 2-twist Hopf algebra kAT2.

k-recoil algebra. Consider the Hopf algebra kAOk defined in [NRT11] as the Hopf subalge-
bra of kS generated by the elements XO :=

∑
reck(τ)=O Fτ , for all acyclic orientations O of the

graph Gkn for all n ∈ N. The commutative diagram of Proposition 2.24 gives XO =
∑

cank(T )=O PT ,
which shows that kAOk is also a Hopf subalgebra of kATk.

2.3.2 Quotient Hopf algebra
The following statement is automatic from Theorem 2.30.

Theorem 2.35. The dual kATk∗ of the k-twist Hopf algebra is the quotient of kS∗ under the k-twist
congruence ≡k. The dual basis QT of PT is expressed as QT = π(Gτ ), where π is the quotient map
and τ is any permutation such that twik(τ) = T .
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As in the previous section, we try to describe combinatorially the product and coproduct of Q-
basis elements of kATk∗ in terms of operations on acyclic k-twists.

Product. Once more, our description of the product in the dual twist Hopf algebra is not as simple
as the product in the dual planar binary tree algebra, and is very close to the description of the direct
computation using the product of kS∗. For X = {x1 < . . . < xm} ∈

(
[m+n]
m

)
, ρ ∈ Sm, and S ∈

ATkn, we denote by S � (ρ ·X) the result of iteratively inserting xρn , . . . , xρ1 in the k-twist S relabeled
increasingly by [m+ n] rX . The following statement is illustrated in Figure 2.11.

Proposition 2.36. For any acyclic k-twistsR ∈ ATkm and S ∈ ATkn, we have QR·QS =
∑

X Q
S � (ρ·X)

where X runs over
(

[m+n]
m

)
and ρ is an arbitrary permutation such that twik(ρ) = R.

Q 21 ·Q 21 = G12 ·G21

= G1243 + G1342 + G1432 + G2341 + G2431 + G3421

= Q 4321 + Q 4321 + Q 4321 + Q 4321 + Q 4321 + Q 4321

Figure 2.11: An example of product in the dual 2-twist Hopf algebra kAT2∗.

Coproduct. Our description of the coproduct is more satisfactory. It is a special case of a co-
product on arbitrary pipe dreams studied in [BCP18]. We need the following notations, illustrated
in Figure 2.12. For an acyclic (k, p)-twist T and a position q ∈ {0, . . . , p}, we define two acyclic
k-twists L(T, q) ∈ ATkq and R(T, q) ∈ ATkp−q as follows. The twist L(T, q) is obtained by erasing
the last p− q pipes in T and glide the elbows of the remaining pipes as northwest as possible. More
precisely, each elbow e of one of the first q pipes is translated one step north (resp. west) for each of
the last p−q pipes passing north (resp. west) of e. The definition is similar forR(T, q), except that we
erase the first q pipes instead of the last p− q pipes. The next statement is illustrated in Figure 2.13.

Proposition 2.37. For any acyclic k-twist T ∈ ATkp , we have4QT =
∑

0≤q≤p
QL(T,q) ⊗QR(T,q).

4 5321 21 321

T L(T, 2) R(T, 2)

Figure 2.12: A 2-twist T (left) and the two 2-twists L(T, 2) (middle) and R(T, 2) (right).

4Q 4 5321 = 4G31542

= 1⊗G31542 + G1 ⊗G2431 + G12 ⊗G132 + G312 ⊗G21 + G3142 ⊗G1 + G31542 ⊗ 1

= 1⊗Q 4 5321 + Q 1 ⊗Q 4321 + Q 21 ⊗Q 321 + Q 321 ⊗Q 21 + Q 4321 ⊗Q 1 + Q 4 5321 ⊗ 1

Figure 2.13: An example of coproduct in the dual 2-twist Hopf algebra kAT2∗.
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PERMUTREEHEDRA

This chapter presents permutrees, a combinatorial object that generalizes and interpolates permuta-
tions, binary trees, and binary sequences. Extending the combinatorial, geometric and algebraic prop-
erties seen in Chapter 1, we show that the permutrees are endowed with a lattice structure (Section 3.1),
correspond to the vertices of a polytope called permutreehedron (Section 3.2), and index the basis of
a relevant Hopf subalgebra of a decorated version of C. Malvenuto and C. Reutenauer’s Hopf alge-
bra kS on permutations (Section 3.3). This chapter is adapted from a joint work with V. Pons [PP18].

3.1 PERMUTREE LATTICES

3.1.1 Permutrees
Definition 3.1. A permutree is a directed tree T with vertex set [n] such that for each vertex j ∈ [n],

(i) j has one or two parents (outgoing neighbors), and one or two children (incoming neighbors);
(ii) if j has two parents (resp. children), then all vertices in its left ancestor (resp. descendant)

subtree are smaller than j while all labels in its right ancestor (resp. descendant) subtree are
larger than j.

Figure 3.1 provides four examples of permutrees. We use the following conventions:
• All edges are oriented bottom-up and the vertices appear from left to right in natural order.
• We decorate the vertices with , , , depending on their number of parents and children.

The sequence of these symbols, from left to right, is the decoration δ(T ) of the permutree T .
• We often draw a vertical red wall below (resp. above) the vertices labeled by or (resp. by

or ) to mark the separation between the left and right descendant (resp. ancestor) subtrees.

7

64

42

1

3

5
1

2

3
4

5

6

7

7641 2 3 5 4

4

3

3

5

5

6

6

7

7

2

2

1

1

Figure 3.1: Four examples of permutrees. While the first is generic, the last three use specific decora-
tions corresponding to permutations, binary trees, and binary sequences.
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Example 3.2. As illustrated in Figure 3.1, δ-permutrees extend and interpolate between various com-
binatorial families, including permutations when δ = n, binary trees when δ = n, and binary
sequences when δ = n. In fact, permutrees arose by pushing further the combinatorics of Cambrian
trees developed in [CP17] to provide combinatorial models to the type A Cambrian lattices [Rea06].

3.1.2 Permutree correspondence
We now define a bijective correspondence between decorated permutations and leveled permutrees.
We start with a decorated permutation σ, given by

• a permutation table1, with rows labeled by positions from bottom to top and columns labeled
by values from left to right, and with a dot at row i and column σi for all i ∈ [n],

• a decoration of { , , , } for each dot in the table2,
• a vertical red wall below (resp. above) the vertices labeled by or (resp. by or ).

We then sweep the table from bottom to top (thus reading the permutation σ from left to right) as
follows. We start with an incoming strand in between any two consecutive down values. At each step,
we sweep the next vertex and proceed to the following operations depending on its decoration:

(i) a vertex decorated by or catches the only incoming strands it sees, while a vertex decorated
by or connects the two incoming strands just to its left and to its right,

(ii) a vertex decorated by or creates a unique outgoing strand, while a vertex decorated by
or creates two outgoing strands just to its left and to its right.

We end with an outgoing strand in between any two consecutive up values. See Figure 3.2. As strands
cannot cross red walls during the algorithm, the result lpt(σ) of this procedure is a leveled permutree,
i.e. a permutree whose vertices are ordered by one of its linear extensions.

Proposition 3.3. The map lpt is a bijection from δ-decorated permutations to leveled δ-permutrees.
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Figure 3.2: The permutree insertion algorithm on the decorated permutation 2751346.

1This unusual convention of orientation fits the existing constructions [LR98, HNT05, CP17].
2We could equivalently think of a permutation where the positions or the values receive a decoration, but it will be

useful later to switch the decoration from positions to values.
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3.1.3 Permutree congruences
In the rest of the chapter, we forget the order of the leveled permutree lpt(σ) and we denote the
resulting permutree by pt(σ). We can think of the surjection pt as an insertion algorithm from
decorated permutations to permutrees. We are interested in the fibers of this surjection.

Proposition 3.4. The decorated permutations σ such that pt(σ) = T are precisely the linear exten-
sions of (the transitive closure of) the permutree T .

We then characterize the decorated permutations in the same fiber in terms of a congruence relation
defined by a rewriting rule. This extends the trivial congruence when δ = n, the sylvester congru-
ence [HNT05] when δ = n, the Cambrian congruences [Rea04, Rea06, CP17] when δ ∈ { , }n,
and the hypoplactic congruence [KT97, Nov00] when δ = n.

Definition 3.5. For a decoration δ ∈ { , , , }n, the δ-permutree congruence is the equivalence
relation on δ-decorated permutations defined as the transitive closure of the rewriting rules

UacV bW ≡δ UcaV bW if a < b < c and δb = or ,
UbV acW ≡δ UbV caW if a < b < c and δb = or ,

where a, b, c are elements of [n] while U, V,W are words on [n]. Note that the decorations of a and c
do not matter, only that of the witness b of the rewriting rule.

Proposition 3.6. The classes of ≡δ are the fibers of pt, i.e. σ ≡δ τ ⇐⇒ pt(σ) = pt(τ).

Proposition 3.7. The δ-permutree congruence ≡δ is a lattice congruence of the weak order.

3.1.4 Rotations and permutree lattices
We now define the rotation on permutrees, a local operation that only exchanges the orientation of an
edge and rearranges the endpoints of two other edges. See Figure 3.3 for some examples.

i

j
U

D

right−→
rotation

i

j

U

D

Definition 3.8. Let i→ j be an edge in a δ-permutree T with i < j.
Let D denote the only (resp. the right) descendant subtree of ver-
tex i if δi ∈ { , } (resp. if δi ∈ { , }) and let U denote the
only (resp. the left) ancestor subtree of vertex j if δj ∈ { , }
(resp. if δj ∈ { , }). Let T ′ be the oriented tree obtained from T
just reversing the orientation of i → j and attaching the subtree U to i and the subtree D to j as
illustrated above. The transformation from T to T ′ is an increasing rotation.

The rotation of an edge i → j exchanges the orientation of this edge while preserving all other
edge cuts. An edge cut in a permutree T is the partition (I ‖ J) of the vertices of T into the set I of
vertices in the source set and the set J = [n] r I of vertices in the target set of an oriented edge of T .

Proposition 3.9. The result T ′ of the rotation of an edge i → j in a δ-permutree T is a δ-permutree.
Moreover, T ′ is the unique δ-permutree with the same edge cuts as T , except the cut defined by i→ j.

Proposition 3.10. The transitive closure of the increasing rotation graph on δ-permutrees is a lat-
tice, called δ-permutree lattice. It isomorphic to the quotient of the weak order by the δ-permutree
congruence ≡δ. The map pt is a thus morphism from the weak order to the permutree lattice.

Example 3.11. The δ-permutree lattice specializes to the weak order when δ = n, the Tamari lat-
tice when δ = n, the Cambrian lattices [Rea06] when δ ∈ { , }n and the boolean lattice
when δ = n.
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Figure 3.3: The δ-permutree lattices, for δ = (left) and δ = (right).

3.1.5 Decoration refinements
For two decorations δ, δ′ ∈ { , , , }n, we say that δ refines δ′ and we write δ 4 δ′ if δi 4 δ′i
for all i ∈ [n] for the order 4 { , } 4 . In this case, the δ-permutree congruence refines the
δ′-permutree congruence: σ ≡δ τ implies σ ≡δ′ τ for any two permutations σ, τ ∈ Sn. This defines
a natural surjection map Ψδ′

δ from δ-permutrees to δ′-permutrees.

Proposition 3.12. The map Ψδ′
δ is a morphism from the δ-permutree lattice to the δ′-permutree lattice.

This surjection can be described visually as follows, see Figure 3.4 where δ =
and δ′ = . We start from a δ-permutree, with vertices labeled from left to right as
usual. We then redecorate its vertices according to δ′ and place the corresponding vertical red walls.
The result is not a permutree at the moment as some edges of the tree cross some red walls. In order
to fix it, we cut the edges crossing red walls and reconnect them with vertical segments as illustrated
in Figure 3.4 (middle right). Finally, we stretch the picture to see a δ′-permutree with straight edges.
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Figure 3.4: Decoration refinement by cut and stretch.
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3.2 PERMUTREEHEDRA

We now construct permutree fans and permutreehedra, which provide geometric realizations of the
permutree lattices. As for J.-L. Loday’s or C. Hohlweg and C. Lange’s associahedra [Lod04, HL07],
the permutree fans are obtained by coarsening the braid arrangement F(n) and the permutreehedra
are obtained by deleting certain inequalities in the facet description of the permutahedron Perm(n).

3.2.1 Permutree fans
Recall that the incidence cone C(T ) and the braid cone C�(T ) of a permutree T are the cones:

C(T ) := R≥0

{
ei − ej | ∀ i→ j in T

}
=

{
x ∈ 1⊥

∣∣∣∣ ∑
j∈J

xj
|J |
≤
∑
i∈I

xi
|I|
, ∀ (I ‖ J) cut in T

}

C�(T ), :=
{
x ∈ 1⊥ | xi ≤ xj , ∀ i→ j in T

}
= R≥0

{∑
j∈J

ej
|J |
−
∑
i∈I

ei
|I|

∣∣∣∣ ∀ (I ‖ J) cut in T
}
.

Note that these two cones both lie in the space 1⊥ :=
{
x ∈ Rn |

∑
i∈[n] xi = 0

}
, are simplicial, and

are polar to each other. We use the braid cones to construct the δ-permutree fan.

Proposition 3.13. The set of cones {C�(T ) |T δ-permutree}, together with all their faces, forms a
complete simplicial fan F(δ) of 1⊥ called δ-permutree fan.

Example 3.14. The δ-permutree fan specializes to the braid fan when δ = n, the (typeA) Cambrian
fans of N. Reading and D. Speyer [RS09] when δ ∈ { , }n, the fan defined by the hyperplane
arrangement xi = xi+1 for each i ∈ [n − 1] when δ = n, and the fan defined by the hyperplane
arrangement xi = xj for each i < j ∈ [n− 1] such that δ|(i,j) = j−i−1 when δ ∈ { , }n.

Moreover, the decoration refinements of Section 3.1.5 translate to permutree fan refinements.

Proposition 3.15. If δ 4 δ′, the δ-permutree fan F(δ) refines the δ′-permutree fan F(δ′). More
precisely, C(T ) ⊇ C(T ′) and C�(T ) ⊆ C�(T ′) for any δ-permutree T with image T ′ = Ψδ′

δ (T ).

3.2.2 Permutreehedra
We are now ready to construct the δ-permutreehedron PT(δ) whose normal fan is the δ-permutree
fan F(δ). We provide both its vertex and facet descriptions:

(i) The vertices of PT(δ) correspond to δ-permutrees. Namely, we associate to a δ-permutree T a
point p(T ) ∈ Rn whose ith coordinate is defined by p(T )i = 1 + d+ `r− `r, where d denotes
the number of descendants of i in T , ` and r denote the sizes of the left and right descendant
subtrees of i in T when δi ∈ { , } (otherwise, ` = r = 0), and ` and r denote the sizes of
the left and right ancestor subtrees of i in T when δi ∈ { , } (otherwise, ` = r = 0). Note
that p(T ) is independent of the decorations of the first and last vertices of T .

(ii) The facets of PT(δ) correspond to the δ-building blocks, that is, to all subsets B ⊆ [n] such
that there exists a δ-permutree T which admits (B ‖ [n] rB) as an edge cut. We associate to a
δ-building block B the halfspaceH≥(B) :=

{
x ∈ Rn |

∑
i∈B xi ≥

(|B|+1
2

)}
.

As an illustration, the vertex corresponding to the permutree of Figure 3.1 (left) is [7,−4, 3, 8, 1, 12, 1]
and the facet corresponding to the edge 3→ 4 in the permutree of Figure 3.1 (left) is x1 +x2 +x3 ≥ 6.
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Figure 3.5: The permutreehedra PT( ) (left) and PT( ) (right).

Theorem 3.16. The permutree fan F(δ) is the normal fan of the permutreehedron PT(δ) defined as
(i) either the convex hull of the points p(T ) for all δ-permutrees T ,

(ii) or the intersection of the hyperplaneH with the halfspacesH≥(B) for all δ-building blocks B.

Example 3.17. The δ-permutreehedron PT(δ) specializes to the permutahedron Perm(n) when
δ = n, J.-L. Loday’s associahedron Asso(n) [SS93, Lod04] when δ = n, C. Hohlweg and
C. Lange’s associahedra Asso(δ) [HL07, LP18] when δ ∈ { , }n, the parallelepiped Para(n)
with directions ei − ei+1 for each i ∈ [n− 1] when δ = n, the graphical zonotope Zono(δ) gener-
ated by the vectors ei − ej for each i < j ∈ [n− 1] such that δ|(i,j) = j−i−1 when δ ∈ { , }n.

The δ-permutree lattice studied in Section 3.1.4 naturally appears in the geometry of the δ-permu-
treehedronPT(δ). Recall thatω := (n, n−1, . . . , 2, 1)−(1, 2, . . . , n−1, n) =

∑
i∈[n](n+1−2i) ei.

Proposition 3.18. When oriented in the direction ω, the 1-skeleton of the δ-permutreehedron PT(δ)
is the Hasse diagram of the δ-permutree lattice.

Finally, decoration refinements of Section 3.1.5 translates to permutreehedra containement, as
illustrated in Figure 3.6.

Proposition 3.19. For any two decorations δ 4 δ′, the permutreehedron PT(δ′) is obtained by
deleting inequalities in the facet description of the permutreehedron PT(δ′). Thus, PT(δ) ⊆ PT(δ′).

Further geometric topics are studied in [PP18, Sect. 3.3], in particular pairs of parallel facets and
isometries of permutreehedra, and common vertices of permutreehedra for distinct decorations.

3.3 THE PERMUTREE HOPF ALGEBRA

We have used that the binary tree insertion to construct J.-L. Loday and M. Ronco’s Hopf algebra kT
on binary trees as a subalgebra of C. Malvenuto and C. Reutenauer’s Hopf algebra kS on permuta-
tions. We now use the permutree insertion to construct a Hopf algebra on permutrees as a subalgebra
of a Hopf algebra on decorated permutations. We then provide combinatorial interpretations of the
products and coproducts both in the permutree Hopf algebra and its dual in terms of cutting operations
in permutrees. Further algebraic directions, in particular multiplicative bases, are explored in [PP18].
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Figure 3.6: The δ-permutreehedra, for all decorations δ ∈ · { , , , }2 · .

3.3.1 The Hopf algebra on decorated permutations
The decorated shifted shuffle σ �̄ τ is defined as the shifted shuffle of the permutations where decora-
tions travel with their values, while the decorated convolution σ ? τ is defined as the convolution of
the permutations where decorations stay at their positions.

E.g., 12 �̄ 231 = {12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312},
12 ? 231 = {12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231}.

As shown by J.-C. Novelli and J.-Y. Thibon in [NT10a], these operations define a decorated version
of C. Malvenuto and C. Reutenauer’s Hopf algebra kS on permutations [MR95].

Definition 3.20. We denote by kS{ , , , } the Hopf algebra with basis Fτ indexed by decorated
permutations with product Fρ · Fσ =

∑
τ∈ρ �̄σ

Fτ and coproduct4Fτ =
∑

τ∈ρ?σ
Fρ ⊗ Fσ.

We will also consider the dual Hopf algebra of kS{ , , , }.

Definition 3.21. We denote by (kS{ , , , })∗ the Hopf algebra with basis Gτ indexed by decorated
permutations with product Gρ ·Gσ =

∑
τ∈ρ?σ

Gτ and coproduct4Gτ =
∑

τ∈ρ �̄σ
Gρ ⊗Gσ.



40 Chapter 3 – Permutreehedra

3.3.2 Hopf subalgebra
We denote by kPmt the vector subspace of kS{ , , , } generated by PT :=

∑
τ∈S{ , , , }

pt(τ)=T

Fτ =
∑

τ∈L(T )

Fτ
for all permutrees T . For example:

P = F2135476 + F2135746 + F2137546 + · · ·+ F7523146 + F7523416 + F7523461 (90 terms).

The following statement is similar to [CP17, Thm. 24], which was inspired from similar arguments
for Hopf algebras arising from lattice quotients of the weak order [Rea05].

Theorem 3.22. The vector subspace kPmt is a Hopf subalgebra of the decorated permutation Hopf
algebra kS{ , , , }, called permutree Hopf algebra.

Once we have observed this property, we want to describe the product and coproduct in the per-
mutree Hopf algebra kPmt directly in terms of permutrees. We briefly do it in the next two statements.
This generalizes know rules for the binary tree Hopf algebra kT described in [LR98, AS06, HNT05].

Product. For any permutrees R,S, denote by R\S (resp. by R/S) the permutree obtained by
grafting the rightmost outgoing (resp. incoming) edge of R to the leftmost incoming (resp. outgoing)
edge of S while shifting all labels of S. An example is given in Figure 3.7 (left).

Proposition 3.23. For any permutrees R,S, we have PR · PS =
∑

T PT , where T runs over the
interval between R\S and R/S in the δ(R)δ(S)-permutree lattice.

Remark 3.24. Note that there are natural dendriform structures and integer point transform interpre-
tations of the product in the permutree Hopf algebra restricted to decorations in { , }∗, see [PP18,
Sects. 4.4.2 & 4.4.3]. However, these properties are lost for arbitrary decorations in { , , , }∗.

Coproduct. Define a cut of a permutree T to be a set γ of edges such that any geodesic vertical
path in T from a down leaf to an up leaf contains precisely one edge of γ. Such a cut separates the per-
mutree T into two forests, one above γ and one below γ, denoted A(T, γ) and B(T, γ), respectively.
An example is given in Figure 3.7 (right).

Proposition 3.25. For any permutree T , we have 4PT =
∑
γ

( ∏
R∈B(T,γ)

PR
)
⊗
( ∏
S∈A(T,γ)

PS
)
,

where γ runs over all cuts of T and both products are computed from left to right.
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Figure 3.7: Grafting two permutrees (left) and cutting a permutree (right).
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Remark 3.26. Let us underline relevant Hopf subalgebras of the permutree Hopf algebra kPmt.
Namely, for any set δ of decorations in { , , , }∗ stable by shuffle, the linear subspace of kPmt
generated by the elements Pδ for δ ∈ δ forms a Hopf subalgebra kPmtδ of kPmt. In particular,
kPmt contains all algebras kPmtD∗ for any subset D of the decorations { , , , }. Note that:

(i) kPmt{ }∗ is C. Malvenuto and C. Reutenauer’s Hopf algebra kS on permutations [MR95],
(ii) kPmt{ }∗ is J.-L. Loday and M. Ronco’s Hopf algebra kT of on binary trees [LR98],

(iii) kPmt{ , }∗ is the Hopf algebra on Cambrian trees [CP17],
(iv) kPmt{ }∗ is the recoil Hopf algebra algebra kB on binary sequences [GKL+95].

Interestingly, the rules for the product and the coproduct in the permutree Hopf algebra kPmt provide
uniform product and coproduct rules for all these Hopf algebras.

3.3.3 Quotient Hopf algebra
We now consider the dual Hopf algebra of the permutree Hopf algebra kPmt. The following statement
is automatic by duality from Theorem 3.22.

Theorem 3.27. The dual kPmt∗ of the permutree Hopf algebra kPmt is the quotient of (kS{ , , , })∗

under the permutree congruence ≡. The dual basis QT of PT is expressed as QT = π(Gτ ), where π
is the quotient map and τ is any linear extension of T .

Similarly as in the previous section, we can describe combinatorially the product and coproduct
of Q-basis elements of kPmt∗ in terms of operations on permutrees. This generalizes know rules for
the binary tree Hopf algebra kT described in [LR98, AS06, HNT05].

Product. Call gaps the n + 1 positions between two consecutive integers of [n], including the
position before 1 and the position after n. A gap γ defines a geodesic vertical path λ(T, γ) in a
permutree T from the bottom leaf which lies in the same interval of consecutive down labels as γ to
the top leaf which lies in the same interval of consecutive up labels as γ. See Figure 3.9. A multiset Γ
of gaps therefore defines a lamination λ(T,Γ) of T , i.e. a multiset of pairwise non-crossing geodesic
vertical paths in T from down leaves to up leaves. When cut along the paths of a lamination, the
permutree T splits into a forest.

Consider two Cambrian trees R and S of sizes [m] and [n] respectively. For any shuffle s of their
decorations δ(R) and δ(S), consider the multiset Γ of gaps of [m] given by the positions of the down
labels of δ(S) in s and the multiset Ω of gaps of [n] given by the positions of the up labels of δ(R)
in s. We denote by R s\S the Cambrian tree obtained by connecting the up leaves of the forest defined
by the lamination λ(R,Γ) to the down leaves of the forest defined by the lamination λ(S,Ω).

Example 3.28. Consider the permutrees T© and T� of Figure 3.8. To distinguish decorations in T©

and T�, we circle the symbols in δ(T©) = and square the symbols in δ(T�) = .
Consider now an arbitrary shuffle s = of these two decorations. The resulting
laminations of T© and T�, as well as the permutree T©

s\T� are represented in Figure 3.8.

Proposition 3.29. For any permutrees R,S, we have QR · QS =
∑

sQR s\S , where s runs over all
shuffles of the decorations of R and S.
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Figure 3.8: (a) The two initial permutrees T© and T�. (b) Given the shuffle s = ,
the positions of the and are reported in T© and the positions of the and are reported in T�.
(c) The corresponding laminations. (d) The permutrees are split according to the laminations. (e) The
resulting permutree T©

s\T�.

Coproduct For a gap γ, we denote by L(T, γ) and R(T, γ) the left and right subpermutrees of T
when split along the path λ(T, γ). An example is given in Figure 3.9.

Proposition 3.30. For any permutree T , we have4QT =
∑

γ QL(T,γ)⊗QR(T,γ), where γ runs over
all gaps between vertices of T .
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Figure 3.9: A gap γ (left) defines a vertical cut (middle) which splits the permutree vertically (right).

Remark 3.31. We conclude this chapter with an innocent operation, that we call tuplization, which
yields many relevant polytopes and Hopf algebras. The motivation comes from S. Law and N. Read-
ing’s work on diagonal quadrangulations [LR12] and S. Giraudo’s work on twin binary trees [Gir12].
For a k-tuple δ := (δ1, . . . , δk) of decorations δi ∈ { , , , }n, define a δ-permutree tuple
to be a k-tuple T := (T1, . . . , Tk) where Ti is a δi-permutree and such that the union of the per-
mutrees T1, . . . , Tk is acyclic (in other words, the permutrees T1, . . . , Tk admit a common linear
extension). Then these δ-permutree tuples label:

• the classes of the congruence of the weak order defined as the intersection of permutree congru-
ences ≡δ1 ∩ · · · ∩ ≡δk ,

• the vertices of the Minkowski sum of permutreehedra PT(δ1) + · · ·+ PT(δk),
• the basis of a Hopf subalgebra of a tuple generalization of the decorated Malvenuto–Reutenauer

algebra (where the products and coproducts are performed coordinatewise).
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QUOTIENTOPES

In this chapter, we finally deal simultaneously with all lattice congruences of the weak order. In
Section 4.1, we briefly review non-crossing arc diagrams [Rea15], which provide a powerful combi-
natorial model for congruences classes of lattice congruences of the weak order. Using the geometry
of shards, we then construct in Section 4.2 the quotientopes [PS19], which provide polytopal realiza-
tions of these quotients. Finally in Section 4.3, we show a general approach to construct Hopf algebra
structures on all lattice quotients of the weak order, using further decorated versions of C. Malvenuto
and C. Reutenauer’s Hopf algebra kS on permutations. Section 4.2 is adapted from a joint work
with F. Santos [PS19], Section 4.2.3 is a work in progress with A. Padrol and J. Ritter [PPR20], and
Section 4.3 is adapted from [Pil19].

4.1 LATTICE QUOTIENTS AND ARC DIAGRAMS

4.1.1 Canonical representations and non-crossing arc diagrams
Let (L,≤,∧,∨) be a finite lattice. A join representation of x ∈ L is a subset J ⊆ L such that x =

∨
J .

It is irredundant if x 6=
∨
J ′ for J ′ ( J . Irredundant join representations of x ∈ L are ordered

by J ≤ J ′ if and only if for any y ∈ J there exists y′ ∈ J ′ with y ≤ y′. The minimum element
of this order, if it exists, is the canonical join representation of x. The lattice is semidistributive if
any element admits canonical join and meet representations. The weak order on Sn is a semidistribu-
tive lattice, whose canonical join and meet representations were explicitly described by N. Reading
in [Rea15] as follows. A descent (resp. ascent) in σ = σ1 . . . σn ∈ Sn is a position i ∈ [n − 1]
such that σi > σi+1 (resp. σi < σi+1). For a descent i of σ, consider the permutation λ(σ, i)
with entries 1, . . . , (σi+1 − 1) followed by {σj | j < i, σj ∈ ]σi+1, σi[} increasingly, then σiσi+1,
then {σj | j > i+ 1, σj ∈ ]σi+1, σi[} increasingly, and finally (σi + 1), . . . , n. For each ascent i
of σ, define dually λ(σ, i) := ω◦λ(ω◦σ, i), where ω◦ := [n, n − 1, . . . , 2, 1] is the longest permuta-
tion of Sn.

Theorem 4.1 ([Rea15, Thm. 2.4]). The canonical join and meet representations of a permutation
σ = σ1 . . . σn are given by

∨
{λ(σ, i) |σi > σi+1} and

∧{
λ(σ, i)

∣∣σi < σi+1

}
.

As observed in [Rea15], the permutation λ(σ, i) is determined by the values σi and σi+1 and by
the set {σj | j < i, σj ∈ ]σi+1, σi[}. This data can be recorded in the following combinatorial gadgets.
An arc is a quadruple (a, b, n, S) where 1 ≤ a < b ≤ n are integers and S ⊆ ]a, b[. We denote by
An := {(a, b, n, S) | 1 ≤ a < b ≤ n and S ⊆ ]a, b[} the set of arcs of length n, and byA :=

⊔
n∈NAn

the set of all arcs. We denote by α(i, i + 1, σ) := (σi+1, σi, n, {σj | j < i and σj ∈ ]σi+1, σi[ }) the
arc associated to a descent i of a permutation σ and by δ(σ) := {α(i, i+ 1, σ) |σi > σi+1} the set of
arcs corresponding to all descents of σ. Define α and δ dually for ascents.

Part I – Lattice congruences, polytopes and Hopf algebras Vincent Pilaud 43
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An arc (a, b, n, S) is visually represented as an x-monotone continuous
curve wiggling around the horizontal axis, with endpoints a and b, and passing
above the points of S and below the points of ]a, b[ r S. With this representa-
tion, N. Reading provided a convenient visual interpretation of δ and δ. For this,
represent the permutation σ by its permutation table (σi, i). Draw arcs between
any two consecutive dots (σi, i) and (σi+1, i + 1), colored green if σi < σi+1

is an ascent and red if σi > σi+1 is a descent. Then move all dots down to the
horizontal axis, allowing the segments to curve, but not to cross each other nor
to pass through any dot. The set of red (resp. green) arcs is then the set δ(σ)
(resp. δ(σ)) corresponding to the canonical join (resp. meet) representation of σ.

Two arcs cross if the interior of the two curves representing these arcs inter-
sect. A non-crossing arc diagram is a set D of arcs of An such that any two arcs of D do not cross
and have distinct left endpoints and distinct right endpoints. Theorem 4.1 yields the following.

Theorem 4.2 ([Rea15, Thm. 3.1]). The maps δ and δ are bijections from permutations of Sn to non-
crossing arc diagrams of An.

4.1.2 Lattice quotients of the weak order and arc ideals
Let ≡ be lattice congruence of L (see Section 1.1.1). An element x ∈ L is contracted by ≡ if it is not
minimal in its ≡-equivalence class. As each class of ≡ is an interval of L, it contains a unique uncon-
tracted element, and the quotient L/≡ is isomorphic to the subposet of L induced by its uncontracted
elements. Moreover, the canonical join representations in the quotientL/≡ are precisely the canonical
join representations of L that do not involve any contracted join-irreducible. This yields the following.

Theorem 4.3 ([Rea15, Thm. 4.1]). Consider a lattice congruence ≡ of the weak order on Sn, and
let I≡ denote the arcs corresponding to the join-irreducible permutations not contracted by ≡.

1. A permutation σ is minimal in its ≡-congruence class if and only if δ(σ) ⊆ I≡.
2. Sending a ≡-congruence class with minimal permutation σ to the arc diagram δ(σ) defines a

bijection between the congruence classes of ≡ and the non-crossing arc diagrams in I≡.
3. The congruence ≡ is the transitive closure of the rewriting rule σ → σ · (i i + 1) where i is a

descent of σ such that α(i, i+ 1, σ) /∈ I≡.

It remains to characterize the sets of arcs I≡ cor-
responding to the uncontracted join-irreducible per-
mutations of a lattice congruence ≡ of the weak or-
der. This is again transparent on the arc represen-
tation. An arc α := (a, d, n, S) is forced by an arc
β := (b, c, n, T ), denoted α ≺ β, if a ≤ b < c ≤ d
and T = S ∩ ]b, c[. Graphically, it means that β is
obtained by restricting the arc α to the interval [b, c].
See on the right for the forcing order on A4. An
arc ideal is any upper ideal I of the forcing order:
(a, d, n, S) ∈ I implies (b, c, n, S ∩ ]b, c[) ∈ I for
all a ≤ b < c ≤ d and S ⊆ ]a, d[. We denote by In
the set of arc ideals of An.

Theorem 4.4 ([Rea15, Coro. 4.5]). A set of arcs I ⊆ An is the set I≡ for some lattice congruence ≡
of the weak order on Sn if and only if it is an arc ideal of In.
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δ = k = 2

Figure 4.1: Examples of arc ideals A<kn,s,e,w. The associated lattice congruences correspond from left
to right to permutations, binary trees, diagonal rectangulations, δ-permutrees, and acyclic 2-twists.

Example 4.5. The sets of all arcs An, the set of upper arcs A+
n := {(a, b, n, ]a, b[) | 1 ≤ a < b ≤ n},

the set of lower arcs A−n := {(a, b, n,∅) | 1 ≤ a < b ≤ n}, or the union A+
n ∪ A−n are all arc ideals.

More generally, fix four functions n, s, e,w : [n]→ N and choose k ∈ N. For each a ∈ [n], draw n(a)
upper vertical walls above a, s(a) lower vertical walls below a, and min

(
e(a),w(a+ 1)

)
horizontal

walls from a and a+ 1. Then the set A<kn,s,e,w of arcs that cross at most k − 1 of all these walls is an
arc ideal. For certain choices of n, s, e,w and k, the resulting arc ideals can correspond to:

• the weak order (n = s = e = w = 0 and k = 1),
• the Tamari lattice [Tam51] (n = e = w = 0 and s = k = 1),
• the boolean lattice (e = w = 0 and n = s = k = 1),
• the lattice of diagonal rectangulations [LR12] (n = s = 0 and e = w = k = 1),
• the permutree lattices [PP18] (e = w = 0, n ≤ 1, s ≤ 1 and k = 1),
• the lattice of sashes [Law14] (e = w = 0, n = 1, s = 2 and k = 2),
• the lattice of acyclic k-twists [Pil18] (n = e = w = 0, s = 1 and k ≥ 1),
• the lattice of k-descent schemes [NRT11, Pil18] (e = w = 0, n = s = 1 and k ≥ 1).

4.2 QUOTIENTOPES

4.2.1 Quotient fans
Recall that the cones of the braid fan F(n) are labeled by ordered partitions of [n] (see also Sec-
tion 5.1.1): an ordered partition π = π1|π2| . . . |πk of [n] into k parts corresponds to the (k − 1)-
dimensional cone C�(π) :=

{
x ∈ 1⊥ | xu ≤ xv for all i ≤ j, u ∈ πi and v ∈ πj

}
. In particular, the

braid fan F(n) has a maximal cone C�(σ) for each permutation σ ∈ Sn, and a ray C�(R) for each
subset ∅ 6= R ( [n].

The arcs of Section 4.1 have geometric counterparts called shards, due to by N. Reading [Rea03]
(see also his survey chapters [Rea16b, Rea16a]). For an arc α := (a, b, n, S) ∈ An, the shard Σ(α) is
the cone Σ(α) :=

{
x ∈ 1⊥

∣∣xa = xb, xa ≥ xk for all k ∈ S, xa ≤ xk for all k ∈ ]a, b[ r S
}

. Each
hyperplane Hab :=

{
x ∈ 1⊥

∣∣xa = xb
}

of the braid fan is thus decomposed into the 2b−a−1 shards
Σ(a, b, n, S) for all S ⊆ ]a, b[. The shards are thus pieces of the hyperplanes of the braid arrangement.
See Figures 4.2 and 4.3 (middle).

Reading proved in [Rea05] that any lattice congruence of the weak order defines a fan coarsening
the braid fan in the following two equivalent ways. See Figures 4.2 and 4.3 (right).

Theorem 4.6 ([Rea05]). For any lattice congruence≡ of the weak order on Sn, the cones obtained by
• glueing together the cones of the braid fan that belong to the same congruence class of ≡,
• keeping the connected components of 1⊥ r

⋃
α∈I≡ Σ(α),

coincide and define a fan F(≡) whose dual graph is the Hasse diagram of the quotient Sn/≡.
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Figure 4.2: The braid fan F(3) (left), the corresponding shards (middle), and the quotient fan given
by the sylvester congruence ≡sylv (right).
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Figure 4.3: A stereographic projection of the braid fan F(4) (left), the corresponding shards (middle),
and the quotient fan given by the sylvester congruence ≡sylv (right).

4.2.2 Quotientopes
Closing an open question of [Rea05], we now use arcs to construct a polytopal realization of the
quotient fan F(≡). A function f : An → R>0 is forcing dominant if f(α) >

∑
β≺α f(β) for any

arc α ∈ An. Note that such functions clearly exist since ≺ is a poset, e.g. f(a, b, n, S) = n−(b−a)2
.

For an arc α = (a, b, n, S) ∈ An and a subset R ⊆ [n], we define the contribution γ(α,R) of α to R
to be 1 if |R ∩ {a, b}| = 1 and S = R∩ ]a, b[, and 0 otherwise. For a subset R ⊆ [n], we pick a repre-
sentative vector r(R) = 1k∈R − 1k+1∈R of the ray C�(R), and we define the height hf≡(R) ∈ R>0

to be hf≡(R) :=
∑

α∈I≡ f(α) γ(α,R). This height function has been chosen to fulfill the following
property, proved in [PS19].

Lemma 4.7. Let σ, σ′ be two adjacent permutations. Let ∅ 6= R ( [n] (resp. ∅ 6= R′ ( [n]) be such
that r(R) (resp. r(R′)) is the ray of C�(σ) not in C�(σ′) (resp. of C�(σ′) not in C�(σ)). Then

• the (unique up to rescaling) linear dependence among the rays of the cones C�(σ) and C�(σ′)
is r(R) + r(R′) = r(R ∩R′) + r(R ∪R′),

• the height function satisfies hf≡(R) + hf≡(R′) ≥ hf≡(R ∩R′) + hf≡(R ∪R′) with equality if
and only if the chambers C�(σ) and C�(σ′) belongs to the same cone of F(≡).

This property is a standard characterization of polytopality of fans, see Proposition 7.28 and [PS19,
Prop. 3]. The resulting realizations of F(≡), called quotientopes, are illustrated in Figures 4.4 and 4.5.
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Figure 4.4: Permutahedron (left), associahedron (middle) and cube (right) as quotientopes.

Theorem 4.8. For any lattice congruence ≡ of the weak order on Sn, and any forcing dominant
function f : An → R>0, the quotient fan F(≡) is the normal fan of the polytope

QTf (≡) :=
{
x ∈ Rn | 〈r(R) |x〉 ≤ hf≡(R) for all ∅ 6= R ( [n]

}
.

In particular, when oriented in the direction ω := (n, . . . , 1) − (1, . . . , n) =
∑

i∈[n](n + 1 − 2i) ei,
the graph of QTf (≡) is the Hasse diagram of the quotient of the weak order by ≡.

Remark 4.9. Note that the definition of the height function ensures that hf≡(R) ≤ hf≡′(R) and
thus QTf (≡) ⊆ QTf (≡′) when ≡ coarsens ≡′. See Figure 4.5.

4.2.3 Minkowski sums of associahedra or shard polytopes
We conclude with an alternative approach to quotientopes recently developed in [PPR20] to study the
polytopality of quotient fans beyond the braid arrangement (see also Section A.3).

Lemma 4.10. For any lattice congruence ≡ of the weak order, the quotient fan F(≡) is the com-
mon refinement of the quotient fans F(≡1), . . . ,F(≡p) of the lattice congruences whose arc ide-
als I≡1 , . . . , I≡p are the principal upper ideals of the forcing order generated by the minimal elements
of the arc ideal I≡ of ≡.

Lemma 4.11. An arc ideal is principal if and only if it corresponds to a Cambrian congruence (pos-
sibly of low dimension).

Corollary 4.12. For any lattice congruence ≡ of the weak order, the quotient fan F≡ is the normal
fan of a Minkowski sum of associahedra.

In fact, this idea can even been pushed further to obtain realizations of all quotientopes (including
associahedra) as Minkowski sums of elementary summands, defined as follows.

Definition 4.13. For an arc α = (a, b, n, S), we define
• an α-alternating matching as a (possibly empty) sequence M = {a1, b1, . . . , ak, bk} where
a ≤ a1 < b1 < . . . < ak < bk ≤ b and ai ∈ S ∪ {a} while bi /∈ S for all i ∈ [k].

• the characteristic vector of this α-alternating matching as χ(M) =
∑

i∈[k] eai − ebi ,
• the shard polytope SP(α) as the convex hull of the characteristic vectors of all α-alternating

matchings.

Proposition 4.14. For any arc α, the union of the walls of the normal fan of the shard polytope SP(α)
contains the shard Σ(α) and is contained in the union of the shards Σ(β) for the arcs β forced by α.

Corollary 4.15. For any lattice congruence ≡ of the weak order, the quotient fan F≡ is the normal
fan of the Minkowski sum of the shard polytopes SP(α) over all α ∈ I≡.

Example 4.16. For the arc α = (a, b, n, ]a, b[), the α-alternating matchings are given by ∅ and {i, b}
for a ≤ i < b, so that the corresponding shard polytope SP(α) is the translation of the standard
simplex 4[a,b] by the vector −eb. We obtain thus the classical realization of Loday’s associahedron
as the Minkowski sum of all faces of the standard simplex corresponding to the intervals of [n].
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Figure 4.5: The quotientope lattice for n = 4: all quotientopes ordered by inclusion (which corre-
sponds to refinement of the lattice congruences). We only consider lattice congruences whose arcs
include all basic arcs (i, i+1, 4,∅), since otherwise their fan is not essential. We have highlighted the
cube (green), J.-L. Loday’s associahedron [Lod04] (blue), another one of C. Hohlweg and C. Lange’s
associahedra [HL07] (purple), the diagonal rectangulation polytope [LR12] (orange), and the permu-
tahedron (red).
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4.3 HOPF ALGEBRA STRUCTURES

4.3.1 Decorated permutations
The Cambrian and permutree Hopf algebras [CP17, PP18] were constructed as subalgebras of gener-
alizations of the Malvenuto–Reutenauer Hopf algebra to signed or decorated permutations [NT10b].
Following this prototype, we will obtain Hopf algebras on non-crossing arc diagrams from algebras
on permutations decorated with more complicated structures.

Definition 4.17. A decoration set is a graded set X :=
⊔
n≥0 Xn endowed with

• a concatenation conc : Xm × Xn −→ Xm+n for all m,n ∈ N,
• a selection sel : Xp ×

(
[p]
q

)
−→ Xq for all p, q ∈ N,

such that
1. conc(X , conc(Y,Z)) = conc(conc(X ,Y),Z) for any X ,Y,Z ∈ X,
2. sel(sel(X , R), S) = sel(X , {rs | s ∈ S}) for any X ∈ Xp, R={r1, . . . , rq} ⊆ [p], S ⊆ [q],
3. conc(sel(X , R), sel(Y, S)) = sel(conc(X ,Y), R ∪ S→m) for any X ∈ Xm, Y ∈ Xn, and

any R ⊆ [m], S ⊆ [n], where S→m := {s+m | s ∈ S}.

Example 4.18. A typical decoration set is the set of wordsA∗ on a finite alphabetA, graded by length,
with the concatenation of words conc(u1 . . . um, v1 . . . vn) = u1 . . . umv1 . . . vn and the selection
defined by subwords sel(w1 . . . wp, {r1, . . . , rq}) = wr1 . . . wrq . Among many other examples, let
us also mention the set of labeled graphs, graded by their number of vertices, with the concatenation
defined as the shifted union, and the selection defined by standardized induced subgraphs. Further
examples will appear in Section 4.3.3.

For n ≥ 0, we denote by SX
n := Sn × Xn the set of X-decorated permutations of size n, i.e. of

pairs (σ,X ) with σ ∈ Sn and X ∈ Xn. We consider the graded set SX :=
⊔
n≥0 S

X
n and the graded

vector space kSX :=
⊕

n≥0 kS
X
n , where kSX

n is a vector space with basis (F(σ,X ))(σ,X )∈SX
n

indexed
by X-decorated permutations of size n. For two decorated permutations (σ,X ) and (τ,Y), we define
the product F(σ,X ) · F(τ,Y) by

F(σ,X ) · F(τ,Y) :=
∑

ρ∈σ �̄ τ
F(ρ,conc(X ,Y)).

Proposition 4.19. The product · defines an associative algebra on kSX.

Let the standardization of a decorated permutation (ρ,Z) ∈ SX
p at a subset R ⊆ [p] be

std((ρ,Z), R) :=
(
stdp(ρ,R), sel(Z, ρ−1(R))

)
,

where stdp(ρ,R) is the position standardization on S and sel(Z, ρ−1(R)) is the selection on X. For
a decorated permutation (ρ,Z) ∈ SX

p , we define the coproduct4F(ρ,Z) by

4F(ρ,Z) :=
∑p

k=0
Fstd((ρ,Z),[k]) ⊗ Fstd((ρ,Z),[p]r[k]).

Proposition 4.20. The coproduct4 defines a coassociative coalgebra on kSX.

Theorem 4.21. The product · and the coproduct4 define a combinatorial Hopf algebra on kSX.

Example 4.22. When X is the set of words A∗ on a finite alphabet A as in Example 4.18, the Hopf
algebra of decorated permutations was studied in detail by J.-C. Novelli and J.-Y. Thibon in [NT10b].
In particular, if X = {•}∗, then kSX is just C. Malvenuto and C. Reutenauer’s Hopf algebra kS on
permutations.
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4.3.2 Decorated non-crossing arc diagrams
We now use our Hopf algebra on decorated permutations to construct Hopf algebras on decorated non-
crossing arc diagrams. As in the previous section, we consider a decoration set (X, conc, sel) and the
corresponding Hopf algebra (kSX, · ,4) on X-decorated permutations. Recall from Section 4.1.2
that In denotes the set of arc ideals of An.

For an arc α = (a, b,m, S) and n ∈ N, define the augmented arc α+n := (a, b,m+ n, S) and
the shifted arc α→n := (a+ n, b+ n,m+ n, {s+ n | s ∈ S}). Graphically, the arc α+n (resp. α→n)
is obtained from the arc α by adding n points to its right (resp. to its left). For I ⊆ Am and n ∈ N,
define I+n := {α+n |α ∈ I} and I→n := {α→n |α ∈ I}.

Definition 4.23. A graded function Ψ : X =
⊔
n≥0 Xn −→ I =

⊔
n≥0 In is conservative if

1. Ψ(X )+n and Ψ(Y)→m are both subsets of Ψ(conc(X ,Y)) for any X ∈ Xm, Y ∈ Xn,
2. (ra, rb, p, S) ∈ Ψ(Z) implies (a, b, q, {c ∈ [q] | rc ∈ S}) ∈ Ψ(sel(Z, R)) for any Z ∈ Xp, any
R = {r1 < . . . < rq} ⊆ [p], any 1 ≤ a < b ≤ q and any S ⊆ ]ra, rb[.

Example 4.24. If X = {•}∗ is the decoration set of words on a one element alphabet, then the maps
•n 7→ An and •n 7→ A∅

n := {(a, b, n,∅) | 1 ≤ a < b ≤ n} are both conservative.

From now on, we assume that we are given a conservative function Ψ : X −→ I. For n ≥ 0,
we denote by DX

n the set of X-decorated non-crossing arc diagrams of size n, i.e. of pairs (D,X )
where X ∈ Xn and D is a non-crossing arc diagram contained in Ψ(X ).

We now define a Hopf algebra on X-decorated non-crossing arc diagrams. By Theorem 4.4, any
lattice congruence ≡ of the weak order on Sn corresponds to an arc ideal I≡ ∈ In. We consider
the map ηI≡ : Sn → I≡ which associates to any permutation τ ∈ Sn the non-crossing arc diagram
of I≡ corresponding to the ≡-congruence class of τ . By Theorem 4.3, ηI≡(τ) = δ(σ) where σ is the
minimal permutation in the ≡-congruence class of τ . We denote by kDX :=

⊕
n≥0 kD

X
n the graded

vector subspace of kSX generated by the elements

P(D,X ) :=
∑
σ∈S

ηΨ(X )(σ)=D

F(σ,X ),

for all X-decorated non-crossing arc diagrams (D,X ). Our main result is the following.

Theorem 4.25. The vector subspace kDX is a Hopf subalgebra of kSX.

Example 4.26. Let X = {•}∗, so that kSX is C. Malvenuto and C. Reutenauer’s Hopf algebra kS
on permutations by Example 4.22 and consider the two conservative functions of Example 4.24.
If Ψ(•n) = An, then kDX = kSX is also C. Malvenuto and C. Reutenauer’s Hopf algebra kS.
If Ψ(•n) = A∅

n , then kDX is J.-L. Loday and M. Ronco’s Hopf algebra kT on binary trees [LR98]
(as non-crossing arc diagrams in A∅

n are just non-crossing partitions, in bijection with binary trees).

We now state an analogue of Proposition 1.2 for decorated non-crossing arc diagrams.

Proposition 4.27. Consider two X-decorated non-crossing arc diagrams (D,X ) and (E ,Y), and
their weak order intervals [ρ, ρ]W := η−1

Ψ(X )
(D) and [σ, σ]W := η−1

Ψ(Y)
(E). Then

P(D,X ) · P(E,Y) =
∑
F
P(F ,conc(X ,Y)),

where F ranges in the interval from D\E := η
Ψ(conc(X ,Y))

(ρ\σ) to E/D := η
Ψ(conc(X ,Y))

(ρ/σ) in
the lattice of non-crossing arc diagrams in Ψ(conc(X ,Y)) (see 2 in Theorem 4.3).
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4.3.3 Three applications
We conclude with three applications of Sections 4.3.1 and 4.3.2 that produce relevant Hopf algebras
on non-crossing arc diagrams.

4.3.3.1 Insertional, translational, and Hopf families of congruences
For each n ∈ N, fix a lattice congruence ≡n of the weak order on Sn, with arc ideal In. As a first
application of Theorem 4.25, we obtain sufficient conditions for the family (≡n)n∈N to define a Hopf
subalgebra of kS, which essentially coincide with the translational and insertional conditions given
by N. Reading in [Rea05, Thm. 1.2 & 1.3]. Note that this situation covers various families of lattice
congruences, producing Hopf algebra on permutations [MR95], on binary trees [LR98, HNT05], on
diagonal quadragulations [LR12], on k-twists [Pil18], etc.

Corollary 4.28 ([Rea05, Thm. 1.2 & 1.3]). For all n ∈ N, consider a lattice congruence ≡n of the
weak order on Sn, with arc ideal In. If

• both I+n
m and I→mn are contained in Im+n for all m,n ∈ N,

• (ra, rb, p, S) ∈ Ip implies (a, b, q, {c ∈ [q] | rc ∈ S}) ∈ Iq for any 1 ≤ a < b ≤ q, any
R = {r1 < . . . < rq} ⊆ [p], and any S ⊆ ]ra, rb[,

then the subvector space of kS generated by the sums
∑

σ Fσ over the classes of the congruences≡n
is a Hopf subalgebra of C. Malvenuto and C. Reutenauer Hopf algebra kS on permutations.

4.3.3.2 Bounded crossings
We now consider the family of arc ideals A<kn,s,e,w defined in Example 4.5. Consider the decoration
set X =

⊔
n∈NXn, where Xn is the set of quadruples of functions [n]→ N, and where the concatena-

tion is defined by:

conc((n, s, e,w), (n′, s′, e′,w′))(a) =

{(
n(a), s(a), e(a),w(a)

)
if a ≤ m(

n′(a), s′(a), e′(a),w′(a)
)

if a > m

(in other words, the usual concatenation of words in (N4)∗), and the selection is defined by

sel((n, s, e,w), R)(a) = (n(ra), s(ra), min {e(s) | s ∈ ]ra−1, ra]} , min {w(s) | s ∈ [ra, ra+1[}).

Choose k ∈ N and define the function Ψ : Xn → An by Ψ(n, s, e,w) = A<kn,s,e,w. Recall from
Example 4.5 that for each a ∈ [n], we place n(a) upper vertical walls above a, s(a) lower vertical
walls below a and min

(
e(a),w(a+1)

)
horizontal walls between a and a+1, and that an arc belongs

to A<kn,s,e,w if it crosses at most k − 1 of these walls. The function Ψ is conservative since:
• for any u ∈ Xm, v ∈ Xn, α ∈ Ψ(u) and β ∈ Ψ(v), the walls of uv crossed by α+n are

precisely the walls of u crossed by α, while the walls of uv crossed by β→m are precisely the
m-translates of the walls of v crossed by β,

• for any w ∈ Xp, R = {r1, . . . , rq} ⊆ [p], 1 ≤ a < b ≤ q and S ⊆ ]ra, rb[, the walls crossed
by the arc (a, b, q, {c | rc ∈ S}) are walls crossed by the arc (ra, rb, p, S) (but the latter might
cross more walls than the former).

We therefore obtain a Hopf algebra kD<k on the classes of all lattice congruences A<kn,s,e,w simul-
taneously. Moreover, any subset of X stable by concatenation and selection provides a Hopf subal-
gebra kD<k. In particular, kD<1 contains simultaneously Hopf subalgebras on permutations [MR95],
binary trees [LR98, HNT05], binary sequences [GKL+95], Cambrian trees [CP17], permutrees [PP18],
and diagonal rectangulations [LR12, Gir12], while kD<k contains subalgebras on k-twists [Pil18] and
on k-descent schemes [NRT11, Pil18].
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4.3.3.3 All arc diagrams
To conclude, we define a Hopf algebra kD? simultaneously involving the classes of all lattice congru-
ences of the weak order, and containing the permutree Hopf algebra of Section 3.3. An extended arc
is a quadruple (a, b, n, S) with integers 0 ≤ a < b ≤ n + 1, and S ⊆ ]a, b[. We denote by A?n the
set of all extended arcs. The representation of arcs, the notions of crossing and forcing, as well as the
operations α+n and α→n, are defined as for classical arcs. We denote by I?n the set of extended arc
ideals (i.e. upper ideals of the forcing order ≺ on A?n).

The juxtaposition αβ of two extended arcs α := (a, b, p, R) and β := (c, d, p, S) is the singleton
αβ := {(a, d, p,R ∪ S)} if b = c + 1, and ∅ otherwise. For I,J ⊆ A?p, we define the juxtaposi-
tion IJ by IJ := I ∪ J ∪

⋃
α∈I,β∈J αβ. As illustrated in Figure 4.6, we define the concatenation

of two extended arc ideals I ⊆ A?m and J ⊆ A?n by conc(I,J ) := I+nJ→m.
Consider an extended arc ideal K ⊆ A?p and a subset X := {x1 < . . . < xq} of [p]. Define by

convention x0 := 0 and xq+1 := p+ 1. As illustrated in Figure 4.6, we define the selection sel(K, X)
as the set of all arcs (a, b, q, S) such that there exist:

• positions y0 < . . . < yr ∈ [p] with xa = y0 and xb = yr while y1, . . . , yr−1 /∈ X , and
• arcs (y0, y1, p, S1), . . . , (yr−1, yr, p, Sr) ∈ K such that S = {` ∈ [q] |x` ∈

⋃
Sk}.

=conc ,( ) sel ,( ){1,3,6} =

Figure 4.6: The concatenation and selection for extended arc ideals.

Proposition 4.29. The set I? :=
⊔
n∈N I?n of all extended arcs ideals, endowed with the concatena-

tion conc and selection sel, is a decoration set.

We now consider the map Ψ : I? → I which sends an extended arc ideal to the arc ideal of its
strict arcs (not starting at 0 or ending at n + 1). It is clearly conservative so that we obtain a Hopf
algebra kD? on pairs (D, I), where I is any extended arc ideal and D is a non-crossing arc diagram
containing only strict arcs of I. The Hopf algebra kD? involves the classes of all lattice congruences
of the weak order, and the concatenation and selection were chosen to fulfill the following statement.

Proposition 4.30. The permutree Hopf algebra [PP18] is a Hopf subalgebra of kD?.
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Beyond the weak order in two directions. In Part I, we have used lattice quotients of the weak
order to extend the combinatorial, geometric and algebraic properties of the permutahedra, associahe-
dra and cubes presented in Chapter 1. The objective of this part of the document is to extend these
properties in a drastically different manner in the following two directions:

? Beyond the braid arrangement: On the one hand, we consider classical generalizations of the
braid arrangement, first to the Coxeter arrangements of finite Coxeter groups, then to arbitrary
hyperplane arrangements.

? Beyond the vertices of the permutahedron: On the other hand, we study the combinatorics of
geometric objects beyond the vertices of the permutahedron, namely intervals of the weak order,
faces of the permutahedron, or arbitrary cones of the braid (and Coxeter) arrangement.

We discuss further these two directions below.

Coxeter arrangements and hyperplane arrangements. This part of the document is the
occasion to introduce two classical generalizations of the braid arrangement, with a very geometric
flavor.

First, we consider finite Coxeter groups. These are finite groups generated by reflections of an
Euclidean vector space, such as the isometry group of the Platonic solids or their higher dimensional
analogues. Coxeter groups appear in several places in mathematics, in particular in Lie theory in
the classification of crystallographic root systems. For our purposes, the essential features of a finite
Coxeter group W are:

• the weak order ≤W, which is a lattice structure on the elements of W ,

• the Coxeter arrangement formed by the reflection hyperplanes of W , defining the Coxeter
fan F(W ) which is the normal fan of the W -permutahedron Perm(W ). Each element of W
corresponds to a maximal cone ofF(W ), thus to a vertex ofPerm(W ). Moreover, the Hasse di-
agram of the weak order≤W is an orientation of the graph of the W -permutahedron Perm(W ).

We refer to Section 5.2.1 for a brief presentation of finite Coxeter groups and to the textbooks of
J. Humphreys [Hum90] and A. Björner and F. Brenti [BB05] for a more detailed treatment and some
historical background. It turns out that the weak order on a finite Coxeter group and its lattice quo-
tients share many of the properties of the classical weak order on permutations discussed in Part I.
In particular, we introduce in Section 5.2.6 the Cambrian congruences of the weak order, defined by
N. Reading [Rea06]. They provide a fundamental lattice structure on the clusters of the finite type
cluster algebras, which can be realized as an orientation of the generalized associahedra of [HLT11],
as will be studied in Part III.

Second, we consider arbitrary hyperplane arrangements. Introduced by P. Edelman in [Ede84],
the poset of regions R(H, B) of a hyperplane arrangement H with respect to a base region B is the
poset on all regions of H ordered by their combinatorial distance to B. A polytopal realization of its
Hasse diagram is given by the graph of the zonotope Zono(H) :=

∑
H∈H eH directed away from B,

where eH is an arbitrary normal vector to the hyperplane H . In [BEZ90], A. Björner, P. Edelman,
and G. Ziegler proved that the poset of regions R(H, B) of a simplicial hyperplane arrangement is
always a lattice. We will see in Section 5.3.1 that some relevant combinatorial aspects of the Coxeter
arrangements extend in this setting.
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Facial weak order. Our first relevant generalization of the weak order is a lattice structure on all
faces of the permutahedron Perm(n). Some properties of permutations studied in Part I were already
extended to ordered partitions as follows:

? Combinatorics: In [KLN+01], D. Krob, M. Latapy, J.-C. Novelli, H.-D. Phan and S. Schwer
introduced the pseudopermutahedron, a lattice structure on ordered partitions that extends the weak
order on permutations (see Section 5.1.2).

? Geometry: Ordered partitions of [n] are in natural bijection with faces of the classical permutahe-
dron Perm(n) (see Section 5.1.1).

? Algebra: F. Chapoton defined in [Cha00] a Hopf algebra structure on ordered partitions that ex-
tends C. Malvenuto and C. Reutenauer’s Hopf algebra kS on permutations (see Section 5.1.3).

As in Part I, a rich combinatorics then arises from congruences of the pseudopermutahedron. For
instance, the faces of J.-L. Loday’s associahedron Asso(n) correspond to Schröder trees (i.e. planar
trees where each node has at least two children). Moreover, there is a simple insertion algorithm st
from ordered partitions to Schröder trees, and the fibers of st define a lattice congruence of the pseu-
dopermutahedron. This yields a lattice structure and a Hopf algebra on the faces of the associahe-
dron Asso(n).

In Chapter 5 we study the structure of the faces of the permutahedron beyond the braid arrange-
ment. We consider a poset on these faces, called facial weak order, first in the context of finite Coxeter
groups as introduced by P. Palacios and M. Ronco [PR06] and studied in [DHP18] and then for arbi-
trary hyperplane arrangements as introduced and studied in [DHMP19]. In both settings, we provide
various interpretations of this facial weak order (see Sections 5.2.3 and 5.3.2):

• describing the cover relations of the facial weak order,
• using certain sets of roots of the Coxeter group (or normal vectors of the hyperplanes),
• comparing the minimal and maximal elements of the faces in weak order (or in the poset of

regions for hyperplane arrangements).
Although not apparent in this document, these different points of view are instrumental to prove
that the facial weak order is a lattice for finite Coxeter groups and more generally for hyperplane
arrangements whose poset of regions is a lattice. Finally, we observe that each lattice congruence ≡W

of the weak order naturally extends to a lattice congruence ≡F of the facial weak order. Exactly as
the classes of ≡W correspond to the maximal cones of the quotient fan F(≡W), the classes of ≡F

correspond to all cones of F(≡W). This defines in particular lattice structures on the faces of the
generalized associahedra of [HLT11].

Weak order on posets. In Chapter 6, we generalize the weak order even beyond the faces of the
permutahedron Perm(n). We consider the set of integer posets, i.e. of posets on [n]. Our motivation
is the geometry of the braid arrangement: integer posets correspond to convex cones in the braid
arrangement (not cones of the braid arrangement, but cones obtained by glueing some regions of the
braid arrangement), see Chapter 1. In particular, these integer posets provide relevant combinatorial
models for the elements, the intervals, and the faces of the weak order and its quotients.

Motivated by our study of the facial weak order, we define a poset on the set of integer posets
on [n] (see Section 6.1), obtained by comparing separately the increasing relations and the decreasing
relations of the posets. Again, this poset turns out to be a lattice as was shown in [CPP19]. This
enables to reinterpret the classical lattice structures on permutations, binary trees, permutrees, ordered
partitions, among others as induced subposets of the weak order on integer posets.
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We then define a Hopf algebra on all integer posets (see Section 6.2) defined in [PP20]. We show
that C. Malvenuto and C. Reutenauer’s Hopf algebra on permutations [MR95], and F. Chapoton’s
algebra on ordered partitions [Cha00] are quotients of the integer poset algebra. Interestingly, we
also construct a Hopf algebra on weak order intervals as another quotient of the integer poset algebra.
Moreover, as in the usual setting, congruences on the weak order on posets give rise to relevant
subalgebras.

Finally, we discuss possible generalizations of the weak order on posets in the context of Coxeter
groups studied in [GP18]. Surprisingly, while it extends to crystallographic root systems, natural
generalizations of the weak order on posets fail to define lattices beyond crystallographic root systems.
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FACIAL WEAK ORDER

The weak order is a lattice structure on permutations, thus on the vertices of the permutahedron.
In this chapter, we discuss the facial weak order, a similar lattice structure on all the faces of the
permutahedron, introduced in [KLN+01] for the symmetric group. After a brief review on the classical
case (see Section 5.1), we study this order in further generality: first for arbitrary finite Coxeter groups
as introduced in [PR06] (see Section 5.2), then for arbitrary hyperplane arrangements whose poset of
regions is a lattice (see Section 5.3). While the former setting is a subcase of the later setting, the
tools and vocabulary are quite different in the two settings, and we have chosen to present the Coxeter
group setting as the results of Chapter 6 will not extend beyond Coxeter groups. In both settings, we
provide various interpretations of the facial weak order. This kaleidoscopic perspective then enables
us to show that the facial weak order defines a lattice structure on the faces of the permutahedron,
which contains the classical weak order (or poset of region) as a sublattice. This chapter is based on
joint works with A. Dermenjian, C. Hohlweg and T. McConville [DHP18, DHMP19].

5.1 ORDERED PARTITIONS AND PSEUDOPERMUTAHEDRON

5.1.1 Permutahedron faces
As illustrated in Figure 5.1, the (n − k)-dimensional faces of the permutahedron Perm(n) corre-
spond to the ordered partitions of [n] into k parts, or equivalently to the surjections from [n] to [k].
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Figure 5.1: The faces of the permutahedron labeled by ordered partitions (left) and surjections (right).
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For instance, the vertices of the permutahedron Perm(n) correspond to the permutations of Sn and
its facets corresponds to proper subsets of [n]. In fact, the face lattice of the permutahedron is the
refinement lattice on ordered partitions. The bijections between these three families are elementary:

• the fibers of a surjection from [n] to [k] define an ordered partition of [n] with k parts,
• the positions in an ordered partition of [n] with k parts define a surjection from [n] to [k],
• an ordered partition λ of [n] into k parts corresponds the (n− k)-dimensional face of Perm(n)

given by F (λ) := conv {σ ∈ Sn |σ ≺ λ} (where ≺ is the refinement on partitions),
• a surjection ρ from [n] to [k] corresponds to the (n − k)-dimensional face of Perm(n) whose

normal cone is C�(ρ) :=
{
x ∈ 1⊥

∣∣xi ≤ xj for all i, j with ρ(i) < ρ(j)
}

.
In this section, we will work with ordered partitions rather than with surjections to fit with the presen-
tation in Part I. We denote by Pn the set of ordered partitions of [n]. Abusing notation, we denote
by λ−1 the surjection corresponding to an ordered partition λ.

5.1.2 Pseudopermutahedron and its quotients

1|2|3

3|2|1

2|1|3 1|3|2

2|3|1 3|1|2

1232|13 13|2

12|3 1|23

23|1 3|12We now introduce a lattice structure on the ordered partitions
of Pn that extend the weak order on permutations of Sn. This order
was defined in [KLN+01], and its representation theoretic properties
were studied in [BHKN01]. It is illustrated for P3 on the right.

Definition 5.1 ([KLN+01]). The (right) inversion map inv(λ, ·, ·)
of an ordered partition λ ∈ Pn is the map from

(
[n]
2

)
to {−1, 0, 1}

defined for i < j by inv(λ, i, j) = sign
(
λ−1(i) − λ−1(j)

)
. The

facial weak order is the poset≤F on the set Pn of ordered partitions
of [n] defined by λ ≤F λ

′ if inv(λ, i, j) ≤ inv(λ′, i, j) for all i < j.

This poset was called “pseudopermutahedron” in [KLN+01], we prefer the name “facial weak
order” to recall that it gives an order on the faces of the permutahedron Perm(n).

Note that the restriction of the facial weak order to Sn is the classical weak order on permutations,
which is a lattice. This property was extended to the facial weak order on Pn in [KLN+01].

Theorem 5.2 ([KLN+01]). The facial weak order ≤F on the set of ordered partitions Pn is a lattice.

Proposition 5.3 ([KLN+01]). The cover relations lF of the facial weak order ≤F on Pn are:

λ1| · · · |λi|λi+1| · · · |λk lF λ1| · · · |λiλi+1| · · · |λk if λi � λi+1,

λ1| · · · |λiλi+1| · · · |λk lF λ1| · · · |λi|λi+1| · · · |λk if λi+1 � λi,

where X � Y means max(X) < min(Y ) or equivalently x < y for all x ∈ X and y ∈ Y .

Remark 5.4. As for the weak order on permutations, the lattice quotients of the facial weak order≤F

on ordered partitions correspond to the faces of some relevant families of polytopes. For instance:
1. faces of the associahedronAsso(n) of Chapter 1 correspond to Schröder trees with n+1 leaves,

i.e. planar trees where each node has at least two children,
2. faces of the brick polytopeBrickk(n) of Chapter 2 correspond to acyclic hypertwists, see [Pil18],
3. faces of the permutreehedronPT(δ) of Chapter 3 correspond to Schröder δ-permutrees, i.e. trees

obtained by contracting edges in δ-permutrees. Their nodes are labeled by a partition of [n], and
satisfy local conditions around each node similar to that of Definition 3.1. See [PP18, Def. 5.1]
for a precise definition and Figure 5.2 for an illustration.
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Figure 5.2: Four examples of Schröder permutrees. While the first is generic, the last three use specific
decorations corresponding to ordered partitions, Schröder trees, and ternary sequences.

Figure 5.3: The Schröder δ-permutree lattices for δ = 3 (left), 3 (middle) and 3 (right).

Moreover, in these three families of examples, there are insertion algorithms (see [Pil18] and [PP18])
similar to the ones of Part I, whose fibers define lattice congruences of the facial weak order on ordered
partitions, and thus induce lattice structures on the faces of these polytopes. For instance, Figure 5.3
illustrates lattice structures on the faces of the permutahedron Perm(n), associahedron Asso(n) and
parallelepiped Para(n) seen as lattices on specific families of Schröder permutrees.

5.1.3 Hopf algebras
We now define natural analogues of the shifted shuffle and convolution products of Section 1.3.2 on
ordered partitions. Equivalent definitions in the terms of surjections can be found in [Cha00].

We first define two standardizations on ordered partitions. Consider an ordered partition µ of [n]
into k parts. We represent graphically µ by the (k × n)-table with a dot in row i and column j for
each j ∈ µi. In other words, positions appear on the vertical axis while values appear on the horizontal
axis. The standardization of a table with some empty rows and columns is the ordered partition table
whose dots are in the same horizontal and vertical order. For an ordered partition λ ∈ P` and a
subset R ⊆ [`], we define stdp(λ,R) (resp. stdv(λ,R)) as the standardization of the table of λ after
deleting all entries whose positions or rows (resp. values or columns) are not in R. See Figure 5.4 for
illustrations of these operations. For two ordered partitions µ ∈ Pm and ν ∈ Pn, define the shifted
shuffle µ �̄ ν and the convolution µ ? ν by:

µ �̄ ν := {λ ∈ Pm+n | stdv(λ, [m]) = µ and stdv(λ, [m+ n] r [m]) = ν} ,
and µ ? ν := {λ ∈ Pm+n | stdp(λ, [m]) = µ and stdp(λ, [m+ n] r [m]) = ν} .

E.g., 1|2 �̄ 2|13 = {1|2|4|35, 1|24|35, 1|4|2|35, . . . (12 terms) . . . , 4|1|35|2, 4|135|2, 4|35|1|2},
1|2 ? 2|13 = {1|2|4|35, 1|3|4|25, 1|4|3|25, . . . (10 terms) . . . , 3|4|2|15, 3|5|2|14, 4|5|2|13}.
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Figure 5.4: The tables of the ordered partitions µ = 16|27|4|35 (left) and of its restrictions
stdp(µ, {2, 3}) = 13|2 (middle) and stdv(µ, {1, 3, 5}) = 1|23 (right).
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Figure 5.5: The tables of the products µ\ν (left) and µ/ν (middle left) have two blocks containing the
tables of µ = 1|2 and ν = 2|31. Elements of the shifted shuffle product µ �̄ ν (middle right) and the
convolution product µ ? ν (right) are obtained by shuffling the rows and columns of the table of µ\ν.

This is illustrated in Figure 5.5 on ordered partition tables. These operations yield a natural generaliza-
tion of C. Malvenuto and C. Reutenauer’s Hopf algebra kS on permutations to all ordered partitions,
introduced in [Cha00]. Note that the ordered partition Hopf algebra is the dual of the algebra of word
quasi-symmetric functions, see [BZ09, NT06].

Proposition 5.5 (Adapted from [Cha00]). The vector space kP with basis (Fλ)λ∈P endowed with
the product Fµ · Fν =

∑
λ∈µ �̄ ν Fλ and the coproduct4Fλ =

∑
λ∈µ?ν Fµ ⊗ Fν is a Hopf algebra.

The product in kP behaves nicely with the facial weak order ≤F on Pn. For two ordered parti-
tions µ ofmwith p parts and ν or nwith q parts, consider the ordered partitions µ\ν and µ/ν ofm+n
with p+ q parts defined by:

(µ\ν)i =

{
µi if i ∈ [p]

m+ νi−p otherwise
and (µ/ν)i =

{
m+ νi if i ∈ [q]

µi−q otherwise,

where x+Y = {x+ y | y ∈ Y } for x ∈ N and Y ⊂ N. These notations should be clear on the ordered
partition tables of µ\ν and µ/ν, illustrated in Figure 5.5 (remember our unconventional orientation!).
The shifted shuffle µ �̄ ν is then the interval between µ\ν and µ/ν in the facial weak order ≤F

on Pm+n. This extends to a product of facial weak order intervals.

Proposition 5.6. A product of facial weak order intervals in kP is a facial weak order interval: for
two intervals [µ, µ]F ⊆ Pm and [ν, ν]F ⊆ Pn, we have

∑
µ≤F µ≤F µ

Fµ·
∑

ν≤F ν≤F ν
Fν =

∑
µ\ν≤F λ≤F µ/ν

Fλ.

Remark 5.7. As in Part I, relevant congruences of the facial weak order yield relevant Hopf subalge-
bras of the ordered partition Hopf algebra kP. For instance, there is:

1. a Hopf subalgebra indexed by Schröder trees (already considered in [Cha00]), analogue to
J.-L. Loday and M. Ronco’s Hopf algebra kT on binary trees,

2. a Hopf subalgebra indexed by acyclic hypertwists [Pil18], analogue to the twist Hopf algebra,
3. a Hopf algebra on Schröder permutrees [PP18] obtained as a Hopf subalgebra of the Hopf

algebra on decorated ordered partitions, analogue to the permutree Hopf algebra.
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5.2 FACIAL WEAK ORDER ON FINITE COXETER GROUPS

5.2.1 Finite Coxeter groups
We start by fixing notations on finite Coxeter groups. Detailled treatments and historical perspectives
can be found in textbooks by J. Humphreys [Hum90] and A. Björner and F. Brenti [BB05].

Finite reflection groups and Coxeter systems. Let (V, 〈· | ·〉) be an n-dimensional Euclidean
vector space. For any vector v ∈ V r {0}, we denote by sv the reflection interchanging v and −v
while fixing pointwise the orthogonal hyperplane. We consider a finite reflection group W acting
on V , that is, a finite group generated by reflections in the orthogonal group O(V ). For instance,
the Coxeter groups of types A3, B3, and H3 represented in Figure 5.6 are the reflection groups of the
tetrahedron, the cube or its dual octahedron, and the dodecahedron or its dual icosahedron respectively.
The Coxeter arrangement ofW is the collection of all reflecting hyperplanes. Its complement in V is a
union of open polyhedral cones whose closures are called chambers. The Coxeter fan is the polyhedral
fan F(W ) formed by the chambers together with all their faces. It is complete and simplicial, and we
can assume without loss of generality that it is essential. We fix an arbitrary chamber C which we
call the fundamental chamber. The n reflections orthogonal to the facet defining hyperplanes of C
are called simple reflections. The set S of simple reflections generates W . In particular, the set of
reflections is the set T =

{
wsw−1

∣∣w ∈W and s ∈ S
}

. The pair (W,S) forms a Coxeter system.

Roots and weights. We consider a root system Φ forW , i.e. a set of vectors invariant under the ac-
tion of W and containing precisely two opposite roots orthogonal to each reflecting hyperplane of W .
The simple roots ∆ are the roots orthogonal to the defining hyperplanes of C and pointing towards C.
They form a linear basis of V . The root system Φ splits into the positive roots Φ+ := Φ ∩ R≥0∆
and the negative roots Φ− := Φ ∩ R≤0∆ = −Φ+. In other words, the positive roots are the roots
whose scalar product with any vector of the interior of the fundamental chamber C is positive, and
the simple roots form the basis of the cone generated by Φ+. More generally, for R ⊆ Φ, we denote
by R+ := R ∩ Φ+ and by R− := R ∩ Φ−. Each reflecting hyperplane is orthogonal to one positive
and one negative root. For a reflection s ∈ T , we set αs to be the unique positive root orthogonal to
the reflecting hyperplane of s, i.e. such that s = sαs .

The Cartan matrix of the simple system ∆ = {α1, . . . , αn} is the matrix A = [aij ]i,j∈[n] defined
by aij := 2〈αi |αj〉/〈αj |αj〉. It records the angles between the reflection hyperplanes of ∆.

Figure 5.6: The type A3, B3, and H3 Coxeter arrangements.
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We denote byα∨s := 2αs/〈αs |αs〉 the coroot corresponding toαs ∈ ∆, and by ∆∨ := {α∨s | s ∈ S}
the coroot basis. The vectors of its dual basis ∇ := {ωs | s ∈ S} are called fundamental weights
(thus 〈α∨s |ωt〉 = δs=t for all s, t ∈ S). Equivalently, the simple roots of ∆ and the fundamental
weights of ∇ are two bases1 of V related by the Cartan matrix. Geometrically, the fundamental
weight ωs gives the direction of the ray of the fundamental chamber C not contained in the reflecting
hyperplane of s. We let Ω := W (∇) = {w(ωs) |w ∈W, s ∈ S} denote the set of all weights of W ,
obtained as the orbit of the fundamental weights under W .

Length, reduced words and weak order. The length `(w) of an elementw ∈W is the length of
the smallest word for w as a product of generators in S. A word w = s1 · · · sk with s1, . . . , sk ∈ S is
called reduced if k = `(w). For u, v ∈W , the product uv is said to be reduced if the concatenation of
a reduced word for u and of a reduced word for v is a reduced word for uv, i.e. if `(uv) = `(u)+ `(v).
We say that u ∈W is a prefix of v ∈W if there is a reduced word for u that is the prefix of a reduced
word for v, i.e. if `(u−1v) = `(v)− `(u).

The (right) weak order is the order onW defined by u ≤W v if and only if `(u) + `(u−1v) = `(v),
or equivalently if and only if u is a prefix of v. By a result of A. Björner [Bjö84], the weak order de-
fines a lattice structure on W , with minimal element e and maximal element w◦ (which sends all
positive roots to negative ones and all positive simple roots to negative simple ones). The conju-
gation w 7→ w◦ww◦ defines an automorphism while the left and right multiplications w 7→ w◦w
and w 7→ ww◦ define anti-automorphisms of the weak order. See [BB05, Chap. 3] for more details.

The weak order encodes the combinatorics of reduced words and enjoys a useful geometric char-
acterization within the root system, which we explain now. The (left) inversion set of w is the set
N(w) := Φ+ ∩ w(Φ−) of positive roots sent to negative ones by w−1. If w = uv is reduced then
N(w) = N(u) t u

(
N(v)

)
. In particular, we haveN(w) =

{
αs1 , s1(αs2), . . . , s1s2 · · · sp−1(αsk)

}
for any reduced word w = s1 · · · sk, and therefore `(w) = |N(w)|. Moreover, the weak order is char-
acterized in term of inversion sets by: u ≤W v if and only ifN(u) ⊆N(v) for any u, v ∈W .

We say that s ∈ S is a left ascent of w ∈ W if `(sw) = `(w) + 1 and a left descent of w
if `(sw) = `(w)− 1. We denote by DL(w) the set of left descents of w. Note that for s ∈ S
and w ∈ W , we have s ∈ DL(w) ⇐⇒ αs ∈ N(w) ⇐⇒ s ≤W w. Similarly, s ∈ S is a right
descent of w ∈W if `(ws) = `(w)− 1, and we denote by DR(w) the set of right descents of w.

Parabolic subgroups and cosets. Consider a subset I ⊆ S. The standard parabolic sub-
group WI is the subgroup of W generated by I . It is also a Coxeter group with simple genera-
tors I , simple roots ∆I := {αs | s ∈ I}, root system ΦI = WI(∆I) = Φ ∩ span(∆I), length func-
tion `I = ` |WI

, longest element w◦,I , etc. For example, W∅ = {e} while WS = W .
We denote by W I := {w ∈W | `(ws) > `(w) for all s ∈ I} the set of elements of W with no

right descents in I . For example, W∅ = W while WS = {e}. Observe that for any x ∈ W I , we
have x(∆I) ⊆ Φ+ and thus x(Φ+

I ) ⊆ Φ+.
Any element w ∈ W admits a unique factorization w = wI · wI with wI ∈ W I and wI ∈ WI ,

and moreover, `(w) = `(wI) + `(wI), see [BB05, Prop. 2.4.4]. Therefore, W I is the set of minimal
length coset representatives of the standard parabolic coset W/WI . Throughout the chapter, we will
always implicitly assume that x ∈ W I when writing that xWI . Note that any standard parabolic
coset xWI = [x, xw◦,I ] is an interval in the weak order. We denote by FW the set of all standard
parabolic cosets of W , or equivalently of faces of the W -permutahedron Perm(W ) defined next.

1As we work in finite dimension, we always implicitly identify the Euclidean vector space V with its dual V ∨. In
particular, we consider that the roots, coroots, weights and coweights all live in the same space V .
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Figure 5.7: Standard parabolic cosets of the type A2 and B2 Coxeter groups and the corresponding
faces on their permutahedra.

Permutahedron. The W -permutahedron Permp(W ) is the convex hull of the orbit under W of a
generic point p ∈ V (not located on a reflection hyperplane ofW ). Its vertex and facet descriptions are

Permp(W ) = conv
{
w(p) | w ∈W

}
=
⋂
s∈S
w∈W

{
v ∈ V | 〈w(ωs) | v〉 ≤ 〈ωs | p〉

}
.

Examples in types A2, B2, A3, B3, and H3 are represented in Figures 5.7 and 5.8.
We often write Perm(W ) instead of Permp(W ) as the combinatorics of the W -permutahedron

is independent of the choice of the point p. Namely, each standard parabolic coset xWI corresponds
to a face F (xWI) = x

(
Permp(WI)

)
= Permx(p)(xWIx

−1) of Permp(W ). Therefore, the k-
dimensional faces of Permp(W ) correspond to the cosets xWI with |I| = k and the face lattice
of Permp(W ) is isomorphic to the inclusion poset (FW ,⊆). The normal fan of Permp(W ) is the
Coxeter fan F(W ). The graph of the permutahedron Permp(W ) is isomorphic to the Cayley graph
of the Coxeter system (W,S). Moreover, when oriented in the linear direction ω := w◦(p) − p, it
coincides with the Hasse diagram of the (right) weak order on W . We refer to [Hoh12] for more
details on the W -permutahedron Perm(W ).

Figure 5.8: The type A3, B3, and H3 permutahedra.



64 Chapter 5 – Facial weak order

Example 5.8. The Coxeter group of type An−1 is the symmetric group Sn. Its simple generators are
the simple transpositions τi = (i i+1) for i ∈ [n−1] with relations τ2

i = 1 and τiτi+1τi = τi+1τiτi+1.
Its elements are permutations of [n] and its standard parabolic cosets are ordered partitions of [n]. A
root system for Sn consists in the set of vectors {ei − ej | i 6= j ∈ [n]} where (e1, . . . , en) is the
canonical basis of Rn. Finally,F(An−1) = F(n) andPerm(An−1) = Perm(n). See Figure 5.6 (left)
for the type A3 arrangement, and Figures 5.7 (left) and 5.8 (left) for the type A2 and A3 permutahedra.

5.2.2 Root and weight sets of a face
As we are interested in the faces of the W -permutahedron Perm(W ), it is natural to consider the
primal and normal cones of these faces. As we work in a Coxeter group, these cones can be completely
encoded by the following collections of roots and weights.

Definition 5.9. The root setR(xWI) and weight setW (xWI) of a standard parabolic coset xWI are

R(xWI) := x
(
Φ− ∪ Φ+

I

)
⊆ Φ and W (xWI) := x

(
∇SrI

)
⊆ Ω.

The following statement gives the precise connection of the root and weight sets to the geometry
of the W -permutahedron Perm(W ) and is illustrated on Figure 5.9 for the Coxeter group of type A2.

Proposition 5.10. Let xWI be a standard parabolic coset of W . Then:
(i) the cone R≥0R(xWI) is the inner primal cone of the face F (xWI) of Perm(W ),

(ii) the cone R≥0W (xWI) is the outer normal cone of the face F (xWI) of Perm(W ),
(iii) the cones generated by the root set and by the weight set of xWI are polar to each other.

Our next statement connects the root setR(xW∅) to the inversion set and reduced words of x ∈W .
For brevity we writeR(x) instead ofR(xW∅).

Proposition 5.11. For any x ∈W , we have:
(i) R(x) = N(x) ∪ −

(
Φ+ rN(x)

)
whereN(x) = Φ+ ∩ x(Φ−) is the inversion set of x.

(ii) If x = s1s2 · · · sk is reduced, thenR(xW∅) = Φ−4{±αs1 ,±s1(αs2), . . . ,±s1 · · · sk−1(αsk)}.
(iii) R(xw◦) = −R(x) andR(w◦x) = w◦

(
R(x)

)
.

R(e)

R(a) R(b)

R(ab) R(ba)

R(aba)

R(Wa) R(Wb)

R(aWb) R(bWa)

R(abWa) R(baWb)

R(W )

W (e)

W (a) W (b)

W (ab) W (ba)

W (aba)

W (Wa) W (Wb)

W (aWb) W (bWa)

W (abWa)W (baWb)

W (W )
•

Figure 5.9: The root set (left) and weight set (right) of the standard parabolic cosets in type A2. Note
that positive roots point downwards.
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The next statement gives a characterization of the weak order on W in terms of root sets, which
translates the characterization of the weak order in term of inversion sets.

Corollary 5.12. For x, y ∈W , we have:

x ≤W y ⇐⇒ R(x) rR(y) ⊆ Φ− and R(y) rR(x) ⊆ Φ+,

⇐⇒ R(x)+ ⊆ R(y)+ and R(x)− ⊇ R(y)−.

Finally, we observe that the root and weight sets of a parabolic coset xWI can be computed from
that of its minimal and maximal length representatives x and xw◦,I .

Proposition 5.13. The root and weight sets of xWI can be computed from those of x and xw◦,I by:

R(xWI) = R(x) ∪R(xw◦,I) and W (xWI) = W (x) ∩W (xw◦,I).

5.2.3 Three equivalent definitions of the facial weak order
We are now ready to define the facial weak order on FW . We start with the original definition of
P. Palacios and M. Ronco [PR06], illustrated in Figure 5.10.

Definition 5.14 ([PR06]). The (right) facial weak order is the order ≤F on FW defined by cover
relations of two types: for I ⊆ S and x ∈W I ,

(1) xWI lF xWI∪{s} if s /∈ I and x ∈W I∪{s},

(2) xWI lF xw◦,Iw◦,Ir{s}WIr{s} if s ∈ I.

Note that these cover relations translate to the following geometric conditions on faces of the
permutahedron Perm(W ): a face F is covered by a face G if and only if either F is a facet of G with
the same weak order minimum, or G is a facet of F with the same weak order maximum.

This original definition is difficult to manipulate as it relies on cover relations. The following
statement provides two equivalent definitions of the facial weak order, proved in [DHP18].

e

a b

ab ba
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eWa eWb

bWaaWb

abWa baWb
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Figure 5.10: The facial weak order on the standard parabolic cosets of the Coxeter group of types A2

and B2. Edges are labelled with the cover relations of type (1) or (2) as in Definition 5.14.
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Theorem 5.15. The following conditions are equivalent for two standard parabolic cosets xWI

and yWJ of FW :
(i) xWI ≤F yWJ in facial weak order of Definition 5.14,

(ii) R(xWI)
+ ⊆ R(yWJ)+ andR(xWI)

− ⊇ R(yWJ)−,
(iii) x ≤W y and xw◦,I ≤W yw◦,J in weak order.

Remark 5.16. Three quick observations about the conditions of Theorem 5.15:
• An alternative way to write (ii) isR(xWI) rR(yWJ) ⊆ Φ− andR(yWJ) rR(xWI) ⊆ Φ+.
• Recall that the set {[x,X] |x,X ∈ P, x ≤ X} of all intervals of any poset P is itself ordered by

[x,X] ≤I [y, Y ] ⇐⇒ x ≤ y and X ≤ Y . Therefore, (iii) states that the facial weak order ≤F

on FW is the subposet of the poset of intervals of the weak order ≤W induced by the facial
intervals (i.e. of the form [x, xw◦,I ]w◦ for all standard parabolic cosets xWI ∈ FW ).

• (iii) implies the following statements, not obvious with the cover relations from Definition 5.14.

Corollary 5.17. The weak order≤W is the subposet of the facial weak order≤F induced byW∅-cosets.
In other words, x ≤W y if and only if xW∅ ≤F yW∅ for any x, y ∈W .

Corollary 5.18. The maps xWI 7→ w◦xw◦,IWI and xWI 7→ xw◦,Iw◦Ww◦Iw◦ are anti-automor-
phisms of the facial weak order ≤F. Hence, the map xWI 7→ w◦xw◦Ww◦Iw◦ is an automorphism.

Example 5.19. The facial weak order of the Coxeter group An−1 is isomorphic to the facial weak
order on ordered partitions of [n]. Compare for instance the facial weak order in type A2 represented
in Figure 5.10 (left) with the facial weak order on ordered partitions of [3] represented in the right of
Definition 5.1. Observe in particular that:

• the cover relations of Definition 5.14 translate to that of Proposition 5.3 on ordered partitions,
• condition (ii) of Theorem 5.15 translate to that of Definition 5.1 on ordered partitions,
• in contrast, condition (iii) of Theorem 5.15 was not observed earlier in type A.

5.2.4 The facial weak order is a lattice
The following statement is the central result of [DHP18], generalizing the result of [KLN+01] stated
in Theorem 5.2. The characterizations of Theorem 5.15 are instrumental in the proof.

Theorem 5.20. The facial weak order ≤F is a lattice. The meet ∧F and join ∨F of two standard
parabolic cosets xWI and yWJ are given by:

• xWI ∧F yWJ = z∧WK∧ , where z∧ = x ∧W y and K∧ = DL

(
z−1
∧ (xw◦,I ∧W yw◦,J)

)
,

• xWI ∨F yWJ = z∨WK∨ , where z∨ = xw◦,I ∨W yw◦,J and K∨ = DL

(
z−1
∨ (x ∨W y)

)
.

Remark 5.21. Two important observations on this statement:
• In the second point, the minimal representative of the coset z∨WK∨ is in fact z∨w◦,K∨ , not z∨.

We take the liberty to use another coset representative than the minimal one to underline the
symmetry between meet and join in facial weak order.

• The expressions for the meet and join can be interpreted in the lattice of weak order intervals.
Indeed, the poset ≤I on intervals of a lattice L is again a lattice whose meet and join are given
by [x,X] ∧I [y, Y ] = [x ∧ y,X ∧ Y ] and [x,X] ∨I [y, Y ] = [x ∨ y,X ∨ Y ]. However, the
meet interval [x, xw◦,I ]W ∧I [y, yw◦,J ]W = [x ∧W y, xw◦,I ∧W yw◦,J ]W of two cosets xWI

and yWJ is not anymore a standard parabolic coset. The meet xWI ∧F yWJ in the facial
weak order is obtained as the biggest parabolic coset in this meet interval containing x ∧W y.
Similarly, the join xWI ∨F yWJ is obtained as the biggest parabolic coset in the join interval
[x, xw◦,I ]W ∨I [y, yw◦,J ]W = [x ∨W y, xw◦,I ∨W yw◦,J ]W containing xw◦,I ∨W yw◦,J .

Corollary 5.22. The weak order≤W is the sublattice of the facial weak order≤F induced byW∅-cosets.
In other words, xW∅ ∧F yW∅ = (x ∧W y)W∅ and xW∅ ∨F yW∅ = (x ∨W y)W∅ for any x, y ∈W .
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5.2.5 Lattice quotients of the facial weak order
In this section we observe that any lattice congruence ≡W of the weak order ≤W on W extends to a
lattice congruence ≡F of the facial weak order ≤F on FW . Consider a lattice congruence ≡W of the
weak order ≤W on W with up and down projections π↑ and π↓. We want to extend ≡W to a lattice
congruence ≡F of the facial weak order on FW . We need the following technical statement.

Lemma 5.23. There exist unique subsets Σ↑(xWI) ⊆ S rDR

(
π↑(x)

)
and Σ↓(xWI) ⊆ DR

(
π↓(xw◦,I)

)
such that xw◦,I ≤W π↑(x)w◦,Σ↑(x,I) ≤W π↑(xw◦,I) and π↓(x) ≤W π↓(xw◦,I)w◦,Σ↓(x,I) ≤W x.

Based on this lemma, we can define two projection maps Π↑ and Π↓ from FW to itself by
Π↑(xWI) = π↑(x)WΣ↑(x,I) and Π↓(xWI) = π↓(xw◦,I)WΣ↓(x,I). We again take the liberty to write
Π↓(xWI) = π↓(xw◦,I)WΣ↓(x,I) instead of Π↓(xWI) = π↓(xw◦,I)w◦,Σ↑(x,I)WΣ↓(x,I) to make apparent
the symmetry between Π↑ and Π↓.

Theorem 5.24. The maps Π↑ and Π↓ fulfill the following properties:
(i) Π↓(xWI) ≤F xWI ≤F Π↑(xWI) for any coset xWI .

(ii) Π↑◦Π↑= Π↑◦Π↓= Π↑ and Π↓◦Π↓= Π↓◦Π↑= Π↓ .
(iii) Π↑ and Π↓ are order preserving.
Therefore, the fibers of Π↑ and Π↓ coincide and define a lattice congruence ≡F of the facial weak
order ≤F on FW .

In fact, this congruence can also be understood in the lattice of weak order intervals. Indeed, note
that a lattice congruence ≡ on a lattice L yields a lattice congruence ≡I on the lattice ≤I of intervals
of L, defined by [x,X] ≡I [y, Y ] ⇐⇒ x ≡ y and X ≡ Y . The following statement affirms that this
congruence ≡I on the lattice ≤I of weak order intervals restricts to a lattice congruence on the facial
weak order ≤F. However, note that we have not been able to use this statement as the definition of the
congruence ≡F, as the proof of Theorem 5.24 really requires to understand the projections Π↑ and Π↓.

Proposition 5.25. For any standard parabolic cosets xWI and yWJ ∈ FW ,

xWI ≡F yWJ ⇐⇒ x ≡W y and xw◦,I ≡W yw◦,J .

Corollary 5.26. The weak order congruence ≡W is the restriction to W of the facial weak order
congruence ≡F. In other words, we have x ≡W y if and only if xW∅ ≡F yW∅ for any x, y ∈W .

This corollary says that the congruence ≡F of the facial weak order ≤F on FW indeed extends
the congruence ≡W of the weak order ≤W on W . Nevertheless, observe that not all congruences of
the facial weak order arise as congruences of the weak order (consider for instance the congruence
on FA2 that only contracts sWt with stW∅).

We now discuss the geometry of the lattice congruences of the facial weak order ≤F on FW

defined by Theorem 5.24. As already mentioned in Chapter 4, the congruence ≡W of the weak
order ≤W on W defines a complete simplicial fan F(≡W), called quotient fan, which coarsens the
Coxeter fan F(W ) [Rea05]. Each maximal cone of F(≡W) corresponds to a congruence class of≡W,
and is obtained by glueing together the regions of the Coxeter fanF(W ) that belong to this congruence
class. We now use the congruence ≡F of the facial weak order ≤F on FW to describe all cones
of F(≡W) (not only the maximal ones). This shows that the lattice structure on the maximal faces
of F(≡W) extends to a lattice structure on all cones of F(≡W). As in Section 5.2.2, we first introduce
the root and weight sets of the congruence classes of ≡F.
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Definition 5.27. The root set R(Γ) and the weight set W (Γ) of a congruence class Γ of ≡F are
defined byR(Γ) =

⋂
xWI∈ΓR(xWI) andW (Γ) =

⋃
xWI∈ΓW (xWI).

As in Theorem 5.15, the root sets enable to recover the order relations in the lattice quotient≤F/≡F.

Proposition 5.28. For any two congruence classes Γ and Λ of ≡F, we have Γ ≤ Λ in the quotient of
the facial weak order by ≡F if and only ifR(Γ)+ ⊆ R(Λ)+ andR(Γ)− ⊇ R(Λ)−.

Finally, the weight sets enable to reconstruct the quotient fan F(≡W).

Theorem 5.29. The quotient fan F(≡W) is the collection of cones {R≥0W (Γ) |Γ ∈ FW /≡F}.

5.2.6 Two relevant lattice congruences
5.2.6.1 Facial Cambrian lattices
Fix a Coxeter element c, i.e. the product of all simple reflections in S in an arbitrary order. A simple
reflection s ∈ S is initial in c if `(sc) < `(c). For s initial in c, note that scs is another Coxeter
element for W while sc is a Coxeter element for WSr{s}.

In [Rea06, Rea07b], N. Reading defines the c-Cambrian lattice as a lattice quotient of the weak
order (by the c-Cambrian congruence) or as a sublattice of the weak order (induced by c-sortable
elements). There are several ways to present his constructions. We choose to start from the pro-
jection maps of the c-Cambrian congruence. These maps are defined by an induction both on the
length of the elements and on the rank of the underlying Coxeter group. Namely, define the projec-
tion π↓c : W →W inductively by π↓c(e) = e and for any s initial in c,

π↓
c(w) =

{
s · π↓scs(sw) if `(sw) < `(w),

π↓
sc(w〈s〉) if `(sw) > `(w),

wherew = w〈s〉 ·〈s〉w is the unique factorization ofw such thatw〈s〉 ∈WSr{s} and `(t〈s〉w) > `(〈s〉w)
for all t ∈ S r {s}. The projection π↑c : W → W is defined similarly, or using the weak order
anti-morphism by π↑c(w) =

(
π↓

(c−1)(ww◦)
)
w◦. N. Reading proves in [Rea07b] that these projection

maps π↑c and π↓c define a congruence≡cW of the weak order≤W onW , called c-Cambrian congruence.
The quotient of the weak order by the c-Cambrian congruence is called the c-Cambrian lattice.

Cambrian congruences are relevant in the context of finite type cluster algebras, generalized asso-
ciahedra, and W -Catalan combinatorics. Without details, let us point out the following facts:

(i) The fan F(≡cW) associated to the c-Cambrian congruence ≡cW is the Cambrian fan studied by
N. Reading and D. Speyer [RS09]. Is was proved to be the normal fan of a generalized asso-
ciahedra by C. Hohlweg, C. Lange and H. Thomas [HLT11], see also [Ste13, PS15a, HPS18]
for further geometric properties. The resulting polytope Asso(c) is called c-associahedra. See
Figure 5.12 and Chapters 7 and 8 for more details.

(ii) These polytopes realize the c-cluster complexes of type W . When W is crystallographic, these
complexes were defined from the theory of finite type cluster algebras of S. Fomin and A. Zelevin-
sky [FZ02, FZ03a]. See also Part III.

(iii) The minimal elements in the c-Cambrian congruence classes are precisely the c-sortable ele-
ments, defined as the elementsw ∈W such that there exists nested subsetsK1 ⊇ K2 ⊇ · · · ⊇ Kr

of S such that w = cK1cK2 . . . cKr where cK is the product of the elements in K in the or-
der given by c. They are connected to various W -Catalan families: c-clusters, vertices of the
c-associahedron, W -non-crossing partitions. See [Rea07a] for precise definitions.
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Figure 5.11: The st-Cambrian congruence classes of the standard parabolic cosets in type A2 (left)
and the resulting quotient (right).

The results presented in this chapter translate to the following statement.

Theorem 5.30. For any Coxeter element c of W , the facial c-Cambrian congruence ≡cF on FW ,
defined by

xWI ≡cF yWJ ⇐⇒ x ≡cW y and xw◦,I ≡cW yw◦,J ,

satisfies the following properties:
(i) The c-Cambrian congruence≡cW is the restriction toW of the facial c-Cambrian congruence≡cF.

(ii) The quotient of the facial weak order by the facial c-Cambrian congruence ≡cF defines a lattice
structure on the cones of the c-Cambrian fan of [RS09], or equivalently on the faces of the
c-associahedronAsso(c) of [HLT11].

(iii) A coset xWI is minimal (resp. maximal) in its facial c-congruence class if and only if xw◦,I is
c-sortable (resp. x is c-antisortable). In particular, a Coxeter cone R≥0W (xWI) is a cone of
the c-Cambrian fan if and only if x is c-antisortable and xw◦,I is c-sortable.

Examples of facial Cambrian congruences in typeA2,A3, andB3 appear in Figures 5.11 and 5.12.
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Figure 5.12: The srt-Cambrian congruence on the standard parabolic cosets in type A3 (left) and B3

(right) and the resulting quotient. Bold blue edges are contracted edges. The quotient is given the
geometry of the type A3 and B3 srt-associahedraAsso(srt) of [HLT11].
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Example 5.31. In typeA, the sylvester congruence classes correspond to binary trees, while the facial
sylvester congruence classes correspond to Schröder trees. The quotient of the facial weak order by
the facial sylvester congruence was already described in [PR06, NT06]. The Cambrian counterparts
of binary trees and Schröder trees were described in [CP17], and used to introduce the facial type A
Cambrian lattices.

5.2.6.2 Facial boolean lattice
The descent congruence is the congruence of the weak order defined by x ≡des

W y if and only
if DL(x) = DL(y), where DL(x) denotes the left descent set of x, see Section 5.2.1. The corre-
sponding up and down projections are given by π↓(x) = w◦,DL(x) and π↑(x) = w◦w◦,SrDL(x). The
quotient of the weak order by ≡des

W is isomorphic to the boolean lattice on S. The fan F(≡des
W ) is

given by the arrangement of the hyperplanes orthogonal to the simple roots of ∆. It is the normal fan
of the parallelepiped Para(W ) generated by the simple roots of ∆. Denote by ≡des

F the facial weak
order congruence induced by ≡des

W as defined in Section 5.2.5. According to Theorem 5.29, the ≡des
F

congruence classes correspond to all faces of the parallelepiped Para(W ). In the next few statements,
we provide a direct criterion to test whether two cosets are≡des

F -congruent. For this, we need to extend
to all cosets the notion of descent sets.

Definition 5.32. The descent set of a coset xWI is the set of rootsD(xWI) := R(xWI) ∩ ±∆ ⊆ Φ.

The following statement is similar to Propositions 5.11 and 5.13.

Proposition 5.33. For any x ∈W , the root descent setD(x) has the following properties:
(i) D(x) =

(
∆ ∩N(x)

)
∪ −

(
∆ rN(x)

)
, whereN(x) = Φ+ ∩ x(Φ−) is the inversion set of x.

(ii) D(xw◦) = −D(x) andD(w◦x) = w◦
(
D(x)

)
.

(iii) The descent set of xWI is given by those of x and xw◦,I byD(xWI) = D(x) ∪D(xw◦,I).

We get that the ≡des
F -equivalence class of xWI is determined by the root descent setD(xWI).

Proposition 5.34. For any xWI , yWJ , we have xWI ≡des
F yWJ if and only ifD(xWI) = D(yWJ).

Example 5.35. In type A, the descent vector des(λ) ∈ {−1, 0, 1}n−1 of an ordered partition λ of [n]
is defined by des(λ)i = sign

(
λ−1(i)−λ−1(i+1)

)
. These descent vectors where used by J.-C. Novelli

and J.-Y. Thibon in [NT06] to see that the facial weak order on the cube is a lattice. See also [CP17].
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Figure 5.13: The descent congruence classes of the standard parabolic cosets in type A2 (left) and the
resulting quotient (right).
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5.3 FACIAL WEAK ORDER ON ARRANGEMENTS

5.3.1 Poset of regions of a hyperplane arrangement
Let (V, 〈· | ·〉 be an Euclidean vector space. A (real, central) hyperplane arrangement is a collectionH
of linear hyperplanes of V . We assume without loss of generality that the arrangement is essential,
i.e. that the intersection

⋂
H of all its hyperplanes is reduced to the origin. The regions of H are the

closures of the connected components of its complement V r
⋃
H. The faces of H are all faces of

the regions of H. We denote by RH and FH the sets of regions and faces of H. The faces of H form
a complete fan F(H) and a lattice for the inclusion, called the face lattice of H. The arrangement H
is called simplicial when the fan F(H) is.

Call separating set of two regionsR,S ofH the set sep(R,S) of hyperplanes ofH that separateR
from S. We now fix a base region B of H and abbreviate sep(B,R) to sep(R). The fundamental
poset of this section is the following.

Definition 5.36 ([Ede84]). The poset of regions R(H, B) := (RH,≤R) is the poset on all regions
ofH ordered by inclusion of separating sets sep(R).

In other words, the cover relations of R(H, B) are the pairs (R,R′) of adjacent regions ofH such
thatR andB lie on the same side of the separating hyperplane ofR andR′. The poset R(H, B) clearly
has a minimal element B (with empty separating set) and a maximal element −B (with separating
set H), and the antipodal map R 7→ −R is an anti-automorphism corresponding to the complementa-
tion of separating sets. The following result is due to A. Björner, P. Edelman, and G. Ziegler [BEZ90].

Theorem 5.37 ([BEZ90, Thm. 3.4]). For any simplicial hyperplane arrangement H, and any base
region B ofH, the poset of regions R(H, B) is a lattice.

Note that this sufficient condition is not necessary. One the one hand, N. Reading extended
this result when the hyperplane arrangement H is tight with respect to the base region B [Rea16b,
Thm. 9.3.2], meaning that for any region R, every pair of lower (resp. upper) facets of R with re-
spect to B intersect in a codimension 2 face of R. On the other hand, A. Björner, P. Edelman, and
G. Ziegler proved that the base region B must be simplicial when the poset of regions R(H, B) is
a lattice [BEZ90, Thm. 3.1], but that there exist arrangements H with simplicial base regions B for
which the poset of regions R(H, B) is not a lattice (although this can only happen in dimension d ≥ 4
by [BEZ90, Thm. 3.2]).

5.3.2 Facial weak order of a hyperplane arrangement
We now extend the poset of regions to an order on all regions of the arrangementH. As in Section 5.2,
we provide several perspectives on this order and discuss its lattice properties.

Facial intervals. Our first approach is to interpret the faces of FH as intervals of the poset of re-
gions and to compare the minimum and maximum elements of these intervals as in Theorem 5.15 (iii).
In other words, we define the facial weak order as the subposet of the interval poset of the poset of
regions induced by facial intervals.

Proposition 5.38. For any face F ∈ FH, the set {R ∈ RH |F ⊆ R} is an interval of the poset of
regions R(H, B). We denote it [mF ,MF ] and call it the facial interval of F .

Definition 5.39. The facial weak order F(H, B) := (FH,≤F) is the poset on all faces ofH defined by:

F ≤F G ⇐⇒ mF ≤R mG and MF ≤R MG.
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Sign function. We now use sign functions to describe the facial weak order. The underlying con-
text is the more general theory of oriented matroids [BLS+99, Bok06], to which the facial weak order
extend. We fix a normal vector eH to each hyperplane H ∈ H, so that H = {v ∈ V | 〈eH | v〉 = 0}.
We consider the open half spaces H+ = {v ∈ V | 〈eH | v〉 > 0} and H− = {v ∈ V | 〈eH | v〉 < 0}.
We choose the direction of the vector eH such that the base region B lies in H+.

For any face F ∈ FH, we let F (H) ∈ {−, 0,+} be such that F ⊆ HF (H), or equivalently,
〈eH | v〉 = F (H) for any v in the interior F̊ of F . The sign vector of F is σ(F ) := (F (H))H∈H. The
facial weak order is then obtained by the natural componentwise order on the sign vectors.

Proposition 5.40. For any F,G ∈ FH, we have F ≤F G ⇐⇒ F (H) ≥ G(H) for all H ∈ H.

Cover relations. We can describe the facial weak order by its cover relations as in Definition 5.14.

Proposition 5.41. The cover relations lF of the facial weak order≤F are precisely of the form FlFG
for F,G ∈ FH such that either F is a facet of G and mF = mG, or G is a facet of F and MF = MG.

Root sets. We now interpret the facial weak order on root sets as in Theorem 5.15 (ii). By analogy
with the Coxeter setting, let Φ+

H := {eH |H ∈ H}, Φ−H := {−eH |H ∈ H} and ΦH := Φ+
H ∪ Φ−H.

ForX ⊆ ΦH, we still denote byX+ := X∩Φ+
H the positive part andX− := X∩Φ−H the negative part.

Definition 5.42. The root set of a face F ∈ FH isR(F ) :=
{
e ∈ ΦH | 〈e |x〉 ≤ 0, for some x ∈ F̊

}
.

Theorem 5.43. For anyF,G ∈ FH, we haveF ≤F G ⇐⇒ R(F )+ ⊆ R(G)+ andR(F )− ⊇ R(G)−.

Zonotopes. We now provide an alternative geometric interpretation of the root sets in terms of the
geometry of zonotopes associated to hyperplane arrangements.

Definition 5.44. The zonotope Zono(H) is the Minkowski sum of the normal vectors to the hyper-
planes ofH, i.e. Zono(H) :=

∑
H∈H[−eH , eH ] =

{∑
H∈H λHeH | − 1 ≤ λH ≤ 1 for all H ∈ H

}
.

This zonotope depends upon the choice of the normal vectors eH of the hyperplanes H ∈ H, but
its combinatorics does not. Namely, P. H. Edelman gives in [Ede84, Lem. 3.1] a bijection between the
non-empty faces of the zonotope Zono(H) and the the faces FH of the arrangementH using the map
in the following lemma.

Lemma 5.45 ([McM71]). The map τ : F 7→
{∑

F 6⊆H F (H)eH +
∑

F⊆H λHeH | − 1 ≤ λH ≤ 1
}

is a bijection from the faces FH to the non-empty faces of the zonotope Zono(H). Moreover, F is the
outer normal cone of τ(F ), so that the fan F(H) of the arrangementH is the normal fan ofZono(H).

Proposition 5.46. The cone R≥0R(F ) of the root setR(F ) is the inner primal cone of the face τ(F )
in the zonotope Zono(H).

Lattice. We conclude with the main results of [DHMP19], extending Theorem 5.20 and Corol-
lary 5.22. The proof is very different from that of Theorem 5.20 and requires to emancipate from the
Coxeter group technology. It is based on the BEZ lemma [BEZ90] and on a property that enables to
determine the meet of two faces from meets of their projections in some subarrangements.

Theorem 5.47. For any arrangement H whose poset of regions R(H, B) is a lattice, the facial weak
order F(H, B) is a lattice as well.

Proposition 5.48. When H is simplicial, the poset of regions R(H, B) is a sublattice of the facial
weak order F(H, B).
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WEAK ORDER ON INTEGER POSETS

This chapter goes beyond the facial weak order presented in Chapter 5. Namely, we endow the set
of integer posets with a lattice structure in Section 6.1 and a Hopf algebra structure in Section 6.2.
We then show that the lattice and Hopf algebra structures on permutations, binary trees, permutrees,
ordered partitions, among others can be interpreted as substructures of these structures on integer
posets. Finally, in Section 6.3 we discuss the possible extensions of the weak order on integer posets
to Coxeter groups. Surprisingly, it fails to define a lattice beyond crystallographic root systems. This
chapter is adapted from joint works with G. Chatel, J. Gay and V. Pons [CPP19, GP18, PP20].

6.1 WEAK ORDER ON INTEGER POSETS

In this section, we introduce the weak order on integer binary relations which restricts to a lattice
structure on integer posets. We then show that it restricts further to several relevant families of posets.

6.1.1 Weak order on integer binary relations and integer posets
Recall that a binary relation on X is a subset R of X2. As usual, we write (a, b) ∈ R or a R b.

Definition 6.1. An integer binary relation of size n is a binary relation on [n] := {1, . . . , n}. We only
consider reflexive relations and let Rn be the set of all reflexive binary relations on [n].

Definition 6.2. The increasing and decreasing subrelations of an integer relation R ∈ Rn are the
relations defined by RInc := {(a, b) ∈ R | a ≤ b} and RDec := {(b, a) ∈ R | a ≤ b}.

In our pictures, we always represent an integer relation R ∈ Rn as follows: we write the numbers
1, . . . , n from left to right and we draw the increasing relations of R above in blue and the decreasing
relations of R below in red, omitting the reflexive relations (i, i). See e.g. Figure 6.1.

Definition 6.3. The weak order on Rn is the order defined byR ≤R S ifRDec ⊆ SDec andRInc ⊇ SInc.
It is a lattice with meet and join

R ∧R S = (RDec ∩ SDec) ∪ (RInc ∪ SInc) and R ∨R S = (RDec ∪ SDec) ∪ (RInc ∩ SInc).

We now use this order to define a similar order on integer posets. An integer poset is an integer
relation which is a poset. We denote by Posn the set of integer posets on [n]. We want to show that
the subposet of the weak order induced by integer posets is a lattice. Note that ∧R and ∨R preserve
antisymmetry but not transitivity, so that Posn does not induce a sublattice of the weak order on Rn.

Part II – Beyond the weak order Vincent Pilaud 73
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Figure 6.1: The weak order on integer posets of size 3.

Definition 6.4. For R ∈ Rn, define the transitive closure Rtc, the transitive decreasing deletion Rtdd

and the transitive increasing deletion Rtid as

Rtc := {(u,w) ∈ [n]2 | ∃ v1, . . . , vp ∈ [n] such that u = v1 R v2 R . . . R vp−1 R vp = w},
Rtdd := Rr {(b, a) ∈ RDec | ∃ i ≤ b and j ≥ a such that i R b R a R j while i 6R j},
Rtid := Rr {(a, b) ∈ RInc | ∃ i ≥ a and j ≤ b such that i R a R b R j while i 6R j}.

Note that in these definitions, i and j may coincide with a and b (since we assumed that all our
relations are reflexive). The following central result of [CPP19] is illustrated below and in Figure 6.1.

Theorem 6.5. The subposet of the weak order induced by integer posets is a lattice with meet and join

R∧PS =
(
(RDec∩SDec)∪(RInc∪SInc)tc

)tdd and R∨PS =
(
(RDec∪SDec)tc∪(RInc∩SInc)

)tid
.

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

R ∈ Pos4 S ∈ Pos4 (RInc ∪ SInc) (RInc ∪ SInc)tc R ∧P S ∈ Pos4

∪(RDec ∩ SDec) ∪(RDec ∩ SDec)
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6.1.2 Weak order on relevant families of integer posets
In this section, we observe that certain relevant combinatorial objects can be interpreted by specific
integer posets and that the subposets of the weak order induced by these integer posets correspond to
classical lattice structures on these combinatorial objects. For each of these special families of posets,
we try to consistently present (1) a characterization of the posets of this family, (2) an interpretation
of the weak order on these posets, and (3) whether it is a sublattice of the weak order on all posets.

6.1.2.1 Permutations, weak order intervals, and ordered partitions
We first reinterpret the classical weak order, its interval lattice and its facial interval lattice using
specific posets. As illustrated in Figure 6.2, each permutation σ ∈ Sn corresponds to a weak order
element poset Cσ defined by u Cσ v if σ−1(u) ≤ σ−1(v). Define Woepn := {Cσ | σ ∈ Sn}. The
following statement motivates Definition 6.3. For a permutation σ ∈ Sn, a pair (a, b) ∈ [n]2 is a
version if a ≤ b and σ−1(a) ≤ σ−1(b), and an inversion if a ≥ b and σ−1(a) ≤ σ−1(b). Note that we
order the entries of the inversions in a strange way, and that we borrow the versions from [KLR03].

Proposition 6.6. 1. A poset C is in Woepn if and only if a C b or a B b for all a, b ∈ [n].
2. For any σ ∈ Sn, the increasing (resp. decreasing) relations of Cσ are the versions (resp. inver-

sions) of σ. Therefore, for any σ, τ ∈ Sn, we have Cσ ≤R Cτ ⇐⇒ σ ≤W τ .
3. Moreover, the weak order on Woepn is a sublattice of the weak order on Posn.

We now present a similar approach to intervals of the weak order. For σ ≤W σ ∈ Sn, consider
the weak order interval [σ, σ]W := {τ ∈ Sn |σ ≤W τ ≤W σ}. The permutations of [σ, σ]W are the
linear extensions of the weak order interval posetC[σ,σ] :=

⋂
σ≤Wτ≤Wσ

Cτ = Cσ ∩Cσ = CInc
σ ∪CDec

σ .
Define Woipn := {C[σ,σ] | σ, σ ∈ Sn, σ ≤W σ}.

Proposition 6.7. 1. A posetC is in Woipn if and only if it satisfies a C c⇒ (a C b or b C c) and
a B c⇒ (a B b or b B c) for all a < b < c [BW91, Thm. 6.8].

2. For any σ ≤W σ and τ ≤W τ in Sn, we have C[σ,σ] ≤R C[τ ,τ ] ⇐⇒ σ ≤W τ and σ ≤W τ .
3. The weak order on Woipn is a lattice with meet C[σ,σ] ∧WOIP C[τ ,τ ] = C[σ∧Wτ , σ∧Wτ ] and

joinC[σ,σ]∨WOIPC[τ ,τ ] = C[σ∨Wτ , σ∨Wτ ]. However, the weak order on Woipn is not a sublattice
of the weak order on Posn.

Finally, we consider a face of the permutahedron, that is, an ordered partition π of [n]. As illus-
trated in Figure 6.3, we see π as a weak order face poset Cπ defined by u Cπ v if π−1(u) < π−1(v).
Define Wofpn := {Cπ |π ordered partition of [n]}.

Proposition 6.8. 1. A poset C is in Wofpn if and only if C ∈ Woipn and (a C b⇔ b B c)
and (a B b⇔ b C c) for all a < b < c with a 6C c and a 6B c.

2. For any µ, ν in Pn, we have Cµ ≤R Cν ⇐⇒ µ ≤F ν in the facial weak order of [KLN+01,
PR06, DHP18], see Section 5.1.

3. The weak order on Wofpn is a lattice with meetCµ∧WOFPCν =Cµ∧Fν and joinCµ ∨WOFP Cν =Cµ∨Fν .
However, the weak order on Wofpn is not a sublattice of the weak order on Posn, nor on Woipn.

6.1.2.2 Binary trees, Tamari intervals, and Schröder trees
We now reinterpret the Tamari lattice, its interval lattice and its facial interval lattice using specific
posets. As illustrated in Figure 6.2, each binary tree T ∈ Tn corresponds to a Tamari order element
poset CT , defined by i CT j when i is a descendant of j in T . In other words, the Hasse diagram
of CT is the tree T oriented towards its root. Define Toepn := {CT | T ∈ Tn}.
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Figure 6.2: Posets for permutations, binary trees, binary sequences, and permutrees.

Proposition 6.9. 1. A poset C is in Toepn if and only if
(i) (a C c⇒ b C c) and (a B c⇒ a B b) for all a < b < c and

(ii) there exists a < b < c such that a C b B c for all a < c incomparable in C.
2. For any binary trees S, T ∈ Tn, we have CS ≤R CT ⇐⇒ S ≤T T .
3. Moreover, the Tamari lattice on Toepn is a sublattice of the weak order on Posn.

For T ≤T T ∈ Tn, consider the Tamari interval [T , T ]T :=
{
S ∈ Tn

∣∣T ≤T S ≤T T
}

. We
see it as the Tamari order interval poset C[T ,T ]

:=
⋂
T≤TS≤TT

CT = CT ∩CT = CInc
T
∪CDec

T . De-
fine Toipn := {C[T ,T ] | T , T ∈ Tn, T ≤R T}.

Proposition 6.10. 1. A poset C is in Toipn if and only if (a C c ⇒ b C c) and (a B c ⇒ a B b)
for all a < b < c.

2. For any S ≤T S and T ≤T T in Tn, we have C[S,S] ≤R C[T ,T ] ⇐⇒ S ≤T T and S ≤T T .
3. Moreover, the weak order on Toipn is a sublattice of the weak order on Posn.

Consider now a face of the associahedron, that is, a Schröder tree S (a rooted tree where each
internal node has at least two children). We label the angles between two consecutive children in
inorder, meaning that each angle is labeled after the angles in its left child and before the angles
in its right child. As illustrated in Figure 6.3, we associate to S the poset CS where i CS j if
and only if the angle labeled i belongs to the left or to the right child of the angle labeled j. Note
that CS = C[Tmin,Tmax], where Tmin (resp. Tmax) is obtained by replacing the nodes of S by left
(resp. right) combs. Define Tofpn := {CS | S Schröder tree on [n]}.

Proposition 6.11. 1. A poset C is in Tofpn if and only if C ∈ Toipn and for all a < c incom-
parable in C, either there exists a < b < c such that a 6B b 6C c, or for all a < b < c we
have a B b C c.

2. For any Schröder trees R,S, we have CR ≤R CS ⇐⇒ R ≤F S in the facial weak order on
the associahedronAsso(n) (see Section 5.1).

3. The weak order on Tofpn is a lattice but not a sublattice of the weak order on Posn, nor
on Woipn, nor on Toipn.
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ordered partition π Schröder tree S ternary sequence ξ Schröder permutree S
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Figure 6.3: Posets for ordered partitions, Schröder trees, ternary sequences, and Schröder permutrees.

Finally, we want to show that the binary tree insertion bt and the Schröder tree insertion st can as
well be directly understood at the level of posets. For this, define the Toip deletion on integer posets
by CTOIPd := Cr ({(a, c) | ∃ a < b < c, b 6C c} ∪ {(c, a) | ∃ a < b < c, a 6B b}).

Proposition 6.12. For any permutation σ, weak order interval σ ≤W σ, and ordered partition π,

(Cσ)TOIPd = Cbt(σ), (C[σ,σ])
TOIPd = C[bt(σ), bt(σ)] and (Cπ)TOIPd = Cst(π).

6.1.2.3 Permutrees, permutree intervals, and Schröder permutrees
To conclude this section, we want to mention that the statements of Sections 6.1.2.1 and 6.1.2.2 ex-
tend to the permutrees of Chapter 3. As illustrated in Figure 6.2, we associate to each permutree T
its permutree element poset CT where i CT j if there is an oriented path from i to j in T . De-
fine Pepδ := {CT |T δ-permutree}. The next statement extends Propositions 6.6 and 6.9. A decora-
tion δ ∈ { , , , }n is covering if δi 6= for any i ∈ {2, . . . , n− 1}.

Proposition 6.13. 1. Pepδ is characterized by local conditions1 as in Propositions 6.6 and 6.9.
2. For any δ-permutrees S, T , we have CS ≤R CT ⇐⇒ S ≤PT T .
3. The permutree lattice on Pepδ is always a sublattice of the weak order on Woipn. Moreover, it

is a sublattice of the weak order on Posn when δ is covering, but not in general.

We now consider intervals in the permutree lattice. For two δ-permutrees T ≤PT T , consider the
permutree interval [T , T ]PT :=

{
S δ-permutree

∣∣T ≤PT S ≤PT T
}

. It corresponds to the permutree
interval posetC[T ,T ]

:= CT ∩CT = CInc
T
∪CDec

T . Define Pipδ := {C[T ,T ] | T ≤PT T δ-permutrees}.
The next statement extends Propositions 6.7 and 6.10.

Proposition 6.14. 1. A poset C is in Pipδ if and only if C ∈ Woipn and for any a < b < c, we
have (a C c ⇒ a C b) and (a B c ⇒ b B c) when δb ∈ { , }, and (a C c ⇒ b C c)
and (a B c⇒ a B b) when δb ∈ { , }.

2. For any δ-permutrees S ≤PT S and T ≤PT T , we have C[S,S] ≤R C[T ,T ] ⇐⇒ S ≤PT T

and S ≤PT T .
3. The weak order on Pipδ is always a sublattice of the weak order on Woipn. Moreover, it is a

sublattice of the weak order on Posn when δ is covering, but not in general.

1The detailed conditions are quite intricate but can be found in [CPP19, Prop. 2.3.12].
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To extend Propositions 6.8 and 6.11, we now consider facial intervals of the permutree lattice. The
faces of the permutreehedron PT(δ) correspond to the Schröder δ-permutrees, which are obtained
from the δ-permutrees by edge contractions. As illustrated in Figure 6.3, we define the permutree face
poset CS = C[Tmin,Tmax], where Tmin (resp. Tmax) is obtained by replacing the nodes of S by left
(resp. right) combs (with the correct orientations). Define Pfpδ := {CS |S Schröder δ-permutree}.

Proposition 6.15. 1. Pfpδ is characterized by local conditions2 as in Propositions 6.8 and 6.11.
2. For any Schröder permutrees R,S, we have CR ≤R CS ⇐⇒ R ≤F S in the facial weak

order on the permutreehedron PT(δ) (see Section 5.1).
3. The weak order on Pfpδ is a lattice but not a sublattice of the weak order on Posn, nor

on Woipn, nor on Pipδ.

Finally, for C ∈ Posn, we define its Pipδ deletion CPIPδd to be the poset obtained by removing
simultaneously from C all increasing relations (a, c) such that:

• either ∃ a < b1 < . . . < bk < c with a 6C b1 6C · · · 6C bk 6C c (preventing C ∈Woip),
• or ∃ a ≤ n < p ≤ c with n = a or δn ∈ { , }, while p = c or δn ∈ { , }, and n 6C p.

and their analogue decreasing relations. We now give an analogue of Proposition 6.12.

Proposition 6.16. For any permutation σ, weak order interval σ ≤R σ, and ordered partition π,

(Cσ)PIPδd = C
Ψδ
′
δ (σ)

, (C[σ,σ])
PIPδd = C

[Ψδ
′
δ (σ), Ψδ

′
δ (σ)]

and (Cπ)PIPδd = C
Ψδ
′
δ (π)

,

where Ψδ′
δ (σ) (resp. Ψδ′

δ (π)) is the permutree (resp. Schröder permutree) associated to σ (resp. π).

To conclude, note that this section provides in particular an interpretation of the boolean lattice and
its interval lattice (and thus of its facial interval lattice) in terms of integer posets. The corresponding
families of integer posets Boepn and Boipn = Bofpn are illustrated in Figures 6.2 and 6.3.

6.2 HOPF ALGEBRA ON INTEGER POSETS

We now construct a Hopf algebra on integer posets. We then show that the permutations, the weak
order intervals, and the ordered partitions index certain quotients of the integer poset algebra, and
that the binary trees, the Tamari intervals, and the Schröder trees index subalgebras of these quotients.
Define R :=

⊔
n≥0 Rn and similarly for the other families of relations considered in this chapter.

6.2.1 Hopf algebras on binary relations and integer posets
As for the weak order, we first define our Hopf algebra at the level of binary relations. We consider
the vector space kR :=

⊕
n≥0 kRn indexed by all integer binary relations of arbitrary size. We

denote by RX :=
{

(i, j) ∈ [k]2
∣∣xi R xk

}
the restriction of an integer relation R ∈ Rn to a subset

X = {x1, . . . , xk} ⊆ [n]. We define:
1. the product of two integer relations R ∈ Rm and S ∈ Rn by R · S :=

∑
T where T ranges

over all integer relations T ∈ Rm+n with T[m] = R and T[n+m]r[m] = S,
2. the coproduct of an integer relation T ∈ R(p) by4(T ) :=

∑
TX ⊗ TY where the sum ranges

over all partitions X t Y ⊆ [p] such that x T y and y 6T x for all (x, y) ∈ X × Y .

E.g. 1 2 · 1 = 1 2 3 + 1 2 3 + 1 2 3 + · · · + 1 2 3 + · · · + 1 2 3 ,

and 4
(

1 2 3
)

= 1 2 3 ⊗ ∅ + 1 ⊗ 1 2 + 1 2 ⊗ 1 + ∅ ⊗ 1 2 3 ,

where the terms in the coproduct arise from X ranging in {1, 2, 3}, {1}, {1, 3}, and ∅.
2The detailed conditions are quite intricate but can be found in [CPP19, Prop. 2.3.17].
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Proposition 6.17. For R ∈ Rm and S ∈ Rn, the product R · S is the sum over the interval be-
tween R\S := R ∪ S→m ∪ ([m]× [n]→m) and R/S := R ∪ S→m ∪ ([n]→m × [m]) in the weak or-
der on Rm+n (where S→m := {(m+ i,m+ j) | (i, j) ∈ S} and [n]→m := [m+ n] r [m]).

Proposition 6.18. The product · and coproduct4 endow kR with a Hopf algebra structure.

We now use this Hopf algebra on binary relations to get a Hopf algebra on posets.

Proposition 6.19. If R ∈ R is not a poset, then none of the summands in R · S (resp. 4(R)) is a
poset (resp. the tensor product of two posets). In other words, the vector subspace of kR generated
by integer relations which are not posets is a Hopf ideal of kR. The quotient of kR by this ideal is
thus a Hopf algebra kPos on integer posets.

E.g. 1 2 · 1 = 1 2 3 + 1 2 3 + 1 2 3 + 1 2 3 + 1 2 3 + 1 2 3 in kPos.

Proposition 6.20. For C ∈ Posm and J ∈ Posn, the product C · J is the interval between C\J
and C/J in the weak order on Posm+n.

6.2.2 Hopf algebras on relevant families of integer posets
We now use the families of integer posets defined in Section 6.1.2 to define relevant Hopf algebras.

6.2.2.1 Permutations, weak order intervals, and ordered partitions
We first want to construct Hopf algebras on Woep, Woip and Wofp as quotients of the integer poset
Hopf algebra kPos. The important point is that all these families of posets are defined by local
conditions on their relations, and that a contradiction to these conditions cannot be destroyed by the
product or the coproduct.

We start with weak order element posets Woep, interpreting C. Malvenuto and C. Reutenauer’s
Hopf algebra on permutations [MR95] as a quotient of the integer poset Hopf algebra kPos.

Proposition 6.21. 1. The vector subspace of kPos generated by non-total integer posets is a Hopf
ideal of kPos. The quotient of the poset Hopf algebra kPos by this ideal is thus a Hopf
algebra kWoep on total orders.

2. The map σ 7→ Cσ defines a Hopf algebra isomorphism from C. Malvenuto and C. Reutenauer’s
Hopf algebra kS on permutations [MR95] to kWoep.

3. For any permutations σ ∈ Sm and τ ∈ Sn, the productCσ ·Cτ is the interval betweenCσ\Cτ
and Cσ/Cτ in the weak order on Woepm+n.

E.g. 1 2 · 1 = 1 2 3 + 1 2 3 + 1 2 3 in kWoep.

We now consider weak order interval posets Woip, characterized in Proposition 6.7.

Proposition 6.22. 1. The vector subspace of kPos generated by Pos r Woip is a Hopf ideal
of kPos. The quotient of the integer poset algebra kPos by this ideal is thus a Hopf alge-
bra kWoip on weak order intervals.

2. For any σ ≤R σ ∈ Sm and τ ≤R τ ∈ Sn, the product C[σ,σ] · C[τ ,τ ] is the interval between
C[σ,σ]\C[τ ,τ ] and C[σ,σ]/C[τ ,τ ] in the weak order on Woipm+n.

E.g. 1 2 · 1 = 1 2 3 + 1 2 3 + 1 2 3 + 1 2 3 + 1 2 3 in kWoip.
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Finally, a similar statement holds for weak order face posets Wofp, characterized in Proposi-
tion 6.8. The resulting Hopf algebra is isomorphic to that of [Cha00] mentioned in Section 5.1.3.

Proposition 6.23. 1. The vector subspace of kPos generated by Pos r Woip is a Hopf ideal
of kPos. The quotient of the poset Hopf algebra kPos by this ideal is thus a Hopf alge-
bra kWofp on faces of the permutahedron Perm(n).

2. The map π 7→ Cπ defines a Hopf algebra isomorphism from F. Chapoton’s Hopf algebra kP
on ordered partitions [Cha00] to kWofp (see Section 5.1.3).

3. For any ordered partitions µ of [m] and ν of [n], the product Cµ · Cν is the interval between
Cµ\Cν and Cµ/Cν in the weak order on Wofpm+n.

E.g. 1 2 · 1 = 1 2 3 + 1 2 3 + 1 2 3 in kWofp.

6.2.2.2 Binary trees, Tamari intervals, and Schröder trees
To conclude, we use the Toip deletion defined in the end of Section 6.1.2.2 to construct Hopf subalge-
bras of kWoep, kWoip and kWofp respectively indexed by Toep, Toip and Tofp. This idea mimics
the construction of J.-L. Loday and M. Ronco’s Hopf algebra kT on binary trees [LR98, HNT05],
that can be defined as a Hopf subalgebra of the C. Malvenuto and C. Reutenauer’s Hopf algebra kS
on permutations [MR95].

Proposition 6.24. 1. The vector subspace kToep of kWoep generated by the sums of the fibers{
J ∈Woep

∣∣JTOIPd = C
}

for all C ∈ Toep is stable by · and4.
2. For any binary trees S ∈ Tm and T ∈ Tn, the product CS ·CT is the interval between CS\CT

and CS/CT in the weak order on Toepm+n.
3. The map T 7→ CT is a Hopf algebra isomorphism from the J.-L. Loday M. Ronco’s Hopf

algebra kT on binary trees [LR98, HNT05] to kToep.

We now proceed to the same construction for Tamari intervals. To the best of our knowledge, our
approach provides the first Hopf algebra on Tamari intervals.

Proposition 6.25. 1. The vector subspace kToip of kWoip generated by the sums of the fibers{
J ∈Woip

∣∣JTOIPd = C
}

for all C ∈ Toip is stable by · and4.
2. For any Tamari intervals S ≤R S ∈ Tm and T ≤R T ∈ Tn, the product C[S,S] · C[T ,T ] is the

interval between C[S,S]\C[T ,T ] and C[S,S]/C[T ,T ] in the weak order on Woipm+n.

The same construction for faces recovers F. Chapoton’s Schröder trees Hopf Algebra [Cha00].

Proposition 6.26. 1. The vector subspace kTofp of kWofp generated by the sums of the fibers{
J ∈Wofp

∣∣JTOIPd = C
}

for all C ∈ Tofp is stable by · and4.
2. For any Schröder trees S on [m] and T on [n], the product CS · CT is the interval between
CS\CT and CS/CT in the weak order on Wofpm+n.

3. The map S 7→ CS is a Hopf algebra isomorphism from F. Chapoton’s algebra on Schröder
trees [Cha00] to kTofp (see Section 5.1.3).

Finally, let us mention that similar ideas can be used to uniformly construct Hopf algebra struc-
tures on permutrees, permutree intervals, and Schröder permutrees. Following [CP17, PP18], one first
defines some decorated versions of the Hopf algebras kWoep, kWoip and kWofp, where each poset
on [n] appears 4n times with all possible different decorations. One then constructs Hopf algebras
on kPep, kPip and kPfp using the fibers of the map (C, δ) 7→ CPIPδd. See [PP18, PP20]. This pro-
vides in particular Hopf algebra structures on the families Boep and Boip = Bofp of integer posets
corresponding to the boolean lattice and its intervals.
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6.3 WEAK ORDER ON COXETER POSETS

Similarly to Section 5.3, we conclude this chapter with a brief discussion of the possible extensions
of the weak order on posets to finite Coxeter groups. More details can be found in [GP18].

6.3.1 Φ-posets
We consider certain specific families of collections of roots generalizing posets in type A. We start
with the simple definition of symmetric and antisymmetric subsets of roots.

Definition 6.27. A subset R ⊆ Φ is symmetric if −R = R and antisymmetric if R ∩ −R = ∅.

We now want to define closed sets of roots. The next statement is proved by A. Pilkington [Pil06,
Sect. 2] for subsets of positive roots but extends to subsets of all roots. Recall that a root system Φ is
crystallographic if 〈α∨ |β〉 ∈ Z for any α, β ∈ Φ. Equivalently, the Coxeter group W stabilizes the
lattice ZΦ, and is called a Weyl group.

Lemma 6.28. In a crystallographic root system Φ, the following conditions are equivalent forR ⊆ Φ:
(i) α+ β ∈ R for any α, β ∈ R such that α+ β ∈ Φ,

(ii) mα+ nβ ∈ R for any α, β ∈ R and m,n ∈ N such that mα+ nβ ∈ Φ,
(iii) α1 + · · ·+ αp ∈ R for any α1, . . . , αp ∈ R such that α1 + · · ·+ αp ∈ Φ.

Definition 6.29. In a crystallographic root system Φ, a subset R ⊆ Φ is closed if it satisfies the
equivalent conditions of Lemma 6.28.

Definition 6.30. In a crystallographic root system Φ, the closure of R ⊆ Φ is the set Rcl := NR ∩ Φ.

Remark 6.31. The map R 7→ Rcl is a closure operator on Φ, meaning that ∅cl = ∅, Φ ⊆ Φcl,
R ⊆ S =⇒ Rcl ⊆ Scl and (Rcl)cl = Rcl for all R,S ⊆ Φ. Moreover Rcl is closed and R is closed if
and only if R = Rcl.

Remark 6.32. Lemma 6.28 fails for non-crystallographic root systems. For example, consider the
typeH2 = I2(5) Coxeter group and the rootsα := α1, β := α2, γ := ψα1+ψα2 and δ := − α1 − ψα2,
where ψ = −2 cos(4π/5). Then the set R := {α, β, γ, δ} satisfies (i) but not (iii).

Remark 6.33. As studied in details by A. Pilkington in [Pil06], even in crystallographic root systems,
there are other possible notions of closed sets of roots. Namely, one says that R ⊆ Φ is

• N-closed if mα+ nβ ∈ R for any α, β ∈ R and m,n ∈ N such that mα+ nβ ∈ Φ,
• R-closed if xα+ yβ ∈ R for any α, β ∈ R and x, y ∈ R such that xα+ yβ ∈ Φ,
• convex if R = Φ ∩ C for a convex cone C in V .

Note that convex implies R-closed which implies N-closed, but that the converse statements are wrong
even for finite root systems [Pil06, p. 3192]. In this section, we will only work with the notion of N-
closedness in crystallographic root systems, as it is discussed in [Bou68]. Remark 6.40 justifies this
restriction.

Example 6.34. In type A, we identify subsets of roots with integer binary relations via the bijec-
tion (i, j) ∈ [n]2 ←→ ei − ej ∈ ΦA. A subset of roots is symmetric (resp. antisymmetric,
resp. closed) if the corresponding integer binary relation is symmetric (resp. antisymmetric, resp. tran-
sitive). (Note that here the three notions of closed sets of roots mentioned in Remark 6.33 coincide in
type A.) This example motivates the following definition.

Definition 6.35. In a crystallographic root system Φ, a Φ-poset is an antisymmetric and N-closed
subset of roots of Φ. We denote by Pos(Φ) the set of all Φ-posets.
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6.3.2 Weak order on Φ-posets
Let Φ be a finite root system (not necessarily crystallographic for the moment), with positive roots Φ+

and negative roots Φ−. We denote by R(Φ) the set of all subsets of Φ. For R ∈ R(Φ), we denote
by R+ := R ∩ Φ+ its positive part and R− := R ∩ Φ− its negative part. The following order extends
the weak order on binary relations introduced in Definition 6.3.

Definition 6.36. The weak order on R(Φ) is defined by R ≤R S ⇐⇒ R+ ⊆ S+ and R− ⊇ S−. It
is a lattice with meet and join

R ∧R S = (R+ ∩ S+) t (R− ∪ S−) and R ∨R S = (R+ ∪ S+) t (R− ∩ S−).

As in Section 6.1.1, ∧R and ∨R preserve antisymmetric but not closed subsets of roots. We
therefore need an analogue of the operators of Definition 6.4.

Definition 6.37. ForR ∈ R(Φ), we define the positive and negative closure deletionsRpcd andRncd by

Rpcd := Rr
{
α ∈ R+ | ∃X ⊆ R−such that α+ ΣX ∈ Φ rR

}
,

Rncd := Rr
{
α ∈ R− | ∃X ⊆ R+such that α+ ΣX ∈ Φ rR

}
.

These operators enable us to state the following extension of Theorem 6.5, illustrated in Figure 6.4.

Theorem 6.38. When Φ is crystallographic, the subposet of the weak order induced by Φ-posets is a
lattice with meet and join

R ∧P S =
(
(R+ ∩ S+) t (R− ∪ S−)cl

)pcd and R ∨P S =
(
(R+ ∪ S+)cl t (R− ∩ S−)

)ncd
.

Remark 6.39. Surprisingly, this result fails for non-crystallographic root systems. In view of Re-
mark 6.32, it might a priori depend of the notion of N-closed subsets considered. However, the
following example works for either of the notions (i), (ii) and (iii) of Lemma 6.28. Consider the
Coxeter group of type H3 with Dynkin diagram 1 2 3

5 . Consider the roots α := α1 ∈ Φ+,
β := − α1 − ψα2 ∈ Φ− and γ := − ψα1 − α2 − α3 ∈ Φ−, where ψ = −2 cos(4π/5). Note
that β + γ ∈ Φ− and α + β + γ ∈ Φ−, while α + β /∈ Φ and α + γ /∈ Φ. Consider the
sets R := {α, β, γ, β + γ, α + β + γ}, S := {β, γ, β + γ}, U := {α, β} and V := {α, γ}.
Note thatR,S, U and V are Φ-posets, and that both U and V are weak order larger than bothR and S.
Moreover, we claim that there is no Φ-poset T which is weak order smaller than both U and V and
weak order larger than both R and S. Indeed, such a Φ-poset T should contain α, β, γ and thus β + γ
and α + β + γ by closedness, which would contradict S ≤W T . This implies that R and S have no
join and that U and V have no meet in the weak order on Φ-posets, thus contradicting the result of
Theorem 6.38 in the non-crystallographic type H3.

Remark 6.40. As mentioned in Remark 6.33, even for crystallographic root systems, there are differ-
ent possible notions of closed subsets (which all coincide in type A). Unfortunately, it turns out that
Theorem 6.38 fails for the other notions of closed sets. The smallest counter-example is in type B3.
Consider the sets of roots R := {−α1, −α1 − α2, −α1 − α2 − α3, −α1 − 2α2 − 2α3, α3},
S := {−α1, −α1−α2−α3, −α1−2α2−2α3}, U := {−α1, α3} and V := {−α1−2α2−2α3, α3}.
Note that R,S, U and V are convex, and that both U and V are weak order smaller than both R and S.
We have R ∨P S = U ∧P V = {−α1, −α1 − 2α2 − 2α3, α3} but this set is not convex. In fact, we
claim that there is no convex subset T which is weak order smaller than both U and V and weak order
larger than both R and S. Indeed, such a set T should contain {−α1, −α1 − 2α2 − 2α3, α3} and
thus also −α1 − α2 = (−α1)/2 + (−α1 − 2α2 − 2α3)/2 + α3, contradicting T ≤W S. This implies
that R and S have no join and that U and V have no meet in the weak order on convex subsets of Φ.
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Figure 6.4: The weak order on A2-posets (top left), B2-posets (top right), and G2-posets (bottom).
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6.3.3 Weak order on relevant families of Φ-posets
As in Section 6.1.2, relevant families of Φ-posets correspond to the elements, the intervals, and the
faces of the weak order on W . Again, for each of these special families of Φ-posets, we are inter-
ested in (1) a characterization of the Φ-posets of this family, (2) an interpretation of the weak order
on these Φ-posets, and (3) whether it is a sublattice of the weak order on all Φ-posets. We start with
the elements of W . Each element w ∈ W defines a weak order element poset Rw := w(Φ−). De-
fine Woep(Φ) := {Rw |w ∈W}. Recall from Section 5.2.1 that the inversion set of w ∈ W is the
set of rootsN(w) := Φ+ ∩ w(Φ−).

Proposition 6.41. 1. A Φ-poset R is in Woep(Φ) if and only if α ∈ R or −α ∈ R for all α ∈ Φ.
2. For w ∈W , we haveN(w) = Φ+ ∩Rw and Rw =

(
Φ− r−N(w)

)
tN(w). Therefore, for

any v, w ∈W , we have Rv ≤R Rw ⇐⇒ v ≤W w.
3. Moreover, the weak order on Woep(Φ) is a sublattice of the weak order on Pos(Φ).

For w ≤W w ∈ W , we consider the weak order interval [w,w]W := {v ∈W |w ≤W v ≤W w}.
It corresponds to the weak order interval poset R[w,w] :=

⋂
v∈[w,w]Rv = Rw ∩Rw = R−w tR+

w . De-
fine Woip(Φ) :=

{
R[w,w]

∣∣w,w ∈W, w ≤W w
}

.

Proposition 6.42. 1. A Φ-poset R is in Woip(Φ) if and only if α + β ∈ R implies α ∈ R or
β ∈ R for all α, β ∈ Φ− and all α, β ∈ Φ+.

2. For any v ≤W v and w ≤W w in W , we have R[v,v] ≤R R[w,w] ⇐⇒ v ≤W w and v ≤W w.
3. The weak order on Woip(Φ) is a lattice with meet R[v,v] ∧WOIP R[w,w] = R[v∧Ww,v∧Ww] and

join R[v,v] ∨WOIP R[w,w] = R[v∨Ww,v∨Ww]. However, the weak order on Woip(Φ) is not a sub-
lattice of the weak order on Pos(Φ).

Finally, we consider the faces of the permutahedron Perm(W ). In Section 5.2.2, we have already
associated to each standard parabolic coset xWI the root set R(xWI) := x(Φ− ∪ Φ+

I ). We cannot
use this root set here as it is not a Φ-poset (it is not antisymmetric in general). Instead, we consider
the weak order face poset RxWI

:= x(Φ− r ΦI) = Φ r
(
−R(xWI)

)
, which is always a Φ-poset.

Define Wofp(Φ) := {RxWI
|xWI standard parabolic coset of W}.

Proposition 6.43. 1. A Φ-poset is in Wofp(Φ) if and only if it is convex closed and antisymmetric.
2. For any standard parabolic cosets xWI and yWJ , we have RxWI

≤W RyWJ
in the weak order

on Wofp(Φ) if and only if xWI ≤F yWJ in the facial weak order of [DHP18], see Section 5.2.
3. The weak order on Wofp(Φ) is a lattice with meet RxWI

∧WOFP RyWJ
= RxWI∧FyWJ

and
join RxWI

∨WOFP RyWJ
= RxWI∨FyWJ

. However, the weak order on Wofp(Φ) is not a sublat-
tice of the weak order on Pos(Φ), nor on Woip(Φ).

Finally, as in Section 6.1.2, one can also construct special families of Φ-posets for the elements,
the intervals, and the faces in the c-Cambrian lattices of Section 5.2.6.1 and in the boolean lattices of
Section 5.2.6.2. Their characterizations and properties are natural extensions of that of Section 6.1.2
in type A. However, while the weak order on these families of posets is well understood, some
characterizations remain conjectural and still deserve to be studied in details. We spare these laborious
constructions to the reader and refer to [GP18, Sects. 4.2 & 4.3] for details.
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Cluster algebras. Cluster algebras were introduced by S. Fomin and A. Zelevinsky in the series
of papers [FZ02, FZ03a, FZ05, FZ07] and have been widely studied in the last decades due to their
connection with various areas of mathematics (see the cluster algebra portal [Fom]). They are com-
mutative rings generated by a set of cluster variables grouped into overlapping clusters. Clusters are
obtained from an initial seed by a mutation process controlled by a combinatorial object (a skew-
symmetrizable matrix, or a weighted quiver). During a mutation, a single variable in the cluster is
perturbed and the new variable is computed by an exchange relation. See Section 7.1.1 for a precise
description of this dynamics. One fundamental aspect of this process is the Laurent phenomenon: all
cluster variables are Laurent polynomials with respect to the cluster variables of the initial seed. An
important combinatorial and geometric object associated to a cluster algebra is its cluster complex,
the simplicial complex with cluster variables as vertices and clusters as facets.

In this document, we restrict our attention to finite type cluster algebras, i.e. whose cluster com-
plexes are finite. They are classified by the Cartan-Killing classification for finite root systems [FZ03a].
See Section 7.1.2 for a precise statement of this classification. There are combinatorial models for the
cluster variables and clusters of the cluster algebras of non-exceptional finite types. In particular, the
cluster complex of the cluster algebra of type An is isomorphic to the simplicial associahedron: the
cluster variables correspond to the internal diagonals of an (n+ 3)-gon, the clusters correspond to the
triangulations of this polygon, the mutation between clusters correspond to the flip between triangula-
tions, and the exchange relation can even be interpreted as a Ptolemy relation in a quadrilateral.

Generalized associahedra. A generalized associahedron is a polytope which realizes the cluster
complex of a finite type cluster algebra. Generalized associahedra were first constructed by F. Chapo-
ton, S. Fomin and A. Zelevinsky [CFZ02] using the d-vector fans of [FZ03b]. Further realizations
were obtained by C. Hohlweg, C. Lange and H. Thomas [HLT11] based on the Cambrian lattices of
N. Reading [Rea06] and the Cambrian fans of N. Reading and D. Speyer [RS09]. These constructions
were later revisited in [Ste13] with an approach similar to the original one of [CFZ02], in [PS15a] via
brick polytopes, in [HPS18] using universal associahedra, and finally in [BMDM+18, PPPP19] using
type cones of g-vector fans. The objective of this part of the document is to present the last three
approaches.

Similarly to the constructions of Section 1.2.2 in type A, the generalized associahedra Asso(c)
of [HLT11] is obtained by deleting well-chosen inequalities in the facet description of theW -permuta-
hedron Perm(W ). An intruiguing property is that the vertex barycenters of the resulting generalized
associahedron Asso(c) and of the W -permutahedron Perm(W ) coincide at the origin. In type A,
this property was observed by F. Chapoton for J.-L. Loday’s realization of the classical associahe-
dron [Lod04], conjectured for all associahedra of C. Hohlweg and C. Lange in [HL07], proved by
C. Hohlweg, J. Lortie and A. Raymond [HLR10] and revisited in [LP18]. For arbitrary acyclic finite
types, it was conjectured by C. Hohlweg, C. Lange and H. Thomas in [HLT11]. We will present here
two independent proofs of this property: one using the universal associahedron approach of [HPS18]
in Chapter 7, and the other using the brick polytope approach of [PS15a, PS15b] in Chapter 8.

Polytopality of g-vector fans. Chapter 7 is devoted to the study of polytopal realizations of
g-vector fans of finite type cluster algebras.

The g-vectors of cluster variables are essential geometric data defined implicitly in [FZ07], see
Section 7.1.3. The cones generated by the g-vectors of the clusters with respect to a given initial
cluster X◦ form a fan Fg(X◦), called g-vector fan of the cluster algebra. Some properties of this
fan are gathered in Section 7.1.4. When computed from an acyclic initial cluster X◦ of a cluster
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algebra of finite type W , the g-vector fan Fg(X◦) coincides with the corresponding c-Cambrian fan
of [RS09] and was realized as a generalized associahedron Asso(c) in [HLT11, Ste13] by deleting
well-chosen inequalities in the facet description of the W -permutahedron Perm(W ). This approach
is unsuccessful for cyclic initial seeds, and the polytopality of cyclic finite type g-vector fans remained
an open problem for a long time.

In Chapter 7, we close this problem by constructing polytopal realizations of the g-vector fanFg(X◦)
of any finite type cluster algebra with respect to any initial cluster X◦. We actually use two different
approaches with different advantages:

• Section 7.2 reports the approach of [HPS18]. We construct a polytopal realization Assoh(X◦)
of the g-vector fan Fg(X◦) using specific right hand sides for the inequalities obtained from
any function h that we call exchange submodular. For an acyclic initial cluster X◦, the result-
ing polytope Assoh(X◦) coincides with the generalized associahedron Asso(c) of [HLT11].
While the g-vector fan Fg(X◦) depends on the initial cluster X◦, the properties required for
the exchange submodular function h do not, which allows to construct a universal associahe-
dron UniAssoh(W ) containing simultaneously all g-vectors fans of the cluster algebra of a
given finite type W . More precisely, the universal associahedron UniAssoh(W ) lives in a
vector space indexed by all cluster variables of the type W cluster algebra, and the g-vector
fan Fg(X?) with respect to any initial cluster X? of the type W cluster algebra is the normal
fan of the projection of the universal associahedronUniAssoh(W ) on the coordinate plane cor-
responding to the variables ofX?. We observe moreover that this approach provides a first clean
explanation of the barycenter property of the generalized associahedra mentioned above: in fact,
the barycenter of the universal associahedron UniAssoh(W ) is at the origin and projects to the
barycenter of any generalized associahedronAsso(c) of [HLT11].

• Section 7.3 reports the approach of [PPPP19]. We study the space of all polytopal realizations
of the g-vector fan Fg(X◦), called type cone of the fan as studied by P. McMullen [McM73].
Quite surprisingly, it turns out that for any initial cluster X◦ of any finite type cluster algebra,
the type cone of the g-vector fan Fg(X◦) is simplicial. This property implies a very simple de-
scription of all the realizations of the g-vector fan Fg(X◦) in terms of sections of the positive
orthant, extending results of [AHBHY18] in type A and [BMDM+18] for acyclic initial seeds.
This method relies on the fact that the linear dependence between the g-vectors of any pair of
adjacent clusters is positively generated by the linear dependences between the g-vectors of cer-
tain special pairs of adjacent clusters called meshes. This result admits an easy combinatorial
proof in type A (in fact, we will see that it extends to certain non-kissing complexes in Chap-
ter 10), but unfortunately relies on a technical representation theoretic approach for arbitrary
finite types that requires tools beyond the scope of this document, for which we prefer to refer
the reader to [PPPP19].

Brick polytopes. Chapter 8 is devoted to yet another approach to the generalized associahedron
Asso(c) of [HLT11] based on brick polytopes of subword complexes.

As already mentioned in Chapter 2, brick polytopes were initially motivated by the question to
find geometric realizations to the multiassociahedron. Based on the k-star decomposition of k-tri-
angulations [PS09], one can interpret k-triangulations as pseudoline arrangements on sorting net-
works [PP12]. Brick polytopes of sorting networks were then constructed in [PS12], and were shown
to be polytopal realizations of the simplicial complexes associated to certain class of sorting networks.
In particular, it turns out that all type A associahedra of C. Hohlweg and C. Lange [HL07] appear as
brick polytopes for well-chosen sorting networks.
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Independently, multitriangulations were connected to pipe dreams and typeA subword complexes
in [Stu11, SS12], another language for pseudoline arrangements on sorting networks. Subword com-
plexes were introduced by A. Knutson and E. Miller in the context of Gröbner geometry of Schubert
varieties [KM05], and extended to all finite Coxeter groups in [KM04], see Section 8.1.1. They proved
that these simplicial complexes are either topological balls or spheres, and raised the question of realiz-
ing spherical subword complexes as boundary complexes of convex polytopes. In [CLS14], C. Cebal-
los, J.-P. Labbé and C. Stump extended the subword complex interpretations of [PP12, Stu11, SS12]
for triangulations and multitriangulations of convex polygons to arbitrary finite Coxeter groups. They
proved in particular that all finite type cluster complexes are isomorphic to certain well-chosen sub-
word complexes (see Section 8.3.1).

In Chapter 8, we define and study brick polytopes of subword complexes on finite Coxeter groups
following [PS15a], see Section 8.2.1. We provide in Section 8.2.2 a simple combinatorial characteri-
zation of the class of subword complexes that are realized by their brick polytope, and deduce that it
contains all finite type cluster complexes. For the latter, it turns out that the brick polytopes are indeed
translates of the generalized associahedra of [HLT11].

This alternative interpretation provides an explicit vertex description of the generalized associa-
hedra of [HLT11], and thus enables to easily derive some of their geometric properties. In particular,
we show how we derived the original proof [PS15b] of the barycenter property of the generalized
associahedra mentioned above, using a simple dictionary between natural operations on words and
geometric symmetries on brick polytopes.



7Chapter Seven

POLYTOPAL REALIZATIONS OF
FINITE TYPE g-VECTOR FANS

In this chapter, we investigate the existence of generalized associahedra realizing finite type g-vector
fans. We start in Section 7.1 with a brief recollection on finite type cluster algebras and g-vector
fans. In Section 7.2, we show that for any finite type initial seed B◦, acyclic or not, the g-vector
fan with respect to B◦ is the normal fan of a generalized associahedron Asso(B◦), extending results
of [HLT11] for acyclic initial seeds. In fact, for any finite Dynkin type W , we even construct a
universal associahedronUniAsso(W ) with the property that any g-vector fan of typeW is the normal
fan of a suitable projection of UniAsso(W ). In Section 7.3, we investigate all polytopal realizations
of the g-vector fan, observe that they define a simplicial cone and deduce a very simple description
of all the realizations in terms of sections of the positive orthant, extending results of [AHBHY18] in
type A and [BMDM+18] for acyclic initial seeds. The material presented in Section 7.2 is adapted
from a joint work with C. Hohlweg and S. Stella [HPS18], while the approach of Section 7.3 is adapted
from a joint work with A. Padrol, Y. Palu and P.-G. Plamondon [PPPP19].

7.1 CLUSTER ALGEBRAS AND g-VECTOR FANS

We begin by recalling some standard notions on cluster algebras following the simplified presentation
of [HPS18]. We refer to [FZ07] for a general treatment.

7.1.1 Cluster algebras
We work in the ambient field Q(x1, . . . , xn, p1, . . . , pm) of rational expressions in n + m variables
with coefficients in Q and we denote by Pm its abelian multiplicative subgroup generated by {pi}i∈[m].

For p =
∏
i∈[m] p

ai
i ∈ Pm we write {p}+ :=

∏
i∈[m] p

max(ai,0)
i and {p}− :=

∏
i∈[m] p

−min(ai,0)
i , so

that p = {p}+ {p}
−1
− .

A seed Σ is a triple (B,P,X) where:
• the exchange matrix B is an integer n×n skew-symmetrizable matrix, i.e. such that there exist

a diagonal matrix D with −BD = (BD)T ,
• the coefficient tuple P is any subset of n elements of Pm,
• the cluster X is a set of cluster variables, n rational functions in the ambient field that are

algebraically independent over Q(p1, . . . , pm).
To shorten our notation we think of rows and columns ofB, as well as elements of P , as being labeled
by the elements of X: we write B = (bxy)x,y∈X and P = {px}x∈X . Moreover we say that a cluster
variable x (resp. a coefficient p) belongs to Σ = (B,P,X) to mean x ∈ X (resp. p ∈ P ).

Given a seed Σ = (B,P,X) and a cluster variable x ∈ Σ, we can construct a new seed µx(Σ) =
Σ′ = (B′, P ′, X ′) by mutation in direction x, where:
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• the new cluster X ′ is obtained from X by replacing x with the cluster variable x′ defined by the
exchange relation:

xx′ = {px}+
∏
y∈X
bxy>0

ybxy + {px}−
∏
y∈X
bxy<0

y−bxy

and leaving the remaining cluster variables unchanged so that X r {x} = X ′ r {x′}.
• the row (resp. column) of B′ indexed by x′ is the negative of the row (resp. column) of B

indexed by x, while all the other entries satisfy b′yz = byz + 1
2

(
|byx|bxz + byx|bxz|

)
,

• the elements of the new coefficient tuple P ′ are given by p′y = p−1
x if y = x′, and otherwise

p′y = py {px}
bxy
− if bxy ≤ 0 and p′y = py {px}

bxy
+ if bxy > 0.

A straightforward computation shows that mutations are involutions, i.e. µx′
(
µx(Σ)

)
= Σ so they

define an equivalence relation on the collection of all seeds.
Fix a seed Σ◦ = (B◦, P◦, X◦) and call it initial. Up to an automorphism of the ambient field we

will assume that X◦ = {x1, . . . , xn} and drop X◦ from our notations.

Definition 7.1 ([FZ07, Def. 2.11]). The (geometric type) cluster algebra A(B◦, P◦) is the ZPm-sub-
ring of the ambient field generated by the set X (B◦, P◦) of all the cluster variables in all the seeds
mutationally equivalent to the initial seed Σ◦.

For instance, the simplest possible choice of coefficient tuple in the initial seed, namelym = 0 and
P◦ = {1}i∈[n], gives rise to the cluster algebra without coefficients which we will denote by Afr(B◦).

One of the most important feature of cluster algebras is the following Laurent phenomenon.

Theorem 7.2 ([FZ02, Thm. 3.1]). Any cluster variable in the cluster algebra A(B◦, P◦) is expressed
in terms of the initial cluster variables X◦ as a Laurent polynomial with coefficients in ZPm.

7.1.2 Finite type
We will only be dealing with cluster algebras of finite type i.e. cluster algebras having only a finite
number of cluster variables. Being of finite type is a property that depends only on the exchange
matrix in the initial seed and not on the coefficient tuple. The Cartan companion of an exchange
matrix B is the symmetrizable matrix A(B) given by axy = 2 if x = y and axy = −|bxy| otherwise.

Theorem 7.3 ([FZ03a, Thm. 1.4]). The cluster algebra A(B◦, P◦) is of finite type if and only if
there exists an exchange matrix B obtained by a sequence of mutations from B◦ such that its Cartan
companion is a Cartan matrix of finite type. Moreover the type ofA(B) is uniquely determined byB◦:
if B′ is any other exchange matrix obtained by mutation from B◦ and such that A(B′) is a finite type
Cartan matrix then A(B′) and A(B) are related by a simultaneous permutation of rows and columns.

In accordance with the above statement, when talking about the (cluster) type ofA(B◦, P◦) or B◦
we will refer to the Cartan type ofA(B). We reiterate that the Cartan type ofA(B◦) need not be finite:
being of finite type is a property of the mutation class.

For a finite type cluster algebra A(B◦, P◦), we consider the root system of A(B◦). We keep
the conventions of Section 5.2.1: simple roots {αx}x∈X◦ , fundamental weights {ωx}x∈X◦ , simple
coroots {α∨x}x∈X◦ , and fundamental coweights {ω∨x }x∈X◦ are four bases of the same vector space V .
Roots and weights (resp. coroots and coweights) are related by the Cartan matrix A(B◦) (resp. by the
transpose of A(B◦)), and roots and coweights (resp. coroots and weights) are dual bases.

A finite type exchange matrix B◦ is said to be acyclic if A(B◦) is itself a Cartan matrix of finite
type and cyclic otherwise. An acyclic finite type exchange matrix is said to be bipartite if each of its
rows (or equivalently columns) consists either of non-positive or non-negative entries.
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7.1.3 Principal coefficients, g- and c-vectors
Among all the cluster algebras having a fixed initial exchange matrix, a central role is played by those
with principal coefficients. Indeed, thanks to the results in [FZ07], they encode enough informations
to understand all the other possible choices of coefficients.

Definition 7.4 ([FZ07, Def. 3.1]). A cluster algebra is said to have principal coefficients (at the initial
seed) if its ambient field is Q(x1, . . . , xn, p1, . . . , pn) and the initial coefficient tuple consists of the
generators of Pn i.e. P◦ = {pi}i∈[n]. In this case we will writeApr(B◦) forA

(
B◦, {pi}i∈[n]

)
, and we

reindex the generators {pi}i∈[n] of Pn by {px}x∈X◦ .

A notable property of cluster algebras with principal coefficients is that they are Zn-graded (in the
basis {ωx}x∈X◦ of V ). The degree deg(B◦, ·) on Apr(B◦) is obtained by setting deg(B◦, x) := ωx
and deg(B◦, px) :=

∑
y∈X◦ −byxωy for any x ∈ X◦. This assignment makes all exchange relations

and all cluster variables inApr(B◦) homogeneous [FZ07] and it justifies the definition of the following
family of integer vectors associated to cluster variables.

Definition 7.5 ([FZ07]). The g-vector g(B◦, x) of a cluster variable x ∈ Apr(B◦) is its degree. We
denote by g(B◦,Σ) := {g(B◦, x) |x ∈ Σ} the set of g-vectors of a seed Σ of Apr(B◦).

The next definition gives another family of integer vectors, introduced implicitly in [FZ07].

Definition 7.6 ([FZ07]). Given a seed Σ in Apr(B◦), the c-vector of a cluster variable x ∈ Σ
is the vector c(B◦, x ∈ Σ) :=

∑
y∈X◦ cyx αy ∈ V of exponents of px =

∏
y∈X◦(py)

cyx . We
denote by c(B◦,Σ) := {c(B◦, x ∈ Σ) |x ∈ Σ} the set of c-vectors of a seed Σ of Apr(B◦) and
by C(B◦) :=

⋃
Σ c(B◦,Σ) the set of all c-vectors in Apr(B◦).

An important feature of c-vectors is that their entries weekly agree in sign. This is one of
the various reformulation of the sign-coherence conjecture of [FZ07] established in full generality
by [GHKK18]. In the setting of finite type cluster algebras, this result can also be deduced in several
ways from earlier works. Here we observe it as a corollary of the following statement.

Theorem 7.7 ([NS14, Thm. 1.3]). The c-vectors of the finite type cluster algebra Apr(B◦) are roots
in the root system whose Cartan matrix is A(B◦).

Again note that, sinceA(B◦) may not be of finite type, the root system in this statement is not finite
in general. More precisely, it is finite if and only if B◦ is acyclic. For example, for the cyclic type A3

exchange matrix, the Cartan companion A(B◦) is of affine type A(1)
2 , see Figure 7.1 (middle right).

Our next task is to discuss a duality relation in between c-vectors and g-vectors. A first step is
to recall the notion of the cluster complex of A(B◦, P◦): it is the simplicial complex Cclu(B◦) whose
vertices are the cluster variables of A(B◦, P◦) and whose facets are its clusters. As it turns out, at
least in the finite type cases, this complex is independent of the choice of coefficients, see [FZ03a,
Thm. 1.13] and [FZ07, Conj. 4.3]. In particular this means that, up to isomorphism, there is only one
cluster complex for each finite type: the one associated to Afr(B◦). We will use this remark later on
to relate cluster variables of different cluster algebras of the same finite type. Note also that, again
when A(B◦, P◦) is of finite type, the cluster complex Cclu(B◦) is a sphere [FZ03a].

For a skew-symmetrizable exchange matrixB◦, the matrixB∨◦ := −BT
◦ is also skew-symmetriza-

ble. The cluster algebras Apr(B◦) and Apr(B
∨
◦ ) can be thought as dual to each other. Moreover their

cluster complexes are isomorphic: by performing the same sequence of mutations we can identify any
cluster variable x ofApr(B◦) with a cluster variable x∨ ofApr(B

∨
◦ ), and any seed Σ inApr(B◦) with

a seed Σ∨ in Apr(B
∨
◦ ). More importantly the following crucial property holds.
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Theorem 7.8 ([NZ12, Thm. 1.2]). For any seed Σ of Apr(B◦), let Σ∨ be its dual in Apr(B
∨
◦ ). Then

the g-vectors g(B◦,Σ) of the cluster variables in Σ and the c-vectors c(B∨◦ ,Σ
∨) of the cluster vari-

ables in Σ∨ are dual bases, i.e.
〈
g(B◦, x)

∣∣ c(B∨◦ , y∨ ∈ Σ∨)
〉

= δx=y for any two cluster vari-
ables x, y ∈ Σ.

In view of the above results, and since A(B∨◦ ) = A(B◦)
T , the c-vectors of a finite type cluster

algebra Apr(B
∨
◦ ) can be understood as coroots for A(B◦) so that the g-vectors of Apr(B◦) become

weights. This justify our choice to define g-vectors in the weight basis.

7.1.4 The g-vector fan
We now recast a well known fact concerning the cones spanned by the g-vectors of a finite type cluster
algebra with principal coefficients, illustrated in Figure 7.1.

Theorem 7.9. For any finite type exchange matrix B◦, the cones
{
g(B◦,Σ) | Σ seed of Apr(B◦)

}
,

together with all their faces, forms a complete simplicial fan Fg(B◦), called the g-vector fan.

There are several ways to find or deduce Theorem 7.9 from the literature. First, it was es-
tablished in the acyclic case in [RS09, YZ08, Ste13], see Example 7.11. As already observed by
N. Reading in [Rea14, Thm. 10.6], the general case then follows from the initial seed recursion on
g-vectors [NZ12, Prop. 4.2 (v)], valid thanks to sign-coherence. Another possible proof would be to
use the following description of the linear dependence between the g-vectors of two adjacent clusters,
which will be crucial in the next section.

Lemma 7.10. For any finite type exchange matrixB◦ and any adjacent seeds (B,P,X) and (B′, P ′, X ′)
inApr(B◦) with Xr{x} = X ′r{x′}, the g-vectors of X ∪X ′ satisfy precisely one of the following
two linear dependences

g(B◦, x) + g(B◦, x
′) =

∑
y∈X∩X′
bxy<0

−bxy g(B◦, y) or g(B◦, x) + g(B◦, x
′) =

∑
y∈X∩X′
bxy>0

bxy g(B◦, y).

 0 −1 0
1 0 −1
0 1 0

  0 −1 0
1 0 1
0 −1 0

  0 −1 1
1 0 −1
−1 1 0

  0 −1 2
1 0 −2
−1 1 0


Figure 7.1: The dual c-vector fan Fc(B∨◦ ) (thin red) and g-vector fan Fg(B◦) (bold blue) for all
type A3 and the cyclic type C3 initial exchange matrices. Each 3-dimensional fan is intersected with
the unit sphere and stereographically projected to the plane from the pole (−1,−1,−1).
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Note that which of the two possible linear dependences is satisfied by the g-vectors of X ∪ X ′
depends on the initial exchange matrix B◦. In particular, the geometry of the g-vector fan Fg(B◦)
changes as B◦ varies within a given mutation class.

For any finite type exchange matrix B◦, the g-vector fan Fg(B◦) can be seen as a coarsening of
two other fans naturally associated to A(B◦). Denote by FCox(B∨◦ ) the dual Coxeter fan i.e. the
fan defined by the hyperplane arrangement given by the root system of A(B∨◦ ). Similarly let Fc(Q̄)
be the dual c-vector fan i.e. the fan defined by the arrangement of hyperplanes orthogonal to all the
c-vector ofApr(B

∨
◦ ). By Theorem 7.8, Fg(B◦) coarsens Fc(Q̄) which, in turn, coarsens FCox(B∨◦ )

by Theorem 7.7. Figure 7.1 illustrates these g- and c-vector fans for all typeA3 and the cyclic type C3

initial exchange matrices.

Example 7.11. When the exchange matrix B◦ is acyclic, the g-vector fan is the Cambrian fan con-
structed by N. Reading and D. Speyer [RS09], while the dual c-vector fan is the type A(B∨◦ ) Coxeter
fan. See the first two fans of Figure 7.1 for examples in type A3.

7.1.5 Coefficient specialization and universal cluster algebra
We now want to relate, within a given finite type, cluster algebras with different choices of coeffi-
cients. Pick a finite type exchange matrix B◦ and let A(B◦, P◦) ⊂ Q(x1, . . . , xn, p1, . . . , pm) and
A
(
B◦, P ◦

)
⊂ Q(x1, . . . , xn, p1, . . . , p`) be any two cluster algebras having B◦ as exchange matrix

in their initial seed. As we said, cluster variables and seeds in these two algebras are in bijection
because their cluster complexes are isomorphic. Let us write x ←→ x and Σ ←→ Σ for this bijec-
tion. We will say that A

(
B◦, P ◦

)
is obtained from A(B◦, P◦) by a coefficient specialization if there

exist a map of abelian groups η : Pm → P` such that, for any px in some seed Σ of A(B◦, P◦) we
have η({px}+) = {px}+ and η({px}−) = {px}−, and which extends in a unique way to a map of
algebras that satisfy η(x) = x. Note that this is not the most general definition (see [FZ07, Def. 12.1
and Prop. 12.2]) but it will suffice here. Armed with the notion of coefficient specialization we can
now introduce the last kind of cluster algebra of finite type we will need.

Definition 7.12 ([FZ07, Def. 12.3 and Thm. 12.4]). Pick a finite type exchange matrix B◦. The clus-
ter algebra with universal coefficients Aun(B◦) is the unique (up to canonical isomorphism) cluster
algebra such that any other cluster algebra of the same type asB◦ can be obtained from it by a unique
coefficient specialization.

Let us insist on the fact that, in view of the universal property it satisfies, Aun(B◦) depends only
on the type of B◦ and not on the exchange matrix B◦ itself. We again keep B◦ in the notation only to
fix an embedding into the ambient field.

Rather than proving the existence and explaining the details of how such a universal algebra is
built, we will recall here one of its remarkable properties that follows directly from the g-vector
recursion [NZ12, Prop. 4.2 (v)]. Denote by X (B◦) the set of all cluster variables in Aun(B◦) and let
{p[x]}x∈X (B◦) be the generators of P|X (B◦)|.

Theorem 7.13 ([Rea14, Thm. 10.12]). The cluster algebra Aun(B◦) can be realized over P|X (B◦)|.
The coefficient tuple P = {px}x∈X at each seed Σ = (B,P,X) of Aun(B◦) is given by the formula

px =
∏
y∈X (B◦)

(
p[y]

)[g(BT ,yT );xT ] where [v;x] is the x-th coefficient of v in the weight basis (ωx)x∈X .

Remark 7.14. In view of this result, it is straightforward to produce the coefficient specialization mor-
phism to get any cluster algebra with principal coefficients of typeB◦ fromAun(B◦). Namely, for any
seed Σ? = (B?, P?, X?) of Aun(B◦), we obtain Apr(B?) by evaluating to 1 all the coefficients p[y]
corresponding to cluster variables y not in Σ?.
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7.2 GENERALIZED ASSOCIAHEDRA FOR g-VECTOR FANS

7.2.1 Polytopal realizations of g-vector fans
In this section, we show that the g-vector fan Fg(B◦) is polytopal for any finite type exchange ma-
trix B◦. As discussed in Example 7.18, this result was previously known for acyclic finite type ex-
change matrices [HLT11, Ste13, PS15a]. We first consider some convenient functions used in Theo-
rem 7.16 to lift the g-vector fan and discuss the existence of such functions in Proposition 7.17.

Definition 7.15. A positive function h on the cluster variables of A(B◦, P◦) is exchange submodular
if, for any pair of adjacent seeds (B,P,X) and (B′, P ′, X ′) with X r {x} = X ′ r {x′}, it satisfies

h(x) + h(x′) > max
( ∑
y∈X∩X′
bxy<0

−bxy h(y) ,
∑

y∈X∩X′
bxy>0

bxy h(y)
)
.

The following statement is the central result of this section. The proof is based on Lemma 7.10
and the standard characterization of polytopal realizations of simplicial fans given in Proposition 7.28.

Theorem 7.16. For any finite type exchange matrix B◦ and any exchange submodular function h, the
g-vector fan Fg(B◦) is the normal fan of the B◦-associahedronAssoh(B◦) ⊆ V defined as

(i) either the convex hull of the points
∑

x∈Σ h(x) c(B∨◦ , x
∨ ∈ Σ∨) for all seeds Σ of Apr(B◦),

(ii) or the intersection of the halfspaces {v ∈ V | 〈g(B◦, x) |v〉 ≤ h(x)} for all cluster variables x
of Apr(B◦).

Our next step is to discuss the existence of exchange submodular functions for any finite type
cluster algebra with principal coefficients. The important observation here is that the definition of
exchange submodular function does not involve in any way the coefficients of Apr(B◦) so that it
suffices to construct one in the coefficient free cases. We can therefore, without loss of generality,
assume that B◦ is bipartite and directly deduce our result from [Ste13, Prop. 8.3] obtained as an easy
consequence of [CFZ02, Lem. 2.4] which we recast here in our current setting.

When B◦ is acyclic, the Weyl group of A(B◦) is finite and has a longest element w◦. A point
λ∨ :=

∑
x∈X◦ λ

∨
x ω
∨
x in the interior of the fundamental Weyl chamber ofA(B∨◦ ) (that is to say λ∨x > 0

for all x ∈ X◦) is fairly balanced if w◦(λ∨) = −λ∨.

Proposition 7.17. Let Afr(B◦) be a finite type cluster algebra without coefficients where B◦ is bipar-
tite. To each fairly balanced point λ∨ corresponds an exchange submodular function hλ∨ onAfr(B◦).

A particular example of fairly balanced point is the point ρ∨ :=
∑

x∈X◦ ω
∨
x . Note that ρ∨ is both

the sum of the fundamental coweights and the half sum of all positive coroots of the root system
of finite type A(B◦). In particular hρ∨ is the half compatibility sum of x, i.e. the half sum of
the compatibility degrees hρ∨(x) := 1

2

∑
y 6=x(y ‖x) over all cluster variables distinct from x. (See

[FZ03b, CP15b] for the definition and discussion of the relevant properties of compatibility degrees.)
The point ρ∨ is particularly relevant in representation theory and its role in this context has already
been observed in [CFZ02, Rem. 1.6]. We call balanced B◦-associahedron and denote by Asso(B◦)
the B◦-associahedronAssohρ∨ (B◦) for the exchange submodular function hρ∨ . We have represented
in Figure 7.2 the B◦-associahedra Asso(B◦) for the same two initial exchange matrices. The third
associahedron of Figure 7.2 appeared as a mysterious realization of the associahedron in [CSZ15].

Example 7.18. When B◦ is acyclic, the B◦-associahedron Asso(B◦) was already constructed in
[HLT11, Ste13, PS15a]. It is then obtained by deleting inequalities from the facet description of the
permutahedron Perm(B◦) of the Coxeter group of type A(B◦). See the first two associahedra of
Figure 7.2 for examples in type A3, and Section 7.2.3.3 for a discussion of this property.
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Figure 7.2: The zonotopes Zono(B◦) (thin red) and the associahedra Asso(B◦) (bold blue) for all
type A3 and the cyclic type C3 initial exchange matrices, realizing the c-vector fans Fc(B◦) and the
g-vector fans Fg(B◦) of Figure 7.1. See Section 7.2.3.3 for the definition of Zono(B◦).

7.2.2 Universal associahedron
For each initial exchange matrix B◦ of a given type, we constructed in Section 7.2.1 a generalized
associahedron Assoh(B◦) by lifting the g-vector fan using an exchange submodular function h on
the cluster variables of Apr(B◦). As already observed though, the function h is independent of the
coefficients of Apr(B◦), so that all g-vector fans can all be lifted with the same function h. This
motivates the definition of a universal associahedron.

Consider the finite type cluster algebraAun(B◦) with universal coefficients, and let X (B◦) denote
its set of cluster variables. Consider a |X (B◦)|-dimensional Euclidean space U with a pair of dual
bases {βx}x∈X (B◦) and {β∨x∨}x∨∈X (B∨◦ ). As before, the cluster variables of Aun(B◦) and Aun(B∨◦ )
are related by x ↔ x∨. For X ⊆ X (B◦), we denote by HX the coordinate subspace of U spanned
by {βx}x∈X .

Definition 7.19. Given a seed Σ in Aun(B◦), the u-vector of a cluster variable x ∈ Σ is the vector
u(B◦, x ∈ Σ) :=

∑
y∈X (B◦)

uyx βy ∈ U of exponents of px =
∏
y∈X (B◦)

(p[y])uyx .

Remark 7.14 then reformulates geometrically in terms of u- and c-vectors as follows. Choose a
seed Σ? = (B?, P?, X?) in Aun(B◦) that you want to make initial. Then, for any cluster variable x in
a seed Σ, the c-vector c(B?, x ∈ Σ) is the orthogonal projection of the u-vector u(B◦, x ∈ Σ) on the
coordinate subspace HX? . (Here and elsewhere we identify HX? with V in the obvious way.) We
are now ready to define the universal associahedron.

Definition 7.20. For any finite type exchange matrix B◦ and any exchange submodular function h,
the universal B◦-associahedron is the polytope UniAssoh(B◦) ⊆ U defined as the convex hull of the
points

∑
x∈Σ h(x)u(B∨◦ , x

∨ ∈ Σ∨) ∈ U for each seed Σ of Aun(B◦).

Note that UniAssoh(B◦) does not depend on B◦ but only on its cluster type. We keep B◦ in the
notation since it fixes the indexing of the space U . Our interest in UniAssoh(B◦) comes from the
following property.

Theorem 7.21. Fix a finite type exchange matrixB◦ and an exchange submodular function h. For any
seed (B?, P?, X?) ofAun(B◦), the orthogonal projection of the universal associahedronUniAssoh(B◦)
on the coordinate subspaceHX∨? of U spanned by {β∨x∨}x∨∈X∨? is the B?-associahedronAssoh(B?).

Remark 7.22. We call universal g-vector fan the normal fan Fgun(B◦) of the universal B◦-associahe-
dron UniAsso(B◦). For any seed Σ? = (B?, P?, X?) in Aun(B◦), the section of Fgun(B◦) by the
coordinate subspace HX? of U spanned by {βx}x∈X? is the g-vector fan Fg(B?). Besides this
universality property, our understanding of this fan is, however, quite limited.



96 Chapter 7 – Polytopal realizations of finite type g-vector fans

n
dimension of
ambient space dimension # vertices # facets # vertices / facet # facets / vertex

1 2 1 2 2 1 1
2 5 4 5 5 4 4
3 9 8 14 60 9 ≤ · ≤ 10 30 ≤ · ≤ 42
4 14 13 42 8960 14 ≤ · ≤ 28 3463 ≤ · ≤ 4244

Table 7.1: Some statistics for the universal associahedron of type An for n ∈ [4].

As an immediate consequence of Theorem 7.21, we obtain that all seeds of the cluster alge-
bra Aun(B◦) appear as vertices of the universal associahedron UniAssoh(B◦), and that the mu-
tation graph of the cluster algebra Aun(B◦) is a subgraph of the graph of the universal associahe-
dron UniAssoh(B◦). However, this inclusion is strict in general.

We conclude with three observations on the universal B◦-associahedron UniAssoh(B◦) obtained
by computer experiment:

• Although a priori defined in U , UniAssoh(B◦) seems to be of codimension 1.
• In general UniAssoh(B◦) is neither simple nor simplicial. Table 7.1 presents some statistics

for the number of vertices per facet and facets per vertex in type An for n ∈ [4].
• The face lattice (and thus the f -vector) of UniAssoh(B◦) seems independent of h.
To conclude, let us insist on the fact that Theorem 7.21 describes the projection of the universal

associahedronUniAssoh(B◦) on coordinate subspaces corresponding to clusters ofAun(B◦). It turns
out that the projections on coordinate subspaces corresponding to all faces (not necessarily facets) of
the cluster complex Cclu(B◦) create relevant simplicial complexes, fans and polytopes [Cha16, GM18,
MP19, PPP17], see Section 10.3.5. This naturally raises the question to understand all coordinate
projections of the universal associahedron UniAssoh(B◦).

7.2.3 Further properties of Asso(B◦)

7.2.3.1 Green mutations
We consider a natural orientation of mutations introduced by B. Keller in [Kel11]. For two adjacent
seeds Σ = (B,P,X) and Σ′ = (B′, P ′, X ′) of Apr(B◦) with X r {x} = X ′ r {x′}, the mutation
Σ→ Σ′ is a green mutation when the dual c-vector c(B∨◦ , x

∨ ∈ Σ∨) = −c(B∨◦ , x′∨ ∈ Σ′∨) is posi-
tive. The directed graph G(B◦) of green mutations is known to be acyclic, and even the Hasse diagram
of a lattice when the type of B◦ is simply laced, see [GM17b, Coro. 4.7] and the references therein. It
turns out that this green mutation digraph G(B◦) is apparent in the B◦-associahedron.

Proposition 7.23. For any finite type exchange matrixB◦, the graph of the associahedronAssoh(B◦),
oriented in the linear direction ω := −

∑
x∈X◦ ωx, is the graph G(B◦) of green mutations inApr(B◦).

Example 7.24. For instance, for an acyclic initial exchange matrix B◦, the lattice of green mutations
is the c-Cambrian lattice of N. Reading [Rea06] (where c is the Coxeter element corresponding toB◦).

7.2.3.2 Vertex barycenter
For an acyclic initial exchange matrix B◦ of type W , it is known that the origin is the vertex barycen-
ter of both the permutahedron Perm(A(B◦)) of the Coxeter group of type A(B◦) and of the B◦-asso-
ciahedron Asso(B◦). In type A, this property was observed by F. Chapoton for J.-L. Loday’s realiza-
tion of the classical associahedron [Lod04] and conjectured for arbitrary Coxeter element in [HL07].
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It was later proved in type A in [HLR10] and revisited in [LP18], both proofs using an orbit refine-
ment of this property. For arbitrary finite types, it was conjectured in [HLT11] and proved using the
brick polytope approach in [PS15b] (see Section 8.3.2). In fact, this result also extends to all associ-
ahedra Assoh(B◦) for any initial exchange matrix B◦ and any exchange submodular function h, as a
consequence of the following stronger statement.

Theorem 7.25. For any finite type exchange matrix B◦ and any exchange submodular function h, the
origin is the vertex barycenter of the universal B◦-associahedron UniAssoh(B◦).

Corollary 7.26. For any finite type exchange matrixB◦ and any exchange submodular function h, the
origin is the vertex barycenter of the B◦-associahedronAssoh(B◦).

7.2.3.3 Zonotope
Motivated by Example 7.18, it is natural to investigate whether there exists a zonotope Zono(B◦)
whose facet description contains all inequalities of the associahedron Asso(B◦). The natural choice
is the zonotope Zono(B◦) :=

∑
c∈C(B∨◦ ) c, which works in the following two specific cases.

Proposition 7.27. All inequalities of the generalized associahedronAsso(B◦) are inequalities of the
zonotope Zono(B◦) when B◦ is either acyclic or of type A.

In the acyclic case, Zono(B◦) = Perm(A(B◦)) is the permutahedron of the Coxeter group W
of type A(B◦), and this statement was actually the way the associahedron Asso(B◦) was initially
constructed in [HLT11]. The cyclic type A case was shown in [HPS18, Sect. 6.2], were more details
on type A associahedra can be found. Despite these two special cases, it turns out that the property
of Proposition 7.27 does not extend in general. In fact, it already fails for the type C3 cyclic initial
exchange matrix B◦, see Figure 7.1 (right) and Figure 7.2 (right). One indeed checks that in the
direction of the g-vectors (−1, 1, 0) and (1,−1, 0), the right hand sides of the inequalities are 4
inAsso(B◦) and 3 inZono(B◦). This is illustrated in Figure 7.2 (right) where the facets ofAsso(B◦)
and Zono(B◦) orthogonal to the g-vectors (−1, 1, 0) and (1,−1, 0) are shaded. In fact, one can even
show that there exist initial exchange matrices B◦ for which no zonotope contains all inequalities of
the associahedronAsso(B◦). See [HPS18, Sect. 7.4] for details.

7.3 TYPE CONES OF g-VECTOR FANS

In this section, we consider the problem of the polytopality of the g-vector fan Fg(B◦) from another
perspective. Namely, we consider the cone of all polytopal realizations of Fg(B◦). Surprisingly, one
can prove using representation theoretic tools that this cone is always simplicial. This enables us to
extend results of [AHBHY18] in typeA and [BMDM+18] for acyclic initial seeds. Much more details
on this approach are available in [PPPP19].

7.3.1 Type cone of a simplicial fan
Fix an essential complete simplicial fan F in Rn. LetG be the N ×n-matrix whose rows are the rays
of F and letK be a (N − n)×N -matrix that spans the left kernel ofG (i.e.KG = 0).

For any adjacent maximal cones R≥0R and R≥0R
′ of F with Rr {r} = R′ r {r′}, we denote

by αR,R′(s) the coefficient of s in the unique linear dependence between the rays ofR∪R′, i.e. such
that

∑
s∈R∪R′ αR,R′(s) s = 0. These coefficients are a priori defined up to rescaling, but we addi-

tionally fix the rescaling so that αR,R′(r) and αR,R′(r′) are positive, say αR,R′(r) + αR,R′(r
′) = 2.
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The following classical statement characterizes the polytopal realizations of the fanF . It is a refor-
mulation of regularity of triangulations of vector configurations, introduced in the theory of secondary
polytopes [GKZ08], see also [DRS10]. We present a convenient formulation from [CFZ02, Lem. 2.1].

Proposition 7.28. Let F be an essential complete simplicial fan in Rn. Then the following are equiv-
alent for any height vector h ∈ RN :

1. The fan F is the normal fan of the polytope Ph := {x ∈ Rn |Gx ≤ h}.
2. For any two adjacent maximal cones R≥0R and R≥0R

′ ofF we have
∑

s∈R∪R′
αR,R′(s)hs > 0.

In this section, we are interested in the set of all possible realizations of F as the normal fan of a
polytopePh. This was studied by P. McMullen in [McM73] (see [DRS10, Sect. 9.5] for a formulation
in terms of chambers of triangulations of vector configurations).

Definition 7.29. The type cone of F is the cone TC(F) of all height vectors h ∈ RN realizing F:

TC(F) :=
{
h ∈ RN

∣∣F is the normal fan of Ph
}

=
{
h ∈ RN

∣∣∣ ∑
s∈R∪R′

αR,R′(s)hs > 0
for any adjacent maximal
cones R≥0R and R≥0R

′ of F

}
.

Note that the type cone is an open cone and contains a linearity subspace of dimension n (it is
invariant by translation inGRn). It is sometimes useful to get rid of the linearity space by considering
the projection KTC(F). If F is the normal fan of the polytope P, then the closure of the type
cone TC(F) is called the deformation cone of P in [Pos09], see also [PRW08].

Definition 7.30. An extremal adjacent pair ofF is a pair of adjacent maximal cones {R≥0R,R≥0R
′}

of F such that the corresponding inequality
∑
s∈R∪R′ αR,R′(s)hs ≥ 0 in the definition of the type

cone TC(F) actually defines a facet of TC(F).

In other words, extremal adjacent pairs define the extremal rays of the polar of the type coneTC(F).
Understanding the extremal adjacent pairs of F enables to describe its type cone TC(F) and thus all
its polytopal realizations.

Remark 7.31. Since the type cone is anN -dimensional cone with a linearity subspace of dimension n,
it has at least N − n facets (thus N − n extremal adjacent pairs). The type cone is simplicial when it
has precisely N − n facets.

Finally, using the type cone, one can provide alternative polytopal realizations of the fan F , which
are particularly relevant in the situation when the type cone TC(F) is simplicial.

Proposition 7.32. The affine map Ψ : Rn → RN defined by Ψ(x) = h − Gx sends the polytope
Ph := {x ∈ Rn |Gx ≤ h} to the polytope Qh :=

{
z ∈ RN

∣∣Kz = Kh and z ≥ 0
}
.

Corollary 7.33. Assume that the type cone TC(F) is simplicial and let K be the (N − n)×N -ma-
trix whose rows are the inner normal vectors of the facets of TC(F). Then, for any positive vec-
tor ` ∈ RN−n>0 , the polytope R` :=

{
z ∈ RN

∣∣Kz = ` and z ≥ 0
}

is a realization of the fan F .
Moreover, the polytopes R` for ` ∈ RN−n>0 describe all polytopal realizations of F .
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7.3.2 Type cones of g-vector fans
The linear dependences of Lemma 7.10 provide a redundant description of the type cone of the cluster
fan Fg(B◦). We denote by n(B◦, x, x

′) the normal vector of the inequality of the type cone corre-
sponding to two exchangeable cluster variables x and x′ (for cluster algebras, the linear dependence
only depends on the pair of exchanged variables, not on the pair of adjacent clusters in which they are
exchanged). In other words, depending on which of the two linear dependences of Lemma 7.10 holds,

n(B◦, x, x
′) := fx + fx′ −

∑
y∈X∩X′
bxy<0

−bxy fy or n(B◦, x, x
′) := fx + fx′ −

∑
y∈X∩X′
bxy>0

bxy fy,

where (fx)x∈X (B◦) denotes the canonical basis of RX (B◦). We obtain the following statement.

Corollary 7.34. For any finite type exchange matrix B◦, the type cone of Fg(B◦) is given by

TC
(
Fg(B◦)

)
=
{
h ∈ RX (B◦)

∣∣∣ 〈n(B◦, x, x
′) |h〉 > 0 for all exchangeable cluster variables x, x′

}
.

For instance, the type cone of the fan of Figure 7.1 (right) lives in R12 and has a linearity space
of dimension 3. It has 9 facet-defining inequalities (given below), which correspond to the mesh
mutations of Theorem 7.38 as illustrated in Figure 7.3.
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of the cluster fan correspond

to the mesh mutations described in Theorem 7.38.
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In order to describe the facets of this type cone, we need the following special mutations.

Definition 7.35. The mutation of a seed Σ = (B,X) in the direction of a cluster variable x ∈ X is a
mesh mutation that starts (resp. ends) at x if the entries bxy for y ∈ X are all non-negative (resp. all
non-positive). A mesh mutation is initial if it ends at a cluster variable of an initial seed. We denote
byM(B◦) the set of all pairs {x, x′} where x and x′ are two cluster variables of Apr(B◦) which are
exchangeable via a non-initial mesh mutation.

Lemma 7.36. Consider two adjacent seeds (B,X) and (B′, X ′) withXr{x} = X ′r{x′} connected
by a non-initial mesh mutation. Then, the g-vectors of X ∪ X ′ with respect to B◦ satisfy the linear
dependence g(B◦, x) + g(B◦, x

′) =
∑

y∈X∩X′ |bxy| g(B◦, y).

For {x, x′} ∈ M(B◦) and y ∈ X (B◦), we denote by αx,x′,y the coefficient of g(B◦, y) in
the linear dependence between the g-vectors g(B◦, x) and g(B◦, x

′). In other words, according
to Lemma 7.36, if (B,X) and (B′, X ′) are two adjacent seeds with X r {x} = X ′ r {x′}, we
have αx,x′,y = |bxy| for y ∈ X ∩ X ′ and αx,x′,y = 0 otherwise. The following statement, proved
in [PPPP19, Sect. 3] requires representation theory techniques far beyond the material discussed here.

Theorem 7.37. For any finite type exchange matrixB◦ (acyclic or not, simply-laced or not), the linear
dependence between the g-vectors of any mutation can be decomposed into positive combinations of
linear dependences between g-vectors of non-initial mesh mutations.

Using Theorem 7.37 as a blackbox, we can now describe the type cone, and thus all polytopal
realizations, of the g-vector fans of finite type cluster algebras.

Theorem 7.38. For any finite type exchange matrix B◦ (acyclic or not, simply-laced or not), the
type cone TC

(
Fg(B◦)

)
is simplicial and the non-initial mesh mutations precisely correspond to the

extremal adjacent pairs of the cluster fan Fg(B◦).

Combining Corollary 7.33 and Theorem 7.38, we derive the following description of all polytopal
realizations of the cluster fan Fg(B◦). This result was stated in [AHBHY18] in type A, and extended
in [BMDM+18] in the special situation of acyclic seeds in simply-laced types.

Theorem 7.39. For any finite type exchange matrix B◦ (acyclic or not, simply-laced or not), and for
any ` ∈ RM(B◦)

>0 , the polytope

R`(B◦) :=
{
z ∈ RX (B◦)

∣∣∣ z ≥ 0 and zx+zx′−
∑

y∈X (B◦)

αx,x′,y zy = `{x,x′} for all {x, x′} ∈ M(B◦)
}

is a generalized associahedron, whose normal fan is the cluster fan Fg(B◦). Moreover, the poly-
topes R`(B◦) for ` ∈ RM(B◦)

>0 describe all polytopal realizations of Fg(B◦).

Example 7.40. Let us translate to diagonals and triangulations the result of Theorem 7.39 in type A.
Let n ≥ 3. Consider a convex (n + 3)-gon whose vertices are labeled modulo n + 3 and whose
(internal and boundary) diagonals are denoted by ∆(n) :=

(Z/(n+3)Z
2

)
. Consider a triangulation T of

this polygon, formed by the n+ 3 boundary edges and n internal diagonals of the (n+ 3)-gon. Then
for any ` ∈ R∆(n)rT

>0 , the polytope

R`(T ) :=
{
z ∈ R∆(n)

∣∣∣ z ≥ 0 and z(a,a+1) = 0 for all a ∈ Z/(n+ 3)Z and
z(a,b) + z(a−1,b−1) − z(a,b−1) − z(a−1,b) = `(a,b) for all (a, b) /∈ T

}
is an associahedron whose normal fan is the g-vector fan Fg(T ) with respect to the triangulation T .
Moreover, the polytopes R`(T ) for ` ∈ R∆(n)rT

>0 describe all polytopal realizations of Fg(T ).



8Chapter Eight

BRICK POLYTOPES
OF SUBWORD COMPLEXES

Brick polytopes were defined first on sorting networks as a tentative approach to construct polytopal re-
alizations of the multiassociahedron [PS12], as already mentioned in Chapter 2. This chapter presents
the general setting of brick polytopes of subword complexes on finite Coxeter groups. We first de-
scribe the combinatorics of subword complexes using the powerful tool of root functions. We then
construct the brick polytopes using the analogous weight functions. These brick polytopes generalize
and provide an alternative perspective on the generalized associahedra of [HLT11] discussed in Chap-
ter 7. For instance, we show that it provides an elementary proof that their vertex barycenter is at the
origin. This chapter is adapted from joint works with C. Stump [PS15a, PS15b].

8.1 COMBINATORICS OF SUBWORD COMPLEXES

8.1.1 Subword complex
Let (W,S) be a finite Coxeter system (W,S) (see Section 5.2.1 or [Hum90, BB05] for a presentation
of Coxeter groups). We choose a word M := m1 · · ·m` on S (not necessarily reduced) and an ele-
ment ρ ∈W . The following complex was introduced by A. Knutson and E. Miller in [KM04, KM05].

Definition 8.1 ([KM04]). The subword complex Csub(M,ρ) is the simplicial complex of subwords
of M whose complements contain a reduced expression of ρ.

By definition, the subword complex Csub(M,ρ) is non-empty if and only if M contains at least
one reduced expression for ρ as a subword. Its vertices are labeled by the positions [`] := {1, . . . , `}
of the letters in the word M , an its facets are the complements of the reduced expressions of ρ in M .

In this chapter, we always assume that ρ is the longest word w◦ of W , and we write Csub(M)
instead of Csub(M,w◦) to simplify notations. The subword complex Csub(M) is then known to be a
vertex-decomposable simplicial sphere [KM04].

For instance, the facets of the subword complex Csub(M) for the word M = τ2τ3τ1τ3τ2τ1τ2τ3τ1

are {2, 3, 5}, {2, 3, 9}, {2, 5, 6}, {2, 6, 7}, {2, 7, 9}, {3, 4, 5}, {3, 4, 9}, {4, 5, 6}, {4, 6, 7} and {4, 7, 9}.

Example 8.2. Let W = Sn+1 and S = {τp | p ∈ [n]}, where τp is the transposition (p, p + 1). We
represent the word M := m1m2 · · ·m` by a sorting network NM as illustrated in Figure 8.1 (left).
The network NM is formed by n+ 1 horizontal lines (its levels, labeled from bottom to top) together
with ` vertical segments (its commutators, labeled from left to right) corresponding to the letters ofM .
If mk = τp, the kth commutator of NM lies between the pth and (p+ 1)th levels of NM .

Part III – Cluster algebras and generalized associahedra Vincent Pilaud 101
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Figure 8.1: The sorting network NM corresponding to the word M = τ2τ3τ1τ3τ2τ1τ2τ3τ1 (left) and
the pseudoline arrangements corresponding to the facets {2, 3, 5} (middle) and {2, 3, 9} (right).

A pseudoline supported byNM is an abscissa monotone path onNM . A commutator is a crossing
between two pseudolines if it is traversed by both pseudolines, and a contact if its endpoints are
contained one in each pseudoline. A pseudoline arrangement Λ is a set of n+ 1 pseudolines on NM ,
any two of which have precisely one crossing, possibly some contacts, and no other intersection. As a
consequence of the definition, the pseudoline of Λ which starts at level p ends at level n− p+ 2, and
is called the pth pseudoline of Λ. As illustrated in Figure 8.1 (middle and right), a facet I of Csub(M)
is represented by a pseudoline arrangement ΛI supported by NM . Its contacts (resp. crossings) are
the commutators of NM corresponding to the letters of I (resp. of the complement of I).

Example 8.3. As pointed out in [PP12], type A subword complexes can be used to provide a combi-
natorial model for many relevant families of geometric graphs (see Figure 8.2 for illustrations):

• triangulations of a convex polygon, see [Woo04, PP12, Stu11] and Remark 2.3.
• k-triangulations of a convex polygon, see [PS09, PP12, Stu11] and Remark 2.3.
• pseudotriangulations of a point set P in general position (no line contains three points). Pseudo-

triangulations of P are maximal pointed crossing-free sets of edges between points of P [PV96,
RSS08]. They correspond to the vertices of the pseudotriangulation polytope of [RSS03].

• pseudotriangulations of a set of disjoint convex bodies in general position (no line is tangent to
three convex bodies).

Figure 8.2: Sorting networks interpretations of certain geometric graphs: a triangulation of the convex
octagon, a 2-triangulation of the convex octagon, a pseudotriangulation of a point set, and a pseudo-
triangulation of a set of disjoint convex bodies.
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8.1.2 Root function and flips
Root function. The combinatorial and geometric properties of subword complexes are encoded in
the root functions of their facets, defined in [CLS14]. For X ⊆ [`], we denote by ΠMX the product
of the reflections mx ∈M , for x ∈ X , in the order given by M .

Definition 8.4 ([CLS14]). For a facet I of Csub(M),
• the root function r(I, ·) associates to each position k ∈ [`] a root r(I, k) := ΠM[k−1]rI(αmk),
• the root configurationR(I) is the multisetR(I) := {{r(I, i) | i ∈ I}}.

For instance, for M = τ2τ3τ1τ3τ2τ1τ2τ3τ1, we have r({2, 3, 9}, 2) = τ2(e4− e3) = e4− e2 and
r({2, 3, 9}, 7) = τ2τ3τ2τ1(e3−e2) = e3−e1. Moreover, the root configuration of the facet {2, 3, 9}
isR({2, 3, 9}) = {{e4 − e2, e3 − e1, e3 − e4}}.

Example 8.5. Keep the notations of Example 8.2. For any k ∈ [`], we have r(I, k) = et− eb, where
t and b are such that the tth and bth pseudolines of ΛI arrive respectively on top and bottom of the kth
commutator of NM . For example, for M = τ2τ3τ1τ3τ2τ1τ2τ3τ1, the root r({2, 3, 9}, 7) = e3 − e1

can be read in the 7th commutator of Figure 8.1 (right). In [PS12], the root configuration R(I) is
studied as the incidence configuration of the contact graph Λ#

I of the pseudoline arrangement ΛI , see
Definition 2.2.

Flips. As the subword complex is a simplicial sphere, there is a flip operation between its facets.
For a given facet I of Csub(M), the map r(I, ·) : [`]→ Φ can be used to understand the flips in I .

Lemma 8.6. Let I be any facet of the subword complex Csub(M).
(1) The map r(I, ·) : k 7→ r(I, k) is a bijection between the complement of I and Φ+.
(2) If I and J are two adjacent facets of Csub(M) with I r i = J r j, the position j is the unique po-

sition in the complement of I for which r(I, j) ∈ {±r(I, i)}. Moreover, r(I, j) = r(I, i) ∈ Φ+

if i < j, while r(I, j) = −r(I, i) ∈ Φ− if j < i.
(3) In the situation of (2), the map r(J, ·) is obtained from the map r(I, ·) by:

r(J, k) =

{
sr(I,i)(r(I, k)) if min(i, j) < k ≤ max(i, j),

r(I, k) otherwise.

Example 8.7. Keep the notations of Example 8.2. Let I and J be two adjacent facets of Csub(M),
with I r i = J r j. Then j is the position of the crossing between the two pseudolines of ΛI which
are in contact at position i, and the pseudoline arrangement ΛJ is obtained from the pseudoline ar-
rangement ΛI by exchanging the contact at i with the crossing at j. See Figure 8.1 (middle and right).

Root independent subword complexes. The geometry of the root configurationR(I) encodes
many combinatorial properties of I . In fact, the facet I is relevant for the brick polytope only when
its root configuration is pointed. This is in particular the case when R(I) forms an independent set
of V . The following property shows that this property is independent of the facet.

Lemma 8.8. Either all the root configurations R(I) for facets I of Csub(M) are simultaneously
linearly independent in V , or none of them is.

Definition 8.9. We say that Csub(M) is root independent when all the root configurations of its facets
are linearly independent.

Example 8.10. In typeA, the root configurationR(I) is linearly independent if and only if the contact
graph of ΛI is a forest. For example, the subword complex Csub(M) of Figure 8.1 is root independent.
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8.2 BRICK POLYTOPES OF SUBWORD COMPLEXES

8.2.1 Weight function and brick polytope
Weight function. Recall that, forX ⊆ [`], we denote by ΠMX the product of the reflectionsmx ∈
M , for x ∈ X , in the order given by M .

Definition 8.11. For a facet I of Csub(M), the weight function w(I, ·) associates to each position
k ∈ [`] a weight w(I, k) := ΠM[k−1]rI(ωmk).

The root function r(·, ·) and the weight function w(·, ·) have similar definitions and are indeed
closely related, as illustrated by the following statement.

Lemma 8.12. Let I be a facet of the subword complex Csub(M).

(1) If mk = mk+1, we have w(I, k + 1) =

{
w(I, k) if k ∈ I,
w(I, k)− r(I, k) if k /∈ I.

(2) If I and J are two adjacent facets of Csub(M) with Iri = Jrj, then the mapw(J, ·) is obtained
from the map w(I, ·) by:

w(J, k) =

{
sr(I,i)(w(I, k)) if min(i, j) < k ≤ max(i, j),

w(I, k) otherwise.

(3) For j /∈ I , we have 〈r(I, j) | w(I, k)〉 is non-negative if j ≥ k, and non-positive if j < k.

Brick polytope. We are now ready to define the brick polytope of a subword complex.

Definition 8.13. The brick vector of the facet I is b(I) :=
∑

k∈[`]w(I, k). The brick polytopeBP(M)

of the wordM is the convex hullBP(M) := conv
{
b(I) | I facet of Csub(M)

}
of all the brick vectors.

For instance, for the word M = τ2τ3τ1τ3τ2τ1τ2τ3τ1, we have w({2, 3, 9}, 2) = τ2(e4) = e4

andw({2, 3, 9}, 7) = τ2τ3τ2τ1(e3 + e4) = e2 + e3. Moreover, the brick vector of the facet {2, 3, 4}
is b({2, 3, 9}) = e1 + 6e2 + 5e3 + 6e4 = (1, 6, 5, 6). The brick polytope BP(M) is a pentagonal
prism, represented in Figure 8.3.

b({2,3,5})=(1,6,3,8)
b({2,3,9})=(1,6,5,6)

b({2,5,6})=(2,6,2,8)
b({3,4,5})=(1,7,3,7)

b({3,4,9})=(1,7,5,5)

b({2,6,7})=(3,6,2,7)b({2,7,9})=(3,6,3,6)

b({4,6,7})=(3,7,2,6)

b({4,5,6})=(2,7,2,7)

b({4,7,9})=(3,7,3,5)

Figure 8.3: The brick polytope BP(M) of the word M = τ2τ3τ1τ3τ2τ1τ2τ3τ1.
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Example 8.14. In type A, we can read this definition on the sorting network interpretation of Exam-
ple 8.2. Define the bricks of NM as the connected components of its complement, bounded on the
right by a commutator of NM . For a facet I of Csub(M) and a position k ∈ [`], the weight w(I, k)
is the characteristic vector of the pseudolines of ΛI which pass above the kth brick of NM . For
any p ∈ [n + 1], the pth coordinate of the brick vector b(I) is the number of bricks of NM below
the pth pseudoline of ΛI . See Figure 8.1 for an illustration. This was the original definition used in
type A in [PS12], which explains the name brick polytope.

8.2.2 Properties of brick polytopes
Although we defined brick polytopes for any word M , we only present their geometric and combina-
torial properties when Csub(M) is root independent. The general case, discussed in Conjecture 8.18,
is understood in type A in [PS12] but not for subword complexes on arbitrary finite Coxeter groups.
Note that further properties of brick polytopes, in particular their Minkowski sum decompositions as
Coxeter matroid polytopes, are discussed in [PS15a].

8.2.2.1 Geometry of brick polytopes.
The main tool to understand the geometry of the brick polytope is the following statement, which
follows from the connection between the root and weight functions observed in Lemma 8.12.

Lemma 8.15. If I and J are two adjacent facets of Csub(M), with I r i = J r j, then the difference
of the brick vectors b(I)− b(J) is a positive multiple of r(I, i).

Proposition 8.16. When the subword complex Csub(M) is root independent, then for any facet I
of Csub(M), the coneC(I) := R≥0

{
b(J)−b(I) | J facet of Csub(M)

}
of the brick polytopeBP(M)

at the brick vector b(I) coincides with the cone R≤0R(I) = R≥0

{
− r(I, i) | i ∈ I

}
.

Proposition 8.16 is the main step to show the central result of [PS15a].

Theorem 8.17. When the subword complex Csub(M) is root independent, it is realized by the polar
of the brick polytope BP(M).

The following conjecture extends this result to subword complexes that are not root independent.
It is known in type A and has several consequences presented in [PS12].

Conjecture 8.18. For any facet I of Csub(M), the cone of the brick polytope BP(M) at the brick
vector b(I) coincides with the cone R≤0R(I). In particular, the brick vector b(I) for a facet I
of Csub(M) is a vertex of the brick polytope BP(M) if and only if the cone R≤0R(I) is pointed.

8.2.2.2 Surjection and increasing flip graphs.
The geometry of the cones of the brick polytope defines a surjection κ fromW to the facets of Csub(M),
where the facet κ(w) is defined equivalently by:

• the root configurationR(κ(w)) of the facet κ(w) is contained in w(Φ+),
• the cone C(κ(w)) of the vertex b(κ(w)) in BP(M) is contained in the cone C(w),
• the normal cone C�(κ(w)) of the vertex b(κ(w)) in BP(M) contains the chamber C�(w).

The following statement is a geometric reformulation of this map.

Corollary 8.19. The Coxeter fan refines the normal fan of the brick polytope. Namely, for any facet I
of Csub(M), the normal coneC�(I) of the vertex b(I) inBP(M) is the union of the chambersC�(w)
of the Coxeter fan of W given by the elements w ∈W with κ(w) = I .
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Example 8.20. In typeA, the conesC(I) andC�(I) are given by the contact graph Λ#
I of ΛI [PS12]:

• the cone C(I) is the incidence cone C(Λ#
I ) := R≥0

{
ej − ei | (i, j) ∈ Λ#

I

}
,

• the normal cone C�(I) is the braid cone C�(Λ#
I ) :=

{
x ∈ Rn | xi ≤ xj for all (i, j) ∈ Λ#

I

}
.

Therefore, an element w ∈W lies in the fiber κ−1(I) if and only if it is a linear extension of the
transitive closure of Λ#

I . See also Section 1.2.

Generalizing the Tamari lattice [Tam51] and the Cambrian lattices [Rea06], we now consider the
increasing flip order, introduced in [KM04]. Many order theoretic properties of this increasing flip
order are developed in [PS13].

Definition 8.21. For two adjacent facets I and J of Csub(M) with I r i = J r j, the flip from I to J
is increasing if i < j, or equivalently (by Lemma 8.6 (2)) if r(I, i) = −r(J, j) ∈ Φ+. The increasing
flip order is the transitive closure ≺ of the increasing flip graph.

For a root independent subword complex, this increasing flip order is an orientation of the graph
of the brick polytope.

Proposition 8.22. When the subword complex Csub(M) is root independent, the graph of the brick
polytope BP(M), oriented in the direction ω := −

∑
s∈S ωs, is the Hasse diagram of the increasing

flip order.

As in the classical case, the map κ provides a surjection from the weak order ≤W on W to the
increasing flip order on Csub(M). The combinatorial behavior of this surjection is somewhat similar
to that of a lattice quotient as illustrated by the following statement.

Proposition 8.23. The map κ from the elements of the Coxeter group W to the facets of the subword
complex Csub(M) satisfies the following properties:

• its fibers are closed by intervals: if two elements w ≤W w of W lie in the same fiber of κ, then
the weak order interval [w,w]W := {w ∈W |w ≤W w ≤W w} lies in the same fiber of κ.

• the increasing flip graph on Csub(M) is the quotient of the Hasse diagram of the weak order by
the fibers of the map κ: a facet I is covered by a facet J in increasing flip order if and only if
there exist wI ∈ κ−1(I) and wJ ∈ κ−1(J) such that wI is covered by wJ in weak order.

However, it turns out that increasing flip orders on subword complexes are not lattice quotients
in general. Surprizingly, the increasing flip order is not even always a lattice. For instance, con-
sider the word M = τ1τ2τ3τ2τ1τ2τ3τ2τ1 in S4, and the four facets I1 = {1, 2, 9}, I2 = {1, 3, 4},
J1 = {1, 8, 9} and J2 = {6, 7, 9} of Csub(M). For i, j ∈ {1, 2}, we then have that Ii < Jj in the
increasing flip poset, but J1 and J2 are not comparable. Thus, I1 and I2 do not have a unique join and
the increasing flip graph on Csub(M) is not a lattice.

8.2.3 Duplicated words
We conclude this section with a first family of words that yield an interesting family of brick polytopes.

Definition 8.24. Let w◦ := w1 · · ·wN be a reduced expression of the longest element w◦ of W .
For P ⊆ [N ], we obtain a new word wP◦ ∈ S∗ by duplicating the letters of w◦ at positions in P .

The following statement describes the subword complex Csub(wP◦ ) and brick polytope BP(wP◦ ).
For a position k ∈ [N ], we define

• αk := w1 · · ·wk−1(αwk) the root at position k in w◦,
• k∗ := k + |P ∩ [k − 1]| the new position in wP◦ of the kth letter of w◦.
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Proposition 8.25. Consider the duplicated word wP◦ .
1. The facets of the subword complex Csub(wP◦ ) are precisely the sets Iε := {p∗ + εp | p ∈ P}

where ε := (ε1, . . . , εn) ∈ {0, 1}P .
2. The roots of a facet Iε of Csub(wP◦ ) are given by r(Iε, p

∗ + 1) = (−1)εpαp for p ∈ P and
r(Iε, k

∗) = αk for k ∈ [N ]. The root configuration of Iε is thusR(Iε) = {{(−1)εpαp | p ∈ P}}.
The subword complex Csub(wP◦ ) is root independent if and only if {{αp | p ∈ P}} is a basis.

3. The weights of a facet Iε of Csub(wP◦ ) are given by w(Iε, p
∗ + 1) = ωp + εpαp for p ∈ P

and w(Iε, k
∗) = ωk for k ∈ [N ]. The brick vector of Iε is thus b(Iε) = Θ +

∑
p∈P εpαp,

where Θ :=
∑

k∈[N ] ωk +
∑

p∈P ωp. The brick polytope BP(wP◦ ) is a zonotope, whose edges
are directed by {αp | p ∈ P}. In particular, it is a parallelepiped when {αp | p ∈ P} is a basis.

4. The normal fan of its brick polytope BP(wP◦ ) is the fan formed by the hyperplanes orthogonal
to the roots {αp | p ∈ P}.

5. The increasing flip order is the boolean lattice. In particular, it is the graph of the brick poly-
tope BP(wP◦ ) if and only if {αp | p ∈ P} is a basis.

8.3 GENERALIZED ASSOCIAHEDRA REVISITED

In this section, we show that brick polytopes provide a powerful approach to the generalized asso-
ciahedra constructed by C. Hohlweg, C. Lange and H. Thomas [HLT11]. In fact, it gives a vertex
description of these polytopes and thus provides a simple proof that their vertex barycenter is at the
origin (an alternative proof based on universal associahedra was already mentioned in Section 7.2.3.2).

8.3.1 Generalized associahedra from brick polytopes
Consider a finite Coxeter system (W,S), let c be a Coxeter element (i.e. the product of all simple
reflections of S in a given order), and let B◦ be the corresponding acyclic initial exchange matrix.
Following [Rea07b], we choose an arbitrary reduced expression for c and letw(c) denote the c-sorting
word ofw, i.e. the lexicographically first (as a sequence of positions) reduced subword of c∞ forw. In
particular, w◦(c) denotes the c-sorting word of the longest element w◦ ∈W . LetN := `(w◦) = |Φ+|,
and let m := n+N be the length of cw◦(c). The following statement was proven in [CLS14].

Theorem 8.26 ([CLS14]). For any Coxeter element c of W , the subword complex Csub(cw◦(c)) is
isomorphic to the cluster complex Cclu(B◦).

Since the subword complex Csub(cw◦(c)) is root independent, we can apply our brick polytope
construction to obtain polytopal realizations of the cluster complex.

Theorem 8.27. For any Coxeter element c of W , the polar of the brick polytope BP(cw◦(c)) realizes
the subword complex Csub(cw◦(c)), thus the cluster complex Cclu(B◦).

In fact, these brick polytopes are translates of the known realizations of the generalized associahe-
dra studied in [HLT11, Ste13].

Proposition 8.28. Up to the translation by the vector τ , the brick polytope BP(cw◦(c)) coincides
with the c-associahedron Asso(c) in [HLT11].

This brick polytope interpretation provides a new perspective on the c-associahedra of [HLT11]. In
particular, we obtain independent elementary proofs of the following two results, which are the heart
of the construction of [HLT11]. We say that an element w ∈ W is a singleton if κ−1(κ(w)) = {w}.
We denote here by q :=

∑
s ωs the sum of all weights of∇.
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Proposition 8.29. Up to translation by τ , the brick polytopeBP(cw◦(c)) is obtained from theW -per-
mutahedron Perm(W ) removing all facets which do not intersect the set

{
w(q) | w ∈W singleton

}
.

Proposition 8.30. The following properties are equivalent for an element w ∈W :
(i) The element w is a singleton, i.e. κ−1(κ(w)) = {w}.

(ii) The root configurationR(κ(w)) := {r(κ(w), i) | i ∈ κ(w)} equals w(∆).
(iii) The weight configurationW (κ(w)) := {w(κ(w), i) | i ∈ κ(w)} equals w(∇).
(iv) The vertex b(κ(w)) of the brick polytope BP(cw◦(c)) and the vertex w(q) of the W -permutahe-

dron Perm(W ) coincide up to the translation τ , i.e. b(κ(w)) = τ + w(q).
(v) There exist reduced expressions for w and c such that w is a prefix of cw◦(c).

(vi) The complement of κ(w) in cw◦(c) is w◦(c).

8.3.2 Word operations and vertex barycenter
The brick polytope interpretation of Section 8.3.1 provides a vertex description of the generalized
associahedra of [HLT11], and thus a first approach to the intriguing question of the vertex barycenter
of these polytopes. The approach of [PS15b], is based on the following four operations on words,
which translate into geometric operations on the corresponding brick polytopes. We denote by ϕ the
conjugation map defined by ϕ(s) := w◦sw◦. Moreover, in order to distinguish between the different
subword complexes in the following statements, we denote by bM (I) the brick vector of a facet I in
the subword complex Csub(M).

Lemma 8.31. If π(M) := mπ(1) · · ·mπ(p) is obtained fromM by a sequence of transpositions of con-
secutive commuting letters, then π induces an isomorphism between the subword complexes Csub(M)
and Csub(π(M)). Moreover, bπ(M)(π(I)) = bM (I) for any facet I of Csub(M).

Lemma 8.32. If M	 := m2 · · ·mpϕ(m1), then the rotation ρ : i 7→ (i− 1) induces an isomorphism
between the subword complexes Csub(M) and Csub(M	). Moreover, bM	(ρ(I)) − bM (I) belongs
to −2ωm1 + Rαm1 for any facet I of Csub(M).

Lemma 8.33. If M := ϕ(m1) . . . ϕ(mp), then the subword complexes Csub(M) and Csub(M ) coin-
cide. Moreover, b

M
(I) = −w◦(bM (I)) for any facet I of Csub(M).

Lemma 8.34. If M := mp · · ·m1, then the mirror µ : i 7→ m − i + 1 induces an isomorphism
between the subword complexes Csub(M) and Csub(M ). Moreover, bM (µ(I)) = w◦(bM (I)) +∑

β∈Φ+ β for any facet I of Csub(M).

Let us now denote by bary(c) the barycenter of the associahedron Asso(c). Combining Lem-
mas 8.31 and 8.32, we obtain that all c-associahedraAsso(c) have the same vertex barycenter.

Proposition 8.35. We have bary(c) = bary(c′) for any Coxeter elements c, c′ of W .

Combining Lemmas 8.33 and 8.34, we obtain that the barycenter of the superposition of the
vertices of the two associahedraAsso(c) and Asso(c−1) is the origin.

Proposition 8.36. We have bary(c) + bary(c−1) = 0 for any Coxeter element c.

Finally, Propositions 8.35 and 8.36 provide a simple proof of the following statement conjec-
tured in [HLT11] (an alternative proof based on universal associahedra was already mentioned in Sec-
tion 7.2.3.2). A more general statement, valid for all fairly balanced permutahedra and associahedra,
and an orbit refinement of this statement can be found in [PS15b].

Theorem 8.37. For any Coxeter element c ofW , the vertex barycenters of the c-associahedronAsso(c)
and the permutahedron Perm(W ) coincide.
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Grid associahedra and accordiohedra. The motivation of this part of the document arises from
two recent generalizations of the classical associahedron, illustrated in Figure 8.4:

1. Grid associahedra. The non-kissing complex is the simplicial complex of sets of mutually
non-kissing paths in a fixed shape of a grid. Introduced by T. K. Petersen, P. Pylyavskyy
and D. Speyer in [PPS10] for a staircase shape, and studied by F. Santos, C. Stump and
V. Welker [SSW17] for rectangular shapes, it was extended by T. McConville in [McC17] for
arbitrary shapes. This complex is known to be a simplicial sphere, and it was actually realized
as a polytope using successive edge stellations and suspensions in [McC17, Sect. 4]. Moreover,
the dual graph of the non-kissing complex has a natural orientation which equips its facets with
a lattice structure [McC17, Thm. 1.1, Sect. 5–8]. Further lattice theoretic and geometric aspects
of this complex were developed by A. Garver and T. McConville in [GM17a].

2. Accordiohedra. The accordion complex is the simplicial complex of sets of mutually non-
crossing accordion diagonals of a fixed dissection of a convex polygon. It was initially defined
and studied by Y. Baryshnikov [Bar01] and F. Chapoton [Cha16] when the dissection is a quad-
rangulation. Later, A. Garver and T. McConville [GM18] defined the complex on the dual
tree of the dissection, and showed in particular that the dual graph of the accordion complex
is equipped with a lattice structure. More recently, this complex was realized as a polytope
in [MP19], using tools inspired from cluster algebras and generalized associahedra.

Note that the classical associahedra of J.-L. Loday [Lod04] and C. Hohlweg and C. Lange [HL07] are
instances of both families: they are grid associahedra of ribbons and accordiohedra of triangulations.

Figure 8.4: A grid associahedron and an accordiohedron (top) and their normal fans (bottom).
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Non-kissing versus non-crossing. It was already observed in [PPP17] that non-kissing com-
plexes of grids and accordion complexes of dissections are special cases of a more general simplicial
complex, defined for any gentle quiver (see also [BDM+17]).

Reporting on a recent joint work with Y. Palu and P.-G. Plamondon [PPP19], we actually show in
Chapter 9 that these two families of simplicial complexes can be unified once we generalize both. On
the algebraic side, we consider in Section 9.1 the non-kissing complex of a locally gentle quiver (i.e. a
quiver with a very strong local condition around each vertex, see Definition 9.1). On the geometric
side, we consider in Section 9.2 the non-crossing complex of an arbitrary oriented punctured marked
surface with boundary endowed with a pair of dual cellular dissections.

We then present in Section 9.3 an explicit bijection between (isomorphism classes of) locally
gentle quivers and (homeomorphism classes of) oriented punctured marked surfaces with boundary
endowed with a pair of dual cellular dissections. Namely, from a cellular dissection D on a surface,
one gets a locally gentle quiver in the usual way (i.e. vertices on the arcs of D, arrows joining consec-
utive arcs around the cells of D, and relations for triples of consecutive arcs around the cells of D).
Conversely, from a locally gentle quiver Q̄, we construct a surface equipped with a pair of dual dis-
sections by a simple procedure, starting with lozenges corresponding to the arrows of Q̄, and glueing
them side by side according to the relations and the non-relations of Q̄. Moreover, this bijection sends
walks on the quiver to accordions on the surface, kissing walks to crossing accordions, and thus the
non-kissing complex of the quiver to the non-crossing complex of the surface.

Support τ -tilting theory. Similar instances of simplicial complexes arise naturally from the rep-
resentation theory of associative algebras. To each bound quiver Q̄ = (Q, I) is associated a path
algebra kQ/I: its underlying vector space is generated by paths on Q avoiding any relation in I , and
the product of two paths p, q is their concatenation when it is a path, and 0 otherwise. The representa-
tion theory of these algebras is extremely rich and interesting. In particular, T. Adachi, O. Iyama and
I. Reiten introduced in [AIR14] a simplicial complex over certain indecomposable τ -rigid modules,
called support τ -tilting complex. For instance, in the case of the path algebra of a quiver which is a
straight line, the support τ -tilting complex is an associahedron.

It turns out that the representation theory of gentle algebras is particularly well-understood [BR87].
Using this understanding, we proved in a joint work with Y. Palu and P.-G. Plamondon [PPP17] that
the non-kissing complex of any gentle quiver Q̄ is isomorphic to the support τ -tilting complex of the
corresponding gentle algebra kQ/I . In short, to any walk in Q̄ corresponds a representation of Q̄,
and this correspondence takes non-kissing walks to τ -compatible representations.

It turns out that an important part of the material presented in this part of the document extends to
support τ -tilting complexes of finite dimensional algebras. For instance, the lattice theory of torsion
classes is developed in [DIR+17] and polytopal realizations of τ -tilting finite algebras are constructed
in [PPP17].

I have chosen not to present the representation theoretic aspects of this story as it is quite differ-
ent from the combinatorial and geometric flavor of the rest of this document. Details can be found
in [PPP17, Sect. 1].

Non-kissing combinatorics and geometry. In Chapter 10, we present combinatorial and geo-
metric properties of non-kissing complexes (and thus of non-crossing complexes) developed in a joint
work with Y. Palu and P.-G. Plamondon [PPP17], extending those of the associahedron studied in the
rest of this document.



112 Non-kissing and non-crossing complexes

We first show in Section 10.1 that the non-kissing complex of a locally gentle quiver Q̄ is a
pseudomanifold: the number of walks in each facet is the number of vertices of Q̄, and each walk
in a facet can be exchanged with an other walk to get a new facet of the non-kissing complex. The
understanding of this flip is based on properties of the combinatorial notions of distinguished walks
and distinguished arrows, inspired from the work of T. McConville [McC17] in the grid situation.

The flip graph on non-kissing facets actually comes with a natural orientation. In Section 10.2,
we show that this oriented flip graph defines a lattice structure on non-kissing facets. The approach,
originally due to T. McConville on grid quivers [McC17], echoes the first part of this document: we
interpret the non-kissing lattice as a lattice quotient of a lattice of biclosed sets of strings which plays
the role of the weak order.

Finally, we study geometric realizations of finite non-kissing complexes in Section 10.3. We
construct the non-kissing fan based on g-vectors of walks, and show that this fan is the normal fan
of the non-kissing associahedron obtained from a suitable choice of right hand sides based on kissing
numbers. In fact, we can prove for a certain class of gentle quivers that the type cone of the non-
kissing fan is a simplex, which enables to apply the realization method discussed in Section 7.3.
Finally, we observe that all the geometry of the non-kissing associahedron is in fact hidden in well-
chosen projections of the classical associahedra, thus opening the question to project further cluster
algebra structures, in particular scattering diagrams.
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NON-KISSING VERSUS NON-CROSSING

This chapter, adapted from a joint work with Y. Palu and P.-G. Plamondon [PPP19], introduces two
simplicial complexes: the non-kissing complex of a locally gentle quiver (Section 9.1) and the non-
crossing complex of an oriented punctured surface with boundary endowed with a pair of dual celullar
dissections (Section 9.2). Both complexes appeared earlier in specific cases: the non-kissing complex
of a grid appeared in [McC17], while the non-crossing complex of a disk appeared in [GM18, MP19].
This chapter presents an explicit bijection between (isomorphism classes of) locally gentle quivers and
(homeomorphism classes of) oriented punctured marked surfaces with boundary endowed with a pair
of dual cellular dissections, which sends the non-kissing complex of the quiver to the non-crossing
complex of the surface (Section 9.3). Further properties of the non-kissing complexes (and thus of the
non-crossing complexes) are developed in Chapter 10.

9.1 NON-KISSING COMPLEX

9.1.1 Locally gentle quivers and their blossoming quivers
We consider a (bound) quiver Q̄ := (Q, I), formed by a finite quiverQ := (Q0, Q1, s, t) and an ideal I
of the path algebra kQ (the k-vector space generated by all paths in Q, including vertices as paths
of length zero, with multiplication induced by concatenation of paths) such that I is generated by
linear combinations of paths of length at least two. Note that we do not require that the quotient
algebra kQ/I be finite dimensional. The following definition is adapted from [BR87]. See Figure 9.1.

Definition 9.1 ([BR87]). A locally gentle quiver Q̄ := (Q, I) is a (finite) quiver where:
(i) each vertex a ∈ Q0 has at most two incoming and two outgoing arrows,

(ii) the ideal I is generated by paths of length exactly two,
(iii) for any arrow β ∈ Q1, there is at most one arrow α ∈ Q1 such that t(α) = s(β) and αβ /∈ I

(resp. αβ ∈ I) and at most one arrow γ ∈ Q1 such that t(β) = s(γ) and βγ /∈ I (resp. βγ ∈ I).
The algebra kQ/I is called a locally gentle algebra. A gentle quiver is a locally gentle quiver Q̄ such
that the algebra kQ/I is finite-dimensional, then called gentle algebra.

Definition 9.2. A locally gentle quiver Q̄ is complete if any vertex a ∈ Q0 is incident to either one (a
is a leaf) or four arrows (a is an internal vertex). The pruned subquiver of a quiver Q̄ is the locally
gentle quiver obtained by deleting all leaves of Q̄ (degree one vertices) and their incident arrows. The
blossoming quiver of a locally gentle quiver Q̄ is the complete locally gentle quiver Q̄` whose pruned
subquiver is Q̄. The vertices of Q`

0 rQ0 are called blossom vertices, and the arrows in Q`
1 rQ1 are

called blossom arrows. See Figure 9.1

Remark 9.3. Note that Q̄` has 2|Q0| − |Q1| incoming blossom arrows and 2|Q0| − |Q1| outgo-
ing blossom arrows. Therefore, it has |Q`

0 | = |Q0| + 2(2|Q0| − |Q1|) = 5|Q0| − 2|Q1| vertices
and |Q`

1 | = |Q1|+ 2(2|Q0| − |Q1|) = 4|Q0| − |Q1| arrows.

Part IV – Non-kissing and non-crossing complexes Vincent Pilaud 113
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Figure 9.1: Some locally gentle quivers (top) and their blossoming quivers (bottom). Initial vertices
are solid while blossom vertices are hollow, and initial arrows are bold while blossom arrows are thin.

9.1.2 Strings and walks
The non-kissing complex is constructed using the combinatorics of strings and walks in the quiver Q̄,
whose definitions are now briefly recalled. The terminology and notations in the following definitions
are borrowed from [BR87, CB18].

For any arrow α of Q, define a formal inverse α−1 with the properties that s(α−1) = t(α),
t(α−1) = s(α), α−1α = εt(α) and αα−1 = εs(α), where εv is the path of length zero starting
and ending at the vertex v ∈ Q0.

Definition 9.4. Let Q̄ := (Q, I) be a locally gentle quiver. A finite string in Q̄ is a word of the
form ρ = αε11 α

ε2
2 · · ·α

ε`
` , where:

(i) αi ∈ Q1 and εi ∈ {−1, 1} for all i ∈ [`],
(ii) t(αεii ) = s(α

εi+1

i+1 ) for all i ∈ [`− 1],
(iii) there is no path π ∈ I such that π or π−1 appears as a factor of ρ, and
(iv) ρ is reduced, in the sense that no factor αα−1 or α−1α appears in ρ, for α ∈ Q1.

The integer ` is called the length of the string ρ. We let s(ρ) := s(αε11 ) and t(ρ) := t(αε`` ) denote the
source and target of ρ. For each vertex a ∈ Q0, there is also a string of length zero, denoted by εa,
that starts and ends at a.

Definition 9.5. An oriented cycle c in Q such that c, c2 /∈ I is called primitive if it cannot be written
as an n-th power (n > 1) of a cycle.

If c is an oriented cycle in Q such that c, c2 /∈ I , we write c∞ for the infinite word ccc · · · , and ∞c
for the infinite word · · · ccc, and∞c∞ for the bi-infinite word∞cc∞. We let −∞c := ∞(c−1) = (c∞)−1

and c−∞ := (c−1)∞ = (∞c)−1.

Definition 9.6. An eventually cyclic string for Q̄ is a word ρ of the form ∞(cε11 )σ(cε22 )∞, where c1, c2

are oriented cycles in Q̄ (with at most one of them of length zero) and ε1, ε2 are signs in {±1} such
that c2ε1

1 σc2ε2
2 is a finite string in Q̄.

Definition 9.7. A string for Q̄ is a word which is either a finite string or an eventually cyclic infinite
string. We often implicitly identify the two inverse strings ρ and ρ−1, and call it an undirected string.

To avoid distinguishing between finite and (bi-)infinite words, we denote strings as products
ρ =

∏
i<`<j α

ε`
` where i < j ∈ Z ∪ {±∞}, ε` ∈ {±1} and α` ∈ Q1 for all i < ` < j.
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Definition 9.8. A walk of a locally gentle quiver Q̄ is a maximal string of its blossoming quiver Q̄`

(meaning that at each end it either reaches a blossom vertex of Q̄` or enters an infinite oriented cycle).
As for strings, we implicitly identify the two inverse walks ω and ω−1, and call it an undirected walk.

Definition 9.9. A substring of a walk ω =
∏
i<`<j α

ε`
` of Q̄ is a string σ =

∏
i′<`<j′ α

ε`
` of Q̄ for

some i ≤ i′ < j′ ≤ j, where the inequality i ≤ i′ (resp. j′ ≤ j) is strict when i 6= −∞ (resp. j 6=∞).
In other words, σ is a factor of ω such that

• the endpoints of σ are not allowed to be the possible blossom endpoints of ω,
• the position of σ as a factor of ω matters (the same string at a different position is considered a

different substring).
Note that the string εa is a substring of ω for each occurence of a as a vertex of ω. We denote by Σ(ω)
the set of substrings of ω. We use the same notation for undirected walks.

Definition 9.10. We say that the substring σ =
∏
i′<`<j′ α

ε`
` is at the bottom (resp. on top) of the

walk ω =
∏
i<`<j α

ε`
` if i′ = −∞ or εi′ = 1, and j′ = +∞ or εj′ = −1 (resp. if i′ = −∞

or εi′ = −1, and j′ = ∞ or εj′ = 1). In other words the (at most) two arrows of ω incident to the
endpoints of σ point towards σ (resp. outwards from σ). We denote by Σbot(ω) and Σtop(ω) the sets
of bottom and top substrings of ω respectively. We use the same notations for undirected walks.

Definition 9.11. A peak (resp. deep) of a walk ω is a substring of ω of length zero which is on top
(resp. at the bottom of ω). A corner is either a peak or a deep (in other words, it is a vertex of ω where
the arrows change direction). A walk ω is straight if it has no corner (i.e. if ω or ω−1 is a path in Q̄`),
and bending otherwise. A peak walk (resp. deep walk) is a walk with a unique corner (in other words,
it switches orientation only once), which is a peak (resp. deep). For a ∈ Q0, we denote by apeak the
peak walk with peak at a and by adeep the deep walk with deep at a (note that those are indeed unique
by local gentleness of Q̄).

9.1.3 Non-kissing complex
We can now define the non-kissing complex of a locally gentle quiver following [McC17, PPP17,
BDM+17]. We start with the kissing relation for walks.

Definition 9.12. Let ω and ω′ be two undirected walks on Q̄. We say
that ω kisses ω′ if Σtop(ω) ∩ Σbot(ω

′) contains a finite substring. In
other words, there exist a finite common substring σ of ω and ω′ such
that the arrows of ω incident to σ are both outgoing while the arrows
of ω′ incident to σ are both incoming. We say that ω and ω′ are kissing
if ω kisses ω′ or the opposite (or both).

Note that we authorize the situation where the common finite substring is reduced to a vertex a,
meaning that a is a peak of ω and a deep of ω′. Observe also that ω can kiss ω′ several times, that ω
and ω′ can mutually kiss, and that ω can kiss itself.

Definition 9.13. The non-kissing complex of Q̄ is the simplicial complexKnk(Q̄) whose faces are the
collections of pairwise non-kissing walks of Q̄. Note that self-kissing walks never appear in Knk(Q̄)
by definition. In contrast, no straight walk can kiss another walk by definition, so that they appear in
all facets of Knk(Q̄). The reduced non-kissing complex Cnk(Q̄) is the simplicial complex whose faces
are the collections of pairwise non-kissing bending walks of Q̄.
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9.2 ACCORDION COMPLEX, SLALOM COMPLEX, AND NON-
CROSSING COMPLEX

We now temporarily switch topic and present the accordion complex and the slalom complex of a
pair of dual dissections of an orientable surface. The latter is directly inspired from the case of a disk
treated in [GM18], while the former is obtained by duality as was already observed in the case of
a disk in [MP19]. In the general case of arbitrary orientable surfaces, the correspondence between
accordions and slaloms requires a little more attention and is treated in Section 9.2.3.

9.2.1 Dual dissections of a surface
Before defining accordions and slaloms, we need a strong notion of pairs of dual dissections of an
orientable surface. We first review classical definitions of curves, arcs and dissections of a surface
adapting it to our setting.

Definition 9.14. A marked surface S̄ := (S,M) is an orientable surface S with boundaries, together
with a set M of marked points which can be on the boundary of S or not. For V ⊂ S,

(i) a V -arc on S̄ is a curve on S connecting two points of V and whose interior is disjoint from M
and the boundary of S.

(ii) a V -curve on S̄ is a curve on S which at each end either reaches a point of V or infinitely
circles around and finally reaches a puncture of M , and whose interior is disjoint from M and
the boundary of S.

As usual, curves and arcs are considered up to homotopy relative to their endpoints in S rM , and
curves homotopic to a boundary are not allowed.

Definition 9.15. Two curves or arcs cross when they intersect in their interior. We will always assume
that collections of arcs on a surface are in minimal position, in the sense that they cross each other
transversaly, and the number of crossings is minimal.

Definition 9.16. A dissection of S̄ is a collection D of pairwise non-crossing arcs on S̄. The edges
ofD are its arcs together with the boundary arcs of S̄. The faces ofD are the connected components of
the complement of the union of the edges of D in the surface S. We denote by V(D), E(D) and F(D)
the sets of vertices, edges and faces of D respectively. The dissection D is cellular if all its faces are
topological disks. For V ⊆M , a V -dissection is a dissection with only V -arcs.

All throughout the chapter, all dissections are considered cellular.

Definition 9.17. Consider a marked surface S̄ := (S, V tV ?), where V and V ? are two disjoint sets
of marked points so that the points of V and V ? that are on the boundary of S alternate. A cellular
V -dissection D of S̄ and a cellular V ?-dissection D? of S̄ are dual cellular dissections if there are
bijections V ? ↔ F(D), V ↔ F(D?), and E(D)↔ E(D?), all denoted by ? in both directions, such
that

1. for each vertex v ∈ V , the closure of the face v? of D? contains v;
2. for each vertex w ∈ V ?, the closure of the face w? of D contains w;
3. for each edge e ∈ E(D), the edges e and e? intersect exactly once in their interior; moreover, e

intersects (in their interior) no other edge of D?, and e? intersects (in their interior) no other
edge of D.
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Figure 9.2: Some pairs (D,D?) of dual cellular dissections on different surfaces. The dissection D
is in green while its dual dissection D? is in red. The boundaries of the surfaces are shaded, and the
glue symbols indicate how to identify some edges to get the desired surfaces. The first two surfaces
are disks, the third is a sphere without boundary, the fourth is a cylinder, and the fifth is a torus with
one boundary component.

Some examples of dual cellular dissections on different surfaces are represented in Figure 9.2.
Note that contrarily to the usual conventions, the dual vertex f? of a face f of D is not always in the
interior of the face f . More precisely, each face f has either no or exactly one edge on the boundary
of S. Its dual vertex f? then lies in the interior of f and is a puncture of S̄ in the former case, and
on the boundary edge of f in the latter case. In fact, this forces the following characterization of the
cellular dissections that admit a dual cellular dissection.

Proposition 9.18. The following assertions are equivalent for a cellular V -dissection D of a marked
surface S̄ := (S, V t V ?) such that the points of V and V ? along the boundary of S alternate:

(i) there exists a cellular V ?-dissection D? of S̄ such that D and D? are dual cellular dissections,
(ii) each face of D contains exactly one point of V ? (in particular, at most one boundary edge).

Moreover, the cellular dissection D? is uniquely determined.

Definition 9.19. We consider a setB of points on the boundary of the surface S such thatB and V ∪ V ?

alternate along the boundary of S. The points ofB are called the blossom points. See e.g. Figures 9.3
and 9.4 where the blossom points appear as white hollow vertices.

9.2.2 Accordion complex and slalom complex
Let S̄ := (S, V t V ?) be a surface with two disjoint sets V and V ? of marked points, and let B be
the corresponding blossom points on the boundary of S. We say that a B-curve is external if it is
homotopic to a boundary arc of S r B, and internal otherwise. Note that no B-curve can cross an
external B-curve. Consider two dual cellular dissections D and D? of S̄ .

The following definition generalises the one of [MP19] for the case where S̄ is a disk. A very sim-
ilar definition appears in [BCSo18] in a slightly different context under the name “permissible arc”.

Definition 9.20. A D-accordion is a B-curve α of S̄ such that whenever α meets a face f of D,
(i) it enters crossing an edge a of f and leaves crossing an edge b of f (in other words, α is not

allowed to circle around f? when f? is a puncture),
(ii) the two edges a and b of f crossed by α are consecutive along the boundary of f ,

(iii) α, a and b bound a disk inside f that does not contain f?.
By convention, we also consider that the punctures of V areD-accordions that are considered external.
If we were working on the universal cover of the surface, the D-accordion associated to a puncture
would be the infinite line crossing all (infinitely many) arcs attached to the puncture.
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Figure 9.3: Some D-accordions (in blue) for the dissections D of Figure 9.2 (in green).

Figure 9.4: Some D?-slaloms (in blue) for the dual dissections D? of Figure 9.2 (in red).

Figure 9.3 illustrates some D-accordions for the dissections D of Figure 9.2.

Remark 9.21. In Definition 9.20, observe that:
• the edges of a and b of f crossed by α might coincide, see the second example in Figure 9.3.
• the first condition is automatically satisfied if f? is not a puncture, i.e. when it lies on the

boundary of S.

Definition 9.22. The D-accordion complex Kacc(D) is the simplicial complex whose faces are the
collections of pairwise non-crossing D-accordions. Note that self-crossing accordions never appear
in Kacc(D) by definition. In contrast, no external accordion can cross another accordion, so that they
appear in all facets ofKacc(D). The reducedD-accordion complex Cacc(D) is the simplicial complex
whose faces are the collections of pairwise non-crossing internal D-accordions.

The following definition generalizes the one from [GM18] for the case where S̄ is a disk.

Definition 9.23. A D?-slalom is a B-curve α of S̄ such that, whenever α crosses an edge a? of D?

contained in two faces f?, g? of D?, the marked points f and g lie on opposite sides of α in the union
of f? and g? glued along a?. Here, we consider that f lies on the right (resp. left) of α when α circles
clockwise (resp. counterclockwise) around f . By convention, we also consider that the punctures of V
areD?-slaloms that are considered external. If we were working on the universal cover of the surface,
the D?-slalom associated to a puncture would be an infinite line never crossing any arc of D?.

Figure 9.4 illustrates some D?-slaloms for the dual dissections D? of Figure 9.2.

Definition 9.24. The D?-slalom complex Ksla(D?) is the simplicial complex whose faces are the col-
lections of pairwise non-crossingD?-slaloms. Note that self-crossing slaloms never appear inKsla(D?)
by definition. In contrast, no external slalom can cross another slalom, so that they appear in all facets
of Ksla(D?). The reduced D?-slalom complex Csla(D?) is the simplicial complex whose faces are the
collections of pairwise non-crossing internal D?-slaloms.
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9.2.3 Accordions versus slaloms and the non-crossing complex
The following statement is illustrated by Figures 9.3 and 9.4.

Proposition 9.25. For two dual cellular dissections D and D?, the D-accordions are precisely the
D?-slaloms and the (reduced)D-accordion complex coincides with the (reduced)D?-slalom complex.

Definition 9.26. We call non-crossing complex of the pair of dual cellular dissections (D,D?) the
simplicial complex Knc(D,D

?) := Kacc(D) = Ksla(D?). Similarly, the reduced non-crossing com-
plex of (D,D?) is Cnc(D,D

?) := Cacc(D) = Csla(D?).

Remark 9.27. The D-slaloms and the D?-accordions are defined dually and also coincide.

Example 9.28. When the dissectionD is a classical dissection of a polygon (with no punctures) where
each cell has at most one boundary edge, the dual dissection D? is a tree. The non-crossing complex
in this situation was treated in detail in [GM18, MP19]. Note that even when the surface S is a disk,
we authorize in the present chapter both D and D? to have interior faces and punctures.

Remark 9.29. A quick disclaimer about accordion complexes and slalom complexes of arbitrary
cellular dissections. As stated in Proposition 9.18, a cellular dissection D with a face containing more
than one boundary edge does not admit a dual cellular dissection D?. This prevents the use of the
definitions given in this section. Although the accordion complex (resp. slalom complex) could still
be defined as in [MP19] (resp. [GM18]) for the disk, the resulting complexes would be joins of smaller
accordion complexes (resp. slalom complexes) defined in this chapter. See [MP19, Prop. 2.4] for a
detailed statement in the case of the disk.

9.3 NON-KISSING VERSUS NON-CROSSING

In this section, we show that non-kissing and non-crossing complexes actually coincide. Namely,
any pair of dual cellular dissections (D,D?) defines a locally gentle quiver Q̄D (see Section 9.3.1)
such that the non-crossing complex Knc(D,D

?) is isomorphic to the non-kissing complex Knk(Q̄D).
Conversely, any locally gentle quiver Q̄ gives rise to a surface SQ̄ equipped with a pair of dual cellular
dissections DQ̄ and D?

Q̄ (see Section 9.3.2) such that the non-kissing complex Knk(Q̄) is isomorphic
to the non-crossing complex Knc(DQ̄, D

?
Q̄).

9.3.1 The quiver of a dissection
Let D and D? be two dual cellular dissections of a marked surface S̄ := (S, V t V ?).

Definition 9.30. The quiver Q̄D = (QD, ID) of the dissection D is defined as follows:
(i) the set of vertices of QD is the set of edges of D,

(ii) there is an arrow from a to b for each common endpoint v of a and b such that b comes immedi-
ately after a in the counterclockwise order around v,

(iii) the ideal ID is generated by the paths of length two in QD obtained by composing arrows which
correspond to triples of consecutive edges in a face of D.

The quiver of the dissection D? is the quiver Q̄D? = (QD? , ID?) defined by replacing D by D? in the
above.

Figure 9.5 illustrates this construction for the dissections of Figure 9.2.
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Figure 9.5: The quivers associated to the dissections of Figure 9.2. As stated in Proposition 9.34, dual
dissections give rise to Koszul dual quivers.

Remark 9.31. The blossoming quiver Q̄`
D of the quiver Q̄D is obtained with the same procedure by

considering additional blossom vertices along the boundary of the surface. See Figure 9.5.

Lemma 9.32. The quiver Q̄D = (QD, ID) is a locally gentle quiver.

Definition 9.33. The Koszul dual of a locally gentle quiver Q̄ := (Q, I) is the quiver Q̄! := (Q!, I!)
defined as follows:

(i) the quiverQ! is equal to the opposite quiver ofQ, that is, the quiver obtained fromQ by reversing
all arrows,

(ii) the ideal I! is generated by the opposites of the paths of length two in Q that do not appear in I .

It is seen in [BH08] that the Koszul dual of a locally gentle algebra kQ/I is isomorphic to kQ!/I!.
Note that Q̄! is locally gentle, and that Koszul duality is an involution and commutes with blossom-
ing: (Q̄!)! = Q̄ and (Q̄!)` = (Q̄`)!. Examples are represented on Figure 9.6.

The following proposition appears in [OPS18, Prop. 1.25].

Proposition 9.34. Let D and D? be two dual cellular dissections of a marked surface (S, V t V ?).
The quivers Q̄D and Q̄D? are Koszul dual to each other.

1 21

1 21

1

1

1 2

1

1

1 2

Figure 9.6: The Koszul duals (bottom) of the blossoming quivers (top) of Figure 9.1.
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9.3.2 The surface of a locally gentle quiver
We now associate a surface to a locally gentle quiver. This construction yields the same surface as the
one constructed in [OPS18] (see Remark 9.41 for a comparison of the two constructions).

Definition 9.35. The surface SQ̄ of a locally gentle quiver Q̄ := (Q, I) is the surface obtained from
the blossoming quiver Q̄` as follows:

s(α) t(α)

v(α)

f?(α)

α

Esnr(α) Etnr(α)

Esr(α) Etr(α)

(i) for each arrow α ∈ Q`
1 , consider a lozenge L(α) with sides

Esnr(α) = [v(α), s(α)] Etnr(α) = [v(α), t(α)] (green)
Esr(α) = [f?(α), s(α)] Etr(α) = [f?(α), t(α)] (red)

(ii) for any α, β ∈ Q`
1 with t(α) = s(β), identify:

• Etr(α) with Esr(β) if αβ ∈ I ,
• Etnr(α) with Esnr(β) if αβ /∈ I .

Figure 9.7 illustrates this construction for the quivers of Figure 9.1. Definition 9.35 constructs an
orientable surface SQ̄ with boundaries, endowed with two disjoint sets VQ̄ and V ?

Q̄ of marked points
and two dual cellular dissections DQ̄ and D?

Q̄ defined as follows.

Definition 9.36. The surface SQ̄ is endowed with:
• the set VQ̄ of points v(α) for α ∈ Q`

1 after the identifications given by (ii),
• the VQ̄-dissection DQ̄ given by all sides Esnr(α) and Etnr(α) for α ∈ Q`

1 after the identifica-
tions given by (ii).

The set V ?
Q̄ and the V ?

Q̄-dissection D?
Q̄ are defined similarly by using f?(α), Esr(α) and Etr(α).

Proposition 9.37. Let Q̄ be a locally gentle quiver. Then the dissections DQ̄ and D?
Q̄ are cellular

and dual to each other.

The following statement immediately follows from the definitions and was probably already ob-
served by the reader on Figure 9.7.

Theorem 9.38. Up to isomorphism, the constructions of Definitions 9.30 and 9.35 are inverse to each
other. They induce a bijection between the set of isomorphism classes of locally gentle quivers and
the set of homeomorphism classes of marked surfaces with a pair of dual cellular dissections.

Figure 9.7: The surfaces SQ̄ for the quivers Q̄ of Figure 9.1.
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Remark 9.39. The following observations are useful for the computation of examples.
(i) The set VQ̄ has one vertex for each straight walk in Q̄ (equivalently, for each maximal path in Q̄).

Finite straight walks yield vertices on the boundary of SQ̄, while infinite cyclic straight walks
in Q̄ yield punctures of SQ̄ in VQ̄. We denote by p the number of infinite cyclic straight walks
in Q̄.

(ii) The dissection DQ̄ has one edge for each vertex a ∈ Q̄0, obtained by concatenation of the
sides Etnr(α) = Esnr(β) and Etnr(α

′) = Esnr(β
′) where a = t(α) = s(β) = t(α′) = s(β′),

αβ /∈ I and α′β′ /∈ I . We denote by ε(a) the edge of DQ̄ corresponding to a.
(iii) The dissection DQ̄ has one `-cell for each straight walk of length ` in Q̄!.
(iv) Similar statements hold dually for V ?

Q̄ and D?
Q̄, and we define p? and ε?(a) similarly.

(v) The number of punctures of SQ̄ is the number p+ p? of infinite straight walks in Q̄ and Q̄!.
(vi) The number b of boundary components of SQ̄ can be computed as follows. There are two natural

perfect matchings whose vertices are the blossom vertices of Q̄: one is obtained by joining the
endpoints of each finite straight walk of Q̄, and the other is obtained similarly from Q̄!. LetG be
the superposition of these two perfect matchings. Then the number b of boundary components
of SQ̄ is the number of connected components of G.

(vii) The genus of the surface SQ̄ is g = (|Q1| − |Q0| − b− p− p? + 2)/2, where b is the number of
boundary components (see above for a way to compute b) and p + p? the number of punctures
(i.e. infinite straight walks in Q̄ and in Q̄!).

Proposition 9.40. For any gentle quiver Q̄ with Koszul dual Q̄!, the surfaces SQ̄ and SQ̄! coincide,
but DQ̄! = D?

Q̄ and D?
Q̄! = DQ̄.

Remark 9.41. The construction of the surface given in Definition 9.35 yields the same surface as
the one constructed in [OPS18]. A notable difference is that in [OPS18], only DQ̄ is given, and D?

Q̄

is deduced (it is called the dual lamination). Another minor difference is that the construction in
[OPS18] is written only for gentle algebras, while here it is generalized to locally gentle algebras.

Example 9.42. Consider a Cambrian quiver (a.k.a. type A quiver), that is any orientation of a line
with no relations. Two such quivers are represented in Figure 9.8. Note that we can choose to posi-
tion the blossom vertices in such a way that for any arrow β, the arrows α and γ such that αβ ∈ I
and βγ ∈ I are on the right of β. We apply Remark 9.39 to understand the corresponding surfaces.
The corresponding perfect matchings (see Remark 9.39 (vi)) form a cycle with green and red arrows
alternating. Moreover, Q̄ and Q̄! have no infinite straight walks. Since |Q1| = |Q0| − 1, the corre-
sponding surfaces are disks (1 boundary component, no puncture and genus 0). The dissection DQ̄ is
a triangulation with no internal triangles, and the orientation of Q̄ indicates how to glue these triangles.
For instance, the Cambrian quiver completely oriented in one direction yields a fan triangulation, with
all internal edges incident to the same vertex, as in Figure 9.8 (left).

Figure 9.8: The surface SQ̄ for two Cambrian paths on 5 vertices.
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Example 9.43. Consider the family of cycle quivers indicated in Figure 9.9. We apply Remark 9.39 to
understand the corresponding surfaces. The corresponding perfect matchings (see Remark 9.39 (vi))
form a cycle with green and red arrows alternating. Moreover, Q̄ has 1 infinite straight walk, while Q̄!

has none. Since |Q1| = |Q0|, the corresponding surfaces are punctured disks (1 boundary component,
1 puncture and genus 0). See Figure 9.9.

Figure 9.9: The surface SQ̄ for the cycle quivers with 3, 4, 5 vertices.

Example 9.44. Consider the family of reversed path quivers indicated in Figure 9.10. We apply
Remark 9.39 to understand the corresponding surfaces. The corresponding perfect matchings (see
Remark 9.39 (vi)) look like . Moreover, Q̄ has no infinite straight walk, while Q̄! has |Q0| − 1 in-
finite straight walks. Since |Q1| = 2|Q0|−2, the corresponding surfaces have 1 boundary component
and genus 0.

Figure 9.10: The surface SQ̄ for the reversed path quivers with 1, 2, 3 vertices.

9.3.3 Non-crossing and non-kissing complexes coincide
Let Q̄ be a locally gentle quiver. For each edge of the dissection DQ̄ on SQ̄, we fix a point on the
interior of this edge, which we call its “middle point” (this is the black vertex on the pictures). To
each walk on Q̄, we will now associate a DQ̄-accordion.

Definition 9.45. For any arrow α on Q̄`, let γ(α) be the curve on SQ̄ which goes from the middle
point of the edge of D corresponding to s(α) to the middle point of the edge of D corresponding to
t(α) by following the angle corresponding to α. Define γ(α−1) to be γ(α)−1.

Definition 9.46. Let ω =
∏
i<`<j α

ε`
` be a (possibly infinite) walk on Q̄. Define the curve γ(ω) to be

the concatenation of the curves γ(αε`` ) of Definition 9.45.
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In practice, we represent γ(ω) by a curve which intersects itself only transversaly, and such that if
it circles infinitely around a puncture, then it spirals towards it.

Lemma 9.47. Let ω be a walk on Q̄. Then γ(ω) is a DQ̄-accordion.

Lemma 9.48. Let γ be a DQ̄-accordion. There exists a unique undirected walk ω(γ) such that we
have γ

(
ω(γ)

)
= γ.

Proposition 9.49. The maps γ(−) and ω(−) induce mutually inverse bijections between the set of
undirected walks on Q̄ and the set of DQ̄-accordions on SQ̄.

Lemma 9.50. Two undirected walks ω1 and ω2 on Q̄ are non-kissing if and only if the corresponding
DQ̄-accordions γ(ω1) and γ(ω2) are non-crossing on SQ̄.

Theorem 9.51. The non-kissing and non-crossing complexes are isomorphic:
• for any locally gentle quiver Q̄, the non-kissing complex Knk(Q̄) is isomorphic to the non-

crossing complex Knc(DQ̄, D
?
Q̄),

• for any pair of dual cellular dissections D,D? of an oriented surface, the non-crossing com-
plex Knc(D,D

?) is isomorphic to the non-kissing complex Knk(Q̄D,D?).

Remark 9.52. Note that our construction of the surface SQ̄ implies that the quiver Q̄ is naturally
embedded on SQ̄. If we force all D-accordions (or D?-slaloms) to follow the arrows of Q̄, then a
D-accordion (or D?-slalom) is really seen as a walk on Q̄.

We conclude with an important example of facets of the non-kissing and non-crossing complexes.

Example 9.53. We have seen in Definition 9.11 that each vertex a ofQ gives rise to a peak walk apeak

(resp. deep walk adeep) with a single peak (resp. deep) at a and no other corner. The set of all such
walks forms the peak facetFpeak := {apeak | a ∈ Q0} (resp. the deep facetFdeep := {adeep | a ∈ Q0})
of the non-kissing complex Cnk(Q̄). As an example of Theorem 9.51, let us now describe the corre-
sponding non-crossing facets of Cnc(DQ̄, D

?
Q̄).

For an edge a ofD, we denote by aprev (resp. anext) the curve obtained by moving each endpoint v
of a as follows:

• if v is on the boundary of S , then move (continuously) v until it reaches the following blossom
vertex along the boundary of S while keeping the boundary of S on the right,

• if v is a puncture, then rotate around v in counterclockwise (resp. clockwise) direction.
Examples are illustrated in Figure 9.11.

Figure 9.11: The curves aprev (left) and anext (right) associated to an edge a of D for three different
dissections.

We invite the reader to check that γ(apeak) = ε(a)prev (resp. γ(adeep) = ε(a)next), where ε(a)
denotes the edge of DQ̄ corresponding to a ∈ Q0 (see Remark 9.39 (ii)). Therefore, the peak facet
(resp. the deep facet) can be thought of as the dissection DQ̄ slightly rotated clockwise (resp. counter-
clockwise) on the surface SQ̄.



10Chapter Ten

NON-KISSING LATTICES
AND NON-KISSING ASSOCIAHEDRA

This chapter investigates further the structure of finite non-kissing complexes (or equivalently of finite
non-crossing complexes) defined in Chapter 9. We first show that these simplicial complexes are
pseudomanifolds: all their facets have the same cardinality and any ridge is contained in precisely
two facets. In other words, there is a flip operation that replaces a single walk in a non-kissing facet
(Section 10.1). We then show that the increasing flip graph defines a lattice structure on non-kissing
facets that we call non-kissing lattice (Section 10.2). The approach, originally due to T. McConville
on grid quivers [McC17], echoes the first part of this document: we interpret the non-kissing lattice as
a lattice quotient of a lattice of biclosed sets of strings which plays the role of the weak order. Finally,
we construct a non-kissing fan and a non-kissing associahedron that realize the non-kissing complex
(Section 10.3). We conclude by the observation that all the geometry of the non-kissing associahedron
is in fact hidden in well-chosen projections of the classical associahedra, thus opening the question to
project further cluster algebra structures. The results of this chapter are based on a joint work with
Y. Palu and P.-G. Plamondon [PPP17], although the extension to locally gentle algebras was only
discussed later in [PPP19], and the type cone approach of Section 10.3.4 is borrowed from [PPPP19].

10.1 FLIPS IN NON-KISSING COMPLEXES

We consider the non-kissing complex Knk(Q̄) of a locally gentle quiver Q̄ defined in Section 9.1 and
illustrated in Figure 10.1. We now show that the non-kissing complex is a pseudomanifold, i.e. that it
is pure (all facets have the same dimension) and thin (there is a well-defined notion of flips).

Figure 10.1: The reduced non-kissing complex Cnk(Q̄) for two specific quivers.

Part IV – Non-kissing and non-crossing complexes Vincent Pilaud 125
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10.1.1 Distinguished walks, arrows and strings
An essential tool to understand the combinatorics of the non-kissing complex is the notion of distin-
guished walks, arrow and strings, originating from [McC17] in the grid situation.

A marked walk ω? is a walk ω = αε11 · · ·α
ε`
` with a marked ar-

row αεii . Note that if ω contains several occurrences of α±i , only one
occurrence is marked. Consider two distinct non-kissing walks µ?, ν?
marked at an arrow γε ∈ Q`

1 . Let σ denote their maximal common sub-
string containing that occurrence of γ. Since µ? 6= ν?, their common substring σ is strict, so that µ?
and ν? split at least at one endpoint of σ. Define the countercurrent order at γ by µ? ≺γ ν? when µ?
enters and/or exits σ in the direction of γ, while ν? enters and/or exits σ in the opposite direction.

Remark 10.1. Note that the countercurrent order ≺γ is:
• well-defined: if both endpoints of σ are in Q0, then µ? (resp. ν?) enters and exits σ in the same

direction since µ? and ν? are non-kissing;
• independent of the orientation of µ? and ν?: µ? ≺γ ν? ⇐⇒ (µ?)

−1 ≺γ ν? ⇐⇒ µ? ≺γ (ν?)
−1;

we thus also consider ≺γ as a relation on undirected marked walks;
• dependent of which occurrence of γ is marked on µ and ν.

Remark 10.2. The countercurrent order might be more natural in the non-crossing complex as it cor-
responds to the distance of the accordions from a vertex, see [GM18, MP19] and [PPP19, Rem. 5.4].

Lemma 10.3. For any face F of Knk(Q̄), the countercurrent order ≺γ defines a total order on the
walks of F marked at an occurrence of γ.

In all pictures, we represent the walks passing through γ in increasing order of ≺γ from the left
side to the right side of γ. See e.g. Figure 10.2 (right). Observe that the straight walk containing γ is
always ≺γ-minimal. The ≺γ-maximal walk enables us to define distinguished walks and arrows.

Definition 10.4. For a face F of Knk(Q̄), define:
• the distinguished walk of F at an arrow γ as the ≺γ-maximal walk dw(γ, F ),
• the distinguished arrows of a walk ω ∈ F as the arrows da(ω, F ) := {γ ∈ ω |dw(γ, F ) = ω}.

The following statement is inspired from [McC17, Thm. 3.2] and illustrated in Figure 10.2.

Proposition 10.5. Each bending (resp. straight) walk of a facet F ∈ Knk(Q̄) contains precisely 2
(resp. 1) distinguished arrows pointing in opposite directions (resp. in the direction of the walk).

It enables to count the number of walks in each facet of Knk(Q̄) by double counting (each arrow
has a distinguished walk, while each bended / straight walk has two / one distinguished arrows).

Corollary 10.6. The non-kissing complex Knk(Q̄) is pure of dimension 3|Q0| − |Q1|. The reduced
non-kissing complex Cnk(Q̄) is pure of dimension |Q0|.

We conclude by the notion of distinguished string that will be useful in Sections 10.2.4 and 10.3.1.

Definition 10.7. The distinguished string of a bending walk ω in a facet F ∈ Knk(Q̄) is the sub-
string ds(ω, F ) of ω located between the two distinguished arrows of ω. A string σ of Q̄ is distin-
guishable if there exists a walk ω in a non-kissing facet F ∈ Knk(Q̄) such that σ = ds(ω, F ) is the
distinguished string of ω ∈ F .

Proposition 10.8. A string σ on Q̄ is distinguishable if and only if Σbot(σ) ∩ Σtop(σ) = {σ}.

Example 10.9. In the peak facet Fpeak := {apeak | a ∈ Q0} and deep facet Fdeep := {adeep | a ∈ Q0}
of Example 9.53, we have ds(apeak, Fpeak) = ds(adeep, Fdeep) = εa for any vertex a ∈ Q1.
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Figure 10.2: Flipping the red walk ω to the orange walk ω′. The walks µ, ν involved in the flip are the
blue and green walks. Distinguished arrows are marked with triple arrows.

10.1.2 Flips
We now show that the non-kissing complex Cnk(Q̄) is thin, i.e. that any codimension 1 non-kissing
face of Cnk(Q̄) is contained in exactly two non-kissing facets of Cnk(Q̄), or in other words that there
is a flip operation on non-kissing facets. Here again, it is more convenient to work with the unreduced
non-kissing complex Knk(Q̄). The following statement is illustrated in Figure 10.2.

v w

v w

Proposition 10.10. Consider a non-kissing facet F ∈ Knk(Q̄) and
a bending walk ω ∈ F . The distinguished substring σ = ds(ω, F )
splits ω into ω = ρστ . Let {α, β} := da(ω, F ) be the distinguished
arrows of ω in F , and α′ and β′ be the other two arrows of Q`

1 incident
to the endpoints of σ and such that α′α ∈ I or αα′ ∈ I , and β′β ∈ I
or ββ′ ∈ I . Let µ := dw(α′, Fr{ω}) and ν := dw(β′, Fr{ω}). Then

(i) The string σ splits the walks µ into µ = ρ′στ and ν into ν = ρστ ′.
(ii) The walk ω′ := ρ′στ ′ is kissing ω but no other walk of F . More-

over, ω′ is the only other walk besides ω which is not kissing any
other walk of F r {ω}.

We say that F4{ω, ω′} is obtained from F by flipping ω, and that the flip is supported by σ.

Corollary 10.11. The reduced non-kissing complex Cnk(Q̄) is a pseudomanifold without boundary.

Figure 10.3: The non-kissing oriented flip graph Gnk(Q̄) for two specific quivers. The graph is ori-
ented from bottom to top, with the peak facet Fpeak at the bottom and the deep facet Fdeep on top.
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10.2 NON-KISSING LATTICES

The flip operation of Proposition 10.10 and Figure 10.2 exchanges two kissing walks ω, ω′. The flip
is increasing when their common substring is on top of ω and on the bottom of ω′. This yields the
increasing flip graph, whose vertices are non-kissing facets and arcs are increasing flips. Note that the
peak facet {vpeak | v ∈ Q0} is a source and the deep facet {vdeep | v ∈ Q0} is a sink of the increasing
flip graph. See Figure 10.3. The main result of this section is the following statement.

Theorem 10.12. If Cnk(Q̄) is finite, the increasing flip graph is the Hasse diagram of a congruence-
uniform lattice, that we call non-kissing lattice and denote by Lnk(Q̄).

We have briefly presented lattice quotients and canonical join representations in Sections 1.1.1,
4.1.1 and 4.1.2, see [Rea16b, Sect. 9.5] for a detailed survey. A lattice L is congruence-uniform if its
join-irreducible elements are in bijection with the join-irreducibles of its lattice of congruences, and
similarly for meet-irreducibles. Congruence-uniform lattices behave nicely with join representations
and congruence lattices. To achieve Theorem 10.12, we use a technique developed by T. McConville
for grid quivers [McC17]: we identify the non-kissing lattice with a quotient of a lattice of biclosed
sets of strings.

10.2.1 Biclosed sets of strings
A closure operator on a finite set S is a map S 7→ Scl on subsets of S such that:

∅cl = ∅, S ⊆ Scl, (Scl)cl = Scl, and S ⊆ T =⇒ Scl ⊆ T cl,

for any S, T ⊆ S. A subset S ⊆ S is closed if Scl = S, coclosed if S r S is closed, and biclosed if
it is both closed and coclosed. We denote by Bic(S) the inclusion poset of biclosed subsets of S. The
following criterion, adapted from [McC17, Thm. 5.5], provides simple sufficient conditions for Bic(S)
to be a congruence uniform lattice.

Theorem 10.13 (Adapted from [McC17, Thms. 5.2 & 5.5]). If (S,C) is a poset with a closure oper-
ator S 7→ Scl such that:

(i) for each cover relation S ⊂ T in Bic(S), there is a unique τ ∈ (T rS) such that S ∪ {τ}cl = T ,
(ii) R ∪

(
(S ∪ T ) rR

)cl ∈ Bic(S) for R,S, T ∈ Bic(S) with R ⊆ S ∩ T , and
(iii) if ρ, σ, τ ∈ S with ρ ∈ {σ, τ}cl r {σ, τ}, then σ C ρ and τ C ρ,
then the inclusion poset Bic(S) of biclosed sets of S is a congruence-uniform lattice.

In a locally gentle quiver Q̄, we define the closure Scl of a set S of strings of Q̄ as the set of all
strings of the form σ1α

ε1
1 σ2α

ε2
2 . . . α

ε`−1

`−1 σ` where σi ∈ S, αi ∈ Q1 and εi ∈ {−1, 1}. Let Bic(Q̄)
be the inclusion poset on biclosed sets of strings of Q̄. Figure 10.4 illustrates the notions of closed,
coclosed and biclosed sets of strings. Figure 10.6 (left) shows the poset Bic(Q̄) for the quiver of
Figure 10.1 (left), with the empty set in the bottom and the set of all strings of Q̄ on top.

Figure 10.4: Four sets of strings on the quiver of Figure 10.2. The first is neither closed nor coclosed,
the second is closed but not coclosed, the third is coclosed but not closed, and the fourth is biclosed.



Section 10.2 – Non-kissing lattices 129

Example 10.14. Before going further, we want to observe that the poset of biclosed sets of strings
plays here the same role as the weak order in Part I of this document. Namely, in the case when the
quiver Q̄ is an oriented path on n vertices with no relation, observe that:

• the strings are in bijection with pairs (i, j) ∈
(
n+1

2

)
,

• the closure on strings translates to the concatenation (i, j) ◦ (k, `) = δj=k(i, `),
• biclosed sets of strings are in bijection with inversion sets of permutations of [n+ 1], and
• the poset of biclosed sets Bic(Q̄) is isomorphic to the weak order on Sn+1.

See Figure 10.8 (top left) for an example.

The criterion of Theorem 10.13 yields the following result.

Theorem 10.15. When Q̄ has finitely many strings, the inclusion poset of biclosed sets Bic(Q̄) is a
congruence-uniform lattice.

10.2.2 Non-kissing congruence
Recall from Section 1.1.1 that a lattice congruence ≡ on a finite lattice L can be defined by its projec-
tion maps π↓ and π↑, sending an element x ∈ L to the minimum and maximum of its equivalence class
respectively. We now define a lattice congruence on the lattice of biclosed sets, adapting the definition
of [McC17, Sect. 7] for grid quivers.

Definition 10.16. For a biclosed set S ∈ Bic(Q̄), define

π↓(S) := {σ string on Q |Σbot(σ) ⊆ S} and π↑(S) := {σ string on Q |Σtop(σ) ∩ S 6= ∅} .

where we still denote by Σbot(σ) and Σtop(σ) the sets of bottom and top substrings of a string σ.

These sets, illustrated in Figure 10.5, satisfy the following properties.

Proposition 10.17. For any S ∈ Bic(Q̄), the sets π↓(S) and π↑(S) are biclosed. Moreover:
(i) π↓(S) ⊆ S ⊆ π↑(S) for any element S ∈ Bic(Q̄),

(ii) π↓◦ π↓= π↓◦ π↑= π↓ and π↑◦ π↑= π↑◦ π↓= π↑,
(iii) π↓ and π↑ are order preserving.
Therefore, the fibers of π↑ and π↓ coincide and are the classes of a lattice congruence ≡ on Bic(Q̄),
called non-kissing congruence.

Example 10.18. If Q̄ is an oriented path with no relation,≡ is a Cambrian congruence of the weak or-
der [Rea06]. The congruence classes of ≡ appear as blue rectangles in Figure 10.6.

←−
π↓ −→

π↑

π↓(S) S π↑(S)

Figure 10.5: A biclosed set of strings S (middle) with π↓(S) (left) and π↑(S) (right). For readibility,
π↑(S) is only partially drawn: the remaining strings are obtained by adding independently the two
dotted arrows to all strings containing their left endpoint.
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Figure 10.6: The inclusion lattice of biclosed sets Bic(Q̄) with congruence classes of ≡ in blue (left),
and the corresponding non-kissing lattice Lnk(Q̄) (right).

10.2.3 Non-kissing lattice
Coming back to our original problem, we now aim to show that the increasing flip graph on non-
kissing facets is isomorphic to the Hasse diagram of the quotient of the lattice of biclosed set Bic(Q̄)
of Section 10.2.1 by the non-kissing congruence of Section 10.2.2. The next two propositions provide
explicit maps between biclosed sets of strings and non-kissing facets illustrated in Figure 10.7. These
maps extend previous definitions of [McC17] for grid quivers.

Proposition 10.19. For S ∈ Bic(Q̄) and α ∈ Q`
1 , let ω(α, S) := α

ε−`
−` · · ·α

ε−1

−1 · α · α
ε1
1 · · ·αεrr be

the directed walk containing α defined by
• εi = −1 if the string αε11 · · ·α

εi−1

i−1 belongs to S, and εi = 1 otherwise, for all i ∈ [r],
• ε−i = 1 if the string αε−i+1

−i+1 · · ·α
ε−1

−1 belongs to S, and εi = −1 otherwise, for all i ∈ [`].
Then the set

{
ω(α, S)

∣∣α ∈ Q`
1

}
contains 2|Q0| − |Q1| straight walks and |Q0| pairs of inverse

directed bending walks, which are all pairwise non-kissing. We thus obtain a facet η(S) of Knk(Q̄)
by identifying these pairs of inverse directed bending walks.

Proposition 10.20. For any facet F ∈ Knk(Q̄), the set of strings ζ(F ) :=
(⋃
ω∈F

Σbot(ω)
)cl

is biclosed.

−→
η

−→
ζ

S η(S) ζ
(
η(S)

)
= π↓(S)

Figure 10.7: The maps η (left) and ζ (right) between non-kissing facets and biclosed sets.
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6 754321

6 754321

6

7

5

4

3

2

1

Figure 10.8: The biclosed set of strings S of the straight quiver corresponding to the inversion set of
the permutation 2751346 (top left), the corresponding non-kissing facet η(S) (bottom left), and the
standard binary search tree obtained by insertion of 2751346 (right), see also Figure 1.2.

Example 10.21. When the quiver is an oriented path with no relation, the map η should be thought of
as the map from permutations to triangulations defined in [Rea06]. Conversely, ζ maps a triangulation
to the minimal permutation in its fiber under η. For the straight quiver, η plays the role of the binary
search tree insertion while ζ selects the minimal linear extension of a binary tree. See Figure 10.8.

Using these maps, we show that the increasing flip graph on non-kissing facets is isomorphic to
the Hasse diagram of the lattice quotient Bic(Q̄)/≡.

Theorem 10.22. The maps η : Bic(Q̄)→ Knk(Q̄) and ζ : Knk(Q̄)→ Bic(Q̄) satisfy:
• η
(
ζ(F )

)
= F for any facet F ∈ Knk(Q̄),

• ζ
(
η(S)

)
= π↓(S) for any biclosed set S ∈ Bic(Q̄),

• for any facet F ′ ∈ Cnk(Q̄) and σ ∈ ζ(F ′), there exists an increasing flip F → F ′ supported
by σ if and only if ζ(F ′) r {σ} is biclosed.

Therefore, the facets of Knk(Q̄) are in bijection with the congruence classes of ≡ and the increasing
flip graph is the Hasse diagram of the lattice quotient Bic(Q̄)/≡.

10.2.4 Canonical join complex
Congruence-uniform lattices behave nicely with join representations and congruence lattices. In par-
ticular, congruence-uniform lattices are semi-distributive, so that any element admits a canonical join
representation. The collection of sets J which define canonical join representations in L is the canon-
ical join complex of L.

To conclude our study of the non-kissing lattice Lnk(Q̄), we describe its canonical join complex.
Recall that a string σ of Q̄ is distinguishable if there is a facet F ∈ Knk(Q̄) and a walk ω ∈ F such
that σ = ds(ω, F ). One checks that Σbot(σ)cl is biclosed so that we can define ji(σ) := η

(
Σbot(σ)cl

)
.

Proposition 10.23. The map ji : σ 7→ ji(σ) := η
(
Σbot(σ)cl

)
defines a bijection between the distin-

guishable strings of Q̄ and the join-irreducible elements of the non-kissing lattice Lnk(Q̄).

Therefore, distinguishable strings are building blocks for canonical join representations inLnk(Q̄).
A descent of a facet F ∈ Knk(Q̄) is a string σ which is the distinguished string of a walk ω of F and
is a bottom substring of ω (so that the flip of ω in F is a descent in the non-kissing lattice). We denote
by des(F ) the set of descents of F .

Proposition 10.24. The canonical join representation of F ∈ Lnk(Q̄) is given by F =
∨

σ∈des(F )

ji(σ).
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Figure 10.9: The non-friendly complex Cnf(Q̄) for two specific quivers.

To conclude, we characterize which subsets of strings correspond to canonical join representations
in the non-kissing lattice Lnk(Q̄). Following [GM17a], we say that two strings are non-friendly if
Σtop(σ) ∩ Σbot(τ) = ∅ = Σbot(σ) ∩ Σtop(τ). We call non-friendly complex the simplicial complex
of sets of pairwise non-friendly distinguishable strings.

Theorem 10.25. The following assertions are equivalent for a set Σ of distinguishable strings of Q̄:
• any two strings of Σ are non-friendly,
• {ji(σ) |σ ∈ Σ} is the canonical join-representation of a facet of Knk(Q̄),
• Σ is the descent set of a non-kissing facet F ∈ Knk(Q̄).

In other words, the canonical join complex of Lnk(Q̄) is isomorphic to the non-friendly complex.

Example 10.26. When the quiver is a straight path with no relation, the non-friendly complex is
isomorphic to the non-crossing partition complex. For dissection quivers, one can interpret the non-
friendly condition directly on the dissection, thus providing a simple bijection between the facets of
the non-kissing complex and the serpent nests of the dissection [Cha16].

10.3 NON-KISSING ASSOCIAHEDRA

In this section, we provide geometric realizations of the non-kissing complex Cnk(Q̄) when it is finite,
inspired by similar constructions of [MP19] for dissection quivers and [GM18] for grid quivers.

10.3.1 g- and c-vectors
Let (ea)a∈Q0 be the standard basis of RQ0 . We first define an analog of the characteristic vector for
multisets.

Definition 10.27. For a multiset A := {{a1, . . . , am}} of vertices of Q0, we denote by mA ∈ RQ0

the multiplicity vector of A defined by mA :=
∑

i∈[m] eai =
∑

a∈Q0
| {i ∈ [m] | ai = a} | ea. For a

string σ of Q̄, we definemσ :=mA(σ) where A(σ) is the multiset of vertices of σ.

We now define two families of vectors that will play a crucial role in the geometric construction.
These vectors are illustrated in Figure 10.10.

Definition 10.28. For a walk ω on Q̄, we denote by peaks(ω) (resp. by deeps(ω)) the multiset
of vertices of Q0 corresponding to the peaks (resp. deeps) of ω. The g-vector of a walk ω is the
vector g(ω) ∈ RQ0 defined by g(ω) :=mpeaks(ω)−mdeeps(ω).Observe that g(ω) = 0 for a straight
walk ω. For a set Ω of walks, we let g(Ω) := {g(ω) |ω ∈ Ω}.



Section 10.3 – Non-kissing associahedra 133

1 2
4

6

5

3

F

• • • • • •


1 0 0 0 0 0 −1
2 0 0 0 0 −1 0
3 0 1 0 1 0 0
4 0 0 0 −1 0 0
5 0 0 1 1 1 0
6 1 0 0 0 0 0

g(F )

• • • • • •


1 0 0 0 0 0 −1
2 0 0 1 0 −1 0
3 0 1 0 0 0 0
4 0 1 1 −1 0 0
5 0 0 1 0 0 0
6 1 0 0 0 0 0

c(F )

Figure 10.10: The g- and c-matrices of a non-kissing facet F . Their columns correspond to the g-
and c-vectors of the different walks of F . Note that g(F ) · c(F )T = 1.

Definition 10.29. Consider a bending walk ω in a non-kissing facet F ∈ Cnk(Q̄). Recall from Propo-
sition 10.5 that the walk ω carries two distinguished arrows da(ω, F ) surrounding its distinguished
string ds(ω, F ) (see Figure 10.10). Define

ε(ω, F ) :=

{
1 if ds(ω, F ) is a top substring of ω (i.e. the arrows da(ω, F ) point outside),
−1 if ds(ω, F ) is a bottom substring of ω (i.e. if the arrows da(ω, F ) point inside).

The c-vector of a walk ω ofF is the vector c(ω ∈ F ) ∈ RQ0 defined by c(ω ∈ F ) := ε(ω, F )mds(ω,F ).
We let c(F ) := {c(ω ∈ F ) |ω ∈ F} be the set of c-vectors of a non-kissing facet F ∈ Cnk(Q̄),
and C(Q̄) :=

⋃
F c(F ) be the set of all c-vectors of all non-kissing facets F ∈ Cnk(Q̄).

Remark 10.30. These definitions can as well be translated to the non-crossing complex, using ana-
logues of shear coordinates for cluster algebras arising from triangulations and laminations on surfaces
defined by S. Fomin and D. Thurston [FST08, FT18]. See [MP19] and [PPP19, Prop. 6.7 & 6.8].

Example 10.31. The g- and c-vectors in the peak and deep facets Fpeak and Fdeep are given by

g(apeak) = ea, g(adeep) = −ea, c(apeak ∈ Fpeak) = ea, and c(adeep ∈ Fdeep) = −ea.

Remark 10.32. The definitions of g- and c-vectors immediately imply the sign-coherence property,
stating that for any non-kissing facet F ∈ Cnk(Q̄):

• for any ω ∈ F , all coordinates of the c-vector c(ω ∈ F ) have the same sign,
• for a ∈ Q0, the ath coordinates of all g-vectors g(ω) for ω ∈ F have the same sign (otherwise,

the corresponding walks would kiss at v).
In particular, a c-vector is called positive when all its coordinates are non-negative and negative when
all its coordinates are non-positive.

Remark 10.33. There is a subtle relation between c-vectors and strings. Indeed, c-vectors are multi-
plicity vectors of the vertex multisets of some strings of Q̄, but:

• not all strings are distinguishable (see Definition 10.7 and Proposition 10.8), and
• distinct distinguishable strings may have identical vertex multisets.

The g- and c-vectors have been designed so that the following statement holds, see Figure 10.10.

Proposition 10.34. For any non-kissing facet F ∈ Cnk(Q̄), the set of g-vectors g(F ) and the set of
c-vectors c(F ) form dual bases.

Finally, the g-vectors of the walks involved in a flip satisfy the following linear dependence.

Lemma 10.35. The g-vectors of the walks ω, ω′, µ, ν involved in the flip of Proposition 10.10 satisfy
the linear dependence g(ω) + g(ω′) = g(µ) + g(ν).
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10.3.2 Non-kissing fans
We now present a fan realization of Cnk(Q̄). Note that it was constructed in [MP19] for dissection
quivers and in [GM17a] for grid quivers. Both constructions extend the type A Cambrian fans of
N. Reading and D. Speyer [RS09] obtained for path quivers with no relations.

Theorem 10.36. For a locally gentle quiver Q̄ with finite non-kissing complex Cnk(Q̄), the collection
of conesFg(Q̄) :=

{
R≥0 g(F ) | F non-kissing face of Cnk(Q̄)

}
forms a complete simplicial fan, that

we call the non-kissing fan of Q̄, or g-vector fan of Q̄.

Remark 10.37. Call c-vector fan the fan Fc(Q̄) defined by the arrangement of the hyperplanes or-
thogonal to the c-vectors of C(Q̄). Be aware that contrarily to the g-vector fan whose rays are the
g-vectors, the c-vectors are not the rays but the normal vectors of the hyperplanes of the c-vector fan.
By Proposition 10.34, any non-maximal cone of Fg(Q̄) is supported by an hyperplane orthogonal to
a c-vector of C(Q̄). The g-vector fan Fg(Q̄) thus coarsens the c-vector fan Fc(Q̄). Observe how-
ever that the c-vector fan Fc(Q̄) is not necessarily a Coxeter arrangement of finite type, it is not even
always simplicial.

To illustrate Theorem 10.36 and Remark 10.37, we have represented in Figure 10.11 the c-vector
fan Fc(Q̄) and the g-vector fan Fg(Q̄) for two specific quivers. We use the classical projection
to represent 3-dimensional fans: the fan is intersected with the unit sphere and stereographically
projected to the plane from the pole in direction (1, 1, 1).

3

2 1

1

2

3

Figure 10.11: Stereographic projections of the c-vector fans Fc(Q̄) (red, left) and the g-vector
fans Fg(Q̄) (blue, middle) for two specific quivers. The 3-dimensional fan is intersected with the
unit sphere and stereographically projected to the plane from the pole in direction (1, 1, 1). Note that
the g-vector fan is supported by the c-vector fan (right).
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10.3.3 Non-kissing associahedra
We now construct a polytopal realization of the g-vector fanFg(Q̄). This construction is inspired from
classical associahedra, constructed by J.-L. Loday [Lod04] and C. Hohlweg and C. Lange [HL07]
and the previously constructed accordiohedra of [MP19]. In contrast, it closes the question of the
polytopality of the g-vector fan of a grid quiver remained open in [GM17a] (although alternative
polytopal realizations for the grid-associahedra were constructed in [SSW17] using the dual of a nice
triangulation of an order polytope and in [McC17, Sect. 4] by a sequence of suspensions and edge
subdivisions). We start with the following notion of kissing number.

Definition 10.38. For two walks ω, ω′ on Q̄, let κ(ω, ω′) be the number of kisses of ω to ω′. Note
that kisses are counted with multiplicities if ω or ω′ pass twice through the same substring. The kiss-
ing number of ω and ω′ is KN(ω, ω′) := κ(ω, ω′) + κ(ω′, ω). Since Cnk(Q̄) is finite, we can define
the kissing number of a walk ω on Q̄ as KN(ω) :=

∑
ω′ KN(ω, ω′), where the sum runs over all

walks ω′ on Q̄.

The fundamental property of these kissing numbers are their behavior under the flip operation.

Lemma 10.39. The kissing number KN of the walks ω, ω′, µ, ν involved in the flip of Proposition 10.10
satisfy the inequality KN(ω) + KN(ω′) > KN(µ) + KN(ν).

The following statement thus follows from the combination of Lemmas 10.35 and 10.39 with the
characterization of polytopal realizations of a simplicial fan of Proposition 7.28.

Theorem 10.40. For a locally gentle quiver Q̄ with finite non-kissing complex Cnk(Q̄), the g-vector
fan Fg(Q̄) is the normal fan of the non-kissing associahedronAsso(Q̄) defined equivalently as:

(i) the convex hull of the points
∑

ω∈F KN(ω) c(ω ∈ F ) for all facets F ∈ Cnk(Q̄), or
(ii) the intersection of the halfspaces

{
x ∈ RQ0 | 〈g(ω) |x〉 ≤ KN(ω)

}
for all walks ω on Q̄.

Remark 10.41. For path quivers with no relation, we recover the associahedra of C. Hohlweg and
C. Lange [HL07]. The latter are obtained by deleting inequalities in the facet description of the
classical permutahedron. For an arbitrary locally gentle quiver Q̄, the natural generalization of the
permutahedron is the zonotope Zono(Q̄) :=

∑
σ[−mσ,mσ] obtained as the Minkowski sum of the

multiplicity vectors of all distinguishable strings (or equivalently of all c-vectors, with multiplicity).
In contrast to the case of path quivers with no relations, observe that:

• The oriented graph of Zono(Q̄) is not always the Hasse diagram of a lattice, as observed
in [McC17, Rem. 6.2]. The lattice of biclosed sets Bic(Q̄) was designed in [McC17] to play the
role of this missing lattice structure on Zono(Q̄).

• The non-kissing associahedron Asso(Q̄) is not always obtained by deleting inequalities in the
facet description of the zonotope Zono(Q̄). The question to characterize the quivers for which
it happens remains open. As shown in [PPP17], a sufficient (but not necessary) condition is that
there is no two mutually kissing walks (i.e. such that κ(ω, ω′)κ(ω′, ω) > 0). This includes the
situation of the accordion complex of a disk, treated in [MP19].

To illustrate Theorem 10.40 and Remark 10.41, we have represented in Figure 10.12 the non-
kissing associahedronAsso(Q̄) and the zonotope Zono(Q̄) for two specific quivers.

To conclude, we observe that our realization of the non-kissing complex has the following relevant
property regarding the non-kissing lattice studied in Section 10.2.

Proposition 10.42. When oriented in the linear direction ω := (−1, . . . ,−1) ∈ RQ0 , the graph of
the non-kissing associahedronAsso(Q̄) is (isomorphic to) the increasing flip graph of Q̄.
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Figure 10.12: The zonotope Zono(Q̄) (red, left) and the non-kissing associahedron Asso(Q̄) (blue,
middle) for two specific quivers. Observe that the facet defining inequalities of Asso(Q̄) are not
necessarily facet defining inequalities of Zono(Q̄) (right).

10.3.4 Type cones of non-kissing fans
We now briefly discuss how the type cone approach presented in Section 7.3 for the g-vector fans
of finite type cluster algebras can be partially adapted to the g-vector fans of non-kissing complexes.
More details can be found in [PPPP19].

First, applying Definition 7.29 and Lemma 10.35, we obtain the following description of the type
cone of the g-vector fan Fg(Q̄) for any gentle quiver Q̄. It lives in the vector space RW(Q̄) indexed
by the setW(Q̄) of all walks on Q̄.

Corollary 10.43. For any non-kissing finite gentle quiver Q̄, the type cone of Fg(Q̄) is given by

TC
(
Fg(Q̄)

)
=

{
h ∈ RW(Q̄)

∣∣∣∣ hω = 0 for any improper walk ω
hω + hω′ > hµ + hν for any exchangeable walks ω, ω′

}
,

where the walks µ and ν for two exchangeable walks ω, ω′ are defined in Proposition 10.10.

For instance, the type cone of the fan of Figure 10.11 (top) lives in R8 and has a linearity space of
dimension 3. It has 5 facet-defining inequalities (given below), which correspond to the flips described
in Proposition 10.45 and Theorem 10.46 and illustrated in Figure 10.13 (left).

walks

g-vectors

[
1
0
0

] [
0
1
0

] [
0
0
1

] [
1
−1
0

] [
0
1
−1

] [
−1
0
0

] [
0
−1
0

] [
0
0
−1

]
facet 0 −1 1 0 1 0 0 0 A

defining 0 1 0 0 −1 0 0 1 B

inequalities −1 0 0 1 1 0 0 −1 C

1 0 0 −1 0 0 1 0 D

0 0 0 1 0 1 −1 0 E
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The type cone of the fan of Figure 10.11 (bottom) lives in R11 and has a linearity space of dimen-
sion 3. It has 9 facet-defining inequalities (given below), which correspond to the flips illustrated in
Figure 10.13 (right). In particular, it is not simplicial.

walks

g-vectors

[
1
0
0

] [
0
1
0

] [
0
0
1

] [
1
−1
0

] [
1
0
−1

] [
0
−1
1

] [
0
1
−1

] [
−1
0
1

] [
−1
0
0

] [
0
−1
0

] [
0
0
−1

]
facet −1 1 0 0 1 0 −1 0 0 0 0 A

defining 1 0 0 0 −1 0 0 0 0 0 1 B

inequalities 0 0 0 1 −1 0 1 0 0 0 0 C

1 0 −1 −1 0 1 0 0 0 0 0 D

0 0 0 −1 1 0 0 0 0 1 −1 E

0 0 1 0 0 −1 0 0 0 1 0 F

0 0 0 1 0 −1 0 1 0 0 0 G

0 0 0 0 0 1 0 −1 1 −1 0 H

0 −1 0 0 0 0 1 1 −1 0 0 K

D

A C E

B

B F

A
D E

H

K C G K

Figure 10.13: The facet-defining inequalities of the type cone TC
(
Fg(Q̄)

)
of the non-kissing fan,

represented on the Auslander Reiten quiver of the gentle algebra of Q̄. While they correspond to
meshes on the left, they are not as clear in the general case as on the right.

As illustrated in this last example, the type cone of the non-kissing fan is not always simplicial
and we do not always understand its extremal adjacent pairs. However, the situation is simpler for the
following special family of gentle quivers, that contains in particular the grid and dissection quivers
of [McC17, GM18], thus the classical associahedron.

Definition 10.44. A gentle quiver Q̄ is called:
(i) 2-acyclic if it contains no cycle of length 2,

(ii) brick if it satisfies the following three equivalent conditions:
• any (non necessarily oriented) cycle of Q̄ contains at least two relations in I ,
• any string of Q̄ is distinguishable,
• no walk on Q̄ is self-kissing.
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For a string σ of Q̄, we denote by σ
�

(resp. σ�) the unique string of the blossoming quiver Q̄`

of the form σ
�

= σα−1
1 α2 . . . α` (resp. σ� = σα1α

−1
2 . . . α−1

` ) with ` ≥ 1 and α1, . . . , α` ∈ Q1 and
such that t(α`) (resp. s(α`)) is a blossom of Q̄`. These notations are motivated by the representation
of strings used in [BR87, PPP17], and the terminology usually says that σ

�
(resp. σ�) is obtained by

adding a hook (resp. a cohook) to σ. We define similarly

�

σ (resp. �σ). The walk

�

(σ
�

) = (

�

σ)
�

of Q̄ is simply denoted by

�

σ
�

, and we define similarly �σ�,

�

σ� and �σ
�

.

Proposition 10.45. For any brick and 2-acyclic gentle quiver Q̄ and any string σ on Q̄, the walks �σ�
and

�

σ
�

are exchangeable with distinguished substring σ.

We use these particular exchangeable pairs to describe the type cone of the g-vector fan Fg(Q̄).

Theorem 10.46. For any brick and 2-acyclic gentle quiver Q̄, the type coneTC
(
Fg(Q̄)

)
is simplicial

and the exchanges of Proposition 10.45 precisely correspond to the extremal adjacent pairs of the
g-vector fan Fg(Q̄).

Combining Corollary 7.33 and Theorem 10.46, we derive the following description of all poly-
topal realizations of the g-vector fan Fg(Q̄) for brick 2-acyclic gentle quivers. They are parametrized
by the positive orthant RS(Q̄)

>0 indexed by the set S(Q̄) of strings of Q̄.

Theorem 10.47. For any brick and 2-acyclic gentle quiver Q̄ and any ` ∈ RS(Q̄)
>0 , the polytope

R`(Q̄) :=

{
z ∈ RW(Q̄)

∣∣∣∣ z ≥ 0 and zω = 0 for any staight walk ω
z �σ� + z �

σ
� − z �

σ� − z �σ
� = `σ for all σ ∈ S(Q̄)

}

is a realization of the non-kissing fan Fg(Q̄). Moreover, the polytopes R`(Q̄) for ` ∈ RS(Q̄)
>0 describe

all polytopal realizations of Fg(Q̄).

The question to describe the type cone of the g-vector fan Fg(Q̄) for arbitrary gentle quivers
remains open. See Figure 10.13 (right) for a surprising example.

10.3.5 Coordinate sections and projections
We conclude the chapter with a natural operation on quivers that illustrates a result of [PPS18]. Intu-
itively, we blind a strict subset of the vertices of a quiver, meaning that we forbid peaks and deeps at
these blinded vertices. More formally, this corresponds to the following operation.

Definition 10.48. Consider a locally gentle quiver Q̄ = (Q, I) and a vertex a ∈ Q0. Denote by
Ka := {αβ |α, β ∈ Q1 with t(α) = s(β) = a} the set of paths of length 2 with middle vertex a and
let Ia := Ka ∩ I and Ja := Ka r I . We denote by Q̄GvH = (QGaH, IGaH) the quiver where

(QGaH)0 = Q0 r {a}, (QGaH)1 = {α ∈ Q1 | s(α) 6= a 6= t(α)} ∪ Ja,
IGaH = {σ ∈ I r Ia | s(σ) 6= a 6= t(σ)} ∪ {αβγ |αβ ∈ I and βγ ∈ Ja or αβ ∈ Ja and βγ ∈ I} .

We say that Q̄GaH is obtained by blinding a in Q̄. Finally, for a subset A = {a1, . . . , a`} of Q0, we
let Q̄GAH := ((Q̄Ga1H)Ga2H . . . )GaH̀.

The reader is invited to check that the blinded quiver QGaH is still a locally gentle quiver, that
(QGaH)` = (Q`)GaH, and that Q̄GAH is independent of the ordering of A.
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Figure 10.14: All possible coordinate projections of the non-kissing associahedra Asso(Q̄) for two
specific quivers.

Proposition 10.49. Consider a locally gentle quiver Q̄, a subset A ( Q0, and the quiver Q̄GAH.
(i) The non-kissing complex Knk(Q̄GAH) is isomorphic to the subcomplex of the non-kissing com-

plex Knk(Q̄) induced by walks with no corner at a vertex of A.
(ii) The g-vector fan Fg(Q̄GAH) is the section

{
C ∈ Fg(Q̄)

∣∣C ⊆ A⊥} of the g-vector fan Fg(Q̄)
by the coordinate plane A⊥ :=

{
x ∈ RQ0

∣∣ 〈ea |x〉 = 0 for all a ∈ A
}

.
(iii) WhenKnk(Q̄) is finite, the normal fan of the projection of the non-kissing associahedronAsso(Q̄)

to the coordinate plane A⊥ is the g-vector fan Fg(Q̄GAH).

To illustrate Proposition 10.49, we have represented in Figure 10.14 all possible coordinate pro-
jections of the non-kissing associahedraAsso(Q̄) for two specific quivers.

Example 10.50. Consider a triangulation T of a convex polygon and a dissection D whose edges are
included in T . Then the dissection quiver Q̄(D) coincides with the blinded quiver Q̄(T )GAH where A
are the vertices of Q̄(T ) corresponding to the diagonals of T not in D. In particular, the g-vector fan
of any dissection quiver Q̄(D) is a section of the g-vector fan of a type A quiver, and is realized by a
projection of the associahedron of [HPS18]. See [PPS18].
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To conclude, we gather some research directions motivated by the material presented in this doc-
ument. Our presentation is brief and sketchy, as there is still quite some work to make these ideas
precise. We believe that some of the problems presented here are good entry points to the topic and
provide research projects suitable for Master and PhD students.

A PERMUTREEHEDRA AND QUOTIENTOPES

A.1 Permutreehedra, quotientopes and removahedra
All permutreehedra of Chapter 3 and all quotientopes of Chapter 4 belong to the following family of
polytopes introduced by A. Postnikov in [Pos09].

Definition A.1 ([Pos09, PRW08]). A generalized permutahedron is a polytope whose normal fan
coarsens the braid fan F(n).

This implies in particular that they are all obtained by gliding inequalities of the permutahe-
dron Perm(n) orthogonally to their normal vectors. However, there is an apparent contrast between
our constructions of the permutreehedra in Section 3.2.2 and of the quotientopes in Sections 4.2.2
and 4.2.3. Namely, the permutreehedra are constructed in Section 3.2.2 by gliding the inequalities out-
side the permutahedron Perm(n), while the quotientopes are constructed in Sections 4.2.2 and 4.2.3
by gliding the inequalities inside the permutahedron Perm(n). In particular, the fan refinements
translates to the following polytope inclusions:

1. for permutahedra, if F(δ) refines F(δ′), then PT(δ) is contained in PT(δ′). For example, the
permutahedron Perm(n) = PT( n) is contained in the associahedron Asso(n) = PT( n)
which is contained in the cube PT( n). See Proposition 3.19 and Figure 3.6.

2. for quotientopes, if F(≡) refines F(≡′), then QTf (≡) contains QTf (≡′). For example, the
permutahedron (quotientope of the finest congruence) contains all quotientopes, while the cube
(quotientope of the coarsest congruence) is contained in all quotientopes (as usual, we only
consider the congruences ≡ such that F(≡) is essential). See Remark 4.9 and Figure 4.5.

In fact, as the classical construction of the associahedron [Lod04] and its generalizations [HL07, LP18,
Pil13], the permutreehedra are obtained by just forgetting some facets of the permutahedronPerm(n),
and thus belong to the following special family of polytopes studied in [Pil17].

Definition A.2 ([Pil17]). A removahedron is a polytope obtained by deleting inequalities from the
facet description of the permutahedron Perm(n).

The similar construction fails for arbitrary quotientopes: already when n = 4, there exists a lattice
congruence ≡ of the weak order on Sn for which the quotient fan F(≡) is not the normal fan of
the corresponding removahedron (defined by all inequalities of the permutahedron Perm(n) normal
to the rays of F(≡)). In fact, we believe that this gives one more characterization of the permutree
congruences (the equivalence between the points (i), (ii) and (iii) below is known and was already
mentioned in Example 4.5).

Conjecture A.3. Consider a lattice congruence ≡ of the weak order on Sn whose arcs include the
basic arcs (i, i+ 1, n,∅) so that F(≡) is essential. Then the following conditions are equivalent:

(i) ≡ is the δ-permutree congruence ≡δ for some decoration δ ∈ { , , , }n,
(ii) the arcs of I≡ are all arcs that do not cross some fixed vertical walls above and/or below the

points of [n],
(iii) the forcing maximal arcs not in I≡ are all of the form (i−1, i+1, n,∅) and (i−1, i+1, n, {i}),
(iv) the quotient fan F(≡) is the normal fan of its removahedron, defined by all inequalities of the

permutahedron Perm(n) normal to the rays of F(≡).
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A.2 Permutreehedra for finite Coxeter groups
As illustrated by Chapter 3 and Conjecture A.3, the permutree congruences are very relevant and well-
behaved lattice congruences of the weak order on Sn. It is tempting to explore similar congruences of
the weak order on any arbitrary finite Coxeter group, in the same spirit as the Cambrian congruences
defined by N. Reading in [Rea06]. For this, recall that for any finite Coxeter group W , the Cambrian
congruences can be characterized as the minimal lattice congruences of the weak order on W (in the
congruence lattice of the weak order on W ) that contract exactly one boundary of each polygon of the
W -permutahedron containing the fundamental point. This motivates the following definition, which
fits to the type A situation [PP18, Rem. 2.16].

Definition A.4. For any finite Coxeter group W , the permutree congruences are the minimal lattice
congruences of the weak order on W that contract some (either none, one, or both) of the boundaries
of each polygon of the W -permutahedron containing the fundamental point.

Note that the non-trivial (i.e. non-square) polygons of theW -permutahedron containing the funda-
mental point correspond to the non-trivial rank 2 standard parabolic subgroups of W , or equivalently
to the edges of the Dynkin diagram of W . Therefore, the permutree congruences of the weak order
on W can be encoded by a decoration δ on the edges of the Dynkin diagram of W .

As any lattice congruence of the weak order on W , such a permutree congruence ≡δ defines a
quotient fan F(δ) obtained by glueing together the chambers of the Coxeter arrangement correspond-
ing to elements in the same congruence class for ≡δ. One of the natural questions is to realize the
quotient fan F(δ) using the same method as in Section 3.2.2.

Conjecture A.5. For any permutree congruence ≡δ of any finite Coxeter group W , the quotient
fan F(δ) is the normal fan of the corresponding removahedron.

Note that this conjecture holds in three particular situations:
• in type A for any permutree congruence by the construction of Section 3.2.2,
• in typeB for any permutree congruence by recent work on typeB lattice congruences [PPR20],
• in any type for the Cambrian congruences of [Rea06] by the construction of the generalized

associahedra of [HLT11].

Another promising direction of research is to explore the corresponding Coxeter combinatorics.
The minimal and maximal elements of W in their congruence classes should be interpreted in terms
of specific properties of their inversion sets and of their reduced expressions, exactly as aligned and
sortable elements for the Cambrian congruences. Bijections with other objects (in particular general-
izations of non-crossing partitions of W ) should also appear using canonical join representations as
in Section 4.1.

Finally, one can even imagine to extend permutree congruences beyond Coxeter groups, in at least
two relevant situations:

• On the one hand, Definition A.4 extends to an arbitrary hyperplane arrangementH whose poset
of region is a lattice, and Conjecture A.5 could still hold replacing permutahedra by any zono-
tope realizing H, or even any polytopal realization of H. Indeed, it turns out that the type A
(and even type B) permutreehedra can be obtained as removahedra starting not only from the
classical permutahedron Perm(n), but from any polytopal realization of the braid arrangement.

• On the other hand, following the work of [Pil13] on signed tree associahedra, it is certainly
possible to define a relevant notion of graph permutreehedra which would provide a common
generalization of the graph associahedra of [CD06] and of the permutrees of [PP18]. Given
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a graph whose vertices are decorated by { , , , }, the G-permutreehedron would have
vertices corresponding to trees with nodes labeled by the vertices of G and local rules around
each node given by the decoration of the corresponding vertex in G. The classical graph asso-
ciahedra would correspond to the case when each vertex is decorated by , and the classical
permutrees would correspond to the case when the graph is a path. While we already have a
natural definition for chordful graphs (a.k.a. block graphs, i.e. containing all chords of their
cycles), the situation of general graphs is still mysterious.

A.3 Quotientopes for hyperplane arrangements
Consider a central hyperplane arrangement H defining a fan F , and a distinguished base region B
of F . Recall from Section 5.3.1 that the poset of regions R(H, B) is the poset whose elements are
the regions of F ordered by inclusion of separating sets (the set of hyperplanes ofH that separate the
given region form the base regionB). By the work of A. Björner, P. Edelman and G. Ziegler [BEZ90],
we know that R(H, B) is always a lattice when the fan F is simplicial, and that the chamber B must
be simplicial for R(H, B) to be a lattice. See also the survey of N. Reading [Rea16b] for further
conditions, in particular a discussion on tight arrangements. We assume here that R(H, B) is a lattice.

Consider now a lattice congruence ≡ of the poset of regions R(H, B). In the same spirit as
Theorem 4.6, N. Reading proved in [Rea05] that the lattice congruence≡ defines a complete fanF(≡)
obtained by glueing together the cones of the fan F that belong to the same congruence class of ≡.
Even if it is certainly a bit adventurous at this point, we conjecture that the polytopality of this quotient
fan holds at this level of generality.

Conjecture A.6. For any central hyperplane arrangementH defining a fan F and any base region B
of F such that the poset of regions R(H, B) is a lattice, and for any lattice congruence ≡ of the poset
of regions R(H, B), the quotient fan F(≡) is the normal fan of a polytope.

In the construction of Section 4.2.2 and its proof presented in [PS19], we benefited from three
specific features of the type A Coxeter arrangement:

• we used the simpliciality of the arrangement,
• we used the action of Sn to transport our understanding of the linear dependencies from the

initial chamber to any other chamber,
• these linear dependencies are very simple in type A (only 3 or 4 terms and 0/1 coefficients).

These properties hold for any finite Coxeter group (for the last property though, the linear dependen-
cies can get up to 5 terms, and some coefficients equal to 2 appear in non-simply-laced types). This
suggests to focus the search for a construction for Conjecture A.6 to Coxeter arrangements.

The next case beyond type A is the type Bn arrangement. The combinatorics of the congru-
ences of the type Bn weak order can be described in terms of centrally symmetric configurations
of arcs of type A2n−1. In particular, some type Bn lattice quotients can be understood as cen-
trally symmetric type A2n−1 quotients, and the corresponding type Bn quotient fans can be ob-
tained as normal fans of the intersection of type A2n−1 quotientopes with the centrally symmet-
ric plane

{
x ∈ R2n−1

∣∣xi = x2n−i for i ∈ [n− 1]
}

. However, the forcing relations among type Bn
shards are more subtle than just the centrally symmetric forcing relations of type A2n−1, so that most
type Bn quotients have no type A2n−1 counterparts (type B2 already provides interesting examples).
Nevertheless, adapting the approach of Section 4.2.3, we have recently managed to realize all typeBn
quotient fans [PPR20] (the proof requires some polishment, but the construction has at least been
computationally confirmed for the 4, 20, 72 and 232 type Bn principal congruences for n = 2, 3, 4
and 5, and thus for all type Bn lattice congruences up to n = 5).
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Note that the tool of shards is still available in the general context of hyperplane arrangements.
Shards are defined geometrically as pieces of the hyperplanes ofH, obtained after certain cuts. Namely,
for each codimension 2 face F of the arrangement, consider the subarrangementHF of all hyperplanes
of H containing F , and cut all non-basic hyperplanes of HF by the basic hyperplanes of HF (i.e. the
hyperplanes bounding the region ofHF containing the base region B). The shards are the pieces that
remain once the cuts corresponding to all codimensioin 2 faces ofH have been performed. Moreover,
these cuts define a forcing graph on shards (which might have cycles), and the congruences of the
poset of regions R(H, B) are closely related to the subsets of shards that are closed in this graph (we
skip here the precise statements, see [Rea16b, Sect. 9-7.3] for details).

The first tempting direction to prove Conjecture A.6 in full generality is to follow the approach
of Section 4.2.2. The starting observation is that the fan F of any hyperplane arrangement H is the
normal fan of a zonotope described:

• either as the Minkowski sum of arbitrary normal vectors of the hyperplanes ofH,
• or by the inequalities of the form 〈r |x〉 ≤ hr for each ray r of F , where hr is the sum of the

distances of r to all hyperplanes ofH.
Indeed, this holds for a single hyperplane H and therefore for a hyperplane arrangement since the nor-
mal fan of a Minkowski sum is the common refinement of the normal fans of the summands. The idea
hidden behind the construction of Section 4.2.2 is to split the contribution of each hyperplane H ∈ H
to the height hr (i.e. the distance of r toH) into the shards contained inH . To mimic this for arbitrary
hyperplane arrangements, we initially thought that we could use the subarrangement of H formed by
the hyperplanes that cut the hyperplane H . Namely, a shard Σ should contribute to a ray r only if r
lies in the region containing Σ in the subarrangement formed by the hyperplanes ofH cutting Σ. This
precisely corresponds to the description of Section 4.2.2 when H is the braid arrangement. However,
already in type B3, it might happen that a ray that is not in a hyperplane H lies outside the regions of
all the shards contained in H . The precise repartition of the contributions thus remains unclear.

Another tempting direction to Conjecture A.6 is to follow the approach of Section 4.2.3. The
difficulty here is to create the shard polytope of a given shard Σ, i.e. a polytope whose normal fan
would contain the shard Σ and would be contained in the union of the shards forced by Σ. In the
construction of Section 4.2.3 in typeA, we use the very convenient combinatorial model of alternating
matchings, and one of the key hidden points was that all differences between the characteristic vectors
of two alternating matchings connected by an edge were roots. In the general situation of hyperplane
arrangements, we will have to play with the geometry of the normal vectors of the hyperplanes.

A.4 Type cones of quotient fans
We have seen in Section 7.3 that it is sometimes possible to understand the type cone of a fan (i.e. the
space of all its polytopal realizations), and that this approach is particularly interesting when this type
cone is simplicial as in Sections 7.3.2 and 10.3.4.

The type cones of quotient fans are particularly tempting to study since:
• coarsenings of fans translate to faces of type cones: ifF refines G, thenTC(G) is a face ofTC(F).
• the type cone of the braid arrangement is well understood: it is given by the space of submodular

functions on [n], i.e. functions h : 2[n] → R such that h(A) + h(B) > h(A ∩ B) + h(A ∪ B)
for any distinct A,B ⊆ [n].

Unfortunately, we have no description of the type cone of quotient fans at the moment. We do not
even know which quotient fans have a simplicial type cone. Another intriguing question is the relation
between the shard polytopes of Section 4.2.3 and the rays of the type cone of the quotient fans.
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A first step to approach these type cones is to understand them for subfamilies of quotient fans.
For instance, the permutree fans of Chapter 3 is already interesting. In this case, one can show that
the wall-crossing inequalities are just some submodular inequalities.

Proposition A.7. Consider a decoration δ ∈ { , , , }n and two proper subsets R and R′

of [n]. If the two rays r(R) and r(R′) are exchanged in two adjacent maximal cones C and C ′ of the
δ-permutree fan, then both r(R ∩ R′) and r(R ∪ R′) are also rays of both C and C ′. Therefore the
facet defining inequalities of the type cone of the δ-permutree fan are some submodular inequalities.

Understanding precisely which pairs of subsets R,R′ of [n] correspond to a facet of the type cone
of the δ-permutree fan is more challenging. The first step is to understand the pairs of exchangeable
rays of the δ-permutree fan.

Lemma A.8. A proper subset R of [n] corresponds to a ray of the δ-permutree fan if and only if for
all i < j < k, if i, k ∈ R and j /∈ R then δj ∈ { , }, and if i, k /∈ R and j ∈ R then δj ∈ { , }.

Lemma A.9. Two proper subsets R and R′ of [n] satisfying the conditions of Lemma A.8 correspond
to two exchangeable rays of the δ-permutree fan if and only if (up to exchanging R and R′):

• i := max(RrR′) < min(R′ rR) =: j,
• δi 6= or |RrR′| = 1, and δj 6= or |R′ rR| = 1,
• for all i < k < j, if k ∈ R ∩R′ then δk ∈ { , } and if k /∈ R ∩R′ then δk ∈ { , }.

We now arrive to the following conjectural description of the type cone of the δ-permutree fan.

Conjecture A.10. The submodular inequality given by two proper subsets R and R′ of [n] defines a
facet of the type cone of the δ-permutree fan if and only if R and R′ satisfy:

• the conditions of Lemma A.8 to be rays of the δ-permutree fan,
• the conditions of Lemma A.9 to be exchangeable rays of the δ-permutree fan,
• the additional condition δi = or |RrR′| = 1, and δj = or |R′ rR| = 1.

This conjecture (checked computationally) would imply in particular the following one.

Conjecture A.11. The type cone of the δ-permutree fan is simplicial if and only if δ ∈ { , , }n.

A.5 Schröderization for quotientopes
We finally briefly mention a direction of research related to the faces of the quotientopes in relation to
the construction of Hopf algebras on faces of all quotientopes.

As already mentioned, it is well known that the faces of the permutahedron Perm(n) are in bijec-
tion with ordered partitions of [n] and admit a lattice structure, called pseudopermutahedron [KLN+01]
or facial weak order [DHP18], extending the classical weak order on permutations. See Chapter 5.
Moreover, any lattice congruence≡W of the classical weak order gives rise to a lattice congruence≡F

of the facial weak order, whose classes correspond to the faces of the quotientope QT(≡W). The
lattice structure of the faces of the quotientope are therefore clearly understood via lattice quotients of
the facial weak order.

In contrast, the construction of Hopf algebra structures on all faces of all quotientopes still requires
some work. In [Cha00], F. Chapoton constructed Hopf algebras on all faces of the permutahedra,
of the associahedra and of the cubes generalizing the Hopf algebras presented in Section 1.3. This
construction was extended to Hopf algebras on faces of all permutreehedra (simultaneously) in [PP18].
It would be interesting to develop combinatorial models similar to non-crossing arc diagrams and to
construct Hopf structures similar to that of Section 4.3 for all faces of all quotientopes.
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B PIPE DREAMS AND SUBWORD COMPLEXES

B.1 Lattices of acyclic pipe dreams
We have seen in Chapter 2 that the increasing flip graphs on acyclic k-twists is the Hasse diagram
of the quotient of the weak order by the k-twist congruence (defined by the fibers of the k-twist
correspondence). This is a specific example of a more general statement on pipe dreams. Recall that a
pipe dream P is a filling of a triangular shape with crosses and elbows so that all pipes entering
on the left side exit on the top side. We only consider reduced pipe dreams, where two pipes cross at
most once. We label the pipes of P by [m] from bottom to top, and denote ω(P ) the order of the pipes
on the top of the triangle, from left to right. For instance, a (k, n)-twist can be seen as a pipe dream
with n+2k pipes and ω(P ) = (2k+n) . . . (k+n+1)(k+1) . . . (k+n)k . . . 1. The contact graph of a
pipe dream is the directed multigraph whose vertices are the pipes and with an arc from the SE-pipe to
the WN-pipe of each elbow. A pipe dream is acyclic if its contact graph is. Pipe dreams are connected
via flips, exchanging an elbow between two pipes with the unique cross between these two pipes. We
observed the following statement in joint work with N. Bergeron and C. Ceballos (unpublished).

Theorem B.1. For any permutation ω ∈ Sm, the increasing flip graph on the acyclic pipe dreams P
with ω(P ) = ω is a lattice quotient of the interval [e, ω] of the weak order.

The idea is that a pipe dream corresponds to an interval of the weak order given by the linear
extensions of its contact graph, which all belong to the interval [e, ω]. This can also be phrased using
an insertion algorithm, similar to that of Section 2.1.2. This statement can be extended to subword
complexes in arbitrary finite Coxeter groups as follows.

Conjecture B.2. For any finite Coxeter groupW , any Coxeter element c ofW and any elementw ∈W ,
the increasing flip poset on the acyclic facets of the subword complex Csub(w◦(c), w) is a lattice quo-
tient of the interval [e, w] of the weak order on W .

Here, a facet F of the subword complex Csub(w◦(c), w) is called acyclic if its root configura-
tion R(F ) is pointed. The hope is that for any facet F of Csub(w◦(c), w), the set of elements w ∈W
such that the root cone R≤0R(F ) contains the chamber R≥0w(∆) forms an interval of the weak or-
der, and that these intervals define a lattice congruence of the weak order on the interval [e, w]. This
conjecture is confirmed by computational experiments. A first combinatorial objective is to study
Conjecture B.2 in type A, i.e. for all Cambrian shapes described in the preprint version of [Pil18].

Note that Conjecture B.2 is a particular instance of several tempting statements on lattice proper-
ties of subword complexes. Indeed, one can vary several parameters:

• consider only pipe dreams in type A or all subword complexes for any finite Coxeter groups,
• consider only the acyclic facets or all facets of the subword complex,
• consider only the specific words w0(c) or all possible words,
• consider all increasing flips or only chute moves (certain very specific flips).

The general situation where we consider the increasing flip order on all facets of the subword com-
plex Csub(M) is not necessarily a lattice quotient as discussed in Section 8.2.2.2. In Conjecture B.2,
we use both that the specificity of the word w◦ defining the subword complex Csub(w◦(c), w) and the
acyclicity of the facets. Another situation where we might obtain a lattice is the situation when we
consider all facets but only the chute moves.
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B.2 Compatibility degrees for subword complexes
Compatibility degrees and denominator vectors in finite type cluster algebras. As al-
ready mentioned in Theorem 7.2, for any initial seed (B◦, P◦, X◦), any cluster variable x ofA(B◦, P◦)
can be written as a Laurent polynomial x = F (X◦)/

∏
y∈X◦ y

dyx , where dyx ∈ N and F is a poly-
nomial not divisible by any variable of X◦. This enables to define the following denominator vector
associated to each cluster variable.

Definition B.3 ([FZ02]). The d-vector d(B◦, x) of a cluster variable x ∈ A(B◦, P◦) is the vec-
tor d(B◦, x) :=

∑
y∈X◦ dyxαy of exponents of the denominator of x written as a Laurent polynomial

in the variables of X◦. Note that the d-vector of an initial cluster variable x ∈ X◦ is the correspond-
ing negative root d(B◦, x) = −αx. Finally, we denote by d(B◦,Σ) := {d(B◦, x) |x ∈ Σ} the set of
d-vectors of a seed Σ of A(B◦, P◦).

For finite type cluster algebras, the denominator vectors are extremely useful. Namely, it was
proved in [FZ03a] that if we start from a finite type bipartite initial seed:

• the d-vectors define a bijection from cluster variables to almost positive roots, and
• the coefficient dyx coincides with the compatibility degree (αy ‖d(B◦, x)) of [FZ03b, Sect. 3.1].

These results were extended to any initial acyclic seed (see e.g. [Kel11, Thm. 3.1 & Sect. 3.3]), and
the connection between denominator vectors and compatibility degrees even hold for any initial seed
(acyclic or not), as shown in [CP15b]. We thus prefer the notation (x ‖ y) instead of dxy. We think of
the compatibility degree (x ‖ y) as a sort of measure of the incompatibility of the variables x and y in
the cluster complex. Namely, it enables to characterize compatible and exchangeable cluster variables.

Proposition B.4. For any distinct cluster variables x, y in a finite type cluster algebra:
(i) (x ‖ y) ≥ 0,

(ii) (x ‖ y) = 0 ⇐⇒ (y ‖x) = 0 ⇐⇒ x and y are compatible (i.e. in a common cluster),
(iii) (x ‖ y) = 1 = (y ‖x) ⇐⇒ x and y are exchangeable (i.e. in two adjacent clusters).

Moreover, the compatibility degree has the following symmetry property.

Proposition B.5. If D := [(x ‖ y)]x,y∈X (B◦) is the compatibility matrix of Cclu(B◦), and D∨ is the
compatibility matrix of the dual cluster complex Cclu(B∨◦ ), then D∨ = DT .

We conclude this short recollections on d-vectors with the following geometric conjecture, already
mentioned in [CSZ15, Qu. 5.13], and illustrated in Figure B.15. This conjecture is proved in [FZ03a]
for the bipartite initial cluster, in [Ste13] for all acyclic initial clusters, in [CSZ15, Sect. 5] for any
initial cluster in type A, and in [MP17] for any initial cluster in type B and C.

Conjecture B.6. For any finite type exchange matrixB◦, the cones {R≥0 d(B◦,Σ) |Σ seed of A(B◦)},
together with all their faces, form a polytopal complete simplicial fan Fd(Q̄), called the d-vector fan.

Compatibility degree in root independent subword complexes. Consider now a root inde-
pendent subword complex Csub(M). For any position j ∈ [m], we can thus decompose the root r(I, j)
on the basisR(I) as r(I, j) :=

∑
i∈I λ(I, i, j)r(I, i). We are interested in the coefficients λ(I, i, j).

Proposition B.7. The coefficients λ(I, i, j) are independent of the choice of the reference facet I .

Definition B.8. The compatibility degree of two vertices i, j of Csub(M) is (i ‖ j) := (−1)i≥jλ(I, i, j).
The compatibility vector d(I, j) of a position j ∈ [m] with respect to the facet I of Csub(M) is the vec-
tor d(I, j) :=

∑
i∈I(i ‖ j)r(I, i). We denote by d(I, J) := {d(I, j) | j ∈ J} the set of compatibility

vectors of a face J of Csub(M).
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Figure B.15: The d-vector fan Fd(B◦) for all type A3 and the cyclic type C3 initial exchange ma-
trices of Figure 7.1. Each 3-dimensional fan is intersected with the unit sphere and stereographically
projected to the plane from the pole (−1,−1,−1).

Conjecture B.9. For any distinct vertices i, j of the subword complex Csub(M):
(i) (i ‖ j) ≥ 0,

(ii) (i ‖ j) = 0 ⇐⇒ (j ‖ i) = 0 ⇐⇒ i and j are compatible (i.e. in a common facet of Csub(M)),
(iii) (i ‖ j) = 1 = (j ‖ i) ⇐⇒ i and j are exchangeable (i.e. in two adjacent facets of Csub(M)).

Conjecture B.10. For any vertices i, j of Csub(M), we have (i ‖ j) aqjqi = (j ‖ i) aqiqj , where [ast]s,t∈S
is the Cartan matrix. In other words, if M∨ is the same word as M but on the dual root system, then
the compatibility matrices D := [(i ‖ j)]i,j of Csub(M) and D∨ of Csub(M∨) satisfy D∨ = DT .

Example B.11. In type A, a reference facet I of Csub(M) gives a spanning tree of [n + 1]. For any
position j /∈ I , there is a unique cycle in I ∪ j. The coefficient λ(I, i, j) is ±1 if i appears in this
cycle, and 0 otherwise. T. Manneville proved (personal notes) using braid relations on M that in
a root independent subword complex of type A, any two distinct positions are either compatible or
exchangeable. This is equivalent to Conjecture B.9 and implies Conjecture B.10.

Example B.12. For any Coxeter element c, the isomorphism of Theorem 8.26 sends the compati-
bility degree in the subword complex Csub(cw◦(c)) to the compatibility degree in the cluster com-
plex Cclu(B◦). Therefore, Conjectures B.9 and B.10 hold by Propositions B.4 and B.5.

An important property to manipulate the compatibility degrees of Definition B.8 is their behavior
with respect to the flips, meaning the relation between the compatibility degrees of two exchangeable
positions. Note that we can here perform a flip on both sides of the compatibility degree.

Proposition B.13. Consider two adjacent facets I1, I2 of Csub(M), with I1 r i1 = I2 r i2 for i1 < i2,
and a vertex j of Csub(M). Then (i1 ‖ j) + (i2 ‖ j) =

∑
i∈Xj (−1)i<i1 (i ‖ j) 〈r(I2, i1)∨ | r(I2, i)〉,

where Xj := I1 ∩ ]i1, i2[ if j /∈ ]i1, i2] and Xj := I1 r [i1, i2] if j ∈ ]i1, i2].

Conjecture B.14. Consider two adjacent facets J1, J2 of Csub(M), with J1rj1 = J2rj2 for j1 < j2,
and a vertex i of Csub(M). Then (i ‖ j1) + (i ‖ j2) =

∑
j∈Yi(−1)j<j1 (i ‖ j) 〈r(J2, j)

∨ | r(J2, j1)〉,
where Yi := J1 ∩ ]j1, j2[ if i /∈ ]j1, j2] and Yi := J1 r [j1, j2] if i ∈ ]j1, j2].

We conclude with the following extension of Conjecture B.6.

Conjecture B.15. For any facet I of a root independent subword complex Csub(M), the collection of
cones Fd(I) := {R≥0 d(I, J) | J face of Csub(M)} forms a polytopal complete simplicial fan.
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B.3 Algebraic connections of pipe dreams
To conclude on pipe dreams, let us just briefly mention two recent algebraic connections that open
many questions beyond the scope of this document.

Signaletic operads. Motivated by the natural decomposition of the product in the kATk algebra
into 2k operations observed in [Pil18], we introduced signaletic operads and their Koszul dual cite-
langis operads in [HP19], which generalize the dendriform operad (see Remark 2.33). These operads
are defined in terms of circulations of cars in a tree according to traffic signals placed at its nodes. This
simple perspective enables to define combinatorial actions of these operads on certain permutations
and posets, and to understand the corresponding free algebras on one generator. This opens several
open problems described in [HP19]. For instance, it would be interesting to extend these constructions
to the case where the cars can stop or fork at a given node, generalizing the tridendriform operad.

Pipe dreams and diagonal harmonics. In our recent joint work [BCP18] with N. Bergeron and
C. Ceballos, we made an unexpected connection between the combinatorics of the ν-Tamari lattice on
pipe dreams [PRV17] and enumerative properties of multivariate diagonal harmonics [Ber13, BPR12].
This connection uses combinatorial data on pipe dreams to interpret certain algebraic expressions
in multivariate diagonal harmonics. A lot of combinatorial properties of pipe dreams remain to be
understood to develop this promising connection.

C NON-KISSING ASSOCIAHEDRA

C.1 Sections of scattering diagrams
We conclude with a general research direction motivated by Proposition 10.49. First, as observed
in [MP19], the operation of Proposition 10.49 also makes sense for cluster algebras.

Proposition C.1. Fix an initial seed (B◦, P◦, X◦) and a subset Y◦ ⊆ X◦ of initial cluster variables.
Consider the coordinate plane Y ⊥◦ := R {ωx |x ∈ X◦ r Y◦} = {v ∈ V | 〈v |αy◦〉 = 0 for all y◦ ∈ Y◦}
and the subcomplex Cclu(B◦)GY◦H of the cluster complex Cclu(B◦) induced by the cluster variables x
whose g-vector g(B◦, x) lies in Y ⊥◦ . Then:

• the complex Cclu(B◦)GY◦H is a pseudomanifold,
• the subset Fg(Q̄)GY◦H :=

{
C ∈ Fg(Q̄)

∣∣C ⊆ Y ⊥◦ } of the g-vector fan Fg(Q̄) coincides with
its section by Y ⊥◦ , and is a realization of the restricted complex Cclu(B◦)GY◦H,

• in finite type, Fg(Q̄)GY◦H is the normal fan of the projection of theB◦-associahedronAsso(B◦)
on the coordinate plane Y ⊥◦ .

Note that this restriction operation is in fact purely geometric, and would actually make sense for
any fan which refines the coordinate fan.

We now want to discuss possible extensions of this operation to scattering diagrams, which lie at
the interface between mathematical physics, algebra, and discrete geometry. Motivated by physics,
they have received a particular attention in the cluster algebra community due to the seminal paper of
M. Gross, P. Hacking, S. Keel and M. Kontsevich [GHKK18].

We only need here a very informal and unprecise definition. A scattering diagram D is a set
of walls (codimension 1 cones) where each wall d is endowed with a scattering function fd. This
function fd should be thought of as the result of scattering a ray reaching the wall d. These functions
can be composed along paths in the scattering diagram. The main requirement of scattering diagrams
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is a coherence condition that ensures that the compositions of the scattering functions along two paths
with the same endpoints coincide.

To each rank d cluster algebra, one can associate a scattering diagram whose walls contain the
walls of the g-vector fan. In fact, there are no other wall for finite type cluster algebras and the
scattering function at each wall is a simple rational function constructed from the normal vector of the
wall (i.e. the corresponding c-vector). The following conjecture should extend Proposition C.1.

Conjecture C.2. Fix an initial seed (B◦, P◦, X◦) and any subset Y◦ ⊆ X◦ of initial cluster vari-
ables. Consider the scattering diagramD given by the cluster algebraApr(B◦) and denote byDGY◦H
the walls of D contained in the coordinate plane Y ⊥◦ defined in Proposition C.1. Then there is an
evaluation of the scattering functions fd for the walls d ∈ DGY◦H that defines a scattering structure
on DGY◦H.

Note that this procedure will in particular produce scattering diagrams for all non-kissing com-
plexes. Indeed, applying the results of Chapter 9, the non-kissing complex Knk(Q̄) of a gentle
quiver Q̄ can be seen as the non-crossing complex Knc(D,D

?) of the corresponding pair (DQ̄, D
?
Q̄

)
of dual cellular dissections on the surface SQ̄. Complete the dissection DQ̄ into a triangulation T
of SQ̄, and consider its quiver Q̄T . Again by Chapter 9, the non-kissing complex Knk(Q̄T ) can be
seen as the non-crossing complex Knc(T, T

?), which is the cluster complex Cclu(T ) of the cluster al-
gebra associated to the triangulation T of SQ̄ as defined in [FST08, FT18]. Moreover, since DQ̄ ⊆ T ,
the vertices Q0 of Q̄ are vertices of Q̄T , and the non-kissing complex Knk(Q̄) coincides with the
non-kissing complex Knk((Q̄T )GQ0H). It follows that Knk(Q̄) can be seen as the subcomplex of the
cluster complex Cclu(T ) induced by the variables whose g-vectors are contained in the coordinate
plane corresponding to Q◦. Conjecture C.2 would therefore produce a relevant scattering diagram
for Knk(Q̄).

C.2 Rays of the type cones of non-kissing fans
In Sections 7.3.2 and 10.3.4, we have seen the type cone approach to describe all polytopal realizations
of the g-vector fans of cluster algebras and non-kissing complexes. The main message is that the
facets defining inequalities of the type cone correspond to certain specific flips (meshes) that can be
identified and understood.

It is also interesting to consider the rays of the type cone. Indeed, convex combinations in the
type cone correspond to Minkowski decompositions of polytopal realizations. In other words, any
polytopal realization of a fan F is a Minkowski combination of the polytopes defined by the rays of
the type cone of F . For cluster complexes, the rays of the type cone of the g-vector fan correspond to
the Newton polytopes of the F -polynomials of the cluster algebra. Although quite vague, we believe
that the following question is worth investigating.

Conjecture C.3. For any gentle quiver Q̄, the rays of the type cone of the non-kissing fan Fg(Q̄) are
Newton polytopes of polynomials associated to the gentle algebra KQ/I .

C.3 Graph properties of non-kissing associahedra
The following relevant properties of the graphs of the permutahedron and the associahedron have been
particularly considered in the literature:

1. Hamiltonicity. Both the permutahedron [Ste64, Joh63, Tro62] and the associahedron [Luc87,
HN99] admit an Hamiltonian cycle. In fact, all graph associahedra admit an Hamiltonian cy-
cle [MP15], and all (type A) quotientopes admit an Hamiltonian path [HM19].
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2. Diameter. The diameter of the permutahedron Perm(n) is n(n − 1)/2 and that of the asso-
ciahedron Asso(n) is 2n − 6 for n > 10. The later motivated intensive research and relevant
approaches, involving volumetric arguments in hyperbolic geometry [STT88] and combinato-
rial properties of Thompson’s groups [Deh10], until a purely combinatorial proof was finally
found [Pou14]. This result was extended to all generalized associahedra in [Pou17, CP16] and
studied for graph associahedra in [MP15].

3. Non-leaving face property. Both the permutahedron and the associahedron have the property
that all geodesics between two given vertices v and w always remain in the smallest face con-
taining v and w. This property was observed for the associahedron in [STT88], extended to all
generalized associahedra in [CP16, Wil17] and studied for graph associahedra in [MP15].

We believe that these properties are worth investigating for all generalizations of the associahedron
introduced in this document, in particular for quotientopes and for non-kissing associahedra.



BIBLIOGRAPHY

[AHBHY18] Nima Arkani-Hamed, Yuntao Bai, Song He, and Gongwang Yan. Scattering forms and
the positive geometry of kinematics, color and the worldsheet. J. High Energy Phys.,
(5):096, front matter+75, 2018.

[AIR14] Takahide Adachi, Osamu Iyama, and Idun Reiten. τ -tilting theory. Compos. Math.,
150(3):415–452, 2014.

[AS05] Marcelo Aguiar and Frank Sottile. Structure of the Malvenuto-Reutenauer Hopf alge-
bra of permutations. Adv. Math., 191(2):225–275, 2005.

[AS06] Marcelo Aguiar and Frank Sottile. Structure of the Loday-Ronco Hopf algebra of trees.
J. Algebra, 295(2):473–511, 2006.

[Bar01] Yuliy Baryshnikov. On Stokes sets. In New developments in singularity theory (Cam-
bridge, 2000), volume 21 of NATO Sci. Ser. II Math. Phys. Chem., pages 65–86. Kluwer
Acad. Publ., Dordrecht, 2001.

[BB93] Nantel Bergeron and Sara Billey. RC-graphs and Schubert polynomials. Experiment.
Math., 2(4):257–269, 1993.

[BB05] Anders Björner and Francesco Brenti. Combinatorics of Coxeter groups, volume 231
of Graduate Texts in Mathematics. Springer, New York, 2005.

[BCP18] Nantel Bergeron, Cesar Ceballos, and Vincent Pilaud. Hopf dreams. Preprint,
arXiv:1807.03044, 2018.

[BCSo18] Karin Baur and Raquel Coelho Simões. A geometric model for the module category
of a gentle algebra. Preprint, arXiv:1803.05802, 2018.

[BDM+17] Thomas Brüstle, Guillaume Douville, Kaveh Mousavand, Hugh Thomas, and Emine
Yıldırım. On the combinatorics of gentle algebras. Preprint, arXiv:1707.07665. To
appear in Canad. J. Math., 2017.

[Ber13] François Bergeron. Multivariate diagonal coinvariant spaces for complex reflection
groups. Adv. Math., 239:97–108, 2013.

[BEZ90] Anders Björner, Paul H. Edelman, and Günter M. Ziegler. Hyperplane arrangements
with a lattice of regions. Discrete Comput. Geom., 5(3):263–288, 1990.

[BFS90] Louis J. Billera, Paul Filliman, and Bernd Sturmfels. Constructions and complexity of
secondary polytopes. Adv. Math., 83(2):155–179, 1990.

[BH08] Christine Bessenrodt and Thorsten Holm. Weighted locally gentle quivers and Cartan
matrices. J. Pure and Appl. Algebra, 212:204–221, 2008.

[BHKN01] François Boulier, Florent Hivert, Daniel Krob, and Jean-Christophe Novelli. Pseudo-
permutations. II. Geometry and representation theory. In Discrete models: combina-
torics, computation, and geometry (Paris, 2001), Discrete Math. Theor. Comput. Sci.
Proc., AA, pages 123–132 (electronic). Maison Inform. Math. Discrèt. (MIMD), Paris,
2001.

[Bjö84] Anders Björner. Orderings of Coxeter groups. In Combinatorics and algebra (Boul-
der, Colo., 1983), volume 34 of Contemp. Math., pages 175–195. Amer. Math. Soc.,
Providence, RI, 1984.

Part IV – Bibliography Vincent Pilaud 153

http://arxiv.org/abs/1807.03044
http://arxiv.org/abs/1803.05802
http://arxiv.org/abs/1707.07665
https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/on-the-combinatorics-of-gentle-algebras/DAC0E0FF011FBAC0FD9E45F473AE2E99


154 Bibliography

[BLS+99] Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and Günter M.
Ziegler. Oriented matroids, volume 46 of Encyclopedia of Mathematics and its Appli-
cations. Cambridge University Press, Cambridge, second edition, 1999.

[BMDM+18] Véronique Bazier-Matte, Guillaume Douville, Kaveh Mousavand, Hugh Thomas, and
Emine Yıldırım. ABHY Associahedra and Newton polytopes of F -polynomials for
finite type cluster algebras. Preprint, arXiv:1808.09986, 2018.

[Bok06] Jürgen Bokowski. Computational oriented matroids. Cambridge University Press,
Cambridge, 2006.

[Bou68] Nicolas Bourbaki. Groupes et algèbres de Lie, Chapitres IV–VI. Actualités Scien-
tifiques et Industrielles, No. 1337. Hermann, Paris, 1968.

[BP14] Jürgen Bokowski and Vincent Pilaud. Enumerating topological (nk)-configurations.
Comput. Geom., 47(2, part A):175–186, 2014.

[BP15] Jürgen Bokowski and Vincent Pilaud. On topological and geometric (194) configura-
tions. European J. Combin., 50:4–17, 2015.

[BP16] Jürgen Bokowski and Vincent Pilaud. Quasi-configurations: building blocks for point-
line configurations. Ars Math. Contemp., 10(1):99–112, 2016.

[BPR12] François Bergeron and Louis-François Préville-Ratelle. Higher trivariate diagonal har-
monics via generalized Tamari posets. Journal of Combinatorics, 3(3):317–341, 2012.

[BR87] M. C. R. Butler and Claus Michael Ringel. Auslander-Reiten sequences with few
middle terms and applications to string algebras. Comm. Algebra, 15(1-2):145–179,
1987.

[BW91] Anders Björner and Michelle L. Wachs. Permutation statistics and linear extensions of
posets. J. Combin. Theory Ser. A, 58(1):85–114, 1991.

[BZ09] Nantel Bergeron and Mike Zabrocki. The Hopf algebras of symmetric functions and
quasi-symmetric functions in non-commutative variables are free and co-free. J. Alge-
bra Appl., 8(4):581–600, 2009.

[CB18] William Crawley-Boevey. Classification of modules for infinite-dimensional string
algebras. Trans. Amer. Math. Soc., 370(5):3289–3313, 2018.

[CD06] Michael P. Carr and Satyan L. Devadoss. Coxeter complexes and graph-associahedra.
Topology Appl., 153(12):2155–2168, 2006.

[CFZ02] Frédéric Chapoton, Sergey Fomin, and Andrei Zelevinsky. Polytopal realizations of
generalized associahedra. Canad. Math. Bull., 45(4):537–566, 2002.

[Cha00] Frédéric Chapoton. Algèbres de Hopf des permutahèdres, associahèdres et hypercubes.
Adv. Math., 150(2):264–275, 2000.

[Cha16] Frédéric Chapoton. Stokes posets and serpent nests. Discrete Math. Theor. Comput.
Sci., 18(3), 2016.

[CLS14] Cesar Ceballos, Jean-Philippe Labbé, and Christian Stump. Subword complexes, clus-
ter complexes, and generalized multi-associahedra. J. Algebraic Combin., 39(1):17–51,
2014.

[CP15a] Cesar Ceballos and Vincent Pilaud. Cluster algebras of type D: pseudotriangulations
approach. Electron. J. Combin., 22(4):Paper 4.44, 27, 2015.

http://arxiv.org/abs/1808.09986


Bibliography 155

[CP15b] Cesar Ceballos and Vincent Pilaud. Denominator vectors and compatibility degrees in
cluster algebras of finite types. Trans. Amer. Math. Soc., 367:1421–1439, 2015.

[CP16] Cesar Ceballos and Vincent Pilaud. The diameter of type D associahedra and the non-
leaving-face property. European J. Combin., 51:109–124, 2016.

[CP17] Grégory Chatel and Vincent Pilaud. Cambrian Hopf Algebras. Adv. Math., 311:598–
633, 2017.

[CPP19] Grégory Chatel, Vincent Pilaud, and Viviane Pons. The weak order on integer posets.
Algebraic Combinatorics, 2(1):1–48, 2019.

[CSZ15] Cesar Ceballos, Francisco Santos, and Günter M. Ziegler. Many non-equivalent real-
izations of the associahedron. Combinatorica, 35(5):513–551, 2015.

[Deh10] Patrick Dehornoy. On the rotation distance between binary trees. Adv. Math.,
223(4):1316–1355, 2010.

[DHMP19] Aram Dermenjian, Christophe Hohlweg, Thomas McConville, and Vincent Pilaud. The
facial weak order on hyperplane arrangements. Preprint, arXiv:1910.03511, 2019.

[DHP18] Aram Dermenjian, Christophe Hohlweg, and Vincent Pilaud. The facial weak order
and its lattice quotients. Trans. Amer. Math. Soc., 370(2):1469–1507, 2018.

[DIR+17] Laurent Demonet, Osamu Iyama, Nathan Reading, Idun Reiten, and Hugh Thomas.
Lattice theory of torsion classes. Preprint, arXiv:1711.01785, 2017.

[DRS10] Jesus A. De Loera, Jörg Rambau, and Francisco Santos. Triangulations: Structures for
Algorithms and Applications, volume 25 of Algorithms and Computation in Mathemat-
ics. Springer Verlag, 2010.

[Ede84] Paul H. Edelman. A partial order on the regions of Rn dissected by hyperplanes. Trans.
Amer. Math. Soc., 283:617–631, 1984.

[Fom] Sergey Fomin. Cluster algebras portal. http://www.math.lsa.umich.edu/

~fomin/cluster.html.

[FPP11] Julien Ferté, Vincent Pilaud, and Michel Pocchiola. On the number of simple arrange-
ments of five double pseudolines. Discrete Comput. Geom., 45(2):279–302, 2011.

[FST08] Sergey Fomin, Michael Shapiro, and Dylan Thurston. Cluster algebras and triangulated
surfaces I. Cluster complexes. Acta Math., 201(1):83–146, 2008.

[FT18] Sergey Fomin and Dylan Thurston. Cluster algebras and triangulated surfaces. Part II:
Lambda lengths. Mem. Amer. Math. Soc., 255(1223):v+97, 2018.

[FZ02] Sergey Fomin and Andrei Zelevinsky. Cluster algebras. I. Foundations. J. Amer. Math.
Soc., 15(2):497–529, 2002.

[FZ03a] Sergey Fomin and Andrei Zelevinsky. Cluster algebras. II. Finite type classification.
Invent. Math., 154(1):63–121, 2003.

[FZ03b] Sergey Fomin and Andrei Zelevinsky. Y -systems and generalized associahedra. Ann.
of Math. (2), 158(3):977–1018, 2003.

[FZ05] Sergey Fomin and Andrei Zelevinsky. Cluster algebras. III. Upper bounds and double
Bruhat cells. Duke Math. J., 126(1):1–52, 2005.

[FZ07] Sergey Fomin and Andrei Zelevinsky. Cluster algebras. IV. Coefficients. Compos.
Math., 143(1):112–164, 2007.

http://arxiv.org/abs/1910.03511
http://arxiv.org/abs/1711.01785
http://www.math.lsa.umich.edu/~fomin/cluster.html
http://www.math.lsa.umich.edu/~fomin/cluster.html


156 Bibliography

[GHKK18] Mark Gross, Paul Hacking, Sean Keel, and Maxim Kontsevich. Canonical bases for
cluster algebras. J. Amer. Math. Soc., 31(2):497–608, 2018.

[Gir12] Samuele Giraudo. Algebraic and combinatorial structures on pairs of twin binary trees.
J. Algebra, 360:115–157, 2012.

[GKL+95] Israel M. Gelfand, Daniel Krob, Alain Lascoux, Bernard Leclerc, Vladimir S. Re-
takh, and Jean-Yves Thibon. Noncommutative symmetric functions. Adv. Math.,
112(2):218–348, 1995.

[GKZ08] Israel Gelfand, Mikhail Kapranov, and Andrei Zelevinsky. Discriminants, resultants
and multidimensional determinants. Modern Birkhäuser Classics. Birkhäuser Boston
Inc., Boston, MA, 2008. Reprint of the 1994 edition.

[GM17a] Alexander Garver and Thomas McConville. Enumerative properties of Grid-
Associahedra. Preprint, arXiv:1705.04901, 2017.

[GM17b] Alexander Garver and Thomas McConville. Lattice properties of oriented exchange
graphs and torsion classes. Algebr. Represent. Theory, 2017.

[GM18] Alexander Garver and Thomas McConville. Oriented flip graphs of polygonal subdivi-
sions and noncrossing tree partitions. J. Combin. Theory Ser. A, 158:126–175, 2018.

[GP18] Joël Gay and Vincent Pilaud. The weak order on weyl posets. Preprint,
arXiv:1804.06572. To appear in Canad. J. Math., 2018.

[Hai84] Mark Haiman. Constructing the associahedron. Unpublished manuscript,
11 pages, available at http://www.math.berkeley.edu/~mhaiman/ftp/assoc/
manuscript.pdf, 1984.

[HL07] Christophe Hohlweg and Carsten Lange. Realizations of the associahedron and cyclo-
hedron. Discrete Comput. Geom., 37(4):517–543, 2007.

[HLR10] Christophe Hohlweg, Jonathan Lortie, and Annie Raymond. The centers of gravity
of the associahedron and of the permutahedron are the same. Electron. J. Combin.,
17(1):Research Paper 72, 14, 2010.

[HLT11] Christophe Hohlweg, Carsten Lange, and Hugh Thomas. Permutahedra and general-
ized associahedra. Adv. Math., 226(1):608–640, 2011.

[HM19] Hung P. Hoang and Torsten Mütze. Combinatorial generation via permutation lan-
guages. II. Lattice congruences. Preprint, arXiv:1911.12078, 2019.

[HN99] Ferran Hurtado and Marc Noy. Graph of triangulations of a convex polygon and tree
of triangulations. Comput. Geom., 13(3):179–188, 1999.

[HNT05] Florent Hivert, Jean-Christophe Novelli, and Jean-Yves Thibon. The algebra of binary
search trees. Theoret. Comput. Sci., 339(1):129–165, 2005.

[Hoh12] Christophe Hohlweg. Permutahedra and associahedra: generalized associahedra from
the geometry of finite reflection groups. In Associahedra, Tamari lattices and related
structures, volume 299 of Prog. Math. Phys., pages 129–159. Birkhäuser/Springer,
Basel, 2012.

[HP19] Florent Hivert and Vincent Pilaud. Signaletic operads. Preprint, arXiv:1906.02228,
2019.

[HPS18] Christophe Hohlweg, Vincent Pilaud, and Salvatore Stella. Polytopal realizations of
finite type g-vector fans. Adv. Math., 328:713–749, 2018.

http://arxiv.org/abs/1705.04901
http://arxiv.org/abs/1804.06572
https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/weak-order-on-weyl-posets/33AFC4F4F1DE4A94BA13974C71B74A6F
http://www.math.berkeley.edu/~mhaiman/ftp/assoc/manuscript.pdf
http://www.math.berkeley.edu/~mhaiman/ftp/assoc/manuscript.pdf
http://arxiv.org/abs/1911.12078
http://arxiv.org/abs/1906.02228


Bibliography 157

[Hum90] James E. Humphreys. Reflection groups and Coxeter groups, volume 29 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1990.

[Joh63] Selmer M. Johnson. Generation of permutations by adjacent transposition. Math.
Comp., 17:282–285, 1963.

[Kel01] Bernhard Keller. Introduction to a-infinity algebras and modules. Homology Homotopy
Appl., 3(1):1–35., 2001.

[Kel11] Bernhard Keller. On cluster theory and quantum dilogarithm identities. In Representa-
tions of algebras and related topics, EMS Ser. Congr. Rep., pages 85–116. Eur. Math.
Soc., Zürich, 2011.

[KLN+01] Daniel Krob, Matthieu Latapy, Jean-Christophe Novelli, Ha-Duong Phan, and Sylviane
Schwer. Pseudo-Permutations I: First Combinatorial and Lattice Properties. 13th In-
ternational Conference on Formal Power Series and Algebraic Combinatorics (FPSAC
2001), 2001.

[KLR03] Christian Kassel, Alain Lascoux, and Christophe Reutenauer. The singular locus of a
Schubert variety. J. Algebra, 269(1):74–108, 2003.

[KM04] Allen Knutson and Ezra Miller. Subword complexes in Coxeter groups. Adv. Math.,
184(1):161–176, 2004.

[KM05] Allen Knutson and Ezra Miller. Gröbner geometry of Schubert polynomials. Ann. of
Math. (2), 161(3):1245–1318, 2005.

[KT97] Daniel Krob and Jean-Yves Thibon. Noncommutative symmetric functions. IV. Quan-
tum linear groups and Hecke algebras at q = 0. J. Algebraic Combin., 6(4):339–376,
1997.

[Law14] Shirley Law. Combinatorial realization of the Hopf algebra of sashes. Preprint,
arXiv:1407.4073, 2014.

[Lee89] Carl W. Lee. The associahedron and triangulations of the n-gon. European J. Combin.,
10(6):551–560, 1989.

[Lod04] Jean-Louis Loday. Realization of the Stasheff polytope. Arch. Math. (Basel),
83(3):267–278, 2004.

[LP18] Carsten Lange and Vincent Pilaud. Associahedra via spines. Combinatorica,
38(2):443–486, 2018.

[LR98] Jean-Louis Loday and María O. Ronco. Hopf algebra of the planar binary trees. Adv.
Math., 139(2):293–309, 1998.

[LR12] Shirley Law and Nathan Reading. The Hopf algebra of diagonal rectangulations. J.
Combin. Theory Ser. A, 119(3):788–824, 2012.

[Luc87] Joan M. Lucas. The rotation graph of binary trees is Hamiltonian. J. Algorithms,
8(4):503–535, 1987.

[McC17] Thomas McConville. Lattice structure of Grid-Tamari orders. J. Combin. Theory Ser.
A, 148:27–56, 2017.

[McM71] Peter McMullen. On zonotopes. Trans. Amer. Math. Soc., 159:91–109, 1971.

[McM73] Peter McMullen. Representations of polytopes and polyhedral sets. Geometriae Dedi-
cata, 2:83–99, 1973.

http://arxiv.org/abs/1407.4073


158 Bibliography

[MP15] Thibault Manneville and Vincent Pilaud. Graph properties of graph associahedra. Sém.
Lothar. Combin., pages Art. B73d, 31 pp, 2015.

[MP17] Thibault Manneville and Vincent Pilaud. Compatibility fans for graphical nested com-
plexes. J. Combin. Theory Ser. A, 150:36–107, 2017.

[MP19] Thibault Manneville and Vincent Pilaud. Geometric realizations of the accordion com-
plex of a dissection. Discrete Comput. Geom., 61(3):507–540, 2019.

[MPP11] Benjamin Matschke, Julian Pfeifle, and Vincent Pilaud. Prodsimplicial neighborly
polytopes. Discrete Comput. Geom., 46(1):100–131, 2011.

[MR95] Claudia Malvenuto and Christophe Reutenauer. Duality between quasi-symmetric
functions and the Solomon descent algebra. J. Algebra, 177(3):967–982, 1995.

[MTTV19] Naruki Masuda, Hugh Thomas, Andy Tonks, and Bruno Vallette. The diagonal of the
associahedra. Preprint, arXiv:1902.08059, 2019.

[Nov00] Jean-Christophe Novelli. On the hypoplactic monoid. Discrete Math., 217(1-3):315–
336, 2000. Formal power series and algebraic combinatorics (Vienna, 1997).

[NRT11] Jean-Christophe Novelli, Christophe Reutenauer, and Jean-Yves Thibon. Generalized
descent patterns in permutations and associated Hopf algebras. European J. Combin.,
32(4):618–627, 2011.

[NS14] Tomoki Nakanishi and Salvatore Stella. Diagrammatic description of c-vectors and
d-vectors of cluster algebras of finite type. Electron. J. Combin., 21(1):Paper 1.3, 107,
2014.

[NT06] Jean-Christophe Novelli and Jean-Yves Thibon. Polynomial realizations of some trial-
gebras. 18th International Conference on Formal Power Series and Algebraic Combi-
natorics (FPSAC 2006), 2006.

[NT10a] Jean-Christophe Novelli and Jean-Yves Thibon. Free quasi-symmetric functions and
descent algebras for wreath products, and noncommutative multi-symmetric functions.
Discrete Math., 310(24):3584–3606, 2010.

[NT10b] Jean-Christophe Novelli and Jean-Yves Thibon. Free quasi-symmetric functions and
descent algebras for wreath products, and noncommutative multi-symmetric functions.
Discrete Math., 310(24):3584–3606, 2010.

[NZ12] Tomoki Nakanishi and Andrei Zelevinsky. On tropical dualities in cluster algebras. In
Algebraic groups and quantum groups, volume 565 of Contemp. Math., pages 217–226.
Amer. Math. Soc., Providence, RI, 2012.

[OPS18] Sebastian Opper, Pierre-Guy Plamondon, and Sibylle Schroll. A geometric model for
the derived category of gentle algebras. Preprint, arXiv:1801.09659, 2018.

[Pil06] Annette Pilkington. Convex geometries on root systems. Comm. Algebra, 34(9):3183–
3202, 2006.

[Pil13] Vincent Pilaud. Signed tree associahedra. Preprint, arXiv:1309.5222, 2013.

[Pil17] Vincent Pilaud. Which nestohedra are removahedra? Rev. Colombiana Mat., 51(1):21–
42, 2017.

[Pil18] Vincent Pilaud. Brick polytopes, lattice quotients, and Hopf algebras. J. Combin.
Theory Ser. A, 155:418–457, 2018.

https://arxiv.org/abs/1902.08059
http://arxiv.org/abs/1801.09659
http://arxiv.org/abs/1309.5222


Bibliography 159

[Pil19] Vincent Pilaud. Hopf algebras on decorated noncrossing arc diagrams. J. Combin.
Theory Ser. A, 161:486–507, 2019.

[Pos09] Alexander Postnikov. Permutohedra, associahedra, and beyond. Int. Math. Res. Not.
IMRN, (6):1026–1106, 2009.

[Pou14] Lionel Pournin. The diameter of associahedra. Adv. Math., 259:13–42, 2014.

[Pou17] Lionel Pournin. The asymptotic diameter of cyclohedra. Israel J. Math., 219(2):609–
635, 2017.

[PP12] Vincent Pilaud and Michel Pocchiola. Multitriangulations, pseudotriangulations and
primitive sorting networks. Discrete Comput. Geom., 48(1):142–191, 2012.

[PP18] Vincent Pilaud and Viviane Pons. Permutrees. Algebraic Combinatorics, 1(2):173–
224, 2018.

[PP20] Vincent Pilaud and Viviane Pons. The Hopf algebra of integer binary relations. In
Algebraic Combinatorics, Resurgence, Moulds and Applications (CARMA), volume 31
of IRMA Lectures in Mathematics and Theoretical Physics, pages 299–344. Europ.
Math. Soc., 2020.

[PPP17] Yann Palu, Vincent Pilaud, and Pierre-Guy Plamondon. Non-kissing complexes and
tau-tilting for gentle algebras. Preprint, arXiv:1707.07574. To appear in Mem. Amer.
Math. Soc., 2017.

[PPP19] Yann Palu, Vincent Pilaud, and Pierre-Guy Plamondon. Non-kissing and non-crossing
complexes for locally gentle algebras. J. Comb. Algebra, 3(4):401–438, 2019.

[PPPP19] Arnau Padrol, Yann Palu, Vincent Pilaud, and Pierre-Guy Plamondon. Associahe-
dra for finite type cluster algebras and minimal relations between g-vectors. Preprint,
arXiv:1906.06861, 2019.

[PPR20] Arnau Padrol, Vincent Pilaud, and Julian Ritter. Quotientopes via minkowski sums of
shard polytopes. In preparation, 2020.

[PPS10] T. Kyle Petersen, Pavlo Pylyavskyy, and David E. Speyer. A non-crossing standard
monomial theory. J. Algebra, 324(5):951–969, 2010.

[PPS12] Julian Pfeifle, Vincent Pilaud, and Francisco Santos. Polytopality and cartesian prod-
ucts of graphs. Israel J. Math., 192(1):121–141, 2012.

[PPS18] Vincent Pilaud, Pierre-Guy Plamondon, and Salvatore Stella. A τ -tilting approach to
dissections of polygons. SIGMA Symmetry Integrability Geom. Methods Appl., 14:Pa-
per No. 045, 8, 2018.

[PR06] Patricia Palacios and María O. Ronco. Weak Bruhat order on the set of faces of the
permutohedron and the associahedron. J. Algebra, 299(2):648–678, 2006.

[PRV17] Louis-François Préville-Ratelle and Xavier Viennot. The enumeration of generalized
Tamari intervals. Trans. Amer. Math. Soc., 369(7):5219–5239, 2017.

[PRW08] Alexander Postnikov, Victor Reiner, and Lauren K. Williams. Faces of generalized
permutohedra. Doc. Math., 13:207–273, 2008.

[PS09] Vincent Pilaud and Francisco Santos. Multitriangulations as complexes of star poly-
gons. Discrete Comput. Geom., 41(2):284–317, 2009.

http://arxiv.org/abs/1707.07574
http://arxiv.org/abs/1906.06861


160 Bibliography

[PS12] Vincent Pilaud and Francisco Santos. The brick polytope of a sorting network. Euro-
pean J. Combin., 33(4):632–662, 2012.

[PS13] Vincent Pilaud and Christian Stump. EL-labelings and canonical spanning trees for
subword complexes. In Discrete Geometry and Optimization, Fields Institute Commu-
nications Series, pages 213–248. Springer, 2013.

[PS15a] Vincent Pilaud and Christian Stump. Brick polytopes of spherical subword complexes
and generalized associahedra. Adv. Math., 276:1–61, 2015.

[PS15b] Vincent Pilaud and Christian Stump. Vertex barycenter of generalized associahedra.
Proc. Amer. Math. Soc., 143(6):2623–2636, 2015.

[PS19] Vincent Pilaud and Francisco Santos. Quotientopes. Bull. Lond. Math. Soc., 51(3):406–
420, 2019.

[PV96] Michel Pocchiola and Gert Vegter. Topologically sweeping visibility complexes via
pseudotriangulations. Discrete Comput. Geom., 16(4):419–453, 1996.

[Rea03] Nathan Reading. Lattice and order properties of the poset of regions in a hyperplane
arrangement. Algebra Universalis, 50(2):179–205, 2003.

[Rea04] Nathan Reading. Lattice congruences of the weak order. Order, 21(4):315–344, 2004.

[Rea05] Nathan Reading. Lattice congruences, fans and Hopf algebras. J. Combin. Theory Ser.
A, 110(2):237–273, 2005.

[Rea06] Nathan Reading. Cambrian lattices. Adv. Math., 205(2):313–353, 2006.

[Rea07a] Nathan Reading. Clusters, Coxeter-sortable elements and noncrossing partitions. Trans.
Amer. Math. Soc., 359(12):5931–5958, 2007.

[Rea07b] Nathan Reading. Sortable elements and Cambrian lattices. Algebra Universalis, 56(3-
4):411–437, 2007.

[Rea14] Nathan Reading. Universal geometric cluster algebras. Math. Z., 277(1-2):499–547,
2014.

[Rea15] Nathan Reading. Noncrossing arc diagrams and canonical join representations. SIAM
J. Discrete Math., 29(2):736–750, 2015.

[Rea16a] Nathan Reading. Finite Coxeter groups and the weak order. In Lattice theory: special
topics and applications. Vol. 2, pages 489–561. Birkhäuser/Springer, Cham, 2016.

[Rea16b] Nathan Reading. Lattice theory of the poset of regions. In Lattice theory: special
topics and applications. Vol. 2, pages 399–487. Birkhäuser/Springer, Cham, 2016.

[RS09] Nathan Reading and David E. Speyer. Cambrian fans. J. Eur. Math. Soc., 11(2):407–
447, 2009.

[RSS03] Günter Rote, Francisco Santos, and Ileana Streinu. Expansive motions and the polytope
of pointed pseudo-triangulations. In Discrete and computational geometry, volume 25
of Algorithms Combin., pages 699–736. Springer, Berlin, 2003.

[RSS08] Günter Rote, Francisco Santos, and Ileana Streinu. Pseudo-triangulations—a survey.
In Surveys on discrete and computational geometry, volume 453 of Contemp. Math.,
pages 343–410. Amer. Math. Soc., Providence, RI, 2008.

[SS93] Steve Shnider and Shlomo Sternberg. Quantum groups: From coalgebras to Drinfeld
algebras. Series in Mathematical Physics. International Press, Cambridge, MA, 1993.



Bibliography 161

[SS12] Luis Serrano and Christian Stump. Maximal fillings of moon polyominoes, simplicial
complexes, and Schubert polynomials. Electron. J. Combin., 19, 2012.

[SSW17] Francisco Santos, Christian Stump, and Volkmar Welker. Noncrossing sets and a Grass-
mann associahedron. Forum Math. Sigma, 5:e5, 49, 2017.

[Sta63] Jim Stasheff. Homotopy associativity of H-spaces I, II. Trans. Amer. Math. Soc.,
108(2):293–312, 1963.

[Sta99] Richard P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Stud-
ies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999. With a
foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin.

[Ste64] Hugo Steinhaus. One hundred problems in elementary mathematics. Basic Books Inc.
Publishers, New York, 1964.

[Ste13] Salvatore Stella. Polyhedral models for generalized associahedra via Coxeter elements.
J. Algebraic Combin., 38(1):121–158, 2013.

[Str12] Ross Street. Parenthetic remarks. In Associahedra, Tamari lattices and related struc-
tures, volume 299 of Prog. Math. Phys., pages 251–268. Birkhäuser/Springer, Basel,
2012.

[STT88] Daniel D. Sleator, Robert E. Tarjan, and William P. Thurston. Rotation distance, trian-
gulations, and hyperbolic geometry. J. Amer. Math. Soc., 1(3):647–681, 1988.

[Stu11] Christian Stump. A new perspective on k-triangulations. J. Combin. Theory Ser. A,
118(6):1794–1800, 2011.

[Tam51] Dov Tamari. Monoides préordonnés et chaînes de Malcev. PhD thesis, Université Paris
Sorbonne, 1951.

[Tro62] H. F. Trotter. Algorithm 115: Perm. Commun. ACM, 5(8):434–435, 1962.

[Vie07] Xavier Viennot. Catalan tableaux and the asymmetric exclusion process. In 19th Inter-
national Conference on Formal Power Series and Algebraic Combinatorics (FPSAC
2007). 2007.

[Wil17] Nathan Williams. W -associahedra have the non-leaving-face property. European J.
Combin., 62:272–285, 2017.

[Woo04] A. Woo. Catalan numbers and Schubert polynomials for w = 1(n + 1)...2. Preprint,
arXiv:math/0407160, 2004.

[YZ08] Shih-Wei Yang and Andrei Zelevinsky. Cluster algebras of finite type via Coxeter
elements and principal minors. Transform. Groups, 13(3-4):855–895, 2008.

http://arxiv.org/abs/math/0407160




ABSTRACT

Permutahedra and associahedra are classical polytopes whose face structures are described by the
combinatorics of permutations and binary trees. We present a combinatorial, geometric and algebraic
study of generalizations of these polytopes around four main topics:

1. Lattice quotients of the weak order: We study the lattice congruences of the weak order on
permutations, construct polytopal realizations called quotientopes, and define corresponding
combinatorial Hopf algebra. We develop in particular several families of examples, including
k-twists and permutrees generalizing binary trees in two different directions.

2. Beyond the weak order: We study some generalizations of the weak order on the one hand to
all faces of the permutahedra of finite Coxeter groups, and on the other hand to integer posets
or to specific subsets of crystallographic root systems.

3. Cluster algebras and generalized associahedra: We construct polytopal realizations for the
g-vector fans of the finite type cluster algebras, first via the construction of a universal associa-
hedron, then via the description of the type cones of these fans, and finally via the construction
of brick polytopes of subword complexes.

4. Non-kissing and non-crossing complexes: We study simplicial complexes associated to gentle
quivers or equivalently to certain dissections of surfaces. In the situation when these complexes
are finite, we show that they admit lattice structures generalizing the Tamari lattice and polytopal
realizations generalizing the associahedra.

RÉSUMÉ

Les permutaèdres et les associaèdres sont des polytopes classiques dont les structures de faces sont
données par la combinatoire des permutations et des arbres binaires. Nous présentons une étude com-
binatoire, géométrique et algébrique de généralisations de ces polytopes autour de quatre thèmes
principaux :

1. Treillis quotients de l’ordre faible : Nous étudions les congruences de treillis de l’ordre faible
sur les permutations, construisons des réalisations polytopales appelées quotientopes, et définis-
sons des algèbres de Hopf combinatoires associées. Nous développons en particulier plusieurs
familles d’exemples, dont les k-twists et les permutarbres qui généralisent les arbres binaires
dans deux directions différentes.

2. Au delà de l’ordre faible : Nous étudions des généralisations de l’ordre faible d’une part à
toutes les faces des permutaèdres des groupes de Coxeter finis, et d’autre part aux posets sur
des entiers ou sur certains sous-ensembles de systèmes de racines cristallographiques.

3. Algèbres amassées et associaèdres généralisés : Nous construisons des réalisations polyto-
pales des éventails de g-vecteurs des algèbres amassées de type fini, d’abord via la construction
d’un associaèdre universel, ensuite via la description des cônes de type de ces éventails, et enfin
via la construction des polytopes de briques de complexes de sous-mots.

4. Complexes platoniques et parallèles : Nous étudions des complexes simpliciaux associés aux
carquois aimables ou de manière équivalente à certaines dissections de surfaces. Dans le cas où
ces complexes sont finis, nous montrons qu’ils admettent des structures de treillis généralisant
le treillis de Tamari et des réalisations polytopales généralisant les associaèdres.
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