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Abstract. We show that the vertex barycenter of generalized associahedra

and permutahedra coincide for any finite Coxeter system.
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1. Introduction

Generalized associahedra were originally defined and studied by S. Fomin and
A. Zelevinsky [FZ03b] and by F. Chapoton, S. Fomin, and A. Zelevinsky [CFZ02].
These polytopes realize finite type cluster complexes [FZ03a]. More general poly-
topal realizations of these simplicial complexes were later constructed by C. Hohl-
weg, C. Lange, and H. Thomas in [HLT11] by removing boundary hyperplanes from
Coxeter permutahedra. This construction is based on Cambrian fans which were
defined and studied by N. Reading and D. Speyer [Rea06, Rea07, RS09]. Recently
S. Stella extended in [Ste13] the approach of [CFZ02] and showed that the resulting
realizations of generalized associahedra coincide with those of [HLT11]. In [PS11],
we provided a new approach to generalized associahedra using brick polytopes for
spherical subword complexes. We use this latter approach to prove that the ver-
tex barycenters of all c-associahedra coincide with the vertex barycenter of the
underlying permutahedron.

Theorem 1.1. Let (W,S) be a finite Coxeter system, let c ∈ W be a Coxeter
element, and let Assouc (W ) be the c-associahedron obtained from a fairly balanced
W -permutahedron Permu(W ) by removing all boundary hyperplanes not containing
a c-singleton. Then the vertex barycenters of Assouc (W ) and Permu(W ) coincide.

V. P. was supported by the spanish MICINN grant MTM2011-22792, by the French ANR grant
EGOS 12 JS02 002 01, and by the European Research Project ExploreMaps (ERC StG 208471).
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This property was observed by F. Chapoton for Loday’s realization of the clas-
sical associahedron [Lod04]. The balanced case in types A and B was conjectured
by C. Hohlweg and C. Lange in [HL07] and proven by C. Hohlweg, J. Lortie,
and A. Raymond in [HLR10] using an orbit refinement of Theorem 1.1 in these
types. The general balanced case was conjectured by C. Hohlweg, C. Lange, and
H. Thomas in [HLT11]. This conjecture and the mentioned orbit refinement were
again discussed in [Hoh12]. We will as well settle this orbit refinement in the final
Section 3.4.

Finally, we want to remark that there is a naive approach to Theorem 1.1.
Namely, one might hope that one can partition the vertices of the permutahedron
Permu(W ) in such a way that the sum of the vertices in each part corresponds to a
vertex of the c-associahedron Assouc (W ). There would even be a natural candidate
for this partition coming from the theory of Cambrian lattices [Rea07]. This ap-
proach trivially works for dihedral types, but it already turns out to fail in type A3.

2. Generalized associahedra

2.1. Finite Coxeter groups. Consider a finite Coxeter system (W,S), acting on
a real euclidean vector space V of dimension |S| = n. The Coxeter arrangement is
the collection of all reflecting hyperplanes in V . It decomposes V into open poly-
hedral cones whose closures are called chambers. The Coxeter fan is the polyhedral
fan formed by these chambers and all their faces. We denote by C the funda-
mental chamber, whose boundary hyperplanes are the reflecting hyperplanes of the
reflections in S.

Let ∆ := {αs | s ∈ S} denote the simple roots and ∇ := {ωs | s ∈ S} denote the
fundamental weights, defined such that s(ωt) = ωt−δs=tαs for all s, t ∈ S. In other
words, ∆ and ∇ are dual bases of the euclidean space V (up to renormalization).
Geometrically, simple roots and fundamental weights give respectively normal vec-
tors and rays of the fundamental chamber C. Let Φ := {w(α) | w ∈W,α ∈ ∆}
be the root system for (W,S), with positive roots Φ+ := Φ ∩ R≥0∆ and negative
roots Φ− := − Φ+.

A reduced expression for an element w ∈ W is a minimal length expression
of w as a product of generators in S. Let w◦ denote the longest element of W ,
which sends the fundamental chamber C to its negative −C. We let ϕ : S → S
denote its conjugation action on the generators defined by ϕ(s) :=w◦sw◦. Observe
that w◦(αs) = −αϕ(s) and w◦(ωs) = −ωϕ(s).

We refer to [Hum90, Hum78] for further details on Coxeter groups.

Example 2.1 (Symmetric groups). The symmetric group Sn+1, acting on the
hyperplane H :=

{
x ∈ Rn+1

∣∣ ∑xi = 0
}

by permutation of the coordinates, and
generated by the adjacent transpositions τp := (p p+ 1), is the type An Coxeter
system. Its simple roots are ∆ := {ep+1 − ep | p ∈ [n]}, its fundamental weights are

∇ :=
{∑

q>p eq

∣∣∣ p ∈ [n]
}

, and its root system is Φ := {ep − eq | p 6= q ∈ [n+ 1]}.
Note that we have chosen the fundamental weights to match usual conventions,
even if they do not live in the hyperplane H. The careful reader might prefer
to project these weights down to H and adapt our discussions below accordingly.
Figures 1 (a) and 2 (a) show the type A2 and A3 Coxeter arrangements.



VERTEX BARYCENTER OF GENERALIZED ASSOCIAHEDRA 3

αsαt

C

t s

ωsωt

u
(b)(a) (c)

t(u)

ts(u)

s(u)

st(u)

sts(u)=tst(u)

Figure 1. The type A2 Coxeter arrangement (a) and the balanced
A2-permutahedron (b) and (st)-associahedron (c).

2.2. Permutahedra. Let u be a point in the interior of the fundamental chamber.
We write u :=

∑
s∈S usωs with us ∈ R>0. The W -permutahedron Permu(W ) is the

convex hull of the orbit of u under W . Its combinatorial properties are determined
by those of the Coxeter group W . Let us observe in particular that:

(i) The normal fan of Permu(W ) is the Coxeter fan.
(ii) For any w ∈ W and s ∈ S, the facet of Permu(W ) orthogonal to w(ωs) is

defined by the inequality 〈w(αs)|x〉 ≤ 〈αs|u〉 and supported by the hyper-
plane w(u+ vect(∆ r αs)).

(iii) Each face of Permu(W ) is a W ′-permutahedron for a parabolic subgroup W ′

of W , and the faces of Permu(W ) are naturally parametrized by cosets of
parabolic subgroups of W .

We refer to the detailed survey on the W -permutahedra in [Hoh12].
If u = 1 :=

∑
ω∈∇ ω, we say that the W -permutahedron Permu(W ) is balanced,

and we simply denote it by Perm(W ) rather than Perm1(W ). Note that the bal-
anced W -permutahedron Perm(W ) is (a translate of) the Minkowski sum of all
positive roots (each considered as a one-dimensional polytope). Finally, we say that
the W -permutahedron Perm(W ) is fairly balanced if w◦(u) = −u, i.e. if us = uϕ(s)

for all s ∈ S.

Example 2.2 (Classical permutahedron). The classical permutahedron is the con-
vex hull of all permutations of {0, . . . , n}, regarded as vectors in Rn+1. According
to our choice of fundamental weights, we have

∑
ω∈∇ ω = (0, . . . , n), so that the

classical permutahedron coincides with the balanced An-permutahedron Perm(An).
Figures 1 (b) and 2 (b) show balanced A2- and A3-permutahedra.

2.3. Associahedra. We now recall the construction of generalized associahedra
given by C. Hohlweg, C. Lange, and H. Thomas in [HLT11], based on the notions
of sortable elements, Cambrian lattices and Cambrian fans defined and studied
in [Rea06, Rea07, RS09].

Fix a Coxeter element c of W , and a reduced expression c of c. That is to
say, c is a word on S where each simple reflection appears precisely once. We say
that s ∈ S is initial in c if there is a reduced expression for c starting with s.
For w ∈ W , we denote by w(c) the c-sorting word of w, i.e. the lexicographically
first (as a sequence of positions) reduced subword of c∞ for w. This word can be
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Figure 2. The type A3 Coxeter arrangement (a) and the balanced
A3-permutahedron (b) and (rst)-associahedron (c).

written as w(c) = cK1cK2 · · · cKp , where cK denotes the subword of c only taking the
simple reflections in K ⊂ S into account. The element w is then called c-sortable
if K1 ⊇ K2 ⊇ · · · ⊇ Kp. Observe that the property of being c-sortable does not
depend on the particular reduced expression c of the Coxeter element c. Finally, w
is called c-singleton if w is c-sortable and ww◦ is (c−1)-sortable.

The c-associahedron Assouc (W ) is obtained from Permu(W ) by removing all
boundary hyperplanes not containing any vector w(u) for a c-singleton w of W .
The boundary complex of its polar is the cluster complex defined by S. Fomin
and A. Zelevinsky in [FZ03a], and its normal fan is the c-Cambrian fan defined
by N. Reading and D. Speyer [RS09]. Note that the combinatorics of the c-
associahedron (the cluster complex) does not depends on c, while its geometry
(in particular, the c-Cambrian fan) does. We denote by Bu(c) the barycenter of
the c-associahedron Assouc (W ). We say that Assouc (W ) is balanced or fairly bal-
anced if Permu(W ) is. We simply denote by Assoc(W ) and B(c) the balanced
c-associahedron and its barycenter.

Example 2.3 (Loday’s associahedron). The cluster complex of type An is isomor-
phic to the simplicial complex of crossing-free sets of internal diagonals of a convex
(n + 3)-gon. Its vertices are internal diagonals and its facets are triangulations of
the (n + 3)-gon. In [Lod04], J.-L. Loday provided an elegant realization of this
simplicial complex, based on the following vertex description. Label the vertices of
the (n+ 3)-gon cyclically from 0 to n+ 2. Then, associate to each triangulation T
of the (n+ 3)-gon its Loday vector L(T ) whose jth coordinate is given by:

L(T )j :=
(
j −min {i ∈ [0, j − 2] | ij ∈ T}

)
·
(

max {k ∈ [j + 2, n+ 2] | jk ∈ T} − j
)
.

Loday’s associahedron is the convex hull of the Loday vectors of all triangulations
of the (n+ 3)-gon:

Ln := conv
{
L(T ) | T triangulation of the (n+ 3)-gon

}
.

In fact, Loday’s associahedron Ln coincides with the balanced (τ1 · · · τn)-associa-
hedron Assoτ1···τn(An). This polytope is illustrated in Figures 1 (c) and 2 (c) for
types A2 and A3. Loday’s vertex description of the associahedron was extended to
a vertex description of all c-associahedra of type A and B in [HL07].
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2.4. Brick polytopes. In the remainder of this section, we recall the viewpoint
on c-associahedra coming from brick polytopes. We refer to [PS11] for the general
treatment and to [PS12] for a specific treatment of the type A situation.

2.4.1. Subword complexes. For a word Q := q1q2 · · · qm on S, and an element ρ ∈W ,
A. Knutson and E. Miller define in [KM04] the subword complex SC(Q, ρ) to be the
simplicial complex of those subwords of Q whose complements contain a reduced
expression for ρ as a subword. A vertex of SC(Q, ρ) is a position of a letter in Q.
We denote by [m] := {1, 2, . . . ,m} the set of positions in Q. A facet of SC(Q, ρ) is
the complement of a set of positions which forms a reduced expression for ρ in Q.

In this paper, we only consider spherical subword complexes SC(Q, ρ), for which
we can assume that ρ = w◦ and Q contains a reduced expression for w◦ (see [CLS11,
Theorem 3.7]). We write SC(Q) instead of SC(Q, w◦) to shorten notations.

To avoid confusion between the words on S and the elements of W , we use roman
letters like w := w1 · · ·wp for words and italic letters like w = w1 · · ·wp for group
elements. The distinction is in general clear from the context and can usually be
ignored.

Example 2.4. Consider the Coxeter group S3 = 〈τ1, τ2〉 = 〈s, t〉 and the word
Q2 := ststs. The reduced expressions of w◦ are sts and tst. Therefore, the facets
of SC(Q2) are {1, 2}, {2, 3}, {3, 4}, {4, 5}, and {1, 5}, and the subword com-
plex SC(Q2) is a pentagon. Similarly, for Coxeter group S4 = 〈τ1, τ2, τ3〉 = 〈r, s, t〉
and the word Q3 := rstrstrsr, the subword complex SC(Q3) is isomorphic to the
cluster complex of type A3.

Example 2.5 (Primitive sorting networks). In type An, we can represent the
word Q = q1q2 · · · qm by a sorting network NQ as illustrated in Figure 3 (left). The
network NQ is formed by n + 1 horizontal lines (its levels, labeled from bottom
to top) together with m vertical segments (its commutators, labeled from left to
right) corresponding to the letters of Q. If qk = τp, the kth commutator of NQ lies
between the pth and (p+ 1)th levels of NQ.
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Figure 3. The sorting network NQ3
and the pseudoline arrangement Λ{1,3,7}.

A pseudoline supported by NQ is an abscissa monotone path on the network NQ.
A commutator of NQ is a crossing between two pseudolines if it is traversed by both
pseudolines, and a contact if its endpoints are contained one in each pseudoline. A
pseudoline arrangement Λ (with contacts) is a set of n+ 1 pseudolines on NQ, any
two of which have precisely one crossing, possibly some contacts, and no other in-
tersection. As a consequence of the definition, the pseudoline of Λ which starts at
level p ends at level n−p+2, and is called the pth pseudoline of Λ. As illustrated in
Figure 3 (right), a facet I of SC(Q) is represented by a pseudoline arrangement ΛI
supported by NQ. Its contacts (resp. crossings) are the commutators of NQ corre-
sponding to the letters of I (resp. of the complement of I).
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A brick of NQ is a connected component of its complement, bounded on the right
by a commutator of NQ. For k ∈ [m], the kth brick is that immediately to the left
of the kth commutator of NQ.

2.4.2. Brick polytopes. In [PS11], we constructed a polytope associated to a spher-
ical subword complex SC(Q) as follows. To a facet I of SC(Q) and a position k
in Q, we associate a root and a weight

rQ(I, k) := ΠQ[k−1]rI(αqk) and wQ(I, k) := ΠQ[k−1]rI(ωqk),

where ΠQX denotes the product of the reflections qx ∈ Q for x ∈ X. The brick
vector of the facet I is the vector

BQ(I) :=
∑
k∈[m]

wQ(I, k),

and the brick polytope B(Q) is the convex hull of all the brick vectors,

B(Q) := conv
{
BQ(I) | I facet of SC(Q)

}
.

Example 2.6 (Counting bricks). In type A, the above definitions for rQ(I, k),

wQ(I, k), and BQ(I) can be visually interpreted on the pseudoline arrangement ΛI
defined in Example 2.5. Namely, for any facet I of SC(Q), any position k ∈ [m],
and any p ∈ [n+ 1],

(i) the root rQ(I, k) is the difference et − eb, where t and b are such that the tth

and bth pseudolines of ΛI arrive respectively on top and bottom of the kth

commutator of NQ.
(ii) the weight wQ(I, k) is the characteristic vector of the pseudolines of ΛI which

pass above the kth brick of NQ.
(iii) the pth coordinate of the brick vector BQ(I) is the number of bricks of NQ

below the pth pseudoline of ΛI .

We refer to [PS12] for further details on type A brick polytopes.

As observed in [CLS11, Section 3.1], the root function rQ(·, ·) encodes the combi-

natorics of flips in the subword complex SC(Q). We will mainly use here that rQ(I, ·)
is a bijection between the complement of I and Φ+, and thus that

(1)
∑
k/∈I

rQ(I, k) =
∑
β∈Φ+

β.

In [PS11], we proved that (the dual of) the brick polytope B(Q) realizes the
subword complex if and only if the root configuration

{{
rQ(I, k)

∣∣ i ∈ I}} of any (or

equivalently all) facet I of SC(Q) is linearly independent. The following family is
the main motivating example for the brick polytope construction.

2.4.3. Generalized associahedra and brick polytopes. Let c be a Coxeter element
of W , let c be a reduced expression for c, and let w◦(c) := w1 · · ·wN denote the
c-sorting word for the longest element w◦. According to [CLS11], the subword
complex SCc :=SC(cw◦(c)) is (isomorphic to) the cluster complex of type W . We
furthermore proved in [PS11, Theorem 6.1] that the brick polytope Bc :=B(cw◦(c))
is indeed a polytopal realization of SCc. Finally, we also proved in [PS11, Theo-
rem 6.6] that — up to affine translation by a vector Ωc — the brick polytope Bc

coincides with the balanced c-associahedron Assoc(W ). More explicitly, we have

(2) Assoc(W ) = conv
{
Bc(I)− Ωc | I facet of SCc

}
,
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where the affine translation Ωc is given by

Ωc :=
∑
k∈[N ]

w1 · · ·wk−1(ωwk
),

where w1 . . .wN is the c-sorting word for w◦. In Equality (2) and throughout the
paper, we abuse notation and write Bc(I) rather than Bcw◦(c)(I), and similarly

for rc(I, k) and wc(I, k), as we already did for SCc and for Bc.

Example 2.7. The words Q2 and Q3 of Example 2.4 are precisely (st)w◦(st)
and (rst)w◦(rst). Therefore, the brick polytopes B(Q2) = Bst and B(Q3) = Brst

coincide, up to translation, with Loday’s associahedra from Figures 1 (c) and 2 (c).
More generally, label the vertices of the (n+ 3)-gon cyclically from 0 to (n+ 2)

and set c := τ1τ2 · · · τn. Consider the map sending the ith letter of cw◦(c) to the
ith internal diagonal of the (n + 3)-gon in lexicographic order. This map induces
an isomorphism between the simplicial complex of crossing free sets of internal
diagonals of the (n + 3)-gon and the type An subword complex SCc. See [Woo04,
Stu11, PP12] for details and extensions of this isomorphism. The brick polytope Bc

then coincides with Loday’s associahedron Ln.

2.4.4. Affine translation and greedy facets. The positive greedy facet P(Q) (resp. the
negative greedy facet N(Q)) is the lexicographically first (resp. last) facet of SC(Q).
It turns out that P(Q) (resp. N(Q)) is the unique facet whose root configuration{{
rQ(I, k)

∣∣ i ∈ I}} contains only positive (resp. negative) roots. These two par-

ticular facets were defined and studied in [PS13] to construct EL-labelings and
canonical spanning trees for subword complexes.

We now focus on the situation of SCc. To simplify notation, we set here as
well Pc :=P(cw◦(c)) and Nc :=N(cw◦(c)). Observe that Pc is the set of positions
of the first appearance of the generators of S within cw◦(c). Similarly, Nc is the
set of positions of the last appearance in cw◦(c) of the generators of S. Up to
transpositions of consecutive commuting letters, these are moreover the first and
the last n positions in cw◦(c).

In Equality (2), the vertices of Bc − Ωc corresponding to the positive and neg-
ative greedy facets Pc and Nc coincide respectively with the vertices e(1) = 1
and w◦(1) = −1 of Assoc(W ). This implies that

(3) Ωc = Bc(Pc)− 1 = Bc(Nc) + 1.

2.4.5. The brick polytope for arbitrary basepoints. We finally describe the situation
of a general basepoint u :=

∑
s∈S usωs in the interior of the fundamental cham-

ber. As observed in [PS11, Remark 6.11], the brick polytope construction and its
realization properties remain valid if we replace the root and weight functions by

ruQ(I, k) :=uqk rQ(I, k) and wuQ(I, k) :=uqkwQ(I, k),

the brick vector by

BuQ(I) :=
∑
k∈[m]

wuQ(I, k) =
∑
k∈[m]

uqkwQ(I, k),

and the brick polytope by

Bu(Q) := conv
{
BuQ(I) | I facet of SC(Q)

}
.

The polytope Bu(Q) is a deformation of B(Q). Its combinatorics and its normal
fan are controlled by the subword complex SC(Q), and therefore are independent
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of the basepoint u, but its geometry (for example its edge lengths) is determined
by u.

For the subword complex SCc, the polytope Buc is a translate of the c-associa-
hedron Assouc (W ). More precisely,

Assouc (W ) = conv
{
Buc (I)− Ωuc | I facet of SCc

}
,

where the affine translation Ωuc is now given by

Ωuc :=Buc (Pc)− u =
∑
k∈[N ]

uqkw1 · · ·wk−1(ωwk
).

3. The proof

We first focus on balanced associahedra, and discuss the extension to fairly
balanced associahedra in Section 3.3. In the final Section 3.4, we will discuss a
further orbit refinement. In view of (2), the balanced version of Theorem 1.1
reduces to the following theorem.

Theorem 3.1. The vertex barycenter of the translated brick polytope Bc − Ωc co-
incides with that of the balanced W -permutahedron Perm(W ). This is,∑(

Bc(I)− Ωc
)

= 0,

where the sum ranges over all facets I of SCc.

The proof of Theorem 3.1 goes in two steps:

(i) We first prove that the barycenters of all balanced c-associahedra Assoc(W )
coincide, i.e. that B(c) = B(c′) for any Coxeter elements c, c′.

(ii) We then prove that the barycenter of the superposition of the vertex set
of Assoc(W ) with the vertex set of Assoc−1(W ) coincides with the origin,
i.e. that B(c) + B(c−1) = 0.

We will deduce these two statements from Lemmas 3.2, 3.3, 3.4 and 3.5, which
describe the impact on brick vectors of four natural operations on the word Q.

3.1. Four operations. In the next four lemmas, we study the behavior of the
brick vectors of the facets of SC(Q) under four natural operations on the word Q,
namely when we commute, rotate, conjugate, or reverse Q. The first two operations
were as well considered in [CLS11, Propositions 3.8 and 3.9]. Although we will only
use them later for words of the form cw◦(c), the statements below are valid for any
word Q.

Lemma 3.2 (Commute). If π(Q) := qπ(1) · · · qπ(m) is obtained from Q = q1 · · · qm
by a sequence of transpositions of consecutive commuting letters, then π induces an
isomorphism between the subword complexes SC(Q) and SC(π(Q)). Moreover,

Bπ(Q)(π(I)) = BQ(I)

for any facet I of SC(Q).

Proof. The isomorphism is obtained directly from the definition of subword com-
plexes, see [CLS11, Proposition 3.8]. Moreover, the definition of the weight function
implies that

wπ(Q)(π(I), π(k)) = wQ(I, k)

for any facet I and position k. The result follows by summation. �
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Lemma 3.3 (Rotate). Let Q	 := q2 · · · qmϕ(q1) be the rotation of Q = q1 · · · qm.
Then the cyclic rotation ρ : i 7→ (i− 1), where we identify 0 and m, induces an
isomorphism between the subword complexes SC(Q) and SC(Q	). Moreover,

BQ	(ρ(I))− BQ(I) ∈ −2ωq1 + Rαq1
for any facet I of SC(Q).

Proof. The isomorphism is again obtained directly from the definition of subword
complexes, see [CLS11, Proposition 3.9]. From the definition of the weight function,
we furthermore obtain that, for any facet I of SC(Q) and position k > 1,

wQ	(ρ(I), ρ(k)) =

{
wQ(I, k) if 1 ∈ I,
q1(wQ(I, k)) if 1 /∈ I,

and moreover,

(4) wQ	(ρ(I), ρ(1)) =

{
w◦(ωϕ(q1)) = wQ(I, 1)− 2ωq1 if 1 ∈ I,

w◦ · ϕ(q1)(ωϕ(q1)) = wQ(I, 1)− 2ωq1 + αq1 if 1 /∈ I.
The result follows by summation. �

Lemma 3.4 (Conjugate). Let Q :=ϕ(q1)ϕ(q2) . . . ϕ(qm) be the w◦-conjugate of
Q = q1 . . . qm. Then the subword complexes SC(Q) and SC(Q ) coincide. Moreover,

B
Q

(I) = −w◦(BQ(I))

for any facet I of SC(Q).

Proof. For any I ⊂ [m], we have ΠQ[m]rI = w◦ ·ΠQ[m]rI · w◦, which ensures that

SC(Q) = SC(Q ). Remembering that w◦(ωs) = −ωϕ(s), a direct calculation from
the definition of the weight function gives

w
Q

(I, k) = w◦ ·ΠQ[k−1]rI · w◦(ωϕ(qk))

= −w◦ ·ΠQ[k−1]rI(ωqk)(5)

= −w◦(wQ(I, k)),

for any facet I of SC(Q) and any position k. The result follows by summation. �

Lemma 3.5 (Reverse). Let Q := qm · · · q1 be the reverse of Q = q1 · · · qm. Then
the mirror µ : i 7→ m− i+ 1 induces an isomorphism between the subword com-
plexes SC(Q) and SC(Q ). Moreover,

BQ (µ(I)) = w◦(BQ(I)) +
∑
β∈Φ+

β

for any facet I of SC(Q).

Proof. For any I ⊂ [m], we have ΠQ[m]rµ(I) = (ΠQ[m]rI)
−1, which ensures that µ

is an isomorphism between the subword complexes SC(Q) and SC(Q ). Consider
now a facet I of SC(Q). Since its complement in Q forms a reduced expression
for w◦, we have

w◦ = ΠQ[m]rI =

{
ΠQ[k−1]rI ·ΠQ[k+1,m]rI if k ∈ I,
ΠQ[k−1]rI · qk ·ΠQ[k+1,m]rI if k /∈ I.
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Observe now that ΠQ[k+1,m]rI =
(
ΠQ[µ(k)−1]rµ(I)

)−1
. This gives that for any

position k ∈ I, we have

wQ (µ(I), µ(k)) = ΠQ[µ(k)−1]rµ(I)(ωqk)

= w◦ ·ΠQ[k−1]rI(ωqk)(6)

= w◦(wQ(I, k)),

and for any position k ∈ [m] r I, we have

wQ (µ(I), µ(k)) = ΠQ[µ(k)−1]rµ(I)(ωqk)

= w◦ ·ΠQ[k−1]rI · qk(ωqk)(7)

= w◦ ·ΠQ[k−1]rI(ωqk)− w◦ ·ΠQ[k−1]rI(αqk)

= w◦(wQ(I, k))− w◦(rQ(I, k)).

Since
∑
k/∈I rQ(I, k) =

∑
β∈Φ+ β (as we have seen in Equality (1)), and since −w◦

fixes
∑
β∈Φ+ β, the result follows by summation. �

Combining Lemmas 3.4 and 3.5, we obtain the following corollary.

Corollary 3.6. Denote by Q :=ϕ(qm) · · ·ϕ(q1) the reverse and w◦-conjugate
of Q = q1 · · · qm. The mirror µ : i 7→ m− i+ 1 defines an isomorphism between
the subword complexes SC(Q) and SC(Q ), and moreover

BQ(I) + B
Q

(µ(I)) =
∑
β∈Φ+

β

for any facet I of SC(Q).

Example 3.7. The results of this section can be visually interpreted in type A,
using the sorting network interpretation of Example 2.5. Namely, fix a word Q on
the generators {τ1, . . . , τn} of the type An Coxeter group, and a facet I of SC(Q).
Remember from Example 2.6 that the pth coordinate of the brick vector BQ(I)

counts the number of bricks below the pth pseudoline of ΛI . We have the following
relations between the sorting networks NQ, NQ	 , N

Q
, and NQ .

(i) The sorting network NQ	 is obtained from the sorting network NQ rotating
its first commutator to the end. The pseudolines of Λρ(I) coincide with that
of ΛI , except the two pseudolines incident to the rotated commutator. There-
fore, the brick vector BQ	(I) also counts bricks of NQ below the pseudolines

of ΛI . The only difference concerns the contribution of the rotated brick. This
corresponds to Lemma 3.3.

(ii) The sorting network N
Q

is obtained NQ by a reflection with respect to the

horizontal axis. Therefore, the brick vector B
Q

(I) also counts bricks of NQ

above the pseudolines of ΛI . This corresponds to Lemma 3.4.
(iii) The sorting network NQ is obtained from NQ by a reflection with respect

to the vertical axis. Therefore, the brick vector BQ (I) also counts bricks

of NQ below the pseudolines of ΛI . The only difference is that BQ(I) counts
the leftmost unbounded bricks and not the rightmost unbounded bricks, while
BQ (I) does the contrary. This corresponds to Lemma 3.5.
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3.2. Barycenter of balanced associahedra. With the four preliminary lemmas
of the previous section, we are now ready to prove Theorem 3.1. As indicated
earlier, we split the proof into two steps: we first prove that the barycenter B(c)
of the c-associahedron Assoc(W ) is independent of the Coxeter element c, and then
that B(c) + B(c−1) = 0.

Proposition 3.8. All balanced c-associahedra Assoc(W ) have the same vertex
barycenter, i.e. B(c) = B(c′) for any Coxeter elements c, c′ of W .

Proof. Fix a Coxeter element c and a reduced expression c := c1 · · · cn of c. Let c′

denote the Coxeter element with reduced expression c′ := c2 · · · cnc1 obtained from c
rotating its first letter. Up to commutations of consecutive commuting letters, the
word c′w◦(c

′) coincides with the word cw◦(c)	, see [CLS11, Proposition 4.3]. Let ψ
denote the resulting isomorphism between SCc and SCc′ . Lemmas 3.2 and 3.3
ensure that

Bc′(ψ(I))− Bc(I) ∈ −2ωc1 + Rαc1 ,
for any facet I of SCc. Applying this to the positive greedy facet Pc and using
Equality (3), we moreover obtain that

Ωc′ − Ωc ∈ −2ωc1 + Rαc1 .

Therefore, (Bc′(ψ(I))− Ωc′)− (Bc(I)− Ωc) ∈ Rαc1 for any facet I of SCc. This
translates on the barycenters to

(8) B(c′)−B(c) ∈ Rαc1 .

Consider now the sequence c(0), c(1), . . . , c(n) of Coxeter elements obtained from c
by repeatedly rotating the first letter. That is to say, c(0) := c = c1 · · · cn, then
c(1) := c′ = c2 · · · cnc1, and in general c(k) := ck+1 · · · cnc1 · · · ck. Since c(0) = c(n),
we have

B
(
c(1)
)
−B

(
c(0)
)

= B
(
c(1)
)
−B

(
c(n)

)
=

∑
i∈[n−1]

B
(
c(i)
)
−B

(
c(i+1)

)
.

According to Equality (8), the left-hand side belongs to the line Rαc1 while the
right-hand side belongs to the vector space generated by {αc2 , . . . , αcn} = ∆ r αc1 .
Since ∆ is a linear basis of V , this ensures that B(c′) = B(c), i.e. that the barycen-
ter is preserved by the rotation of the first letter. Applying Lemma 3.2, this remains
true for the rotation of any initial letter in c. Since all Coxeter elements are related
by repeated rotations of initial letters, the statement follows. �

Proposition 3.9. The barycenter of the superposition of the vertices of the two
associahedra Assoc(W ) and Assoc−1(W ) is the origin, i.e. B(c) + B(c−1) = 0 for
any Coxeter element c.

Proof. Abusing notation, we write here c−1 for the reduced expression c of c−1.
As observed in [CLS11, Remark 6.6], the (c−1)-sorting word of w◦ is, up to trans-
positions of consecutive commuting letters, obtained by reversing and conjugating
the c-sorting word of w◦. Denote by ψ the resulting isomorphism between SCc and
SCc−1 . From Lemma 3.2 and Corollary 3.6, we obtain that

Bc(I) + Bc−1(ψ(I)) =
∑
β∈Φ+

β,
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for any facet I of SCc. Observe now that ψ sends the positive greedy facet Pc to
the negative greedy facet Nc−1 . Using Equality (3), the previous equality for Pc

thus yields

Ωc + Ωc−1 =
∑
β∈Φ+

β.

Thus, (Bc(I)−Ωc)+(Bc−1(ψ(I))−Ωc−1) = 0. This translates on the barycenters to

B(c) + B(c−1) = 0,

which concludes the proof. �

Proof of Theorem 3.1. For any Coxeter element c of W , we obtain from Proposi-
tions 3.8 and 3.9 that 2B(c) = B(c) + B(c−1) = 0. �

3.3. Barycenter of fairly balanced associahedra. By slight modifications of
the arguments in the previous two sections, we are now ready to prove Theorem 1.1
in full generality.

Proof of Theorem 1.1. Let u be a basepoint within the fundamental chamber C for
which w◦(u) = −u, i.e. us = uϕ(s) for all s ∈ S. By a careful analysis of the
proofs of the four Lemmas 3.2–3.5 we can see that they all remain valid in slightly
modified forms. Lemma 3.2 stays valid as it is. In Lemma 3.3, Equality (4) in its
proof implies that the summand −2ωq1 must be replaced by −2uq1ωq1 . Lemma 3.4
stays valid, though we use in Equality (5) that uqk = uϕ(qk). Lemma 3.5 stays
as well valid, where uqk = uϕ(qk) is used in Equalities (6) and (7). Using this, we
finally obtain that Propositions 3.8 and 3.9 hold as well in the case of fairly balanced
associahedra. This completes the proof Theorem 1.1 in full generality. �

3.4. Orbit barycenter. In Problem 3.4 in [Hoh12] and the preceding discussion,
C. Hohlweg remarks that the vertex barycenter construction in [HLR10] depends
on the fact that the rotation and reflection symmetries of the underlying convex
polygon do not change the barycenter of the associahedron in type A. As we
have seen above, Proposition 3.8 and Proposition 3.9 play analogous roles in the
case of general finite Coxeter systems. Denote by shiftc the bijection of the facets
of SCc induced by the rotation of all letters in c. In [CLS11, Theorem 8.10] it is
shown that in type An with c = τ1 · · · τn being the long cycle, the operation shiftc
corresponds to the cyclic rotation of the underlying (n+ 3)-gon. Denote moreover
by ψ1 an isomorphism between SCc and SCc−1 obtained by rotation as in the proof
of Proposition 3.8, and by ψ2 an isomorphism between SCc and SCc−1 obtained by
reversing and w◦-conjugation as in the proof of Proposition 3.9. Observe that again
in type An with c = τ1 · · · τn, the operation ψ−1

2 ◦ ψ1 corresponds to a reflection of
the (n+ 3)-gon. For all finite Coxeter systems, we obtain the following theorem.

Theorem 3.10. Let O be the shiftc-orbit of a facet I of SCc, and let O′ be the
shiftc-orbit of the facet

(
ψ−1

2 ◦ ψ1

)
(I) of SCc. Then∑(
Bc(I)− Ωc

)
= 0,

where the sum ranges over the orbit O if the two orbits O and O′ are equal, or over
the disjoint union O tO′ if they are different.
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Figure 4. The four orbits under rotation of the 14 triangulations
of the hexagon.

Proof. Observe that, as in type An−1, we have that shiftc−1 ◦ ψ1 = ψ1 ◦ shiftc,
and as well shiftc−1 ◦ ψ2 = ψ2 ◦ shiftc. The statement then follows directly from
Propositions 3.8 and 3.9. �

Example 3.11. We consider again the subword complex SCc = SC(rstrstrsr) as
in Example 2.4. We have seen in Example 2.7 that the map sending the ith letter
of cw◦(c) to the ith internal diagonal of the (n+3)-gon in lexicographic order induces
an isomorphism between the simplicial complex of crossing free sets of internal di-
agonals of the (n+3)-gon and the type An subword complex. The 14 triangulations
of the 6-gon are shown in Figure 4, and the facets of SCc corresponding to the first
triangulations in each of the rotation orbits A–D are given by

{1, 2, 3}, {6, 7, 8}, {5, 6, 7}, {1, 3, 7}.(9)

Next, observe that shiftc is the bijection ( 1 2 3 4 5 6 7 8 9
6 8 9 1 2 3 4 5 7 ) on the position of letters

in Q3. It thus sends those 4 facets in (9) to the facets

{6, 8, 9}, {3, 4, 5}, {2, 3, 4}, {4, 6, 9},

which exactly correspond to the second triangulation in each orbit. Finally, observe
that ψ−1

2 ◦ ψ1 is the bijection ( 1 2 3 4 5 6 7 8 9
4 2 9 1 8 7 6 5 3 ) and sends the 4 facets in (9) to the

facets

{2, 4, 9}, {5, 6, 7}, {6, 7, 8}, {4, 6, 9}.
This gives that orbit A is mapped onto itself, orbits B and C are interchanged,
and orbit D is again mapped onto itself, as desired. Therefore, the barycenter of
the vertices in orbit A is the origin, as is the barycenter of the vertices in orbit D.
Moreover, the sum of the barycenter of vertices in orbit B and orbit C is as well
the origin.
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