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VINCENT PILAUD AND FRANCISCO SANTOS

Abstract. For any lattice congruence of the weak order on Sn, N. Reading proved that glueing

together the cones of the braid fan that belong to the same congruence class defines a complete
fan. We prove that this fan is the normal fan of a polytope.

msc classes. 52B11, 52B12, 03G10, 06B10

1. Introduction

Denote by Sn the set of permutations of [n] := {1, . . . , n}. We consider the classical weak order
on Sn defined by inclusion of inversion sets. That is σ ≤ τ if and only if inv(σ) ⊆ inv(τ) where
inv(σ) := {(σ(i), σ(j)) | 1 ≤ i < j ≤ n and σ(i) > σ(j)}. The Hasse diagram of the weak order can
be seen geometrically:

(1) as the dual graph of the braid fan of type An−1, i.e. the fan defined by the arrangement of
the hyperplanes Hij := {x ∈ Rn | xi = xj} for all 1 ≤ i < j ≤ n, directed from the region
x1 < · · · < xn to the opposite one,

(2) or as the graph of the permutahedron Perm(n) := conv
{(
σ−1(1), . . . , σ−1(n)

) ∣∣ σ ∈ Sn

}
,

oriented in the linear direction α := (−n+ 1,−n+ 3, . . . , n− 3, n− 1).

See Figure 1 for illustrations when n = 4.
We aim at studying similar geometric realizations for lattice quotients of the weak order on Sn.

Recall that a lattice congruence of a lattice (L,≤,∧,∨) is an equivalence relation on L that
respects the meet and the join operations, i.e. such that x ≡ x′ and y ≡ y′ implies x∧ y ≡ x′ ∧ y′
and x ∨ y ≡ x′ ∨ y′. A lattice congruence ≡ automatically defines a lattice quotient L/≡ on the
congruence classes of ≡ where the order relation is given by X ≤ Y iff there exists x ∈ X and y ∈ Y
such that x ≤ y. The meet X ∧ Y (resp. the join X ∨ Y ) of two congruence classes X and Y is
the congruence class of x ∧ y (resp. of x ∨ y) for arbitrary representatives x ∈ X and y ∈ Y .

Several examples of relevant combinatorial structures arise from lattice quotients of the weak
order. The fundamental example is the Tamari lattice introduced by D. Tamari in [Tam51].
It can be defined on different Catalan families (Dyck paths, binary trees, triangulations, non-
crossing partitions, etc), and its cover relations correspond to local moves in these structures
(exchange, rotation, flip, etc). The Tamari lattice can also be interpreted as the quotient of the
weak order by the sylvester congruence on Sn defined as the transitive closure of the rewriting
rule UacV bW ≡sylv UcaV bW where a < b < c are letters while U, V,W are words of [n]. See
Figure 2 for an illustration when n = 4. This congruence has been widely studied in connection
to geometry and algebra [Lod04, LR98, HNT05]. Among many other examples of relevant lattice
quotients of the weak order, let us mention the (type A) Cambrian lattices [Rea06, CP17], the
boolean lattice, the permutree lattices [PP18], the increasing flip lattice on acyclic twists [Pil18],
the rotation lattice on diagonal rectangulations [LR12, Gir12], etc.

In his vast study of lattice congruences of the weak order, N. Reading observed that “lattice
congruences on the weak order know a lot of combinatorics and geometry” [Rea16a, Sect. 10.7].
Geometrically, he showed that each lattice congruence ≡ of the weak order is realized by a complete
fan F≡ that we call quotient fan. Its maximal cones correspond to the congruence classes of ≡ and
are just obtained by glueing together the cones of the braid fan corresponding to permutations
that belong to the same congruence class of ≡. Although this result was stated in a much more
general context (that of lattice congruences on lattice of regions of hyperplane arrangements), we
restrict our discussion to lattice quotients of the weak order on Sn.
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Figure 1. The Hasse diagram of the weak order on S4 (left) can be seen as the dual graph of
braid fan (middle) or as an orientation of the graph of the permutahedron Perm(4) (right).
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Figure 2. The Tamari lattice (right) is the quotient of the weak order by the sylvester congru-
ence ≡sylv (left). Each congruence class is given by a blue box on the left and corresponds to a
binary tree on the right.

Theorem 1 ([Rea05]). For any lattice congruence ≡ of the weak order on Sn, the cones obtained
by glueing together the cones of the braid fan that belong to the same congruence class of ≡ form a
fan F≡ whose dual graph coincides with the Hasse diagram of the quotient of the weak order by ≡.

However, as observed by N. Reading in [Rea05], “this theorem gives no means of knowing
when F≡ is the normal fan of a polytope”. For the above-mentioned examples of lattice congru-
ences, this problem was settled by specific constructions of polytopes realizing the quotient fan F≡:
J.-L. Loday’s associahedron [Lod04] for the Tamari lattice, C. Hohlweg and C. Lange’s associahe-
dra [HL07, LP18] for the Cambrian lattices, cubes for the boolean lattices, permutreehedra [PP18]
for the permutree lattices, brick polytopes [PS12] for increasing flip lattices on acyclic twists,
Minkowski sums of opposite associahedra for rotation lattices on diagonal rectangulations [LR12],
etc. Although these realizations have similarities, each requires an independent construction and
proof. In particular, the intersection of the half-spaces defining facets of the classical permutahe-
dron normal to the rays of F≡ does not realize F≡ in general, in contrast to the specific situation
of [Lod04, HL07, LP18, PP18]. Our contribution is to provide a general method to construct a
polytope P≡ whose normal fan is the quotient fan F≡. We therefore prove the following statement.

Theorem 2. For any lattice congruence ≡ of the weak order on Sn, the fan F≡ obtained by
glueing the braid fan according to the congruence classes of ≡ is the normal fan of a polytope. In
particular, the graph of this polytope is the Hasse diagram of the quotient of the weak order by ≡.

We call quotientopes the resulting polytopes. Examples are illustrated in Figures 7, 8 and 9.
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2. Background

2.1. Polyhedral geometry. We briefly recall basic definitions and properties of polyhedral fans
and polytopes, and refer to [Zie98] for a classical textbook on this topic.

A hyperplane H ⊂ Rd is a supporting hyperplane of a set X ⊂ Rd if H ∩ X 6= ∅ and X is
contained in one of the two closed half-spaces of Rd defined by H.

We denote by R≥0R :=
{∑

r∈R λr r
∣∣ λr ∈ R≥0

}
the positive span of a set R of vectors of Rd. A

polyhedral cone is a subset of Rd defined equivalently as the positive span of finitely many vectors
or as the intersection of finitely many closed linear halfspaces. The faces of a cone C are the
intersections of C with the supporting hyperplanes of C. The 1-dimensional (resp. codimension 1)
faces of C are called rays (resp. facets) of C. A cone is simplicial if it is generated by a set of
independent vectors.

A polyhedral fan is a collection F of polyhedral cones such that

• if C ∈ F and F is a face of C, then F ∈ F ,
• the intersection of any two cones of F is a face of both.

A fan is simplicial if all its cones are, and complete if the union of its cones covers the ambient
space Rd. For two fans F ,G in Rd, we say that F refines G (and that G coarsens F) if every cone
of F is contained in a cone of G.

A polytope is a subset P of Rd defined equivalently as the convex hull of finitely many points
or as a bounded intersection of finitely many closed affine halfspaces. The dimension dim(P ) is
the dimension of the affine hull of P . The faces of P are the intersections of P with its supporting
hyperplanes. The dimension 0 (resp. dimension 1, resp. codimension 1) faces are called vertices
(resp. edges, resp. facets) of P . A polytope is simple if its supporting hyperplanes are in general
position, meaning that each vertex is incident to dim(P ) facets (or equivalently to dim(P ) edges).

The (outer) normal cone of a face F of P is the cone generated by the outer normal vectors
of the facets of P containing F . In other words, it is the cone of vectors c such that the linear
form x 7→ 〈 c | x 〉 on P is maximized by all points of the face F . The (outer) normal fan of P is the
collection of the (outer) normal cones of all its faces. We say that a complete polyhedral fan in Rd is
polytopal when it is the normal fan of a polytope of Rd. A classical characterization of polytopality
of complete simplicial fans can be obtained as a reformulation of regularity of triangulations of
vector configurations, as introduced in the theory of secondary polytopes [GKZ08, Chap. 7], see
also [DRS10, Chap. 5]. Here, we present a reformulation of this characterization to deal with (not
necessarily simplicial) fans that coarsen a complete simplicial fan.

Proposition 3. Consider two fans F ,G of Rd, and let R ⊂ Rd be a set of representative vectors
for the rays of F . Assume that F is complete and simplicial, and that F refines G. Then the
following assertions are equivalent:

(1) G is the normal fan of a polytope in Rd.
(2) There exists a map h : R → R>0 with the property that for any r, r′ ∈ R and S ⊂ R for

which C :=R≥0(S∪{r}) and C ′ :=R≥0(S∪{r′}) are two adjacent maximal cones of F , if

α r + α′ r′ +
∑
s∈S

βs s = 0

is the unique (up to rescaling) linear dependence with α, α′ > 0 among {r, r′} ∪ S then

αh(r) + α′ h(r′) +
∑
s∈S

βs h(s) ≥ 0,

with equality if and only if the cones C and C ′ are contained in the same cone of G.

Under these conditions, G is the normal fan of the polytope defined by{
x ∈ Rd

∣∣ 〈 r | x 〉 ≤ h(r) for all r ∈ R
}
.

Proof. The proof is similar to that of [CFZ02, Lem. 2.1], and we just adapt it here for the con-
venience of the reader. Assume first that G is the normal fan of a polytope P ⊆ Rd and de-
fine h : R → R>0 by h(r) := max {〈 r | x 〉 | x ∈ P}. Consider r, r′ ∈ R and S ⊂ R such that the
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cones C :=R≥0(S ∪ {r}) and C ′ :=R≥0(S ∪ {r′}) are two adjacent maximal cones of F . Let v
and v′ be the vertices of P whose normal cones contain C and C ′ respectively. Then by definition,

h(r) = 〈 r | v 〉 , h(r′) = 〈 r′ | v′ 〉 and h(s) = 〈 s | v 〉 = 〈 s | v′ 〉 for all s ∈ S.

Therefore, applying the linear form s 7→ 〈 s | v 〉 to the linear dependance α r + α′ r′ +
∑
βs s = 0

among the vectors of S∪ {r, r′}, we obtain α 〈 r | v 〉+ α′ 〈 r′ | v 〉+
∑
βs 〈 s | v 〉 = 0. If C and C ′

belong to the same cone of G, then v = v′ and h(r′) = 〈 r′ | v 〉, thus we obtain the equality
αh(r) +α′ h(r′) +

∑
βs h(s) = 0. Otherwise, we have h(r′) = 〈 r′ | v′ 〉 > 〈 r′ | v 〉 and since α′ > 0

we obtain the inequality αh(r) + α′ h(r′) +
∑
βs h(s) > 0.

Reciprocally, assume that there exists a height function h : R → R>0 such that Condition (2)
is satisfied and consider the polytope P :=

{
x ∈ Rd

∣∣ 〈 r | x 〉 ≤ h(r) for all r ∈ R
}

. For each max-

imal cone C = R≥0S of F , let vC be the intersection of the hyperplanes
{
x ∈ Rd

∣∣ 〈 s | x 〉 = h(s)
}

for s ∈ S. Let r, r′ ∈ R and S ⊂ R for which C :=R≥0(S ∪ {r}) and C ′ :=R≥0(S ∪ {r′}) are
two adjacent maximal cones of F . Condition (2) implies that 〈 r | vC 〉 ≥ 〈 r | vC′ 〉 with equality
if and only if C and C ′ are contained in the same cone of G. Therefore, for any vector c ∈ Rd
located on the side of r of the hyperplane spanned by S, we can write c as a linear combina-
tion c = γr r +

∑
s∈S γs s with γr > 0, and we obtain that

〈 c | vC 〉 = γr 〈 r | vC 〉+
∑
s∈S

γs 〈 s | vC 〉 ≥ γr 〈 r | vC′ 〉+
∑
s∈S

γs 〈 s | vC′ 〉 = 〈 c | vC′ 〉 ,

with equality if and only if C and C ′ are contained in the same cone of G. Consider now a
vector c ∈ Rd and a maximal cone C of F . For dimension reason, there exists a line segment L
joining c with some interior point of C and not passing through any cone of codimension two or
more in F . Let C1, C2, . . . , Ck = C denote the cones of F along L (with c ∈ C1). By the previous
observation, we obtain

〈 c | vC1
〉 ≥ 〈 c | vC2

〉 ≥ · · · ≥ 〈 c | vC 〉 ,
with equalities if and only if Ci and Ci+1 are contained in the same cone of G. Therefore, the linear
form x 7→ 〈 c | x 〉 on P is maximized by vC if and only if c belongs to the cone of G containing
the cone C. We conclude that for any maximal cone C of F , the point vC is a vertex of P whose
normal cone is the cone of G containing C, which shows that G is the normal fan of P . �

2.2. Braid fan. We consider the braid arrangement Hn := {Hij | 1 ≤ i < j ≤ n} consisting of
the hyperplanes of the form Hij := {x ∈ Rn | xi = xj}. The closures of the connected components
of Rn r

⋃
Hn (together with all their faces) form a fan. This fan is complete and simplicial, but

not essential (all its cones contain the line R11 :=R(1, 1, . . . , 1)). We call braid fan, and denote
by Fn, the intersection of this fan with the hyperplane H :=

{
x ∈ Rn

∣∣ ∑
i∈[n] xi = 0

}
.

For example, we have represented in Figures 3 (left) and 1 (middle) the braid fan when n = 3
and n = 4 respectively. As the 3-dimensional fan F4 is difficult to visualize in Figure 1 (middle),
we also use another classical representation in Figure 4 (left): we intersect F4 with a unit sphere
and we stereographically project the resulting arrangement of great circles from the pole 4321 to
the plane. Each circle then corresponds to a hyperplane xi = xj with i < j, separating a disk
where xi < xj from an unbounded region where xi > xj .

The cones of the braid fan Fn are naturally labeled by ordered partitions of [n]: an or-
dered partition π = π1|π2| . . . |πk of [n] into k parts corresponds to the (k − 1)-dimensional cone
C(π) := {x ∈ H | xu ≤ xv for all i ≤ j, u ∈ πi and v ∈ πj} . In particular, the fan Fn has

• a maximal cone C(σ) :=
{
x ∈ H

∣∣ xσ(1)≤xσ(2)≤· · · ≤ xσ(n)

}
for each permutation σ ∈ Sn,

• a ray C(R) for each subset R of [n] distinct from ∅ and [n]. Namely, if R = {r1, . . . , rp}
and [n]rR = {s1, . . . , sn−p} then C(R) :=

{
x ∈ H

∣∣ xr1 = · · · = xrp ≤ xs1 = · · · = xsn−p

}
.

This is illustrated in Figures 3 (left) and 4 (left) when n = 3 and n = 4 respectively: chambers are
labeled with blue permutations of [n] and rays are labeled with red subsets of [n].

Note that the fundamental chamber C(12 . . . n) has rays labeled by the n − 1 subsets of the
form [k] with 0 < k < n. Any other chamber C(σ) is obtained from C(12 . . . n) by permutation of
coordinates and has thus rays labeled by σ([k]) with 0 < k < n. For example, the chamber C(312)
of F3 has rays labeled by {3} and {3, 1}, and the chamber C(3421) of F4 has rays labeled by {3},
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Figure 3. The braid fan F3 (left), the corresponding shards (middle), and the quotient fan given
by the sylvester congruence ≡sylv (right).

{3, 4} and {2, 3, 4}, see Figures 3 (left) and 4 (left). Two permutations σ, σ′ are said to be adjacent
when their cones C(σ) and C(σ′) share a facet, or equivalently when σ and σ′ differ by the exchange
of two consecutive positions.

To understand the geometry of Fn, we need to choose convenient representative vectors in H
for the rays of Fn. We denote by ∆ := {α1, . . . , αn−1} the root basis (where αi := ei+1 − ei) and
by ∇ := {ω1, . . . , ωn−1} the fundamental weight basis (i.e. the dual basis of the root basis ∆). A
subset ∅ 6= R ( [n] corresponds to the ray r(R) of Fn whose kth coordinate in the fundamental
weight basis is 11k∈R − 11k+1∈R (where 11X = 1 if the property X holds and 0 otherwise). For
example, the rays of the fundamental chamber are the rays r([k]) = ωk for 0 < k < n.

Lemma 4. Let σ, σ′ be two adjacent permutations. Let ∅ 6= R ( [n] (resp. ∅ 6= R′ ( [n]) be such
that r(R) (resp. r(R′)) is the ray of C(σ) not in C(σ′) (resp. of C(σ′) not in C(σ)). Then the
linear dependence among the rays of the cones C(σ) and C(σ′) is given by

r(R) + r(R′) = r(R ∩R′) + r(R ∪R′)

where we set r(∅) = r([n]) = 0 by convention.

Proof. Since σ and σ′ are adjacent permutations of Sn, there is i ∈ [n−1] such that σ(i) = σ′(i+ 1)
and σ(i + 1) = σ′(i) while σ(`) = σ′(`) for any ` /∈ {i, i + 1}. Let R :=σ([i]) and R′ :=σ′([i])
and observe that R ∩ R′ = σ([i − 1]) = σ′([i − 1]) and R ∪ R′ = σ([i + 1]) = σ′([i + 1]).
Since 11k∈R+11k∈R′ = 11k∈R∩R′+11k∈R∪R′ for any k ∈ [n] and r(R) =

∑
k∈[n−1](11k∈R−11k+1∈R)ωk,

we obtain the linear dependence r(R) + r(R′) = r(R∩R′) + r(R∪R′), where we use the conven-
tion r(∅) = 0 if R∩R′ = ∅ and r([n]) = 0 if R∪R′ = [n]. Moreover, we have r(R) ∈ C(σ) r C(σ′)
and r(R′) ∈ C(σ′) r C(σ) while r(R ∩R′) ∈ C(σ) ∩ C(σ′) and r(R ∪R′) ∈ C(σ) ∩ C(σ′). There-
fore, we have identified the unique (up to rescaling) linear dependence of the rays of the cones C(σ)
and C(σ′). �

For example, the linear dependence among the rays in the adjacent cones C(123) and C(213)
of F3 is r({1}) + r({2}) = r({12}), while the linear dependence among the rays in the adjacent
cones C(123) and C(132) of F3 is r({1, 2}) + r({1, 3}) = r({1}). See Figure 3 (left). The first
non-degenerate linear dependencies (i.e. where R ∩ R′ 6= ∅ and R ∪ R′ 6= [n]) arise in F4: for
instance, the linear dependence among the rays in the adjacent cones C(4132) and C(4312) of F4

is r({3, 4}) + r({1, 4}) = r({4}) + r({1, 3, 4}). See Figure 4 (left).

2.3. Shards. We now briefly present shards, a powerful tool to deal with lattice quotients of the
weak order with a geometric perspective. Shards were introduced by N. Reading [Rea03], see
also his recent survey chapters [Rea16b, Rea16a]. For any 1 ≤ i < j ≤ n, let [i, j] := {i, . . . , j}
and ]i, j[ := {i+ 1, . . . , j − 1}. For any S ⊆ ]i, j[, the shard Σ(i, j, S) is the cone

Σ(i, j, S) := {x ∈ Rn | xi = xj , xi ≥ xk for all k ∈ S, xi ≤ xk for all k ∈ ]i, j[ r S} .
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Figure 4. A stereographic projection of the braid fan F4 (left) from the pole 4321, the corre-
sponding shards (middle), and the quotient fan given by the sylvester congruence ≡sylv (right).

The hyperplane Hij is decomposed into the 2j−i−1 shards Σ(i, j, S) for all subsets S ⊆ ]i, j[. The
shards thus have to be thought of as pieces of the hyperplanes of the braid arrangement. Let

Σn := {Σ(i, j, S) | 1 ≤ i < j ≤ n and S ⊆ ]i, j[}
denote the collection of all shards of the braid arrangement in Rn.

We have illustrated the shard decomposition in Figures 3 (middle) and 4 (middle). In what
follows, we use a convenient notation borrowed from N. Reading’s work on arc diagrams [Rea15]:
the shard Σ(i, j, S) is labeled by an arc joining the ith dot to the jth dot and passing above
(resp. below) the kth dot when k ∈ S (resp. when k /∈ S). For instance, the arc represents

the shard Σ(1, 4, {2}).
Before going further, we state two technical lemmas connecting rays and shards.

Lemma 5. For any ∅ 6= R ( [n], any 1 ≤ i < j ≤ n and any S ⊆ ]i, j[, the ray r(R) lies
in the shard Σ(i, j, S) if and only if either {i, j} ⊆ R and S ⊆ ]i, j[ ∩ R, or {i, j} ⊆ [n] r R
and ]i, j[ ∩R ⊆ S.

Proof. Recall that

• the ray r(R) lies on the open half-line
{
x ∈ H

∣∣ xr1 = · · · = xrp < xs1 = · · · = xsn−p

}
where

R = {r1, . . . , rp} and [n] rR = {s1, . . . , sp},
• Σ(i, j, S) := {x ∈ Rn | xi = xj , xi ≥ xk for all k ∈ S, xi ≤ xk for all k ∈ ]i, j[ r S}.

If |{i, j} ∩ R| = 1, then r(R)i 6= r(R)j so that r(R) /∈ Σ(i, j, S). Assume now that {i, j} ⊆ R.
Then we have r(R)i = r(R)k for any k ∈ ]i, j[ ∩ R and r(R)i < r(R)k for any k ∈ ]i, j[ r R.
Therefore, r(R) ∈ Σ(i, j, S) if and only if S ⊆ ]i, j[∩R. Assume finally that {i, j} ⊆ [n]rR. Then
we have r(R)i = r(R)k for any k ∈ ]i, j[ ∩ R and r(R)i > r(R)k for any k ∈ ]i, j[ ∩ R. Therefore,
r(R) ∈ Σ(i, j, S) if and only if ]i, j[ ∩R ⊆ S. �

For example, the shard Σ(1, 3,∅) contains the rays r({1, 3}), r({1, 2, 3}), r({1, 3, 4}) and r({4}).
See Figure 4 (middle) where Σ(1, 3,∅) is labeled by the arc .

Lemma 6. Let σ, σ′ be two adjacent permutations, let ∅ 6= R ( [n] (resp. ∅ 6= R′ ( [n]) be such
that r(R) (resp. r(R′)) is the ray of C(σ) not in C(σ′) (resp. of C(σ′) not in C(σ)), and let k, k′

be such that Rr{k} = R′r{k′}. Assume without loss of generality that k < k′. Then the common
facet of C(σ) and C(σ′) belongs to the shard Σ(k, k′, R ∩R′ ∩ ]k, k′[).

Proof. As in Lemma 4, let i ∈ [n−1] be such that σ(i) = σ′(i+ 1) =: k and σ(i+ 1) = σ′(i) =: k′

while σ(`) = σ′(`) for any ` /∈ {i, i + 1}. Define R :=σ([i]) and R′ :=σ′([i]) and observe that
Rr {k} = R′ r {k′}. Then r(R) is the ray of C(σ)rC(σ′) while r(R′) is the ray of C(σ′)rC(σ),
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Figure 5. The forcing order on Σ4 (left) and its upper ideal consisting of up arcs corresponding
to the sylvester congruence ≡sylv (right).

and the rays of C(σ) ∩ C(σ′) are the rays r(σ([`])) = r(σ′([`])) for ` 6= i. For any ` > i, we
have {k, k′} ⊆ σ([`]) and R ∩ R′ ⊂ σ([`]) so that r(σ([`])) belongs to Σ(k, k′, R ∩ R′ ∩ ]k, k′[) by
Lemma 5. For any ` < i, we have {k, k′} ⊆ [n]rσ([`]) and σ([`]) ⊆ R∩R′ so that r(σ([`])) belongs
to Σ(k, k′, R ∩ R′ ∩ ]k, k′[) by Lemma 5. We conclude that all rays of the cone C(σ) ∩ C(σ′) are
in the shard Σ(k, k′, R ∩R′ ∩ ]k, k′[), and thus all the cone C(σ) ∩ C(σ′) is by convexity. �

For example, the common facet of the cones C(4132) and C(4312) of F4 is supported by the
shard Σ(1, 3,∅). See Figure 4 (middle) where Σ(1, 3,∅) is labeled by the arc .

It turns out that the shards are precisely the pieces of the hyperplanes of Hn needed to delimit
the cones of the quotient fan F≡ for any lattice congruence ≡ of the weak order on Sn. Conversely,
to understand which sets of shards can be used to define a quotient fan, we need the forcing
order between shards. A shard Σ(i, j, S) is said to force a shard Σ(k, `, T ) if k ≤ i < j ≤ `
and S = T ∩ ]i, j[. We denote this by Σ(i, j, S) � Σ(k, `, T ). For example, the forcing order on Σ4

is represented on Figure 5 together with one of its upper ideals. All its upper ideals containing
its three maximal elements are represented in Figure 6. The following statement uses shards to
describe the lattice quotients of the weak order on Sn.

Theorem 7 ([Rea16a, Sect. 10.5]). For any lattice congruence ≡ of the weak order on Sn, there
is a subset Σ≡ of the shards of Σn such that the interiors of the maximal cones of the fan F≡ are
precisely the connected components of H r

⋃
Σ≡. Moreover, Σ≡ is an upper ideal of the forcing

order ≺ and the map ≡ 7→ Σ≡ is a bijection between the lattice congruences of the weak order
on Sn and the upper ideals of the forcing order ≺.

For example, we have represented in Figures 3 (right) and 4 (right) the quotient fans F≡sylv

corresponding to the sylvester congruences ≡sylv on S3 and S4 respectively. It is obtained

• either by glueing together the chambers C(σ) of the permutations in the same sylvester
class. These classes are given in Figure 2 for n = 4.

• or by cutting the space with the shards of Σ≡sylv . These shards are precisely the upper
shards Σ(i, j, ]i, j[), whose arcs pass above all dots in between their endpoints. They form
the ideal Σ≡sylv of Σ4 represented in Figure 5 (right).

Remark 8. We have already mentioned that we represent a shard Σ(i, j, S) by the arc with
endpoints i and j and passing above the vertices of S and below those of ]i, j[rS. Each region C
of F≡ then corresponds to a unique noncrossing arc diagram [Rea15]: a collection of arcs that
pairwise do not intersect or share a common left endpoint or a common right endpoint. Namely,
the noncrossing arc diagram of a region C is given by the shards containing a down facet of C. This
correspondence provides the canonical join representation of C. See [Rea15] for precise definitions
and details. We also refer to N. Reading’s surveys [Rea16b, Rea16a] for further technology on the
geometry of lattice quotients (see also Remark 13).
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Figure 6. The lattice of (essential) lattice congruences of the weak order on S4. Each lattice
congruence≡ is represented by its upper ideal of shards Σ≡, and each shard Σ(i, j, S) is represented
by an arc with endpoints i and j and passing above the vertices of S and below those of ]i, j[rS.
We only consider lattice congruences whose shards include all basic shards Σ(i, i + 1,∅), since
otherwise their fan is not essential.
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3. Quotientopes

This section is devoted to the proof of Theorem 2. We say that a function f : Σn → R>0 is
forcing dominant if

f(Σ) >
∑

Σ′≺Σ

f(Σ′)

for any shard Σ ∈ Σn. Such a function clearly exists, take for example f(Σ(i, j, S)) to be n−(j−i)2 .
For the remaining of the paper, we fix a forcing dominant function f .

For a shard Σ = Σ(i, j, S) ∈ Σn and a subset R ⊆ [n], we define the contribution γ(Σ, R) of Σ
to R to be 1 if |R ∩ {i, j}| = 1 and S = R∩ ]i, j[, and 0 otherwise. It is crucial to observe that the
definition of γ(Σ, R) only depends on R ∩ [i, j]. Note also that γ(Σ,∅) = γ(Σ, [n]) = 0 for every
shard Σ ∈ Σn. For a geometric interpretation of this definition, let Hijn denote the arrangement of
the hyperplanes Hik and Hkj for all k ∈ ]i, j[. Then Σ(i, j, S) contributes to a subset ∅ 6= R ( [n]
if the ray r(R) lies in the (closed) region of Hijn containing Σ(i, j, S), but not on Σ(i, j, S).

We consider a lattice congruence ≡ of the weak order on Sn. For a subset R ( [n], we define

the height hf≡(R) ∈ R>0 to be

hf≡(R) :=
∑

Σ∈Σ≡

f(Σ) γ(Σ, R).

Note that hf≡(∅) = hf≡([n]) = 0 by definition. This height function fulfills the following property.

Lemma 9. Let σ, σ′ be two adjacent permutations. Let ∅ 6= R ( [n] (resp. ∅ 6= R′ ( [n]) be such
that r(R) (resp. r(R′)) is the ray of C(σ) not in C(σ′) (resp. of C(σ′) not in C(σ)). Then

hf≡(R) + hf≡(R′) ≥ hf≡(R ∩R′) + hf≡(R ∪R′)

with equality if and only if the common facet of C(σ) and C(σ′) belongs to a shard of Σ≡.

Proof. Let k, k′ be such that Rr {k} = R′ r {k′}. Assume without loss of generality that k < k′.
We consider a shard Σ = Σ(i, j, S) ∈ Σ≡ and evaluate its contributions to R, R′, R∩R′ and R∪R′.
Since γ(Σ, R) only depends on R ∩ [i, j], observe that

• if {k, k′} ∩ [i, j] = ∅, then γ(Σ, R) = γ(Σ, R′) = γ(Σ, R ∩R′) = γ(Σ, R ∪R′);
• if {k, k′} ∩ [i, j] = {k}, then γ(Σ, R) = γ(Σ, R ∪R′) and γ(Σ, R′) = γ(Σ, R ∩R′);
• if {k, k′} ∩ [i, j] = {k′}, then γ(Σ, R) = γ(Σ, R ∩R′) and γ(Σ, R′) = γ(Σ, R ∪R′).

Note also that γ(Σ, R) = γ(Σ, R′) = γ(Σ, R∩R′) = γ(Σ, R∪R′) = 0 if Sr {k, k′} 6= R∩R′ ∩ ]i, j[
by definition of the contributions. We conclude that

γ(Σ, R) + γ(Σ, R′) = γ(Σ, R ∩R′) + γ(Σ, R ∪R′)

for any shard Σ = Σ(i, j, S) for which {k, k′} 6⊆ [i, j] or S r {k, k′} 6= R ∩R′ ∩ ]i, j[.
Therefore, we are left with the contributions of the shards Σ(i, j, S) such that {k, k′} ⊆ [i, j]

and S r {k, k′} = R ∩R′ ∩ ]i, j[. By definition of the forcing order, all these remaining shards are
forced by the shard Σ• := Σ(k, k′, R ∩R′ ∩ ]k, k′[). Hence, we obtain that,

hf≡(R) + hf≡(R′) − hf≡(R ∩R′) + hf≡(R ∪R′) = h̃f≡(R) + h̃f≡(R′) − h̃f≡(R ∩R′) + h̃f≡(R ∪R′),

where

h̃f≡(R) :=
∑

Σ∈Σ≡
Σ≺Σ•

f(Σ) γ(Σ, R).

Finally, according to Lemma 6 and Theorem 7, Σ• is a shard of Σ≡ if and only if the cones C(σ)
and C(σ′) belong to distinct cones of F≡. We therefore distinguish two cases.

(i) Assume first that C(σ) and C(σ′) belong to the same cone of F≡. Then Σ• is not in Σ≡.
Since Σ≡ is an upper ideal of the forcing order, it implies that Σ≡ contains no shard Σ

with Σ ≺ Σ•. Therefore h̃f≡(R) = h̃f≡(R′) = h̃f≡(R ∩R′) = h̃f≡(R ∪R′) = 0 and we obtain

hf≡(R) + hf≡(R′) = hf≡(R ∩R′) + hf≡(R ∪R′).
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Figure 7. Permutahedron (left), associahedron (middle) and cube (right) as quotientopes.

(ii) Assume now that C(σ) and C(σ′) belong to distinct cones of F≡. Then Σ• is in Σ≡.

Since γ(Σ•, R) = γ(Σ•, R
′) = 1, this implies that h̃f≡(R) ≥ f(Σ•) and h̃f≡(R′) ≥ f(Σ•).

Moreover, since γ(Σ•, R ∩ R′) = γ(Σ•, R ∪ R′) = 0, we have h̃f≡(R ∩ R′) ≤
∑

Σ≺Σ•
f(Σ′)

and h̃f≡(R ∪R′) ≤
∑

Σ≺Σ•
f(Σ′). We conclude that

hf≡(R) + hf≡(R′) − hf≡(R ∩R′) − hf≡(R ∪R′) ≥ 2 f(Σ•) − 2
∑

Σ≺Σ•

f(Σ) > 0.

since f is forcing dominant. This concludes the proof. �

We finally obtain the proof of Theorem 2.

Corollary 10. For any lattice congruence ≡ of the weak order on Sn, and any forcing dominant
function f : Σn → R>0, the quotient fan F≡ is the normal fan of the polytope

P f≡ :=
{
x ∈ Rn

∣∣ 〈 r(R) | x 〉 ≤ hf≡(R) for all ∅ 6= R ( [n]
}
.

In particular, the graph of P f≡ oriented in the linear direction α := (−n+1,−n+3, . . . , n−3, n−1)
is the Hasse diagram of the quotient of the weak order by ≡.

Proof. We just combine the polytopality criterion of Proposition 3 with the statements of Lem-
mas 4 and 9, to obtain the polytopality of the quotient fan F≡. The end of the statement then
follows from Theorem 1. �

Note that the inequality description of Corollary 10 is in general redundant. More precisely,
the inequalities corresponding to the rays of Fn that are not rays of F≡ are irrelevant.

We call quotientope the resulting polytope P f≡. See Figures 7, 8 and 9 for illustrations. Note
that not all quotientopes are simple since not all quotient fans are simplicial.

Remark 11 (Forcing dominance). Note that the forcing dominance condition could even be
weakened to depend on the lattice congruence ≡. More precisely, the construction and the proof
of Lemma 9 and thus of Corollary 10 still work for any function f : Σn → R>0 such that for any
shard Σ ∈ Σ≡,

f(Σ) >
∑

Σ′∈Σ≡
Σ′≺Σ

f(Σ′).

Remark 12 (Insidahedra, outsidahedra and removahedra). By definition, the quotientopes are
generalized permutahedra [Pos09, PRW08] as their normal fans coarsen the braid fan. This means
in particular that they are obtained by gliding inequalities of the permutahedron orthogonally
to their normal vectors. Note that in our construction, the inequalities are glided inside the

permutahedron. More precisely, if F≡ refines F≡′ , then P f≡ contains P f≡′ . For example, the cube
(quotientope of the coarsest congruence so that F≡ is essential) is contained in all quotientopes
such that F≡ is essential, while the permutahedron (quotientope of the finest congruence) contains
all quotientopes. See Figure 9 for illustration. This construction thus contrasts with the classical
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Figure 8. All 3-dimensional quotientopes up to symmetries. There are 47 (essential) lattice
congruences on S4 represented in Figure 6, but only 20 up to horizontal and vertical symmetry.
Each lattice congruence ≡ is represented by its upper ideal of shards Σ≡, and each shard Σ(i, j, S)
is represented by an arc with endpoints i and j and passing above the vertices of S and below
those of ]i, j[ r S.
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Figure 9. The quotientope lattice for n = 4: all quotientopes ordered by inclusion (which cor-
responds to refinement of the lattice congruences). We only consider lattice congruences whose
shards include all basic shards Σ(i, i+ 1,∅), since otherwise their fan is not essential.
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construction of the associahedron [Lod04] and its generalizations [HL07, LP18, Pil13, PP18], which
are all obtained by gliding inequalities outside the permutahedron. More precisely, the classical
associahedron is obtained by removing certain inequalities from the facet description of the classical
permutahedron. Note that the similar construction does not work in general: for example, the
fan F≡ of the top right congruence of Figure 8 is not realized by the intersection of the half-spaces
defining facets of the classical permutahedron normal to the rays of F≡.

Remark 13 (Towards quotientopes for arbitrary hyperplane arrangements?). As already men-
tioned, Theorem 1 actually holds in much more generality (see [Rea16b] for a detailed survey).
Consider a central hyperplane arrangement H defining a fan F , and let B be a distinguished
chamber of F . For any chamber C of F , define its inversion set to be the set of hyperplanes
of H that separate B from C. The poset of regions Pos(H, B) is the poset whose elements are
the chambers of F ordered by inclusion of inversion sets. A. Björner, P. Edelman and G. Ziegler
discuss in [BEZ90] some conditions for this poset of regions to be a lattice: Pos(H, B) is always a
lattice when the fan F is simplicial, and the chamber B must be a simplicial for Pos(H, B) to be a
lattice. In [Rea05], N. Reading proves that when Pos(H, B) is a lattice, any lattice congruence ≡
of Pos(H, B) defines a complete fan F≡ obtained by glueing together the cones of the fan F that
belong to the same congruence class of ≡. The polytopality of this quotient fan F≡ however
remains open in general. Although the polytopality criterion of Proposition 3 seems a promising
tool to tackle this problem when F is simplicial, the general case seems much more intricate. Let
us observe that we benefited from three specific features of the Coxeter arrangement of type A:

• we used the simpliciality of the arrangement,
• we used the action of Sn to transport our understanding of the linear dependencies from

the initial chamber to any other chamber,
• these linear dependencies are very simple in type A (only 3 or 4 terms and 0/1 coefficients).

These properties hold for any finite Coxeter group (for the last property though, the linear de-
pendencies can get up to 5 terms, and some coefficients equal to 2 appear in non-simply-laced
types). This suggests that the strategy of this paper could produce polytopal realizations when
the hyperplane arrangement is the Coxeter arrangement of a finite Coxeter group.
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the 1994 edition.

[HL07] Christophe Hohlweg and Carsten Lange. Realizations of the associahedron and cyclohedron. Discrete
Comput. Geom., 37(4):517–543, 2007.

[HNT05] Florent Hivert, Jean-Christophe Novelli, and Jean-Yves Thibon. The algebra of binary search trees.

Theoret. Comput. Sci., 339(1):129–165, 2005.
[Lod04] Jean-Louis Loday. Realization of the Stasheff polytope. Arch. Math. (Basel), 83(3):267–278, 2004.

[LP18] Carsten Lange and Vincent Pilaud. Associahedra via spines. Combinatorica, 38(2):443–486, 2018.
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