HOPF ALGEBRAS ON DECORATED NONCROSSING ARC DIAGRAMS

VINCENT PILAUD

ABSTRACT. Noncrossing arc diagrams are combinatorial models for the equivalence classes of
the lattice congruences of the weak order on permutations. In this paper, we provide a general
method to endow these objects with Hopf algebra structures. Specific instances of this method
produce relevant Hopf algebras that appeared earlier in the literature.

1. INTRODUCTION

Combinatorial Hopf algebras are combinatorial vector spaces endowed with a product (that com-
bines combinatorial objects) and a coproduct (that decomposes combinatorial objects), subject to
a strong compatibility relation. This paper is motivated by two particularly relevant combinatorial
Hopf algebras: C. Malvenuto and C. Reutenauer’s Hopf algebra MR on permutations [MR95] and
J.-L. Loday and M. Ronco’s Hopf algebra LR on binary trees [LR98]. Remarkably [HNTO05], LR
embeds as a Hopf subalgebra of MR by sending each binary tree T to the sum of the permutations
in a certain class £(T). More precisely, the permutations in £(T) are the linear extensions of T
(seen as the Hasse diagram of a poset oriented towards its root), or equivalently the permutations
whose insertion in a binary search tree gives T. The resulting classes are equivalence classes of the
sylvester congruence [HNTO05] on permutations, defined as the transitive closure of the rewriting
rule UacVbW =Y UcaVOW where a < b < ¢ are letters while U, V, W are words on N.

The objective of the present work is to discuss similar Hopf algebra structures on congruence
classes of all lattice quotients of the weak order on &,. Several examples of relevant combina-
torial structures arise from lattice quotients of the weak order. The fundamental example is the
Tamari lattice introduced by D. Tamari in [Tam51] and largely studied since then (see the survey
book [MHPS12]). It can be defined as the transitive closure of right rotations on binary trees. It
is also (isomorphic to) the quotient of the weak order on &,, by the above-mentioned sylvester
congruence. See Figure 1. Many other relevant lattice quotients of the weak order have been
studied, see in particular [Rea06, CP17, PP16, LR12, Girl2, Law14, Pil18]. N. Reading provided
in [Real5] a powerful combinatorial description of the lattice congruences of the weak order and
of their congruence classes in terms of collections of certain arcs and noncrossing arc diagrams.

The search for Hopf algebra structures on congruence classes of lattice quotients of the weak
order was pioneered by N. Reading. In [Rea05], he studied Hopf subalgebras of MR generated by
sums of permutations over the classes of a fixed lattice congruence =,, on each &,, for n > 0. He
called transitional (resp. insertional) certain families (=, )nen of congruences that yield a subaleg-
bra (resp. subcoalgebra). This approach produces relevant Hopf algebras indexed by interesting
combinatorial objects such as permutations [MR95], binary trees [LR98], diagonal rectangula-
tions [LR12] (or equivalently twin binary trees [Girl2]), sashes [Law14], certain pipe dreams called
twists [Pil18], etc. However, the conditions on these families of congruences are rather constrained.

A more recent approach, initiated by G. Chatel and V. Pilaud for the Cambrian algebra [CP17]
and extended by V. Pilaud and V. Pons for the permutree algebra [PP16], consists of constructing
subalgebras of decorated versions of the algebra MR. For example, [CP17] considers simultaneously
all Cambrian congruences defined in [Rea06]. These congruences are given by certain rewriting
rules [Rea06] generalizing the sylvester congruence, and their classes are given by linear extensions
of certain Cambrian trees [LP13, CP17] generalizing binary trees. Since these congruences depend
on a sequence of signs, the Cambrian algebra of [CP17] is constructed as a subalgebra of a Hopf
algebra on signed permutations generalizing MR and studied by J.-C. Novelli and J.-Y. Thibon
in [NT10]. The same idea was used in [PP16] to construct an algebra on permutrees.
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FIGURE 1. The weak order (left) and the Tamari lattice (right).

In this paper, we explore this approach further to construct Hopf algebras on other families
of congruences of the weak order. Starting with a graded set of decorations X endowed with an
operation of concatenation and an operation of selection that fulfill natural compatibility relations
(see Definition 8), we construct a Hopf algebra on permutations decorated with elements of X.
Provided a well-chosen map ¥ from the decoration set X to the lattice congruences of the weak
order (see Definition 14), we then construct a Hopf algebra on the classes of the lattice congruences
in the image of W. This algebra is obtained as a Hopf subalgebra of the Hopf algebra of X-decorated
permutations. We apply this general recipe in two particular settings:

(i) In the first setting, the image of ¥ is a family of lattice congruences of the weak order that
simultaneously generalize the permutree congruences of [PP16] and the twist congruences
of [Pil18]. The resulting Hopf algebra contains (as Hopf subalgebras) those of [PP16, Pil18].

(ii) In the second setting, the map V¥ is surjective so that we obtain a Hopf algebra involving
the classes of all lattice congruences of the weak order. It contains (as Hopf subalgebras) the
algebras of [MR95, LR98, CP17, PP16] but not those of [LR12, Girl2, Pil18].

The paper is organized as follows. In Section 2, we first recall N. Reading’s combinatorial
model for lattice quotients of the weak order on &, in terms of arc diagrams, and provide a
combinatorial description of the surjection map from permutations to noncrossing arc diagrams
of any fixed lattice congruence of &,. In Section 3, we present our general recipe to construct
Hopf algebras on permutations and arc diagrams decorated with a given decoration set. Finally,
Section 4 is devoted to some relevant applications of this general recipe.

2. LATTICE CONGRUENCES OF THE WEAK ORDER AND ARC DIAGRAMS

We first review a powerful combinatorial interpretation of the lattice quotients of the weak
order on permutations in terms of arc diagrams. All results presented in this section are either
borrowed or directly follow from N. Reading’s work on noncrossing arc diagrams [Real5].

2.1. Canonical representations of permutations and noncrossing arc diagrams. Con-
sider a finite lattice (L, <,A,V). A join representation of x € L is a subset J C L such
that = \/ J. Such a representation is irredundant if x # \/ J' for a strict subset J' C J. The
irredundant join representations of an element = € L are ordered by containement of the lower
ideals of their elements, i.e. J < J’ if and only if for any y € J there exists vy’ € J’ such that y <3/
in L. When this order has a minimal element, it is called the canonical join representation of x.
All elements of the canonical join representation x = \/ J are then join-irreducible, i.e. cover a
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single element. A lattice is join-semidistributive when every element has a canonical join represen-
tation. Equivalently [FN95, Thm. 2.24], zVz=yVz=zVz= (z Ay)V z for any z,y,z € L.
Canonical meet representations, meet-irreducible elements and meet-semidistributive lattices are
defined dually. A lattice is semi-distributive if it is both join- and meet-semidistributive.

Let [n]:={1,...,n} and let [a,b] :={a,...,b} and Ja,b[:={a+1,...,b— 1} for a < b. Consider
the set &,, of permutations of [n]. An inversion of ¢ = o1...0, € &, is a pair (0;,0;) such
that ¢ < j and o; > 0. Denote by inv(o) the inversion set of o. The weak orderon &, is defined by
inclusion of inversion sets, that is o < 7 if and only if inv(s) C inv(7). Its minimal (resp. maximal)
element is the permutation 1...n (resp. n...1) and its cover relations correspond to swapping
two consecutive entries in a permutation. See Figure 1. The weak order on &,, is known to be
a semidistributive lattice. The canonical join and meet representations of a permutation o were
explicitly described by N. Reading in [Real5] as follows.

A descent (resp. ascent) in 0 =0y...0, € &, is a position ¢ € [n — 1] such that o; > 7,41
(resp. 0; < 0i41). For a descent i of o, define A\(o,%) to be the permutation whose entries are
given by 1... (0,41 — 1) followed by {0, | j <4, 0j € ]oit1,0;[} in increasing order, then 0,01,
then {o; | j >i+1, 0; € |0y41,0;[} in increasing order, and finally (¢; + 1)...n. This permu-
tation A(o,4) is join-irreducible since it has a unique descent o; > o;41. We define dually a
meet-irreducible permutation (o, i) for each ascent i of o.

Theorem 1 ([Real5, Thm. 2.4]). The canonical join and meet representations of a permuta-
tion o = o1 ...0y, are given by \/ {A(0,7) | 0; > 0341} and N\ {X(o,i) | 07 < 011}

As N. Reading observed in [Realb], the permutation A(o,%) is uniquely determined by the
values o; and ;41 and by the set {o; | j <, 0; € |oi41,0:[}. This combinatorial data can be
recorded in the following combinatorial gadgets.

An arc is a quadruple (a,b,n,S) where a,b,n € N are such that 1 <a < b <n, and S C]a,b|.
We define A, := {(a,b,n,5) |1 <a<b<nand S Cla,bl}, and A:=|], .y An. For a permu-
tation o € &,,, we denote by a(i,i + 1,0) :=(0;41,0:,n,{0; | j <iand o; € Jo;41,0;]}) the arc
associated to a descent ¢ of o and by §(0) := {a(i,i + 1,0) | 0; > 0,41} the set of arcs correspond-
ing to all descents of 0. We define @ and & dually for ascents.

An arc (a,b,n,S) can be visually represented as an z-monotone continuous curve wiggling
around the horizontal axis, with endpoints a and b, and passing above the points of S and
below the points of ]a,b[ ~ S. Using this representation, N. Reading provided a convenient
visual interpretation of § and 6. For this, represent the permutation o by its permutation ta-
ble (0;,4). (This unusual choice of orientation is necessary to fit later with the existing con-
structions [LR98, HNT05, CP17, PP16].) Draw arcs between any two consecutive dots (oy,1%)
and (041,17 + 1), colored green if o; < ;41 is an ascent and red if o; > ;41 is a descent. Then
move all dots down to the horizontal axis, allowing the segment to curves, but not to cross each
other nor to pass through any dot. The set of red (resp. green) arcs is then the set §(o) (resp. §(c))
corresponding to the canonical join (resp. meet) representation of . See Figure 2 for illustrations
of these maps.

This representation provides a natural characterization of the sets of join-irreducible (resp. meet-
irreducible) permutations that form canonical join (resp. meet) representations. We say that two
arcs (a,b,n,S) and (c,d,n, R) cross if there exist s,r € [max(a, ¢), min(b, d)] such that s € S\ R
while r € R\.S, i.e. if the interior of the two curves representing these arcs intersect. A noncrossing
arc diagram is a collection D of arcs of A,, such that for any two arcs a, 8 € D do not cross and
have distinct left endpoints and distinct right endpoints (but the right endpoint of o can be the
left endpoint of 8 or vice versa). See Figure 2 for examples of noncrossing arc diagrams.

Theorem 2 ([Real5, Thm. 3.1]). The maps § and § are bijections from permutations of &, to
noncrossing arc diagrams of A, .

The reverse bijections 6 ' and 371 are explicitly described in [Real5, Prop. 3.2]. Briefly speak-
ing, consider the poset of connected components of D ordered by (the transitive closure of) the
priority X < Y if there is an arc « = (a,b,n,S) € D with SNX # &g and a,b € Y or with a,b € X
and (Ja,b[ ~ S)NY # @. To obtain § (D) (resp. 6 (D)), choose the linear extension of this
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FIGURE 2. The noncrossing arc diagrams §(co) (bottom) and (o) (top) for the
permutations o = 2537146, 2531746, 2513746, and 2513476.

priority poset where ties are resolved by choosing first the leftmost (resp. rightmost) connected
component, and order decreasingly (resp. increasingly) the values in each connected component.
See Figure 2.

2.2. Lattice quotients of the weak order. Consider a finite lattice (L, <,A,V). A lattice
congruence of L is an equivalence relation on L that respects the meet and the join operations,
i.e. such that x = 2’ and y = ' implies z Ay = 2’ Ay’ and zVy = 2’ Vy'. Equivalently, the
equivalence classes of = are intervals of L and the up and down maps 7~ and 7rf7 respectively
sending an element of L to the top and down elements of its equivalence class for =, are order-
preserving. A lattice congruence = defines a lattice quotient L/= on the congruence classes of =
where the order relation is given by X < Y if and only if there exists z € X and y € Y such
that © < y and the meet X AY (resp. the join X VY') of two congruence classes X and Y is the
congruence class of z Ay (resp. of xVy) for arbitrary representatives © € X and y € Y. Intuitively,
the quotient L/= is obtained by contracting the equivalence classes of = in the lattice L. More
precisely, we say that an element x is contracted by = if it is not minimal in its equivalent class
of =, ie if x # 7rf(:r). As each class of = is an interval of L, it contains a unique uncontracted
element, and the quotient L/= is isomorphic to the subposet of L induced by its uncontracted
elements. Moreover, the canonical join representations in the quotient ﬂf(L) are precisely the
canonical join representations of L that do not involve any contracted join-irreducible. This yields
the following.

Theorem 3 ([Real5, Thm. 4.1]). Consider a lattice congruence = of the weak order on &,,, and
let I= denote the arcs corresponding to the join-irreducible permutations not contracted by =.
(i) A permutation o is minimal in its =-congruence class if and only if §(o) C Z=.
(i) Sending a =-congruence class with minimal permutation o to the arc diagram §(o) defines
a bijection between the congruence classes of = and the noncrossing arc diagrams in Z—.
(iti) The congruence = is the transitive closure of the rewriting rule c — o - (i i + 1) where i is a
descent of o such that a(i, i+ 1,0) ¢ I=.

A dual statement holds replacing minimal by maximal and §(c) by §(c). Moreover, the sets of

arcs {d(0) | o join-irreducible, (o) = o} and {6(0) | o meet-irreducible, T (o) = o} coincide.

We denote still this set Z—.

2.3. Arc ideals. It remains to characterize the sets of arcs Z= corresponding to the uncontracted
join-irreducibles of a lattice congruence of the weak order. This is again transparent on the arc
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FIGURE 3. The forcing order on arcs of A4 (left) and some examples of arc
ideals AZE ., (right) whose associated lattice congruence classes correspond
to permutations, binary trees, binary sequences, diagonal rectangulations, per-
mutrees, sashes, acyclic 2-twists, and 3-descent schemes. Walls are in red and

k =1 if not stated otherwise.

representation of join-irreducible permutations. An arc (a,d,n,S) is forced by an arc (b,c,n,T)
ifa<b<e<dandT = SN]b,c[. Graphically, it means that (b, c,n,T) is obtained by restricting
the arc (a,d,n,S) to the interval [b,c¢]. We denote by (a,d,n,S) < (b,c,n,T) the forcing order.
Figure 3 (left) shows this order on A,.

Theorem 4 ([Real’, Coro. 4.5]). A set of arcs T C A,, corresponds to the set of uncontracted
join-irreducible permutations of some lattice congruence = of the weak order on &,, if and only if
it is an upper ideal of the forcing order <.

Call arc ideal any upper ideal Z of the forcing order: (a,d,n,S) € Z implies (b,c¢,n, SN]b,c[) €
forall a <b<c<dand S C]la,d]. We denote by J,, the set of arc ideals of A,.

Example 5. The sets of all arcs A,,, the set of upper arcs A} := {(a,b,n,]a,b[ |1 <a<b<n},
the set of lower arcs A, = {(a,b,n,@ |1 < a <b<n}, or the union A} U A are all arc ideals.
More generally, fix four functions n, s, e, w : [n] — N and choose k € N. For each a € [n], draw n(a)
upper vertical walls above a, s(a) lower vertical walls below a, and min(e(a), w(a + 1)) horizontal
walls from a and a + 1. Then the set A;)’;,e,w of arcs that cross at most k — 1 of all these walls is
an arc ideal. For certain choices of n,s,e, w and k, the resulting arc ideals can correspond to:

o the weak order (n=s=e=w=0and k=1),
the Tamari lattice [Tam51] (n=e=w=0and s=k =1),
the boolean lattice (n=s =k =1 and e =w = 0),
the lattice of diagonal rectangulations [LR12] (n=s=0ande=w =k = 1),
the permutree lattices [PP16] (n <1,s<1l,e=w=0and k = 1),
the lattice of sashes [Lawl4] m=1,s=2,e=w =0 and k = 2),
the lattice of acyclic k-twists [Pill8] (n=e=w =0,s=1and k > 1),
the lattice of k-descent schemes [NRT11, Pill8] (m=s=1,e=w=0and k > 1).

See Figure 3 (right).

2.4. Explicit surjection. Consider a lattice congruence = of the weak order and let 7 = Z-.
According to Theorem 3, the congruence classes of = are in bijection with noncrossing arc diagrams
of Z. Moreover, the map 7z defined by 7z(0) ::é(ﬂf(a)) sends a permutation o € &,, to the
noncrossing arc diagram of Z corresponding to the congruence class of o. For completeness, we
now provide a direct explicit description of this surjection 7z.

We still represent the permutation o by its permutation table {(c;,7) | ¢ € [n]}. We define

N(o):={(¢,4) |1 <i<j<n, o;>0;and o(]i,j]) N]oj,0:] = D}

Intuitively, N(c) are the pairs of positions such that the rectangle with bottom right corner (o;, %)
and top left corner (o, j) contains no other point (o, k) of the permutation table of . Order N(o)
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FIGURE 4. The noncrossing arc diagrams 7)_(c) (bottom) and 77 (o) (top) for the
permutation o = 2537146 and different arc ideals (represented in light gray).

by (4,5) < (k,0)if i <k < ¢ < jand op > 0; > 0; > o4. For (i,j) € N(o), we define an
arc a(i, j, o) by

(i, j,0):=(0j,05,n,{ox | j < k and o}, € |oj,0,[}).
Note that it extends our previous definition of a(i,7 + 1,0) in Section 2.1. Finally, define Nz(o)
to be the subset of <-maximal elements in {(,j) € N(o) | a(4,j,0) € Z}.

Proposition 6. For any o € &, the set nz(o) = Q(wf(o)) ={a(i,j,o0) | (i,j) € Nz(0)} is the
noncrossing arc diagram of I corresponding to the =-congruence class of o.

Proof. We first observe that if ¢ € &,, is minimal in its congruence class, then nz(c) = (o)
is the arc diagram of the congruence class of o. Indeed, observe first that the characterization
of Theorem 3 (i) ensures that Nz(o) contains (i,i + 1) for each descent i of o. Conversely, con-
sider (4, j) € Nz(o). Since (¢,5) € N(o), there exists ¢ < k < j such that o141 < 0; < 0; < 0.
Therefore, (k,k+1) € Nz(o) so that (i,5) = (k,k+1) by <-maximality in the definition of Nz (o).

Assume now that ¢ € &,, is not minimal in its congruence class. By Theorem 3 (i), o has a
descent ¢ such that a(i,i+1,0) ¢ Z. Let ¢/ :=0 - (i i + 1). Note that N(o) ~ {(¢,7 + 1)} C N(0”).
Conversely, consider (k,¢) € N(¢’) ~ N(c). Then either k = and £ > j,or k <iand £ =j. In
both cases, a(i, j,¢’) cannot belong to Z since it forces (i, + 1,0) which does not belong to Z.
We conclude that Nz(¢') = Nz(o) so that nz(c’) = nz(o). In other words, nz(o) is preserved by
the rewriting rule of Theorem 3 (iii). This concludes the proof since this rewriting rule terminates
on a permutation which is minimal in its congruence class. O

As in Section 2.1, nz(o) is obtained by connecting the points (0;,%) and (¢j, §) in the table of the
permutation o for all (i,j) € Nz(c), and by moving all numbers of this table to the horizontal axis,
allowing the segment connecting ¢ and j to curve but not to pass through any number. Note that
to obtain all pairs (i, j) € Nz(0), one can either draw all pairs (4, j) € N(o) for which a(i, j,0) € Z
and conserve the <-maximal ones, or one can perform a direct insertion algorithm similar to that
of [CP17, PP16]. Details are left to the reader. We define dually the sets (o) and Wz (o) and
the maps @ and 7j;. See Figure 4 for an illustration of the maps nz and ;.
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3. HOPF ALGEBRA STRUCTURES ON NONCROSSING ARC DIAGRAMS

In this section, we present general methods to construct Hopf algebra structures on decorated
permutations and decorated arc diagrams. Recall that a combinatorial Hopf algebra is a combi-
natorial vector space A endowed with an associative product - : A ® A — A and a coassociative
coproduct A : A — A ® A so that the diagram

. A
AR A A AR A
N e
A ARARA ARARARA
I ®swap® [

commutes, where swap : A ® A — A® A is defined by swap(z ® y) = y ® « and [ is the identity.

3.1. Hopf algebra on permutations. Before constructing our decorated versions, we briefly
recall C. Malvenuto and C. Reutenauer’s Hopf algebra on permutations [MR95]. We denote
by &:= | ], cyy ©n the set of all permutations, of arbitrary size.

The standardization of a word w € N? with distinct entries is the permutation std(w) of [¢]
whose entries are in the same relative order as the entries of w. For a permutation p € &, and a
subset R = {r1 < --- < g} C [p], we define stdp(p, R) (resp. stdv(p, R)) as the standardization of
the word obtained by deleting form p the entries whose positions (resp. values) are not in R. For
two permutations o € &,,, and T € &,,, define the shifted shuffle o LU T and the convolution oxT by

ocWT:={p € Gpin | stdv(p, [m]) = o and stdv(p, [m +n] \ [m]) =71}
and o*x7:={p € Gpyn | stdp(p, [m]) = o and stdp(p, [m +n] ~ [m]) =7}.
For example,
1211231 = {12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312},
and 12231 = {12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231}.

Theorem 7 ([MRO5]). The vector space k& with basis (Fy)ses endowed with the product and
coproduct defined by

F, - F,= Y F, and AF,= > F,@F,

pEo T pPETKT

is a graded Hopf algebra.

3.2. Decorated permutations. For our purposes, we need extensions of C. Malvenuto and
C. Reutenauer’s Hopf algebra on permutations. For example, we needed the signed or decorated
permutations of [NT10] to construct the Cambrian and permutree Hopf algebras [CP17, PP16]. We
now define Hopf algebras on permutations decorated with potentially more complicated structures.

Definition 8. A decoration set is a graded set X:= | |-, X, endowed with
e ¢ concatenation concat: X,, X X, — X,4n fm:all m,n € N,
e ¢ selection select : X, x ([7;]) — Xy, for all m,k € N,

such that

(i) concat(X,concat(), Z)) = concat(concat(X,Y), Z) for any elements T, T, K € X,
(ii) select(select(X, R),S) = select(X,{rs | s € S}) for any element K € X,, and any subsets
R={ri,...,rq} C[p| and S C [q],
(iii) concat(select(X, R),select(), S)) = select(concat(X,Y), RUS™™) for any elements X € X,
and Y € X, and any subsets R C [m] and S C [n], where S7™:= {s+m|s € S}.

Example 9. A typical decoration set is the set of words A* on a finite alphabet A, graded by
their length, with the classical concatenation of words, and the selection defined by subwords:
concat(ug ... Upm, V1 ... Vp) = Up...UpnV1...V, and select(wy ... wp,{r1,...,7¢}) = Wr, ... wy,.
Among many other examples, let us also mention the set of labeled graphs, graded by their
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number of vertices, with the concatenation defined as the shifted union, and the selection defined
by standardized induced subgraphs. Further examples will appear in Section 4.

For n > 0, we denote by J3,, the set of X-decorated permutations of size n, i.e. of pairs (o, X)
with ¢ € &,, and X € X,,. We consider the graded set P:= ||, -,FP» and the graded vector
space kP := P, o kB, where kB, is a vector space with basisi(IF(c,VX))(mX)espn indexed by
X-decorated permutations of size n. For two decorated permutations (o, X') and (7,)), we define
the product F(, xy - F( y) by

Flox)  Fry):= Z F(,concat(x,))-
pEo T

Proposition 10. The product - defines an associative graded algebra structure on kK.

Proof. If (0, X) € Py, and (1,Y) € B, we have (p, concat(X,))) € Pyt for any p € oI T, so
that - is a graded product. It is associative since both the concatenation (by Definition 8 (i)) and
the shifted shuffle product (by Theorem 7) are associative. ]

We define the standardization of a decorated permutation (p, Z) € B, at a subset R C [p] as
std((p, Z), R) := (stdp(p, R), select(Z, p~'(R))),

where stdp(p, R) is the position standardization on permutations and select(Z,p~1(R)) is the
selection on X. For a decorated permutation (p, Z) € *B,, we define the coproduct AF(, z) by

AF 2y = ZFstd«p, (k) @ Fstd((p,2),[p) < [k])-

Proposition 11. The coproduct /A defines a coassociative graded coalgebra structure on k3.

Proof. 1f (0, 2) € B, and R C [p], we have std((p, Z), R) € B/ so that A is a graded coprod-
uct. Moreover, using Definition 8 (ii), we obtain that for a decorated permutation (p, Z) € B,,
both (Id ® A)(AF(,,zy) and (A ® Id)(AF(,, z)) equal to

Y Fad((p.2).4) © Feta((o,2). [0~ 18)) ® Feta((0.2). 161 [2)) O
0<k<t<p

Theorem 12. The product - and coproduct N endow the family of decorated permutations with a
graded Hopf algebra structure.

Proof. This follows from the same property for the product and coproduct on permutations and
by Definition 8 (iii). Indeed
m—+n

A(Fox)  Fry)) = Z Z Fstd((p,concat(,3)),[k]) @ Fstd((p,concat(x,3)),[m-+n]~[k])

k=0 pE€owit
m n

(ZFstd«aX) p) ® Fsd((o,2), i~ [ ) (ZFstd«m) fah) @ Fswa((r.0), [n]\[qn)
q=0

(ZF (i concar(sud 2,71 (1)) sy, 7 (a))) )
(Z]F(l/ concat(std(X,o0—1([m]\[p])),std(V, T*l([n]\[q])))))

= M’(a 2 AF @)

where p ranges over stdp(o, [p]) W stdp(7, [¢]) while v ranges over stdp(c, [m]\[p]) L stdp(7, [n]\[q])
in the second line, and the swap is understood in the last two lines. O

Example 13. When X is the set of words A* on a finite alphabet A4 (with the classical con-
catenation of words and the selection defined by subwords, as in Example 9), the Hopf algebra of
decorated permutations was studied in detail by J.-C. Novelli and J.-Y. Thibon in [NT10]. Further
relevant examples will appear in Section 4.



HOPF ALGEBRAS ON DECORATED NONCROSSING ARC DIAGRAMS 9

3.3. Decorated noncrossing arc diagrams. We now use our Hopf algebra on decorated permu-
tations to construct Hopf algebras on decorated noncrossing arc diagrams. As in the previous sec-
tion, we consider a decoration set (X, concat, select) and the corresponding Hopf algebra (kB, -, A)
on X-decorated permutations. Recall from Section 2.3 that J,, denotes the set of arc ideals of A,,.

For an arc a = (a,b,m,S) and n € N, we define the augmented arc o™ := (a,b,m +n, S) and
the shifted arc ™™ := (a+n,b+n,m+n,{s+n| s € S}). Graphically, a*™ is obtained from « by
adding n points to its right, and o™ is obtained from « by adding n points to its left. For Z C A,,
and n € N, define Zt":= {a™ |a € I} and T7":= {a" | @ € T}.

Definition 14. A graded function ¥ : X = ||, 5, X, — T =[5 Tn is conservative if

(1) U(X)t™ and U(Y)™™ are both subsets of ¥(concat(X,))) for any X € X,, and Y € X,,,
(ii) (ra,7,p,5) € U(Z) implies (a,b,q,{c € [q] | 1. € S}) € U(select(Z,R)) for any Z € X,
any R={r1 < - <rg} Cp], any1 <a<b<q and any S Clrg, 7.

Example 15. If X = {#}* is the decoration set of words on a one element alphabet, then the maps
" — A, ={(a,b,n,5) |1 <a<b<nand S Cla,b[} and " — {(a,b,n,d) |1 <a<b<n}are
both conservative. Further relevant examples will appear in Section 4.

From now on, we assume that we are given a conservative function ¥ : X — J. For n > 0,
we denote by ©,, the set of X-decorated noncrossing arc diagrams of size n, i.e. of pairs (D, X)
where X' € X,, and D is a noncrossing arc diagram contained in ¥(X').

We now define a Hopf algebra on X-decorated noncrossing arc diagrams using the map 7 defined
in Section 2.4. We denote by k® := @, ., kD,, the graded vector subspace of k%P generated by

the elements
]P)(D7X) = Z ]F(O',X)7

ced
nw(x)(0)=D

for all X-decorated noncrossing arc diagrams (D, X). Our central result is the following statement.
Theorem 16. The subspace k®© is a Hopf subalgebra of k3.

Proof. We first prove that k® is a subalgebra of k%3, i.e. that it is stable by product. Consider two
X-decorated noncrossing arc diagrams (D, X) € D,, and (£,)Y) € D,,. By definition, all permuta-
tions that appear in the product P(p x) - P(g y) are decorated by the product Z:= concat(X,)).
Consider thus two decorated permutations (p, Z) and (p’, Z) such that 9y z)(p) = nw(z)(p’). We
want to show that P(, z) appears in P(p x) P y) if and only if P,/ z) appears in P(p x) - P(e y).
Assume first that p’ =p-(kk+1) for a descent k of p such that a(k,k+1,p) ¢ ¥(Z) and
that P, z) appears in the product Pip x) - Pey). Let o € ﬂ;(lX)(D) and T € ﬂ\;,(ly) (€) be such
that p € ol 7. We then distinguish three cases:

o If pp11 < m < py, then p’ also belongs to o (11 7 so that P, z) also appears in P(p x) - P(e 3.
o If p; < m, then Definition 14 (i) ensures that a(i,i + 1,0) ¢ X, where i is the descent of &
such that o; = pg. The permutation o’ := o-(i i+1) thus satisfies ny(x)(0') = Ny (x)(0) = D.
Since p’ € o’ L7, it follows that P, z) also appears in P(p x) - P(e y).
o Finally, if m < pg41, the argument is similar using 7/:=7- (j j + 1) where 7; = pi.
By transitivity in Theorem 3 (iii), we obtain that IP(, z) appears in Pp vy - P(g y) if and only
if P,y z) appears in P(p x) - P(g y). Therefore kD is a subalgebra of k3.

We now prove that k® is a subcoalgebra of k3, i.e. that it is stable by coproduct. Con-
sider a decorated noncrossing arc diagram (D, Z) € ©,, and four decorated permutations (o, X),
(o', &), (1,¥) and (7/,)) such that ngx)(0) = nwx)(0’) and 9y (T) = Ne) (7). We want
to show that P, vy ® P(; y) appears in the coproduct APp z) if and only if P, ) @ Py
appears in the coproduct AP(p z). Assume first that ¢’ = o - (i @ + 1) for a descent i of o
with a(i,i 4+ 1,0) ¢ X, that 7 = 7" and that P(, x) ®P(,,y) appears in the coproduct APp z). By
definition of the coproduct, there exist p € ﬂg,(lz)(D) and k € [p] such that (o, X) = std((p, Z), [K])
and (1,)) = std((p, Z), [p] \ [k]). Since X = select(Z,p 1([£])) and a(i,i + 1,0) ¢ X, Defini-
tion 14 (ii) ensures that a(i,i+ 1, p) ¢ Z. We conclude that p’ = p-(ii+1) isin Q;(lz) (D). Since
moreover (¢/, X') = std((p’, Z),[k]) and (7,)) = std((p’, Z), [p] ~ [k]), we get that P, x) @ P(; y)
appears in the coproduct AP(p z). By symmetry and by transitivity in Theorem 3 (ii), we conclude
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that P, x) ® P(,,y) appears in the coproduct APp zy if and only if P,/ x) ® P,/ y) appears in
the coproduct AP(p z) for any (o, X), (0, &), (7,Y) and (7', ) such that ngx)(0) = ne(x) (o)
and 1y(y)(T) = Nw(y)(7"). Therefore k® is a subcoalgebra of k3. O

3.4. Decoration products and decoration subsets. To close our generic Hopf algebra con-
structions, we observe two natural operations on decoration sets that behave properly with our
construction. The straightforward proofs are left to the reader. First, we observe that we can
obtain Hopf algebra structures on arc diagrams decorated by cartesian products of decorations.

Proposition 17. The Cartesian product X x X' of two decoration sets X and X', endowed with
the concatenation and selection defined by

concat((X, X’), (),)’)) := (concat(X, ), concat(X’, "))
and  select((Z,Z2'), R) = (select(Z, R), select(Z’, R)),

is a decoration set. Moreover, for two conservative functions ¥ : X — J and ¥’ : X' — 7, the
function UNV : X x X' — T defined by (NI ) (X, X):=T(X)N V' (X') is conservative.

On the other hand, we observe that decoration subsets define Hopf subalgebras.

Proposition 18. If X C X’ are two decoration sets, and W' : X' — T is a conservative function,
then the restriction ¥ of W' to X is conservative. Therefore, the Hopf algebra kD constructed
from U is a Hopf subalgebra of the Hopf algebra kD' constructed from V',

4. APPLICATIONS

In this section, we provide examples of application of Theorems 12 and 16.

4.1. Insertional, transitional, and Hopf families of congruences. For all n € N, fix a lattice
congruence =,, of the weak order on &,,, with arc ideal Z,,. As a first application of Theorem 16,
we obtain sufficient conditions for the family (=, )nen to define a Hopf subalgebra of k&.

Corollary 19 ([Rea05, Thm. 1.2 & 1.3]). For all n € N, consider a lattice congruence =,, of the
weak order on &, with arc ideal Z,,. If

e both Y™ and I,”™ are contained in Ly, 1y for all m,n € N,
o (rq,7p,p,S) € I, implies (a,b,q,{c € [q] | rc € S}) € I, forany R = {r1 < --- <rq} C [p],
any 1 <a<b<gqand any S Clrq, s,

then the subvector space of k& generated by the sums ) T, over the classes of the congruences =,
is a Hopf subalgebra of C. Malvenuto and C. Reutenauer’s Hopf algebra kS.

Proof. Consider the decoration set {®}* of words over a one element alphabet and the function
U : {e}* — T given by ¥(e") =Z= . Note that the Hopf algebra k3 of permutations decorated
with {e}* is just isomorphic to C. Malvenuto and C. Reutenauer’s Hopf algebra k& on permu-
tations. Moreover, the conditions of the statement assert that W is conservative. The result thus
immediately follows from Theorem 16. (]

The conditions of Corollary 19 are essentially the transitional and insertional conditions given
by N. Reading in [Rea05, Thm. 1.2 & 1.3]. Note however that our induction condition is slightly
weaker as we only require that the restriction of =, 1, to {o\7|o € &,, and 7 € &,,} refines
the congruence relation induced by =,, X =, on {o\7 |0 € &,,, and T € &,,} while N. Reading
requires that these congruences coincide.

Example 20. Corollary 19 covers various families of lattice congruences, producing Hopf algebra
structures on permutations [MR95], on binary trees [LR98, HNTO05], on binary sequences [GKL195],
on diagonal quadragulations [LR12] or equivalently on twin binary trees [Gir12], on k-twists [Pil18],
on k-descent schemes [NRT11, Pil18§], etc.
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4.2. Bounded crossings. We now consider the family of arc ideals "41’<1,I;,e,w defined in Example 5.
Consider the decoration set X = | |, .y X, where X,, is the set of quadruples of functions [n] — N,
and where the concatenation is defined by

), w(a)) ifa<m

concat((n,s,e,w), (n',s', e, w'))(a) = {(n(a),s(a),eiclz(;) w/(a)) ifa>m

(n'(a),s(a),
(in other words, the usual concatenation of words in (N*)*), and the selection is defined by
select((n, s, e,w), R)(a) = (n(rq),s(ry), min{e(s) | s € [re—1,74]} , min{w(s) | s € [ra,Tat1})-

Choose k € N and define the function ¥ : X, — A, by ¥(n,s,e,w) = A5k _ . Recall from
Example 5 that for each a € [n], we place n(a) upper vertical walls above a, s(a) lower vertical
walls below a and min(e(a), w(a + 1)) horizontal walls between a and a + 1, and that an arc

belongs to A§7’§7e7w if it crosses at most k — 1 of these walls. The function ¥ is conservative since

e for any u € X,,, v € X,,, @ € ¥(u) and B € ¥(v), the walls of vw crossed by a™" are
precisely the walls of v crossed by «, while the walls of vw crossed by S7™ are precisely
the m-translates of the walls of v crossed by 3,

o forany we X,, R={r1,...,7q} C[p], 1 <a<b<gand S C|ry,rp], the walls crossed
by the arc (a,b,q,{c|r. € S}) are walls crossed by the arc (rq,7s,p,S) (but the latter
might cross more walls than the former).

We therefore obtain a Hopf algebra kD <F on the classes of all lattice congruences Af]”;’e’w simulta-
neously. Moreover, as observed in Proposition 18 any subset of X stable by concatenation and selec-
tion provides a Hopf subalgebra k®<*. In particular, kD <! contains simultaneously Hopf subalge-
bras on permutations [MR95], binary trees [LR98, HN'T05], binary sequences [GKL195], Cambrian
trees [CP17], permutrees [PP16], and diagonal rectangulations [LR12, Gir12], while kD <* contains
subalgebras on k-twists [Pil18] and on k-descent schemes [NRT11, Pil18]. Finally, one could also
mix conditions on the crossing numbers with walls of different colors using Proposition 17.

4.3. All arc diagrams. To conclude, we define a Hopf algebra k®* simultaneously involving the
classes of all lattice congruences of the weak order, and containing the permutree algebra.

4.3.1. Extended arcs. We call extended arc any quadruple (a,b,n,S) where a,b,n € N are such
that 0 < a < b < n+ 1, and S Cla,b[. In other words, extended arcs are precisely like
arcs but they are allowed to be attached before 1 and after n. We represent extended arcs
exactly in the same way as arcs (but the points 0 and n + 1 are colored white). We denote
by Af = {(a,b,n,5) | 0<a<b<n-+1and S C]la,b[} the set of all extended arcs. An extended
arc (a,b,n,S) is initial if a = 0, terminal if b = n+ 1, and strict otherwise. The notions of crossing
and forcing, as well as the operations o™ and o™, are defined as for classical arcs. We denote
by 77 the set of extended arc ideals (i.e. upper ideals of the forcing order < on A%).
We call juztaposition aff of two extended arcs a:=(i,4,n,S5) and 8:= (k, ¢,n, R) the arc

0f = {(i,¢,n,SUR)} ifj=k+1,
o otherwise.

In other words, a5 is obtained by joining « to 8 when the final endpoint of « appears just after the
initial endpoint of 8, and is empty otherwise. For Z, J C A}, we define the juztaposition ZJ by

I7=T0JU ] aB

acl
Beg

Note that if Z and J are both extended arc ideals, then Z.7 is also an extended arc ideal.
We define the concatenation of two extended arc ideals Z C A%, and J C A* by
concat(Z,J) =TI J ™.

Graphically, concat(Z, J) is obtained by juxtaposing Z and J such that the n— (n+1) edge of
coincides with the 0—1 edge of J, and joining all final arcs of Z with all initial arcs of J. See
Figure 5 for an illustration.
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S

FIGURE 5. The concatenation of two extended arc ideals.

concat

Lemma 21. The concatenation concat(Z,J) of two extended arc ideals T C A7, and J C A7, is

m
an arc ideal of A% ..

Proof. The set concat(Z,J) is contained in A}, by definition and closed by forcing since

both ZT" and J ™ are. O

Lemma 22. For any arc ideals T, J, KC, we have concat(concat(Z, J ), K) = concat(Z, concat(J, K)).
Proof. Assume that Z C A%, J C Ar and K C .A;. By definition, we have

concat(concat(Z, J),K) = (I+7LJ—>M)+?IC->(7TL+7L) — I+(7L+p)(j—>m)+plc—>(7n+n)
= 7T+ (7 HPICTM) ™ = concat(Z, concat(T, K)). O

Consider now an extended arc ideal £ C A% and a subset X :={z; < --- < x4} of [p]. Define
by convention xg:=0 and 441 :=p + 1. We define the selection of K at X by

select(KC, X) = {(i,j}q,S) ’ Jyo <--- <y, € [p] with 2; =y and z; =y, while y1,...,yp—1 ¢ X }

= (yanhpa S1)7' LR ) (yT'—layT'7p7 S’!) € K with S = {g € [q] I Ty € USk}

Graphically, select(K, X) is obtained by considering all arcs obtained by merging z-monotone
paths in K with endpoints in {0} UX U{p+ 1} but all interior points in [p] \ X, deleting all points
of [p] ~ X, and packing the remaining points of {0} UX U{p+ 1} (together with the merged arcs)
to the left towards their standard position 0,1,...,q,q+ 1. See Figure 6 for an illustration.

select {1,3,6} =

FIGURE 6. The selection in an arc ideal. Selected points are in red. The blue
extended arc (0,4, 3,{1,3}) in select(K, {1, 3,6}) arises from the concatenation of
the three blue extended arcs (0,2,6,{1}), (2,5,6,{4}) and (5,7,6,{6}) in K.

Lemma 23. The selection select(IC, X) of an extended arc ideal K C Ay on a g-element subset X
of [p] is an extended arc ideal of Aj.

Proof. Let I :=select(K, X). We have Z C A7 by definition. To show that 7 is closed by forc-
ing, assume that an arc (a,d,q,S) € I is forced by an arc (b,¢,q,T), so that a <b<c<d
and T = SNJb,c[. Consider a path of arcs a1 := (yo,y1,D,51), - & = (Yr—1,Yr,p, Sr) of K cor-
responding to Z. Let u:=min{s € [r] | xp < ys} and v:= max{s € [r] | ys—1 < z.}. Since K is
closed by forcing, it contains o, := (xp, Yu, Py SuN]Te, Yu[) and o, := (Yy—1, Tey Sy N Yp—1, Tc[). The
path of arcs o, yy1, ..., Qp—1, &, thus ensures that (b, c,q,T) belongs to Z as well. O

Lemma 24. For any extended arc ideal K C Ay, any subset X :={z1,...,x,} of [p] and any
subset Y of [q], we have select(select(IC, X),Y") = select(IC, {z, | y € Y'}).
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Proof. By definition, both select(select(/C, X),Y") and select(KC, {z, | y € Y'}) are obtained by merg-
ing all paths in K whose endpoints are in {0} U {z, | y € Y} U{p+ 1} but whose interior vertices
are all in [p] \ {z | y € Y}, and packing the remaining points of {0} U{z, |y € Y} U {p+ 1} to
their standard position 0,1,...,|Y],|Y] + 1. O

Proposition 25. For any arc ideals T C A%, and J C A% and any subsets X C [m] andY C [n],
concat(select(Z, X ), select(.7,Y")) = select(concat(Z, J), X UY ™)
where Y7 :={y+m |y e Y}.

Proof. Consider an arc a:=(a,b,m +n,S) € Ay . We distinguish three cases:

e If b < m, then o € concat(select(Z, X), select(J,Y)) and « € select(concat(Z, J), X UY ™)
are both equivalent to (a,b, m,S) € select(Z, X).

o If m < a, then a € concat(select(Z, X), select(,Y)) and a € select(concat(Z, J), X UY ™)
are both equivalent to (a — m,b —m,n,{s —m | s e S}) € select(J,Y).

e Finally, assume that a < m < b. If a € concat(select(Z, X ), select(J,Y)), then there exists
a final arc 3 € select(Z, X) and an initial arc y € select(7,Y’) such that {a} = gT"y~™.
The arc 8 € select(Z, X) corresponds to a path of arcs fy,...,5, in Z whose interior
points all belong to [m] ~ X, and similarly the arc v € select(J,Y) corresponds to
a path of arcs 7p,...,7s in J whose interior points all belong to [n] ~ Y. The path

B BT ™ ™, ..., ™ thus shows that o € select(concat(Z, J), X UY ™).
Conversely, if a € select(concat(Z, J), XUY 7™), it corresponds to a path of arcs a1, ..., a;
in concat(Z, J) whose interior points all belong to X UY ~™. Since a < m < b, there
is s € [r] such that as = (¢,d,m+n,T) with ¢ <m < d. Let 81,...,5; inZ and s, ..., %
in 7 be such that ay = BF"y*™ and a; = 8" if i < s while a; = ;>™ if i > s. Then
the paths f1,...,8s in Z and ~s,...,7, in J ensure the existence of § € select(Z, X)
and v € select(J,Y) such that a« = 7"y ~"™ € concat(select(Z, X ), select(J,Y)). O

We have therefore proved the following statement.

Corollary 26. The set 3*:= | |, T} of all extended arcs ideals, endowed with the concatena-
tion concat and selection select, is a decoration set.

4.3.2. Noncrossing extended arc diagrams. We now consider the map ¥ : J* — J which sends
an extended arc ideal to the arc ideal of its strict arcs. This function is clearly conservative so
that we obtain a Hopf algebra k®* on pairs (D, Z), where Z is any extended arc ideal and D is a
noncrossing arc diagram containing only strict arcs of Z. In particular, this structure involves the
classes of all lattice congruences of the weak order. Moreover, the concatenation and selection on
extended arc diagrams was chosen to fulfill the following statement.

Proposition 27. The permutree Hopf algebra is a Hopf subalgebra of k™.

Proof. Any function n,s : [n] — {0,1} naturally correspond to the extended arc ideal Z, ¢ of
extended arcs (a,b,n,S) such that n(c) = 0 for ¢ € S and s(c) = 0 for ¢ € Ja,b[ . S. On these
particular extended arc ideals, the concatenation and selection corresponds to that defined in
Section 4.2. The result immediately follows by Proposition 18. (]

In contrast, the reader can check that none of the Hopf algebras of [LR12, Girl2, Pill8] is a
Hopf subalgebra of k®*.
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