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Abstract. We describe a canonical spanning tree of the ridge graph of a

subword complex on a finite Coxeter group. It is based on properties of greedy
facets in subword complexes, defined and studied in this paper. Searching this

tree yields an enumeration scheme for the facets of the subword complex. This

algorithm extends the greedy flip algorithm for pointed pseudotriangulations
of points or convex bodies in the plane.

1. Introduction

Subword complexes on Coxeter groups were defined and studied by A. Knutson
and E. Miller in the context of Gröbner geometry in Schubert varieties [KM04,
KM05]. Type A spherical subword complexes can be visually interpreted using
pseudoline arrangements on primitive sorting networks. These were studied by
V. Pilaud and M. Pocchiola [PP12] as combinatorial models for pointed pseudo-
triangulations of planar point sets [RSS08] and for multitriangulations of convex
polygons [PS09]. These two families of geometric graphs extend in two different
ways the family of triangulations of a convex polygon.

The greedy flip algorithm was initially designed to generate all pointed pseudo-
triangulations of a given set of points or convex bodies in general position in the
plane [PV96, BKPS06]. It was then extended in [PP12] to generate all pseudoline
arrangements supported by a given primitive sorting network. The goal of this pa-
per is to generalize the greedy flip algorithm to any subword complex on any finite
Coxeter system. Based on combinatorial properties of greedy facets, we construct
the greedy flip tree of a subword complex, which spans its ridge graph. This tree
can be visited in polynomial time per node and polynomial working space to gener-
ate all facets of the subword complex. For type A spherical subword complexes, the
resulting algorithm is that of [PP12], although the presentation is quite different.

The paper is organized as follows. In Section 2, we recall some notions on finite
Coxeter systems and subword complexes. Our main results appear in Section 3
where we define the greedy facet of a subword complex, construct the greedy flip
tree, and describe the greedy flip algorithm.

2. Subword complexes on Coxeter groups

2.1. Coxeter systems. We recall some basic notions on Coxeter systems needed
in this paper. More background material can be found in [Hum90].

Let V be an n-dimensional euclidean vector space. For v ∈ V r 0, we denote
by sv the reflection interchanging v and −v while fixing pointwise the orthogonal
hyperplane. We consider a finite Coxeter group W acting on V , i.e. a finite group
generated by orthogonal reflections of V . We assume without loss of generality that
the intersection of all reflecting hyperplanes of W is reduced to 0.

Computations in W are simplified by root systems. A root system for W is a set Φ
of vectors stable by W and containing precisely two opposite vectors orthogonal
to each reflection hyperplane of W . Fix a linear functional f : V → R such
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that f(β) 6= 0 for all β ∈ Φ. It splits the root system Φ into the set of positive
roots Φ+ := {β ∈ Φ | f(β) > 0} and the set of negative roots Φ− :=−Φ+. The simple
roots are the roots which lie on the extremal rays of the cone generated by Φ+. They
form a basis ∆ of the vector space V . The simple reflections S := {sα | α ∈ ∆}
generate the Coxeter group W . The pair (W,S) is called a finite Coxeter system.
For s ∈ S, we let αs be the simple root orthogonal to the reflecting hyperplane of s.

The length of an element w ∈ W is the length `(w) of the smallest expression
of w as a product of the generators in S. It is also known to be the cardinality of
the inversion set of w, defined as the set inv(w) := Φ+ ∩w−1(Φ−) of positive roots
sent to negative roots by w. An expression w = s1 · · · sp, with s1, . . . , sp ∈ S, is
reduced if p = `(w). The Demazure product on the Coxeter system (W,S) is the
function δ from the words on S to W defined inductively by

δ(ε) = e and δ(Qs) =

{
δ(Q)s if `(δ(Q)s) > `(δ(Q))

δ(Q) if `(δ(Q)s) < `(δ(Q))
,

where ε is the empty word and e is the identity of W .

Example 2.1 (Type A — Symmetric groups). The symmetric group Sn+1, act-
ing on the linear hyperplane 11⊥ :=

{
x ∈ Rn+1

∣∣ 〈11|x〉 = 0
}

by permutation of the
coordinates, is the reflection group of type An. It is the group of isometries of the
standard n-dimensional regular simplex conv{e1, . . . , en+1}. See Figure 1 (left). Its
reflections are the transpositions of Sn+1 and the set {ei − ej | i, j ∈ [n+ 1]} is a
root system for An. We can choose the linear functional f such that the simple
reflections are the adjacent transpositions τi := (i i+ 1), for i ∈ [n], and the simple
roots are the vectors ei+1 − ei, for i ∈ [n].

Example 2.2 (Type B — Hyperoctahedral groups). The semidirect product of the
symmetry group of Sn (acting on Rn by permutation of the coordinates) with the
group (Z2)n (acting on Rn by sign change) is the reflection group of type Bn. It is
the isometry group of the n-dimensional regular cross-polytope conv{±e1, . . . ,±en}
and of its polar n-dimensional regular cube [−1, 1]n. See Figure 1 (middle). Its
reflections are the transpositions of Sn and the changes of one single sign. The set
{±ep ± eq | p < q ∈ [n]}∪{±ep | p ∈ [n]} is a root system for Bn. We can choose the
linear functional f such that the simple reflections are the adjacent transpositions
τi := (i i+ 1), for i ∈ [n− 1], together with the change χ of the first sign, and thus
the simple roots are the vectors ei+1−ei, for i ∈ [n−1], together with the vector e1.

Figure 1. The A3-, B3-, and H3-arrangements.
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Example 2.3 (Type H3 — Icosahedral group). The isometry group of the regular
icosahedron (and of its polar dodecahedron) is a Coxeter group. See Figure 1 (right).

2.2. The subword complex. Consider a finite Coxeter system (W,S), a word
Q := q1q2 · · · qm on the generators of S, and an element ρ ∈ W . A. Knutson and
E. Miller [KM04] define the subword complex SC(Q, ρ) to be the simplicial complex
of subwords of Q whose complements contain a reduced expression for ρ as a sub-
word. A vertex of SC(Q, ρ) is a position in Q. We denote by [m] := {1, 2, . . . ,m}
the set of positions in Q. A facet of SC(Q, ρ) is the complement of a set of positions
which forms a reduced expression for ρ in Q. We denote by F(Q, ρ) the set of
facets of SC(Q, ρ). We write ρ ≺ Q when Q contains a reduced expression of ρ,
i.e. when SC(Q, ρ) is non-empty.

Example 2.4. Consider the type A Coxeter group S4 generated by {τi | i ∈ [3]}.
Let Q̄ := τ2τ3τ1τ3τ2τ1τ2τ3τ1 and ρ̄ := [4, 1, 3, 2]. The reduced expressions of ρ̄ are
τ2τ3τ2τ1, τ3τ2τ3τ1, and τ3τ2τ1τ3. Thus, the facets of the subword complex SC(Q̄, ρ̄)
are {1, 2, 3, 5, 6}, {1, 2, 3, 6, 7}, {1, 2, 3, 7, 9}, {1, 3, 4, 5, 6}, {1, 3, 4, 6, 7}, {1, 3, 4, 7, 9},
{2, 3, 5, 6, 8}, {2, 3, 6, 7, 8}, {2, 3, 7, 8, 9}, {3, 4, 5, 6, 8}, {3, 4, 6, 7, 8}, and {3, 4, 7, 8, 9}.
We denote by Ī := {1, 3, 4, 7, 9} and J̄ := {3, 4, 7, 8, 9}. We will use this example as
a recurrent example in this paper to illustrate further notions.

Example 2.5 (Type A — Primitive networks). For type A Coxeter systems, sub-
word complexes can be visually interpreted using primitive networks. A network N
is a collection of n + 1 horizontal lines (called levels, and labeled from bottom to
top), together with m vertical segments (called commutators, and labelled from left
to right) joining two different levels and such that no two of them have a common
endpoint. We only consider primitive networks, where any commutator joins two
consecutive levels. See Figure 2 (left). A pseudoline supported by the network N
is an abscissa monotone path on N . A commutator of N is a crossing between two
pseudolines if it is traversed by both pseudolines, and a contact if its endpoints are
contained one in each pseudoline. A pseudoline arrangement Λ is a set of n + 1
pseudolines on N , any two of which have at most one crossing, possibly some con-
tacts, and no other intersection. We label the pseudolines of Λ from bottom to
top on the left of the network, and we define π(Λ) ∈ Sn+1 to be the permutation
given by the order of these pseudolines on the right of the network. Note that the
crossings of Λ correspond to the inversions of π(Λ). See Figure 2 (right).

Consider the typeA Coxeter group Sn+1 generated by S = {τi | i ∈ [n]}, where τi
is the adjacent transposition (i i + 1). To a word Q := q1q2 · · · qm with m letters
on S, we associate a primitive network NQ with n+ 1 levels and m commutators.
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Figure 2. The network NQ̄ (left) and the pseudoline arrange-

ment ΛĪ for the facet Ī = {1, 3, 4, 7, 9} of SC(Q̄, ρ̄) (right).
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If qj = τp, the jth commutator of NQ is located between the pth and (p+1)th levels
of NQ. See Figure 2 (left). For ρ ∈ Sn+1, a facet I of SC(Q, ρ) corresponds to a
pseudoline arrangement ΛI supported by NQ and with π(ΛI) = ρ. The positions
of the contacts (resp. crossings) of ΛI correspond to the elements of I (resp. of the
complement of I). See Figure 2 (right).

Example 2.6 (Combinatorial models for geometric graphs). As pointed out in [PP12],
pseudoline arrangements on primitive networks give combinatorial models for the
following families of geometric graphs (see Figure 3):

(i) triangulations of convex polygons;
(ii) multitriangulations of convex polygons [PS09];
(iii) pointed pseudotriangulations of points in general position in the plane [RSS08];
(iv) pseudotriangulations of disjoint convex bodies in the plane [PV96].

For example, consider a triangulation T of a convex (n+ 3)-gon. Define the direc-
tion of a line of the plane to be the angle θ ∈ [0, π) of this line with the horizontal
axis. Define also a bisector of a triangle 4 to be a line passing through a vertex
of 4 and separating the other two vertices of 4. For any direction θ ∈ [0, π), each
triangle of T has precisely one bisector in direction θ. We can thus order the n+ 1
triangles of T according to the order πθ of their bisectors in direction θ. The pseu-
doline arrangement associated to T is then given by the evolution of the order πθ
when the direction θ describes the interval [0, π). A similar duality holds for the
other three families of graphs, replacing triangles by the natural cells decomposing
the geometric graph (stars for multitriangulations [PS09], or pseudotriangles for
pseudotriangulations [RSS08]). See Figure 3 for an illustration. Details can be
found in [PP12].

Figure 3. Primitive sorting networks are combinatorial models
for certain families of geometric graphs.

Example 2.7 (Type B — Symmetric primitive networks). Consider the type B
Coxeter group Sno(Z2)n acting on Rn and generated by S = {τi | i ∈ [n− 1]} ∪ χ,
where τi exchange the ith and (i+ 1)th coordinates, and χ changes the sign of the
first coordinate. To a word Q := q1q2 · · · qm on S with m letters and x occurrences
of χ, we associate a primitive network NQ with 2n levels and 2m − x commuta-
tors, which is symmetric with respect to the horizontal axis. The levels of NQ
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are labeled by −n, . . . ,−1, 1, . . . , n from bottom to top. An occurrence of τi is
replaced by a pair of symmetric commutators between −i − 1 and −i and be-
tween i and i+ 1, and an occurrence of χ is replaced by a commutator between −1
and 1. A facet I of the subword complex SC(Q, ρ) is represented by a symmet-
ric pseudoline arrangement ΛI supported by NQ whose contacts correspond to the
positions in I. If the pseudolines of ΛI are labeled by −n, . . . ,−1, 1, . . . , n from
bottom to top on the left of NQ, then their order on the right of NQ is given by
−ρ(n), . . . ,−ρ(1), ρ(1), . . . , ρ(n).

Example 2.8 (Combinatorial models for centrally symmetric geometric graphs).
Type B subword complexes provide combinatorial models for the centrally symmet-
ric versions of the geometric graphs of Example 2.6. Indeed, the central symmetry
of a geometric graph translates into an horizontal symmetry on its dual pseudoline
arrangement. See also the discussion in [CLS11] in particular the dictionnary in
Table 2.

2.3. Generating the subword complex. In this paper, we discuss the problem
to exhaustively generate the set F(Q, ρ) of facets of the subword complex SC(Q, ρ).
We underline in this section two immediate enumeration algorithms which illustrate
relevant properties of the subword complex.

For the evaluation of the time and space complexity of the different enumeration
algorithms, we consider as parameters the rank n of the Coxeter group W , the
size m of the word Q, and the length ` of the element ρ. None of these parameters
can be considered to be constant a priori. For example, if we want to generate all
triangulations of a convex (n + 3)-gon (see Example 2.6), we consider a subword
complex with a group W of rank n, a word Q of size n(n+ 3)/2, and an element ρ
of length n(n+ 1)/2.

Inductive structure — The first method to generate F(Q, ρ) relies on the
inductive structure of the family of subword complexes. Throughout this pa-
per, we denote by Q` := q2 · · · qm and Qa := q1 · · · qm−1 the words on S obtained
from Q := q1 · · · qm by deleting its first and last letters respectively. For a set X
of subsets of Z, we denote by X ? z := z ?X := {X ∪ z | X ∈ X} the join of X with
some z ∈ Z. Moreover, let X→ := {X→ | X ∈ X}, where X→ := {x+ 1 | x ∈ X}
denotes the right shift of the set X ∈ X . Remember that `(ρ) denotes the length
of ρ and that we write ρ ≺ Q when Q contains a reduced expression of ρ.

We can decompose inductively the facets of F(Q, ρ) according on whether or not
they contain the last letter of Q:

(1) F(Q, ρ) =


F(Qa, ρqm) if ρ 6≺ Qa,

F(Qa, ρ) ?m if `(ρqm) > `(ρ),

F(Qa, ρqm) t
(
F(Qa, ρ) ?m

)
otherwise.

For later reference, let us also explicitly write the inductive decomposition of the
facets of F(Q, ρ) according on whether or not they contain the first letter of Q:

(2) F(Q, ρ) =


F(Q`, q1ρ)→ if ρ 6≺ Q`

1 ?F(Q`, ρ)→ if `(q1ρ) > `(ρ),

F(Q`, q1ρ)→ t
(
1 ?F(Q`, ρ)→

)
otherwise.
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The inductive structure of SC(Q, ρ) yields an inductive algorithm for the enu-
meration of F(Q, ρ), whose running time per facet is polynomial. More precisely,
since all subword complexes which appear in the different cases of the induction
formula (1) are non-empty, and since the tests ρ 6≺ Qa and `(ρqm) > `(ρ) can be
performed in O(mn) time, the running time per facet of this inductive algorithm
is in O(m2n).

The inductive structure of SC(Q, ρ) is moreover useful for the following result.

Theorem 2.9 ([KM04]). The subword complex SC(Q, ρ) is a topological sphere if ρ
is precisely the Demazure product δ(Q) of Q, and a topological ball otherwise.

The flip graph — The second direct method to generate F(Q, ρ) relies on flips.
Let I be a facet of SC(Q, ρ) and i be an element of I. If there exists a facet J of
SC(Q, ρ) and an element j ∈ J such that I r i = J r j, we say that I and J are
adjacent facets, that i is flippable in I, and that J is obtained from I by flipping i.
Note that, if they exist, J and j are unique by Theorem 2.9. We denote by G(Q, ρ)
the graph of flips, whose vertices are the facets of SC(Q, ρ) and whose edges are
pairs of adjacent facets. In other words, G(Q, ρ) is the ridge graph of the simplicial
complex SC(Q, ρ).

Example 2.10. Figure 4 represents the flip graph G(Q̄, ρ̄) for the subword com-
plex SC(Q̄, ρ̄) of Example 2.4.

12356 23568

2367812367

2378912379

3478913479

3467813467

3456813456

Figure 4. The flip graph G(Q̄, ρ̄). Facets of SC(Q̄, ρ̄) appear in
lexicographic order from left to right.

Since the flip graph G(Q, ρ) is connected by Theorem 2.9, we can explore it to gen-
erate F(Q, ρ). Since G(Q, ρ) has degree bounded by m− `(ρ), we need O(m− `(ρ))
flips per facet for this exploration. However, we need to store all facets of SC(Q, ρ)
during the algorithm, which may require an exponential working space. This hap-
pens for example if we want to generate the 1

n+2

(
2n+2
n+1

)
triangulations of a convex

(n+ 3)-gon (see Example 2.6).

In this paper, we present the greedy flip algorithm to generate the facets of the
subword complex SC(Q, ρ). This algorithm explores a spanning tree of the graph of
flips G(Q, ρ), which we call the greedy flip tree. The construction of this tree is based
on greedy facets in subword complexes and on their inductive structure, similar to
the inductive structure of the subword complexes described above. The running
time per facet of the greedy flip algorithm is also in O(m2n), while its working space
is in O(mn). We compare experimental running times of the inductive algorithm
and of the greedy flip algorithm later in Section 3.3.
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2.4. Roots and flips. Throughout the paper, we consider a flip in a subword
complex as an elementary operation to measure the complexity of our algorithm.
In practice, the necessary information to perform flips in a facet I of SC(Q, ρ) is
encoded in its root function r(I, ·) : [m]→ Φ defined by

r(I, k) :=σ[k−1]rI(αqk),

where σX denotes the product of the reflections qx for x ∈ X. The root config-
uration of the facet I is the multiset R(I) := {{r(I, i) | i flippable in I}}. The root
function was introduced by C. Ceballos, J.-P. Labbé and C. Stump [CLS11] and
the root configuration was extensively studied by V. Pilaud and C. Stump [PS11]
in the construction of brick polytopes for spherical subword complexes. The main
properties of the root function are summarized in the following proposition, whose
proof is similar to that of [CLS11, Lemmas 3.3 and 3.6] or [PS11, Lemma 3.3].

Proposition 2.11. Let I be any facet of the subword complex SC(Q, ρ).

(1) The map r(I, ·) : i 7→ r(I, i) is a bijection from the complement of I to the
inversion set of ρ−1.

(2) The map r(I, ·) sends the flippable elements in I to
{
±β

∣∣ β ∈ inv(ρ−1)
}

and the unflippable ones to Φ+ r inv(ρ−1).
(3) If I and J are two adjacent facets of SC(Q, ρ) with Iri = Jrj, the position

j is the unique position in the complement of I for which r(I, j) = ±r(I, i).
Moreover, r(I, i) = r(I, j) ∈ Φ+ when i < j, while r(I, i) = −r(I, j) ∈ Φ−

when j < i.
(4) In the situation of (3), the map r(J, ·) is obtained from the map r(I, ·) by:

r(J, k) =

{
sr(I,i)(r(I, k)) if min(i, j) < k ≤ max(i, j)

r(I, k) otherwise.

Observe that this proposition ensures in particular that we can perform flips
in the subword complex SC(Q, ρ) in O(mn) time if we store and update the facets
of SC(Q, ρ) together with their root functions. Note that this storage requiresO(mn)
space.

Example 2.12. In type A (and B), roots and flips are easily read on the primitive
network interpretation presented in Example 2.5. Consider a word Q on {τi | i ∈ [n]},
an element ρ ∈ Sn+1, and a facet I of SC(Q, ρ). For any k ∈ [m], the root r(I, k)
is the difference et − eb where t and b are the indices of the pseudolines of ΛI
which arrive respectively on the top and bottom endpoints of the kth commuta-
tor of NQ. Figure 5 illustrates the properties of Proposition 2.11 on the subword
complex SC(Q̄, ρ̄) of Example 2.4.
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Figure 5. The flip between the adjacent facets Ī = {1, 3, 4, 7, 9}
and J̄ = {3, 4, 7, 8, 9} of SC(Q̄, ρ̄), illustrated on the network NQ̄.
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3. The greedy flip tree

3.1. Increasing flips and greedy facets. Let I and J be two adjacent facets
of SC(Q, ρ) with I r i = J r j. We say that the flip from I to J is increasing
if i < j. This is equivalent to r(I, i) ∈ Φ+ by Proposition 2.11. We now consider
the flip graph G(Q, ρ) oriented by increasing flips.

Proposition 3.1. The graph G(Q, ρ) of increasing flips is acyclic. The lexicograph-
ically smallest (resp. largest) facet of SC(Q, ρ) is the unique source (resp. sink)
of G(Q, ρ).

Proof. The graph G(Q, ρ) is acyclic, since it is a subgraph of the Hasse diagram of
the order defined by I ≤ J iff there is a bijection φ : I → J such that i ≤ φ(i) for
all i ∈ I. The lexicographically smallest facet is a source of G(Q, ρ) since none of
its flips can be decreasing. We prove that this source is unique by induction the
word on Q. Denote by X(Qa, ρ) (resp. X(Qa, ρqm)) the lexicographically smallest
facet of SC(Qa, ρ) (resp. SC(Qa, ρqm)) and assume that it is the unique source of
the flip graph G(Qa, ρ) (resp. G(Qa, ρqm)). Consider a source X of G(Q, ρ). We
distinguish two cases:

• If `(ρqm) > `(ρ), then qm cannot be the last reflection of a reduced expres-
sion for ρ. Thus SC(Q, ρ) = SC(Qa, ρ) ?m and X = X(Qa, ρ) ∪m.
• Otherwise, `(ρqm) < `(ρ). If m is in X, it is flippable (by Proposition 2.11,

since r(X,m) = ρ(αqm) ∈ Φ− ∩ ρ(Φ+) = − inv(ρ−1)) and its flip is decreas-
ing. This would contradict the assumption that X is a source of G(Q, ρ).
Consequently, m /∈ X. Since the facets of SC(Q, ρ) which do not contain m
coincide with the facets of G(Qa, ρqm), we obtain that X = X(Qa, ρqm).

In both cases, we obtain that the source X is the lexicographically smallest facet
of SC(Q, ρ). The proof is similar for the sink. �

We call positive (resp. negative) greedy facet and denote by P(Q, ρ) (resp. N(Q, ρ))
the unique source (resp. sink) of the graph G(Q, ρ) of increasing flips. The term
“positive” (resp. “negative”) emphasizes the fact that P(Q, ρ) (resp. N(Q, ρ)) is the
unique facet of SC(Q, ρ) whose root configuration is a subset of positive (resp. neg-
ative) roots, while the term “greedy” refers to the greedy properties of these facets
underlined in Lemmas 3.3 and 3.4.

Example 3.2. The greedy facets of the subword complex SC(Q̄, ρ̄) of Example 2.4
are P(Q̄, ρ̄) = {1, 2, 3, 5, 6} and N(Q̄, ρ̄) = {3, 4, 7, 8, 9}. See Figure 6.
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Figure 6. The positive and negative greedy facets of SC(Q̄, ρ̄).
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The positive and negative greedy facets are clearly related by a reversing oper-
ation. More precisely, N(q1 · · · qm, ρ) =

{
m+ 1− p

∣∣ p ∈ P(qm · · · q1, ρ
−1)
}

. How-
ever, we will work in parallel with both positive and negative greedy facets, since
certain results are simpler to understand and prove with P(Q, ρ) while the others
are simpler with N(Q, ρ). In each proof, we only deal with the simplest situation
and leave to the reader the translation to the opposite situation.

Remember that we denote by Q` := q2 · · · qm and Qa := q1 · · · qm−1 the words
on S obtained from Q := q1 · · · qm by deleting its first and last letters respectively.
We moreover denote by X→ := {x+ 1 | x ∈ X} and X← := {x− 1 | x ∈ X} the
right and left shifts of a subset X ⊂ Z. If X is a set of subsets of Z, we also
write X→ := {X→ | X ∈ X}. Finally, remember that `(ρ) denotes the length of ρ,
and that we write ρ ≺ Q when Q contains a reduced expression of ρ.

The following two lemmas provide two (somehow inverse) greedy inductive pro-
cedures to construct the greedy facets P(Q, ρ) and N(Q, ρ). These lemmas are direct
consequences of the definition of the greedy facets and the induction formulas (1)
and (2) on the subword complex.

Lemma 3.3. The greedy facets P(Q, ρ) and N(Q, ρ) can be constructed inductively
from P(ε, e) = N(ε, e) = ∅ using the following formulas:

P(Q, ρ) =

{
P(Qa, ρqm) if `(ρqm) < `(ρ),

P(Qa, ρ) ∪m otherwise.

N(Q, ρ) =

{
N(Q`, q1ρ)→ if `(q1ρ) < `(ρ),

1 ∪ N(Q`, ρ)→ otherwise.

Lemma 3.4. The greedy facets P(Q, ρ) and N(Q, ρ) can be constructed inductively
from P(ε, e) = N(ε, e) = ∅ using the following formulas:

P(Q, ρ) =

{
1 ∪ P(Q`, ρ)→ if ρ ≺ Q`,

P(Q`, q1ρ)→ otherwise.

N(Q, ρ) =

{
N(Qa, ρ) ∪m if ρ ≺ Qa,

N(Qa, ρqm) otherwise.

Lemmas 3.3 and 3.4 can be reformulated to obtain greedy sweep procedures on
the word Q itself, avoiding the use of induction. Namely, the positive greedy facet
is obtained:

(1) either sweeping Q from right to left placing inversions as soon as possible,
(2) or sweeping Q from left to right placing non-inversions as long as possible.

The negative greedy facet is obtained similarly, inversing the directions of the sweeps.

3.2. The greedy flip tree. We construct in this section the positive and negative
greedy flip trees of SC(Q, ρ). This construction mainly relies on the following greedy
flip property of greedy facets.

Proposition 3.5. If m is a flippable element of N(Q, ρ), then N(Qa, ρqm) is ob-
tained from N(Q, ρ) by flipping m. If 1 is a flippable element of P(Q, ρ), then
P(Q`, q1ρ) is obtained from P(Q, ρ) by flipping 1 and shifting to the left.

Proof. Although the formulation is simpler for the negative greedy facets, the proof
is simpler for the positive ones (due to the direction chosen in the definition of the
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root function). Assume that 1 is a flippable element of P(Q, ρ). Let J ∈ F(Q, ρ)
and j ∈ J be such that P(Q, ρ) r 1 = J r j. Consider the facet J← of SC(Q`, q1ρ)
obtained shifting J to the left. Proposition 2.11 (4) enables us to compute the root
function r(J, ·) for J , which in turn gives us the root function for J←:

r(J←, k) =

{
r(P(Q, ρ), k + 1) if 1 ≤ k ≤ j − 1,

q1(r(P(Q, ρ), k + 1)) otherwise.

Since all positions i ∈ P(Q, ρ) such that r(P(Q, ρ), i) = αq1 are located before j, and
since αq1 is the only positive root sent to a negative root by the simple reflection q1,
all roots r(J←, k), for k ∈ J←, are positive. Consequently, J← = P(Q`, q1ρ). �

Example 3.6. Consider the subword complex of Example 2.4. Since 9 is flippable
in N(Q̄, ρ̄) = {3, 4, 7, 8, 9}, we have N(Q̄a, ρ̄τ1) = {3, 4, 6, 7, 8}. Since 1 is flippable
in P(Q̄, ρ̄) = {1, 2, 3, 5, 6}, we have P(Q̄`, τ2ρ̄) = {2, 3, 5, 6, 8}← = {1, 2, 4, 5, 7}.

We now define inductively the negative greedy flip tree N (Q, ρ). The induction
follows the right induction formula (1) for the facets F(Q, ρ). For the empty word ε
and the identity e of W , the tree N (ε, e) is formed by the unique facet ∅ of SC(ε, e).
For a non-empty word Q, we define the tree N (Q, ρ) as

(i) N (Qa, ρqm) if m appears in none of the facets of SC(Q, ρ);
(ii) N (Qa, ρ) ?m if m appears in all the facets of SC(Q, ρ);
(iii) the disjoint union of N (Qa, ρqm) and N (Qa, ρ) ?m, with an additional arc

from N(Qa, ρqm) to N(Q, ρ) = N(Qa, ρ) ∪m, otherwise.

See Figure 7 for the negative greedy flip tree N (Q̄, ρ̄) of Example 2.4.

34789|

34678|

13467|

13456|

123|56

123|67

3456|8

23|568

23|678

1347|9

123|79

23|789

Figure 7. The negative greedy flip tree N (Q̄, ρ̄) on the subword
complex of Example 2.4. Each facet I is denoted as the concate-
nation of its elements. The symbol | is explained in Example 3.9.

We define similarly the positive greedy flip tree P(Q, ρ) of SC(Q, ρ). The in-
duction now follows the left induction formula (2) for the facets F(Q, ρ). The
tree P(ε, e) is formed by the unique facet ∅ of SC(ε, e). For a non-empty word Q,
we define the tree P(Q, ρ) as

(i) P(Q`, q1ρ)→ if 1 appears in none of the facets of SC(Q, ρ);
(ii) 1 ?P(Q`, ρ)→ if 1 appears in all the facets of SC(Q, ρ);

(iii) the disjoint union of P(Q`, q1ρ)→ and 1 ?P(Q`, ρ)→, with an additional arc
from P(Q, ρ) = 1 ∪ P(Q`, ρ)→ to P(Q`, q1ρ)→, otherwise.
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|12356

|23568

|34568

34|678

34|789

23|678

23|789

1|3456

134|67

134|79

123|67

123|79

Figure 8. The positive greedy flip tree P(Q̄, ρ̄) on the subword
complex of Example 2.4. Each facet I is denoted as the concate-
nation of its elements. The symbol | is explained in Example 3.9.

See Figure 8 for the positive greedy flip tree P(Q̄, ρ̄) of Example 2.4.

Lemma 3.7. The negative (resp. positive) greedy flip tree is a spanning trees of
the increasing flip graph G(Q, ρ), oriented towards its root N(Q, ρ) (resp. from its
root P(Q, ρ)).

Proof. We prove the result for N (Q, ρ) by induction on the length of Q. On the one
hand, both the increasing flip graphs G(Qa, ρqm) and G(Qa, ρ) ?m are subgraphs of
the increasing flip graph G(Q, ρ). On the other hand, in the case where m appears in
some but not all facets of SC(Q, ρ), the additional arc from N(Qa, ρqm) to N(Q, ρ)
is an increasing flip according to Proposition 3.5. �

Example 3.8. Consider the subword complex SC(Q̄, ρ̄) of Example 2.4. Figures 7
and 8 represent respectively the negative and the positive greedy flip trees N (Q̄, ρ̄)
and P(Q̄, ρ̄). These trees are also represented on Figure 9 as spanning trees of the
flip graph G(Q̄, ρ̄) of Figure 4.

12356 23568

2367812367

2378912379

3478913479

3467813467

3456813456

Figure 9. The negative greedy flip tree N (Q̄, ρ̄) (strong blue
edges) and the positive greedy flip tree P(Q̄, ρ̄) (dashed red edges)
are oriented spanning trees of the increasing flip graph G(Q̄, ρ̄).

The goal of the end of this section is to give a direct description of the greedy
flip trees N (Q, ρ) and P(Q, ρ), avoiding the use of induction. Let I be a facet of
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the subword complex SC(Q, ρ). We define the negative greedy index n(I) of the
facet I to be the last position x ∈ [m] such that I ∩ [x] = N(q1 · · · qx, σ[x]rI). In
other words, the facet I is greedy until n(I) and not afterwards. Note in par-
ticular that I ∩ [x] is greedy if and only if x ≤ n(I). Similarly, we define the
positive greedy index p(I) of the facet I to be the smallest position x ∈ [m] such
that {i− x | i ∈ I r [x]} = P(qx+1 · · · qm, σ[x+1,m]rI).

Example 3.9. Consider the subword complex SC(Q̄, ρ̄) of Example 2.4. The pseu-
doline arrangements associated to the facets Ī := {1, 3, 4, 7, 9} and J̄ := {3, 4, 7, 8, 9}
are represented in Figure 5. We have n(Ī) = 7, while n(J̄) = 9 (i.e. J̄ is the negative
greedy facet).

In Figure 7, the symbol | separates the elements smaller or equal to n(I) from
those which are strictly larger than n(I). Similarly, in Figure 8, the symbol |
separates the elements strictly smaller than p(I) from those which are larger or
equal to p(I).

The following lemma provides the rule to update the greedy indices when we
perform certain specific flips.

Lemma 3.10. Let I and J be two adjacent facets of SC(Q, ρ) with I r i = J r j.
If i < j ≤ n(J), then n(I) = j − 1. If p(I) ≤ i < j, then p(J) = i+ 1.

Proof. We prove the result for the negative greedy index. On the one hand, we
have j ∈ J ∩ [j] = N(q1 · · · qj , σ[j]rJ) = N(q1 · · · qj , σ[j]rI). Since j /∈ I ∩ [j], this
implies that n(I) < j. On the other hand, the negative greedy flip property of
Proposition 3.5 ensures that I ∩ [j−1] = N(q1 · · · qj−1, σ[j−1]rI) since it is obtained
from J ∩ [j] = N(q1 · · · qj , σ[j]rJ) by flipping j. Thus, n(I) ≥ j − 1. �

Proposition 3.11. The negative greedy flip tree N (Q, ρ) (resp. positive greedy flip
tree P(Q, ρ)) has one vertex for each facet of F(Q, ρ), and one arc from a facet I to
a facet J if and only if Iri = Jrj for some i ∈ I and j ∈ J satisfying i < j ≤ n(J)
(resp. p(I) ≤ i < j).

Proof. We prove the result for the negative greedy flip tree by induction on the
length of Q. We write here nQ,ρ(I) to specify that we consider the negative greedy
index of a set I regarded as a facet of SC(Q, ρ). The result holds on the subword
complex SC(ε, e). Consider now two facets I and J of SC(Q, ρ) with I r i = J r j
for some i < j. We have three cases:

(i) If m is neither in I nor in J , then I and J are both facets of SC(Qa, ρqm) and
nQa,ρqm(J) = min(nQ,ρ(J),m− 1). We thus conclude by induction.

(ii) If m is both in I and in J , then Irm and J rm are both facets of SC(Qa, ρ)
and nQa,ρ(J rm) = min(nQ,ρ(J),m− 1). We thus conclude by induction.

(iii) Otherwise, m is in precisely one of the facets I and J . Thus, we must
have j = m. If j ≤ n(J), then J = N(Q, ρ), I = N(Qa, ρqm), and the flip
from I to J is an arc of N (Q, ρ). Conversely, if j > n(J), then J 6= N(Q, ρ)
and the flip from I to J is not an arc of N (Q, ρ). �

Although we defined the greedy flip trees N (Q, ρ) and P(Q, ρ) inductively, the
results of Lemma 3.10 and Proposition 3.11 enable us to construct them directly
on the graph G(Q, ρ), avoiding the use of induction. We use this construction to
provide a non-inductive enumeration scheme for the facets of SC(Q, ρ).
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3.3. The greedy flip algorithm. The greedy flip algorithm generates all facets
of the subword complex SC(Q, ρ) by a depth first search procedure on the (positive
or negative) greedy flip tree. The preorder traversal of the greedy flip tree also
provides an iterator on the facets of SC(Q, ρ). Given a facet I of SC(Q, ρ), we can
indeed compute its next element in the preorder traversal, provided we know its root
function, its greedy index and the path from I to the root in the greedy flip tree.
These data can be updated at each step of the algorithm, using Proposition 2.11
for the root function and Lemma 3.10 for the greedy index.

To evaluate the running time and working space of the greedy flip algorithm,
remember that we consider as parameters both the rank n of the group W and the
size m of the word Q. During the algorithm, we only need to remember the current
facet, together with its root function, its greedy index, and its path to the root in the
greedy flip tree. Thus, the working space of the algorithm is in O(mn). Concerning
running time, each facet needs at most m flips to generate all its children in the
greedy flip tree. Since a flip can be performed in O(mn) time (see Section 2.4), the
running time per facet of the greedy flip algorithm is in O(m2n).

We have implemented the greedy flip algorithm using the mathematical software
Sage [S+12]. This implementation is integrated into C. Stump’s patch on subword
complexes. The user can now select either the inductive algorithm (directly based
on the inductive structure of the subword complex as discussed in Section 2.3)
or the greedy flip algorithm. We have seen that these two algorithms have the
same theoretical complexity. To compare their experimental running time, we have
constructed the k-cluster complex of type An for increasing values of k and n. Its
facets correspond to the k-triangulations of the (n+ 2k + 1)-gon (see Example 2.6
and [CLS11] for the definition of multicluster complexes in any finite type). The
rank of the group is n, while the length of the word is kn+

(
n
2

)
. Figure 10 presents

the running time per facet for both enumeration algorithms in two situations: on
the left, k is fixed at 1 while n increases; on the right, n is fixed at 3 while k
increases. The greedy flip algorithm is better than the inductive algorithm in the

Figure 10. Comparison of the running times of the inductive al-
gorithm and the greedy flip algorithm to generate the k-cluster
complex of type An. On the left, k is fixed at 1 while n increases;
on the right, n is fixed at 3 while k increases. The time is presented
in millisecond per facet.
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first situation, and worst in the second. We observe a similar behavior for the
computation of k-cluster complexes of types Bn and Dn. In general, the inductive
algorithm is experimentally faster when the Coxeter group is fixed, but slower when
the size of the Coxeter group increases.

Remark 3.12. For type A spherical subword complexes, our algorithm is similar to
that of [PP12] (which was formulated in terms of primitive sorting networks). Ob-
serve however that, contrarily to [PP12], we allow ρ to be any element of W . This
slight generalization enables us to provide an inductive definition for the greedy
flip tree, which simplifies the presentation of the algorithm. For the subword com-
plexes which provide combinatorial models for pointed pseudotriangulations (see
Example 2.6), our algorithm coincides with the greedy flip algorithm of [BKPS06].
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