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Abstract. Maximal (k+1)-crossing-free graphs on a planar point
set in convex position, that is, k-triangulations, have received at-
tention in recent literature, with motivation coming from several
interpretations of them.

We introduce a new way of looking at k-triangulations, namely
as complexes of star polygons. With this tool we give new, direct,
proofs of the fundamental properties of k-triangulations, as well as
some new results. This interpretation also opens-up new avenues
of research, that we briefly explore in the last section.

1. Introduction

A multi-triangulation of order k, or k-triangulation of a convex n-
gon is a maximal set of edges such that no k + 1 of them mutually
cross.

Example 1.1. For k = 1 these are simply triangulations. For n ≤
2k + 1, the complete graph Kn on n vertices does not contain k + 1
mutually intersecting edges, and thus it is the unique k-triangulation
of the n-gon. So, the first non-trivial case is n = 2k + 2. It is easy to
check that there are k + 1 k-triangulations of the (2k + 2)-gon, each of
them obtained from the complete graph K2k+2 by deleting one of the
diagonals [i, i + k] (see Fig. 1). See Lemma 8.8 for a discussion of the
next case, n = 2k + 3.

Figure 2 shows another example; a 2-triangulation of an octagon.

As far as we know, multi-triangulations first appear in the work of
Capoyleas and Pach [CP92], who prove that a k-triangulation of the n-
gon cannot have more than k(2n−2k−1) edges. Nakamigawa [Nak00],
and independently Dress, Koolen and Moulton [DKM02] then proved
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Figure 1. The three 2-triangulations of the hexagon.
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Figure 2. A 2-triangulation of the octagon.

that all k triangulations actually have that number of edges (for n ≥
2k + 1). Both proofs use the concept of flip between k-triangulations.
As the name suggests, a flip creates one k-triangulation from another
one, removing and inserting a single edge. In fact, Nakamigawa [Nak00]
shows that essentially every edge of a k-triangulation can be flipped
(our Corollary 5.4).

The following list summarizes these and other nice properties of k-
triangulations that have been proved in the literature:

Theorem 1.2 ([CP92, DKM02, Jon03, Nak00, DGJM08]).

(a) All k-triangulations of a convex n-gon have the same number of
edges, equal to k(2n − 2k − 1) [CP92, DKM02, Nak00].

(b) Any edge of length at least k + 1 can be flipped and the graph of
flips is regular and connected [DKM02, Nak00].

(c) The set of k-triangulations of the n-gon is enumerated by the same
Catalan determinant counting families of k mutually non-crossing
Dyck paths [Jon03, Jon05].

(d) Any k-triangulation has at least 2k edges of length k + 1 [Nak00]
(this is the analogue of “every triangulation has at least two ears”).
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(e) There exists a “deletion” operation that allows one to obtain k-
triangulations of an n-gon from those of an (n + 1)-gon, and vice-
versa [Jon03, Nak00].

(f) The simplicial complex whose facets are the k-triangulations of an
n-gon is a vertex-decomposable sphere of dimension k(n−2k−1)−
1 [Jon03, DGJM08].

In these statements the length of an edge [pi, pj] between n points
p1, . . . , pn in convex position and labelled cyclically is defined as min{|j−
i|, |i − j|} mod n. Only edges of length greater than k are relevant,
since the rest cannot be part of a (k + 1)-crossing (hence they show up
in all k-triangulations).

It is interesting that k-triangulations admit several different inter-
pretations: as particular cyclic split systems [DKKM02, DKM04]; as
line arrangements in the hyperbolic plane [DKM02]; and as certain
fillings of triangular polyominoes [Jon05] (see also [Kra06, Rub07]).
Another very close subject is the study of topological k-quasi-panar
graphs [AT07]. That is, graphs without k + 1 mutually intersecting
edges, but where the edges are not forced to be straight line segments.

In this paper we introduce a new way of looking at k-triangulations.
Namely, as complexes of star polygons of type

{
2k+1

k

}
. If p and q are

two coprime integers, a star polygon of type {p/q} is a polygon formed
by connecting a set V = {sj | j ∈ Zp} of p points of the unit circle
with the set E = {[sj, sj+q] | j ∈ Zp} of edges of length q (see [Cox69,
pp. 36-38], [Cox73, pp. 93-95] and Fig. 3). The natural generalization
of the triangle that is relevant for k-triangulations is:

Definition 1.3. A k-star is a star polygon of type
{

2k+1
k

}
.

s
0

s
4s

1

s
2

s
3

s
0

s
7

s
3

s
4

s
1

s
6

s
2

s
5

s
2

s
7

s
1

s
0

s
3

s
4 s

5

s
6

s
8

s
9

s
10

Figure 3. Star polygons of type {5/2}, {8/3} and {11/5}.
The first is a 2-star and the last is a 5-star.
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Our main new result is:

Theorem 1.4. Let T be a k-triangulation of the n-gon (with n ≥
2k + 1). Then

(1) T contains exactly n − 2k k-stars (Corollary 4.4);
(2) Each edge of T belongs to zero, one or two k-stars, depending

on whether its length is smaller, equal or greater than k (Corol-
lary 4.2);

(3) Any common edge f of two k-stars R and S of T can be “flipped”
to another edge e so that T△{e, f} is a k-triangulation. More-
over, the edges e and f depend only on R∪S, not the rest of T
(Lemma 5.1 and Corollary 5.4).

But k-stars in k-triangulations are not only interesting per se. Rather,
we think they are the right way of looking at k-triangulations, in much
the same way as triangles, instead of edges, are the right way of looking
at triangulations. As evidence for this, in this paper we give new proofs
of the basic properties of k-triangulations (parts (a), (b), (d) and (e) of
Theorem 1.2). Our proofs are direct and based on simple combinatorial
properties of the mutual disposition of k-stars in a (k +1)-crossing-free
graph (see Section 3). In contrast, the way these basic results are
proved in [DKM02, Jon03, Jon05, Nak00] is more indirect:

(1) First, a “deletion” operation that relates k-triangulations of
the n-gon and the (n+1)-gon is introduced. (We introduce this
operation in Section 7).

(2) Second, this operation is used to prove that k-triangulations
admit flips (either in full generality or only for particular cases,
as in [DKM02]).

(3) Finally, flips are used to show that every k-triangulation has
the same number of edges as certain special ones constructed
explicitly, namely k(2n − 2k − 1).

The structure of this paper is as follows: After introducing some
notation in Section 2 we discuss basic properties of k-stars in Section 3.
Section 4 proves parts (1) and (2) of Theorem 1.4, as well as part (a) of
Theorem 1.2. Section 5 finishes the study of fundamental properties of
k-triangulations, by introducing the graph of flips. We have to mention
that another advantage of k-stars is that they allow for a much more
explicit (and algorithmically better) way of understanding flips.

In Section 6 we look at a particularly nice and simple family of
k-triangulations. They are the analogue of “triangulations with only
two ears” and admit several different characterizations. To emphasize
that none of our proofs so far make use of the recursive operation
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relating k-stars of the n-gon and the (n+1)-gon we only introduce this
operation in Section 7. The operation is almost literally the same one
as in previous papers, but again it is more natural to look at it as the
“flattening” (and, conversely, “inflation”) of a single k-star.

Finally, we discuss in Section 8 further properties and questions
about k-triangulations that may hopefully be easier to analyze using
k-stars and which could be developed further in future papers. Among
them:

• Dyck multi-paths: as mentioned in Theorem 1.2, k-triangula-
tions of the n-gon are counted by the same determinant of Cata-
lan numbers that counts certain families of non-crossing Dyck
paths [Jon03, Jon05] (see also [Kra06, Rub07]). An explicit
bijection between these two combinatorial sets has only been
found for k = 2 [Eli06].

• multi-associahedron: we also said that the simplicial complex
∆n,k whose facets are k-triangulations of the n-gon is a combi-
natorial sphere [Jon03]. It is natural to think that this sphere
is polytopal, as happens for k = 1 where it is the polar of the
associahedron [Lee89].

• rigidity: the number of edges of a k-triangulation of the n-gon is
exactly that of a generically minimally rigid graph in dimension
2k. We conjecture that all k-triangulations are minimally rigid
in dimension 2k and prove it for k = 2.

• surfaces: regarding a k-triangulation T as a complex of star
polygons naturally defines a polygonal complex associated to
it. This complex is an orientable surface with boundary. It
seems interesting to study the action of flips on this surface. In
particular, we can think of the fundamental group of the graph
of flips as acting on the mapping class group of the surface.

• chirotope: there is also a natural chirotope of rank 3 defined
on the set of k-stars of a k-triangulation. This is the analogue
of the chirotopes (or pseudo-line arrangements) that Pocchi-
ola and Vegter introduce on pseudotriangulations ([PV94], see
also [PV96]).

2. Notation

Let k and n be two integers such that k ≥ 1 and n ≥ 2k + 1.
Let Vn be the set of vertices of a convex n-gon, i.e. any set of points

on the unit circle, labelled counterclockwise by the cyclic set Zn. All
throughout the paper, we will refer to the points in Vn by their labels to
simplify notation. For u, v, w ∈ Vn, we will write u ≺ v ≺ w meaning
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that u, v and w are in counterclockwise order on the circle. For any
u, v ∈ Vn, let Ju, vK denote the cyclic interval {w ∈ Vn | u 4 w 4 v}.
The intervals Ku, vJ, Ju, vJ and Ku, vK are defined similarly. Let |u−v| =
min(|Ju, vJ|, |Jv, uJ|) be the cyclic distance between u and v.

For u 6= v ∈ Vn, let [u, v] denote the straight edge connecting the
vertices u and v. We say that [u, v] is of length |u − v|. Let En =

(
Vn

2

)

be the set of edges of the complete graph on Vn. Two edges [u, v] and
[u′, v′] are said to cross when u and v lie one in each of the open cyclic
intervals Ku′, v′J and Kv′, u′J. Observe that this definition is symmetric
in the two edges involved and that it corresponds to an intersection of
the straight open segments (u, v) and (u′, v′).

For ℓ ∈ N, an ℓ-crossing is a set of ℓ mutually intersecting edges.

Definition 2.1. A k-triangulation of the n-gon is a maximal (k + 1)-
crossing-free subset of En.

Obviously, an edge [u, v] of En can appear in a (k + 1)-crossing only
if |u− v| > k. We say that such an edge is k-relevant. We say that an
edge [u, v] is a k-boundary if |u − v| = k and that it is k-irrelevant if
|u − v| < k. Every k-triangulation of the n-gon consists of all the kn
k-irrelevant plus k-boundary edges and some k-relevant edges.

An angle ∠(u, v, w) of a subset E of En is a pair {[u, v], [v, w]} of
edges of E such that u ≺ v ≺ w and for all t ∈Kw, uJ, the edge [v, t]
is not in E. We call v the vertex of the angle ∠(u, v, w). If t ∈Kw, uJ,
we say that t is contained in ∠(u, v, w), and that the edge [v, t] is a
bisector of ∠(u, v, w). An angle is said to be k-relevant if both its edges
are either k-relevant or k-boundary edges.

As said in the introduction, a k-star is a set of edges of the form
{[sj, sj+k] | j ∈ Z2k+1}, where s0 ≺ s1 ≺ . . . ≺ s2k ≺ s0 are cyclically
ordered. Observe that there are two natural cyclic orders on the vertices
of a k-star S: the circle order, defined as the cyclic order around the
circle, and the star order, defined as the cyclic order tracing the edges of
S. More precisely, if s0, . . . , s2k are the vertices of S cyclically ordered
around the circle, we rename the vertices ri = sik to obtain the star
order r0, . . . , r2k.

3. Mutual positions of k-stars

In this section, let R and S denote two k-stars of a (k + 1)-crossing-
free subset E of En. We study their mutual position.

Lemma 3.1. (1) Any angle of S (or R) is also an angle of E and
is k-relevant.
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(2) For any vertex t not in S, there is a unique angle ∠(u, v, w) in
S that is bisected by [v, t].

Proof. Let V = {sj | j ∈ Z2k+1} denote the vertices of S in star
order. Suppose that E contains an edge [sj, t] where j ∈ Z2k+1 and
t ∈Ksj+1, sj−1J. Then the set of edges

{[sj+1, sj+2], [sj+3, sj+4], . . . , [sj−2, sj−1], [sj, t]}

forms a (k + 1)-crossing. Thus ∠(sj−1, sj, sj+1) is an angle of E.
Since any edge of S separates the other vertices of S into two parts

of size k−1 and k, it is at least a k-boundary. Consequently, the angle
∠(sj−1, sj, sj+1) is k-relevant. This finishes the proof of part (1). Part
(2) is obvious from the definition of bisector. �

Corollary 3.2. R and S can not share any angle.

Proof. By the first point of the previous lemma, the knowledge of one
angle ∠(sj−1, sj, sj+1) of S permits the recovery of all the k-star S: the
vertex sj+2 is the unique vertex such that ∠(sj, sj+1, sj+2) is an angle
of E (i.e. the first neighbour of sj+1 after sj when moving clockwise),
and so on. �

Since the number of edges of a k-star is 2k +1, this corollary implies
that R and S can not share more than k edges. Note that, for example,
the two k-stars of any k-triangulation of a (2k + 2)-gon share exactly
k edges (see Figure 1).

Corollary 3.3. For any edge [u, v] of E, the number of vertices of S
between u and v and the number of vertices of S between v and u are
different.

Proof. Suppose that S has the same number of vertices on both sides
of an edge f = [u, v]. Since the number of vertices of S is 2k + 1, one
of the two vertices of f is a vertex of S, say u. Then v is contained in
the angle of S of vertex u, which implies that f is not in E. �

Let V be the set of vertices of the k-star S. If |Ju, vK∩V | < |Jv, uK∩
V |, then we say that S lies on the positive side of the oriented edge
from u to v (otherwise we say that S lies on the negative side of the
oriented edge from u to v). The k-star S is said to be contained in an
angle ∠(u, v, w) of E if it lies on the positive side of both the edges
[u, v] and [v, w] oriented from u to v and from v to w respectively.

Lemma 3.4. Let ∠(u, v, w) be an angle of E containing the k-star S.
Then

(i) either v is a vertex of S and ∠(u, v, w) is an angle of S;
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(ii) or v is not a vertex of S and ∠(u, v, w) has a common bisector
with an angle of S.

Proof. Suppose first that v is a vertex of S. Let ∠(x, v, y) denote the
angle of S at vertex v. Since ∠(u, v, w) contains S, we have w 4 y ≺
x 4 u. But since ∠(u, v, w) is an angle of E, we have x = u and y = w,
so that ∠(u, v, w) is an angle of S.

Suppose now that v is not a vertex of S. Then, by Lemma 3.1 (2)
there exists a unique angle ∠(x, y, z) of S containing v. If y ∈Ku, vJ,
then Ku, vJ contains all the k + 1 vertices of S between y and z, which
is not possible (because S lies on the positive side of the edge [u, v],
oriented from u to v). For the same reason, y 6∈Kv, wJ. If y = u or
y = w, then [u, v] or [v, w] is a bisector of ∠(x, y, z), which contradicts
Lemma 3.1. Consequently, ∠(u, v, w) contains y, so that [v, y] is a
common bisector of ∠(u, v, w) and ∠(x, y, z). �

In the following statement and the rest of the paper, a bisector of S
is a bisector of an angle of S.

Theorem 3.5. Every pair of k-stars whose union is (k + 1)-crossing-
free have a unique common bisector.

Proof. Let {rj | j ∈ Z2k+1} denote the vertices of R in star order. Note
that for any j ∈ Z2k+1, if S lies on the negative side of the edge [rj−1, rj]
oriented from rj−1 to rj, then it lies on the positive side of the edge
[rj, rj+1] oriented from rj to rj+1. Since 2k +1 is odd, this implies that
there exists j ∈ Z2k+1 such that S lies on the positive side of both the
edges [rj−1, rj ] and [rj, rj+1] oriented from rj−1 to rj and from rj to
rj+1, respectively. That is, in the angle ∠(rj−1, rj, rj+1). The previous
lemma thus ensures the existence of a common bisector.

Suppose now that we have two different common bisectors e and f
of R and S, and let {rj | j ∈ Z2k+1} and {sj | j ∈ Z2k+1} denote
the vertices of R and S in star order labelled so that e = [r0, s0]. Let
a, b ∈ Z2k+1 such that f = [ra, sb]. Note that certainly, a 6= 0, b 6= 0,
and a and b have the same parity. By symmetry, we can assume that
a = 2α, b = 2β with 1 ≤ β ≤ α ≤ k. But then the set

{[r2i, r2i+1] | 0 ≤ i ≤ α − 1} ∪ {[s2j , s2j+1] | β ≤ j ≤ k}

forms a (k+1+α−β)-crossing, and k+1+α−β ≥ k+1. This proves
uniqueness. �

In the following lemmas, {rj | j ∈ Z2k+1} and {sj | j ∈ Z2k+1} denote
the vertices of R and S, in star order, and with e = [r0, s0] being the
common bisector of R and S.
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Figure 4. The common bisector of two 2-stars (left) and
a 2-crossing that crosses it (right).

Lemma 3.6. For every 1 ≤ i ≤ k, r2i−1 ∈Kr0, s2iK and s2i−1 ∈Ks0, r2iK.
In particular, for every i ∈ Z2k+1 the edges [ri, ri+1] and [si, si+1] do
not cross.

Proof. Suppose that there exists 1 ≤ i ≤ k such that r2i−1 ∈Ks2i, s0J
or s2i−1 ∈Kr2i, r0J. Let γ be the highest such integer, and assume for
example that r2γ−1 ∈Ks2γ , s0J. Then the definition of γ ensures that
s0 ≺ s2γ+1 4 r2γ+2 ≺ r2γ−2 so that the set

{[r2i, r2i+1] | 0 ≤ i ≤ γ − 1} ∪ {[s2j , s2j+1] | γ ≤ j ≤ k}

forms a (k + 1)-crossing. �

The previous lemma can be read as saying that corresponding edges
of R and S are parallel. It is easy to see that k of these 2k + 1 pairs
of parallel edges, the ones of the form ([r2i−1, r2i], [s2i−1, s2i]), with 1 ≤
i ≤ k, separate R from S, meaning that R and S lie on opposite sides
of both. The next lemma says that any k-crossing that, in turn, crosses
the common bisector e = [r0, s0] has one edge parallel to and between
each such pair (see Fig. 4).

Lemma 3.7. Let F be a k-crossing of E such that all its edges cross
e = [r0, s0]. Let f1 = [x1, y1], . . . , fk = [xk, yk] denote the edges of F ,
with r0 ≺ x1 ≺ . . . ≺ xk ≺ s0 ≺ y1 ≺ . . . ≺ yk ≺ r0. Then for any 1 ≤
i ≤ k, we have xi ∈ Jr2k−2i+1, s2k−2i+2K and yi ∈ Js2k−2i+1, r2k−2i+2K.

Proof. Suppose that there exists 1 ≤ i ≤ k such that r0 ≺ xi ≺ r2k−2i+1

and let

ℓ = max{1 ≤ i ≤ k | r0 ≺ xi ≺ r2k−2i+1}.
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Figure 5. The flip of an edge.

If ℓ = k, then the set {e1, . . . , ek, [r0, r1]} is a (k+1)-crossing of E, thus
we assume that ℓ < k. In order for

{e1, . . . , eℓ} ∪ {[r0, r1], . . . , [r2k−2ℓ, r2k−2ℓ+1]}

not to be a (k + 1)-crossing, we have r2k−2ℓ 4 yℓ ≺ r0, so that r2k−2ℓ ≺
yℓ+1 ≺ r0. But the definition of ℓ implies that r2k−2ℓ+1 ≺ r2k−2ℓ−1 4

xℓ+1 ≺ s0, so that the set

{[r2k−2ℓ, r2k−2ℓ+1], . . . , [r2k−2, r2k−1], [r2k, r0]} ∪ {eℓ+1, . . . , ek}

is a (k + 1)-crossing of E.
By symmetry, the lemma is proved. �

The following lemma is at the heart of the concept of flips, that will
be studied further in Section 5. As usual, we use the symbol △ for the
symmetric difference.

Lemma 3.8. Let f be a common edge of R and S. Let {rj | j ∈ Z2k+1}
and {sj | j ∈ Z2k+1} be the vertices of R and S, in star order, and with
e = [r0, s0] being the common bisector of R and S. Then

(i) there exists 1 ≤ i ≤ k such that f = [r2i−1, r2i] = [s2i, s2i−1];
(ii) E△{e, f} is a (k + 1)-crossing-free subset of En;
(iii) the vertices

s0, . . . , s2i−2, s2i−1 = r2i, r2i+1, . . . , r2k, r0

(resp. r0, . . . , r2i−2, r2i−1 = s2i, s2i+1, . . . , s2k, s0) are the vertices
of a k-star X (resp. Y ) of E△{e, f}, in star order;

(iv) X and Y share the edge e and their common bisector is f .
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Proof. Let u and v denote the vertices of f . Lemma 3.6 ensures that
{r0, s0} ∩ {u, v} = ∅ so that we can assume r0 ≺ u ≺ s0 ≺ v ≺ r0.
Consequently, there exists 1 ≤ i, j ≤ k such that u = r2i−1 = s2j and
v = r2i = s2j−1. Suppose that i > j. Then according to Lemma 3.6,
we have r0 ≺ r2i−1 4 s2i ≺ s2j = r2i−1 which is impossible. We obtain
that i = j and f = [r2i−1, r2i] = [s2i, s2i−1].

Lemma 3.7 then proves that any k-crossing of T that prevent e being
in T contains f , so that T△{e, f} is (k + 1)-crossing-free.

Let L be the list of vertices (s0, . . . , s2i−2, r2i, . . . , r2k, r0). Between
two consecutive elements of L lie exactly k − 1 others points of L (for
the circle order). This implies that L is in star order. The point (iii)
thus follows from the fact that any edge connecting two consecutive
points of L is in E△{e, f}.

The edge e is clearly common to X and Y . The edge f is a bisector
of both angles ∠(r2i−2, r2i−1, s2i+1) and ∠(s2i−2, s2i−1, r2i+1), so that it
is the common bisector of X and Y . �

4. k-triangulations as complexes of k-stars

In this section, T is a k-triangulation of the n-gon, i.e. a maximal
(k + 1)-crossing-free subset of En.

Theorem 4.1. Any k-relevant angle of T belongs to a unique k-star
contained in T .

Proof. In this proof, we need the following definition (see Fig. 6): let
∠(u, v, w) be a k-relevant angle of T and let e and f be two edges of
T that intersect ∠(u, v, w) (i.e. that intersect both [u, v] and [v, w]).
If a, b, c and d denote their vertices such that u ≺ a ≺ v ≺ b ≺ w
and u ≺ c ≺ v ≺ d ≺ w, then we say that e = [a, b] is v-farther than
f = [c, d] if u ≺ a 4 c ≺ v ≺ d 4 b ≺ w. Let E and F be two
(k − 1)-crossings that intersect ∠(u, v, w). Let their edges be labelled
e1 = [a1, b1], e2 = [a2, b2], . . . , ek−1 = [ak−1, bk−1] and f1 = [c1, d1], f2 =
[c2, d2], . . . , fk−1 = [ck−1, dk−1] such that u ≺ a1 ≺ a2 ≺ . . . ≺ ak−1 ≺
v ≺ b1 ≺ b2 ≺ . . . ≺ bk−1 ≺ w and u ≺ c1 ≺ c2 ≺ . . . ≺ ck−1 ≺ v ≺
d1 ≺ d2 ≺ . . . ≺ dk−1 ≺ w. Then we say that E is v-farther than F
if ei is v-farther than fi for every 1 ≤ i ≤ k − 1. We say that E is v-
maximal if it does not exist any (k−1)-crossing intersecting ∠(u, v, w)
and v-farther than E.

Let ∠(u, v, w) be a k-relevant angle of T . If the edge [u, v + 1] is
in T , then the angle ∠(v + 1, u, v) is a k-relevant angle of T and, if
it is contained in a k-star S of T , then so is ∠(u, v, w). Moreover, if
n > 2k+1 (n = 2k+1 is a trivial case), T can not contain all the edges
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Figure 6. [a, b] is v-farther than [c, d] (left) and {[ai, bi]}
is v-farther than {[ci, di]} (right).

{[u + i, v + i] | i = 0 . . . n − 1} and {[u + i, v + i + 1] | i = 0 . . . n − 1}.
Consequently, we can assume that [u, v + 1] is not in T .

Thus we have a k-crossing E of the form e1 = [a1, b1], . . . , ek = [ak, bk]
with u ≺ a1 ≺ . . . ≺ ak ≺ v + 1 and v + 1 ≺ b1 ≺ . . . ≺ bk ≺ u. Since
[u, v] ∈ T , ak = v and since ∠(u, v, w) is an angle, v + 1 ≺ bk 4

w. Consequently, {e1, . . . , ek−1} forms a (k − 1)-crossing intersecting
∠(u, v, w) and we can assume that it is v-maximal (see Fig. 7 (a)). We
will prove that the edges [u, b1], [a1, b2], . . . , [ak−2, bk−1], [ak−1, w] are in
T such that the points u, a1, . . . , ak−1, v, b1, . . . , bk−1, w are the vertices
of a k-star of T containing the angle ∠(u, v, w). To get this result, we
use two steps: first we prove that ∠(a1, b1, u) is an angle of T , and
then we prove that the edges e2, . . . , ek−1, [v, w] form a (k− 1)-crossing
intersecting ∠(a1, b1, u) and b1-maximal (so that we can reiterate the
argument).

First step. (see Fig. 7 (b))
Suppose that [u, b1] is not in T . Thus we have a k-crossing F that

prevents the edge [u, b1]. Let f1 = [c1, d1], . . . , fk = [ck, dk] denote its
edges with u ≺ c1 ≺ . . . ≺ ck ≺ b1 and b1 ≺ d1 ≺ . . . ≺ dk ≺ u.

Note first that v ≺ dk 4 w. Indeed, if it is not the case, then
dk ∈Kw, uJ and ck 6= v, because ∠(u, v, w) is an angle. Thus either
ck ∈Ku, vJ and then F ∪ {[u, v]} forms a (k + 1)-crossing, or ck ∈Kv, b1J
and then E∪{[ck, dk]} forms a (k+1)-crossing. Consequently, we have
b1 ≺ d1 ≺ . . . ≺ dk−1 ≺ w.

Let ℓ = max{1 ≤ j ≤ k − 1 | bi ≺ di ≺ w for any i with 1 ≤ i ≤ j}.
Then for any 1 ≤ i ≤ ℓ, since {e1, . . . , ei} ∪ {fi, . . . , fk} does not form
a (k + 1)-crossing, we have u ≺ ci 4 ai. Thus for any 1 ≤ i ≤ ℓ,
u ≺ ci 4 ai ≺ v ≺ bi ≺ di ≺ w, so that fi is v-farther than ei.
Furthermore, we have u ≺ c1 ≺ . . . ≺ cℓ ≺ aℓ+1 ≺ . . . ≺ ak−1 ≺
v ≺ d1 ≺ . . . ≺ dℓ ≺ bℓ+1 ≺ . . . ≺ bk−1 ≺ w. Consequently, we get
a (k − 1)-crossing {f1, . . . , fℓ, eℓ+1, . . . , ek−1} which is v-farther than
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Figure 7. (a) the k-crossing E; (b) First step: [u, b1] ∈ T ;
(c) Second step: {e2, . . . , ek−1, [v,w]} is b1-maximal.

{e1, . . . , ek−1}; this contradicts the definition of {e1, . . . , ek−1}. Thus
we obtain [u, b1] ∈ T .

Suppose now that ∠(a1, b1, u) is not an angle of T . Then there
exists a0 ∈Ku, a1J such that [b1, a0] ∈ T . But then the (k − 1)-crossing
{[a0, b1], e2, . . . , ek−1} is v-farther than {e1, . . . , ek−1}. This implies that
∠(a1, b1, u) is an angle of T .

Second step. (see Fig. 7 (c))
Let F be a (k − 1)-crossing intersecting ∠(a1, b1, u) and b1-farther

than the (k−1)-crossing {e2, . . . , ek−1, [v, w]}. Let f2 = [c2, d2], . . . , fk =
[ck, dk] denote its edges, with a1 ≺ c2 ≺ . . . ≺ ck ≺ b1 ≺ d2 ≺ . . . ≺
dk ≺ u.

Note first that bk 4 dk 4 w. Indeed, if it is not the case, then
dk ∈Kw, uJ and ck 6= v, because ∠(u, v, w) is an angle. Thus either ck ∈
Ka1, vJ and then F ∪ {[u, v], e1} forms a (k + 1)-crossing, or ck ∈Kv, b1J
and then E∪{[ck, dk]} forms a (k+1)-crossing. Consequently, we have
b1 ≺ d2 ≺ . . . ≺ dk−1 ≺ w.

Furthermore, for any 2 ≤ i ≤ k − 1, fi is ∠(a1, b1, u)-farther than ei,
so that a1 ≺ ci 4 ai ≺ b1 ≺ bi 4 di ≺ u. In particular, a1 ≺ ck−1 4

ak−1 ≺ v and we get u ≺ a1 ≺ c2 ≺ . . . ≺ ck−1 ≺ v ≺ b1 ≺ d2 ≺
. . . ≺ dk−1 ≺ w. Consequently, the (k− 1)-crossing {e1, f2, . . . , fk−1} is
v-farther than {e1, . . . , ek−1}, which is a contradiction. �

The following easy consequence of Theorem 4.1 justifies the title of
this paper.

Corollary 4.2. Let e be an edge of T .

(i) If e is a k-relevant edge, then it belongs to exactly two k-stars of
T (one on each side);
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(ii) If e is a k-boundary edge, then it belongs to exactly one k-star of
T (on its “inner” side);

(iii) If e is a k-irrelevant edge, then it does not belong to any k-star of
T .

Corollary 4.3. (1) For any k-star S in T and for any vertex r not
in S there is a unique k-star R in T such that r is a vertex of
the common bisector of R and S.

(2) Any k-relevant edge which is not in T is the common bisector
of a unique pair of k-stars of T .

Proof. Let ∠(u, s, v) be the unique angle of S which contains r. Let
∠(x, r, y) be the unique angle of T of vertex r which contains s. Ac-
cording to Theorem 4.1, the angle ∠(x, r, y) belongs to a unique k-star
R. The common bisector of R and S is [r, s] and R is the only such
k-star of T .

Let e = [r, s] be a k-relevant edge, not in T . Let ∠(x, r, y) (resp.
∠(u, s, v)) denote the unique angle of T of vertex r (resp. s) which
contains s (resp. r). According to Theorem 4.1, the angle ∠(x, r, y)
(resp. ∠(u, s, v)) belongs to a unique k-star R (resp. S). The common
bisector of R and S is [r, s] and (R, S) is the only such couple of k-stars
of T . �

Observe that parts (1) and (2) of this lemma give bijections between

(1) “vertices not used in the k-star S of T” and “k-stars of T dif-
ferent from S”;

(2) “k-relevant edges not used in T” and “pairs of k-stars of T”.

From any of these two bijections, and using Corollary 4.2 for double
counting, it is easy to derive the number of k-stars and of k-relevant
edges in T :

Corollary 4.4. (1) Any k-triangulation of the n-gon contains ex-
actly n− 2k k-stars, k(n− 2k− 1) k-relevant edges and k(2n−
2k − 1) edges.

(2) The k-triangulations are exactly the (k+1)-crossing-free subsets
of En of cardinality k(2n − 2k − 1).

Similarly, we prove the following result:

Corollary 4.5. Let [u, v] be a k-relevant or k-boundary edge of T .
Then the number of k-stars of T on the positive side of the oriented
edge from u to v equals |Jv, uJ| − k.

Proof. If |Jv, uJ| = k, then any k-star of T has certainly more vertices
in Ju, vK than in Jv, uK, so that any k-star of T lies on the negative side
of [u, v].
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Figure 8. The four 2-stars in the 2-triangulation of the
octagon of Figure 2.

Suppose now that |Jv, uJ| > k. Let R be the k-star of T containing
[u, v] and lying on the positive side of it. According to the bijection (1)
given by Corollary 4.3, we only have to prove that any k-star S of T
(distinct from R) lies on the positive side of [u, v] if and only if the
vertex of S of the common bisector of R and S lies in Kv, uJ. But this
is an easy consequence of Lemma 3.6. �

Example 4.6. To illustrate the results of this section, Figure 8 shows
the 2-stars contained in the 2-triangulation T of the octagon of Figure 2.
There are four 2-stars and six 2-relevant edges (Corollary 4.4). Every
2-relevant edge is contained in two 2-stars of T (Corollary 4.2) and each
of the twenty 2-relevant angles of T is contained in exactly one 2-star
of T (Theorem 4.1).

5. The graph of flips

Let T be a k-triangulation of the n-gon, let f be a k-relevant edge
of T , let R and S be the two k-stars of T containing f (Corollary 4.2),
and let e be the common bisector of R and S. Remember that we
proved (Lemma 3.8) that T△{e, f} is a (k + 1)-crossing-free subset of
En. Observe moreover that T△{e, f} is maximal: this follows from
Corollary 4.4, but also from the fact that if T△{e, f} is properly con-

tained in a k-triangulation T̃ , then T̃△{e, f} is (k + 1)-crossing-free
and properly contains T .

Thus, T△{e, f} is a k-triangulation of the n-gon.

Lemma 5.1. T and T△{e, f} are the only two k-triangulations of the
n-gon containing T \ {f}.

Proof. Let e′ be any edge of En \ T distinct from e. Let R′ and S ′

be the two k-stars with common bisector e′ (Lemma 4.3 (2)). We can
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assume that R′ does not contain f and then R′ ∪ {e′} is contained in
T△{e′, f} and forms a (k + 1)-crossing. �

We say that we obtain the k-triangulation T△{e, f} from the k-
triangulation T by flipping the edge f .

Let Gn,k be the graph of flips on the set of k-triangulations of the
n-gon, i.e. the graph whose vertices are the k-triangulations of the n-
gon and whose edges are the pairs of k-triangulations related by a flip.
It follows from Corollary 4.4 and Lemma 5.1 that Gn,k is regular of
degree k(n − 2k − 1): every k-relevant edge of T can be flipped, in a
unique way. In this section, we prove the connectivity of this graph
and bound its diameter.

Note that e and f necessarily cross. In particular, if e = [α, β] and
f = [γ, δ], with 0 4 α ≺ β 4 n − 1 and 0 4 γ ≺ δ 4 n − 1, then

• either 0 4 α ≺ γ ≺ β ≺ δ 4 n − 1 and the flip is said to be
slope-decreasing,

• or 0 4 γ ≺ α ≺ δ ≺ β 4 n − 1 and the flip is said to be
slope-increasing.

We define a partial order on the set of k-triangulations of the n-gon
as follows: for two k-triangulations T and T ′, we say T < T ′ if and
only if there exists a sequence of slope-increasing flips from T to T ′.
That this is indeed a partial order follows from the fact that each slope
increasing flip increases the total slope of a k-triangulation, where the
slope of an edge [u, v] is defined as u+ v (with the sum taken in N, not
in Zn) and the total slope of a k-triangulation is the sum of slopes of
its edges.

Let Tmin
n,k be the k-triangulation of the n-gon whose set of k-relevant

edges is {[i, j] | i ∈ J0, k−1K and j ∈ Ji+k +1, i−k−1K} (see Fig. 9).

Lemma 5.2. For any k-triangulation of the n-gon T 6= Tmin
n,k , there

exists a k-relevant edge f ∈ T \ Tmin
n,k such that the edge added by the

flip of f is in Tmin
n,k .

In particular, the k-triangulation Tmin
n,k is the unique least element of

the set of k-triangulations of the n-gon, partially ordered by <.

Proof. Since the second point is an immediate corollary of the first one,
we only have to prove the first point.

Let T be a k-triangulation of the n-gon distinct from Tmin
n,k . Let

ℓ = max{k+1 ≤ i ≤ n−k−1 | {[0, i], [1, i+1], . . . , [k−1, i+k−1]} * T},

which exists because T 6= Tmin
n,k .
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Let 0 ≤ j ≤ k − 1 such that the edge [j, ℓ + j] is not in T . Let
{[x1, y1], . . . , [xk, yk]} denote a k-crossing that prevent [j, ℓ+ j] to be in
T , with the convention that

(i) x1 ≺ . . . ≺ xk ≺ y1 ≺ . . . ≺ yk,
(ii) if j > 0, then j ∈Kxj , xj+1J and ℓ + j ∈Kyj, yj+1J,
(iii) if j = 0, then 0 ∈Kyk, x1J and ℓ ∈Kxk, y1J.

With this convention, we are sure that xk ∈ Jk, ℓ − 1K and yk ∈ Jℓ +
k, n − 1K. If yk ∈Kℓ + k, n − 1K, then the set

{[0, ℓ + 1], . . . , [k − 1, ℓ + k], [xk, yk]}

is a (k + 1)-crossing of T . Thus yk = ℓ + k, and there exists an edge
[xk, ℓ + k] with xk ∈ Jk, ℓ − 1K.

Now let m = min{k ≤ i ≤ ℓ − 1 | [i, ℓ + k] ∈ T}. Let f be the edge
[m, ℓ + k], let S be the k-star containing the angle ∠(m, ℓ + k, k − 1)
and let R be the other k-star containing f . Let s0, . . . , sk−2, sk−1 =
k − 1, sk = m, sk+1, . . . , s2k−1, s2k = ℓ + k denote the vertices of the
k-star S in circle order. Then s0 ∈ Jℓ + k + 1, 0K, and the only way not
to get a (k + 1)-crossing is to have s0 = 0. This implies that sj = j for
all 0 ≤ j ≤ k − 1.

Let e be the common bisector of R and S and s denote its vertex in
S. Since f = [m, ℓ + k] = [sk, s2k] is a common edge of R and S, it is
obvious that s /∈ {sk, s2k}. Moreover, since for any 0 ≤ j ≤ k − 2 the
interval Ksj , sj+1J is empty, s /∈ {sk+1, sk+2, . . . , s2k−1}. Consequently,
s ∈ {s0, . . . , sk−1} = J0, k − 1K and e ∈ Tmin

n,k \ T . �



18 VINCENT PILAUD AND FRANCISCO SANTOS

0

3

7

4

61

52

0

3

7

4

61

52

0

3

7

4

61

52

0

3

7

4

61

52

Figure 10. A path of slope-decreasing flips from the 2-
triangulation of Figure 2 to Tmin

8,2 . In each image, the new
edge is in bold and the dashed edge will be flipped.

Obviously, we get symmetric results with the k-triangulation Tmax
n,k

whose set of k-relevant edges is {[i, j] | i ∈ Jn − k, n − 1K and j ∈
Ji + k + 1, i − k − 1K}.

Example 5.3. Figure 10 shows a path of slope-decreasing flips from
the 2-triangulation of Figure 2 to Tmin

8,2 .

Corollary 5.4. The graph Gn,k is connected, regular of degree k(n −
2k − 1), and its diameter is at most 2k(n − 2k − 1).

Proof. Let T be a k-triangulation of the n-gon. The regularity follows
from the fact that any of the k(n − 2k − 1) k-relevant edges of T can
be flipped. Moreover, the previous lemma ensures that there exists a
sequence of at most k(n−2k−1) slope-decreasing flips from T to Tmin

n,k .
Thus any pair of k-triangulations is linked by a path of length at most
2k(n − 2k − 1) passing through Tmin

n,k . �

Obviously we would obtain the same result with any rotation of the
labelling of Vn. In particular, for any pair {T, T ′} of k-triangulations,
we can choose the intermediate k-triangulation T ′′ for our path among
any rotation of Tmin

n,k . Consequently, there exists a path linking T and
T ′ of length smaller than the average of |T△T ′′| + |T ′′△T ′| (for T ′′

among the rotations of Tmin
n,k ). As proved in [Nak00], this argument

improves the upper bound for the diameter to be 2k(n− 4k − 1) when
n > 8k3 + 4k2.

Note that even if the improvement is asymptotically not relevant,
for the case k = 1, the improved bound of 2n−10 is actually the exact
diameter of the associahedron for large values of n [STT88]. For k > 1,
we only have the following lower bound:

Lemma 5.5. If n ≥ 4k, then the diameter of Gn,k is at least k(n −
2k − 1).
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Figure 11. Examples of k-zigzags of En for (n, k) = (10, 2)
and (21, 3).

Proof. We only have to find two k-triangulations of the n-gon with no
k-relevant edges in common. Let Z be the following subset of k-relevant
edges of En:

Z = {[q − 1,−q − k] | 1 ≤ q ≤ ⌊n/2 − k⌋}

∪ {[q,−q − k] | 1 ≤ q ≤ ⌊(n − 1)/2 − k⌋} .

We say that Z is a k-zigzag of En (see Fig. 11). Let ρ be the ro-
tation t 7→ t + 1. Observe that since n ≥ 4k, the 2k k-zigzags
Z, ρ(Z), . . . , ρ2k−1(Z) are disjoint. Moreover,

(i) there is no 2-crossing in a k-zigzag, so that there is no (k + 1)-
crossing in the union of k of them;

(ii) a k-zigzag contains n− 2k− 1 k-relevant edges, so that the union
of k disjoint k-zigzags contains k(n − 2k − 1) k-relevant edges.

According to Corollary 4.4, this proves that the union of k disjoint
k-zigzags is the set of k-relevant edges of a k-triangulation. Thus, we
obtain the two k-triangulations we were looking for with the sets of
k-relevant edges

⋃k−1
i=0 ρi(Z) and

⋃2k−1
i=k ρi(Z). �

We want to observe that Lemma 5.2 is the way how [Nak00] and
[DKM02] prove that the number of edges in all k-triangulations of the
n-gon is the same. Compare it to our direct proof in Corollary 4.4.

6. k-ears and k-colorable k-triangulations

Let us assume that n ≥ 2k + 3. We call a k-ear any edge of length
k+1 in a k-triangulation. We say that a k-star is external if it contains
at least one k-boundary edge (and internal otherwise). It is well known
and easy to prove that the number of ears in any triangulation equals
its number of internal triangles plus 2. In this section, we prove that the
number of k-ears in any k-triangulation equals its number of internal
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k-stars plus 2k. Then we characterize the triangulations that have no
internal k-star in terms of colorability of their intersection complex.

Let S be a k-star and [u, v] be an edge of S such that S lies on the
positive side of the oriented edge from u to v. We say that [u, v] is a
positive ear of S if |Jv, uJ| = k +1. Said differently, [u, v] is an ear, and
S is the unique (by Corollary 4.5) k-star on the “outer” side of it.

Lemma 6.1. Let b ≥ 1 be the number of k-boundary edges of an ex-
ternal k-star S. Then, S has exactly b − 1 positive ears. Moreover,
k-boundary edges and positive ears of S form an alternating path in
the k-star.

Proof. Observe first that if [x, x + k] is a k-boundary edge of S, then
all k + 1 vertices of Jx, x + kK are vertices of S. Since S has 2k + 1
vertices, this implies that if [x, x+k] and [y, y +k] are two k-boundary
edges of S, then Jx, x + kK and Jy, y + kK intersect, that is for example
y ∈ Jx, x+ kK. But then, all edges [i, i+ k] (x 4 i 4 y) are k-boundary
edges of S, and all edges [i, i + k + 1] (x 4 i ≺ y) are positive ears of
S. Thus, k-boundary edges and positive ears of S form an alternating
path in the k-star, beginning and ending by a k-boundary edge. In
particular, S has exactly b − 1 positive ears. �

Corollary 6.2. The number of k-ears in a k-triangulation T equals
the number of internal k-stars plus 2k. In particular, T contains at
least 2k k-ears.

Proof. For any 0 ≤ i ≤ 2k + 1, let µi denote the number of k-stars of
T with exactly i k-boundary edges. Let ν denote the number of k-ears
of T . Then

2k+1∑

i=0

µi = n − 2k and
2k+1∑

i=1

iµi = n.

Since any k-ear is a positive ear of exactly one k-star, the previous
lemma ensures moreover that

2k+1∑

i=1

(i − 1)µi = ν.

Thus, we obtain ν = n − (n − 2k) + µ0 = 2k + µ0. �

Example 6.3. The 2-triangulation in Figure 2 has five 2-ears and one
internal 2-star (the 2-star (a) in Figure 8).

We are now interested in a characterization of the k-triangulations
that have exactly 2k k-ears, or equivalently that have no internal k-star.
We need the following definitions.
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Figure 12. Examples of k-accordions of En for (n, k) =
(10, 2) and (21, 3).

We say that a k-triangulation is k-colorable if it is possible to color
its k-relevant edges with k colors such that there is no monochromatic
2-crossing. Observe that, if this happens, then every k-crossing uses
an edge of each color.

Definition 6.4. A k-accordion of En is a set Z = {[ai, bi] | 1 ≤ i ≤
n − 2k − 1} of n − 2k − 1 edges such that b1 = a1 + k + 1 and for
any 2 ≤ i ≤ n − 2k − 1, the edge [ai, bi] is either [ai−1, bi−1 + 1] or
[ai−1 − 1, bi−1] (see Fig. 12).

Observe that, in this definition, bi = ai + k + i for any 1 ≤ i ≤
n−2k−1. Moreover, it is easy to check that the definition is equivalent
to being a set of n − 2k − 1 k-relevant edges of En without 2-crossing.

Lemma 6.5. The union of k disjoint k-accordions of En is the set of
k-relevant edges of a k-triangulation of the n-gon.

Proof. Observe that

(i) there is no 2-crossing in a k-accordion, so that there is no (k +1)-
crossing in the union of k of them;

(ii) a k-accordion contains n − 2k − 1 k-relevant edges, so that the
union of k disjoint k-accordions contains k(n− 2k− 1) k-relevant
edges.

This lemma thus follows from Corollary 4.4. �

We have already met some particular k-accordions both when we
constructed the triangulation Tmin

n,k and in the proof of Lemma 5.5.
The two types of k-accordions in these examples (“fan” and “zigzag”)
are somehow the two extremal examples of them.

Theorem 6.6. Let T be a k-triangulation, with k > 1. The following
properties are equivalent for T :
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(i) T is k-colorable;
(ii) there exists a k-coloring of the k-relevant edges of T such that no

k-star of T contains three edges of the same color.
(iii) T has no internal k-star;
(iv) T contains exactly 2k k-ears;
(v) T contains exactly 2k edges of each length k + 1, . . . , ⌊(n − 1)/2⌋

(and k of length n/2 if n is even);
(vi) the set of k-relevant edges of T is the union of k disjoint k-

accordions.

Observe that for k = 1, only (ii), (iii), (iv), (v) and (vi) are equiva-
lent, while (i) holds for every triangulation.

Proof of Theorem 6.6. When k > 1, any three edges of a k-star form at
least one 2-crossing. Thus, any k-coloring of T without monochromatic
2-crossing is such that no k-star of T contains three edges of the same
color, and (i) implies (ii).

Let S be a k-star of a k-triangulation whose k-relevant edges are
colored with k colors. If all edges of S are k-relevant, then, by the
pigeon-hole principle, there is a color that colors three edges of S. Thus
(ii) implies (iii). Corollary 6.2 ensures that (iii) and (iv) are equivalent.

Since (vi)⇒(v)⇒(iv) and (vi)⇒(i) are trivial, it only remains to
prove that (iv) implies (vi).

For this, we give an algorithm that finds the k disjoint k-accordions
in a k-triangulation T with 2k k-ears. Recall that if S is an external
k-star with b k-boundary edges, then S has b − 1 positive ears, and
that k-boundary edges and positive ears of S form an alternating path
in the k-star. Thus, the edges of S which are neither k-boundary nor
positive ears of S form a path of even length. This defines naturally
a “pairing” of them: we say that the first and the second (resp. the
third and the fourth, etc.) edges of this path form a pair of edges in S.
Observe that such a pair of edges forms an angle containing no vertex.

Consider now a k-ear e1 of T . Let S0 be the k-star of T for which e1

is a positive ear. Let S1 be the other k-star of T containing e1. Let e2

be the pair of e1 in S1. Let S2 be the other k-star of T containing e2 and
let e3 be the pair of e2 in S2. Let continue so until we reach a k-ear. It
is obvious that we get a k-accordion of En. To get another k-accordion,
we do the same with a k-ear which is neither e1 nor en−2k−1.

To prove the correctness of this algorithm, we only have to prove
that the k-accordions we construct are disjoint. Suppose for example
that two of them {e1, . . . , en−2k−1} and {f1, . . . , fn−2k−1} intersect. Let
i, j be such that ei = fj . Let S be a k-star containing ei. Then by
construction, either ei+1 or ei−1 (resp. either fj+1 or fj−1) is the pair
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of ei in S. Thus, either ei+1 = fj+1, or ei+1 = fj−1. By propagation,
we get that {e1, . . . , en−2k−1} = {f1, . . . , fn−2k−1} �

Observe that the above proof of (iv)⇒(vi) also gives uniqueness (up
to permutation of colors) of the k-coloring (decomposition into accor-
dions) of a k-colorable k-triangulation T . Indeed, any k-coloring has
to respect the pairing of edges in all k-stars of T .

Let us also make the remark that part (v) implies that every k-
colorable k-triangulation contains exactly k(n−2p−1) p-relevant edges,
for any k ≤ p ≤ ⌊n−1

2
⌋. It is proved by a flip method in [Nak00] that

any k-triangulation of the n-gon contains at most this same number of
p-relevant edges. We will prove this result in the next section, as an
application of the flattenings of k-stars in k-triangulations.

Let us conclude this section with the following remark. An easy
“intuitive model” for what a k-triangulation is is just a superposition
of k triangulations. Even if this model is sometimes useful, the results
in this section say that it is also misleading:

• Theorem 6.6 says that the structure of k-triangulations ob-
tained in this way is really particular: the number of edges
of each length is 2k, all k-stars are external, etc.

• The number of k-accordions of En containing a given k-ear
of En is 2n−2k−2. In particular, the number of k-colorable k-
triangulations of En is at most

(
n
k

)
2k(n−2k−2) ≤ 2(k+1)n. This is

much smaller than the total number of k-triangulations, which
for constant k equals 4nk modulo a polynomial factor in n (see
Remark 8.2).

• Let T be any triangulation with only two ears, and let Z denote
the set of its 2-relevant edges. Clearly, Z is a 2-accordion, and
it is easy to see that there exists a 2-accordion Z ′ disjoint from
it, so that Z ′ complete Z to give the set of 2-relevant edges of a
2-colorable 2-triangulation. Surprisingly, this simple property
fails when k ≥ 3: even if a k-triangulation T is k-colorable, it
is not always possible to find a (k + 1)-accordion disjoint from
T (see Fig. 13).

7. Flattening a k-star, inflating a k-crossing

The goal of this section is to describe in terms of k-stars an operation
that connects k-triangulations of n and of n+1 vertices. This operation,
already present in [Jon03], in [Nak00], and when k = 2 in [Eli06], is
useful for recursive arguments and it was a step in all previous proofs
of the flipability of k-relevant edges (Corollary 5.4).
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Figure 13. A 3-colorable 3-triangulation of the 12-gon
such that there is no 4-accordion disjoint from it.
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Figure 14. Flattening a 3-boundary edge - inflating a 3-crossing.

Definition 7.1. Let T be a k-triangulation of the (n + 1)-gon, and
e = [s0, s0 + k] be a k-boundary edge of T . Let s0, s1 = s0 + 1, . . . , sk =
s0+k, sk+1, . . . , s2k be the vertices of the unique k-star S of T containing
e, in their circle order.

We call flattening of e in T the set of edges T e whose underlying
set of points is the set Vn+1 r {s0} and which is constructed from T as
follows (see Fig. 14):

(i) for any edge of T whose vertices are not in {s0, . . . , sk} just copy
the edge;

(ii) forget all the edges [s0, si], for 1 ≤ i ≤ k;
(iii) replace any edge of the form [si, t] with 0 ≤ i ≤ k, and sk ≺ t 4

sk+i (resp. sk+i+1 4 t ≺ s0) by the edge [si, t] (resp. [si+1, t]).
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Remark 7.2. We sometimes call this operation “flattening of the k-
star S”. This is a somehow more graphical description of the operation,
but it is also a slight abuse of language. Indeed, if S has more than one
k-boundary edge, the result of the flattening of S depends on which
k-boundary edge we flatten.

We want to prove that T e is a k-triangulation of the n-gon. Observe
first that

(1) If f is a k-relevant edge of T e, then
(i) either f is of the form [si, sk+i], for some 1 ≤ i ≤ k, and

then it arises as the gluing of two edges f ′ = [si−1, sk+i]
and f ′′ = [si, sk+i] of the initial triangulation T ;

(ii) or f is not of the previous form, and then it arises from a
unique k-relevant edge f ′ of T .

(2) If f and g are two k-relevant edges of T e arising from f ′ and g′

respectively, then
(i) either f and g do not cross, and then f ′ and g′ do not

cross;
(ii) or f and g do cross, and then f ′ and g′ do cross, unless

the following happens: there exists i in {1, . . . , k}, and u, v
two vertices such that sk ≺ u 4 si+k ≺ si+k+1 4 v ≺ s0

and f = [si, u], g = [si+1, v], f ′ = [si, u] and g′ = [si, v].
Such a configuration is said to be a hidden configuration
(see Fig. 14).

It is easy to derive from this that |T e| = |T | − 2k = k(2n − 2k − 1)
and that any subset of En that properly contains T e contains a (k+1)-
crossing. However, this is not sufficient to conclude that T e is a k-
triangulation (see Fig. 15 for a counter-example). Thus we have to
prove that T e is (k + 1)-crossing-free. Note that this provides a third
proof (which this time is recursive on n) of the number of edges of a
k-triangulation of the n-gon.

Lemma 7.3. The set T e is (k + 1)-crossing-free. Hence, it is a k-
triangulation of the n-gon.

Proof. Suppose that T e contains a (k +1)-crossing F . Let denote f0 =
[x0, y0], . . . , fk = [xk, yk] the edges of F ordered such that x0 ≺ x1 ≺
. . . ≺ xk ≺ y0 ≺ y1 ≺ . . . ≺ yk. Let f ′

0 = [x′
0, y

′
0], . . . , f

′
k = [x′

k, y
′
k]

be k + 1 edges of T that give (when we flatten e) the edges f0, . . . , fk

respectively.
It is clear that if there exists no 0 ≤ i ≤ k such that the four

edges (fi, fi+1, f
′
i , f

′
i+1) form a hidden configuration, then the edges

f ′
0, . . . , f

′
k form a (k + 1)-crossing of T , which is impossible. Thus
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Figure 15. A subset of 9 edges of E6 such that any proper
superset contains a 2-crossing but which is not a triangula-

tion.

we can suppose that the number of hidden configurations in the set
{(fi, fi+1, f

′
i , f

′
i+1) | 0 ≤ i ≤ k} is at least 1. We can also assume that

this number is minimal, that is that we can not find a (k+1)-crossing G
of T e arising from a set G′ of edges of T such that the number of hidden
configurations in the set {(gi, gi+1, g

′
i, g

′
i+1) | 0 ≤ i ≤ k} is strictly less

than in {(fi, fi+1, f
′
i , f

′
i+1) | 0 ≤ i ≤ k}. Here, we raise an absurdity by

finding such sets G and G′.
Let i in {0, . . . , k} be such that (fi, fi+1, f

′
i , f

′
i+1) is a hidden config-

uration. We can suppose that xi = si and xi+1 = si+1 (if this is not
the case, we renumber the edges of F such that this be true). Thus we
know that yi 4 si+k ≺ si+k+1 4 yi+1. Let

p = min{0 ≤ j < i | for any j < ℓ ≤ i, xℓ = sℓ and yℓ 4 sℓ+k}, and

q = max{i+1 < j ≤ k+1 | for any i+1 ≤ ℓ < j, xℓ = sℓ and sℓ+k 4 yℓ}.

Let G be the set of k + 1 edges of T e deduced from F as follows:

• for all i with p < i < q, let gi be [si, si+k],
• for all i with 0 ≤ i ≤ p and q ≤ i ≤ k, let gi be fi.

Let G′ be the set of k + 1 edges of T constructed as follows:

• for all i with p < i < q, let g′
i be [si, si+k],

• for all i with 0 ≤ i ≤ p or q ≤ i ≤ k, let g′
i be f ′

i .

It is quite clear that G is a (k+1)-crossing of T e arising from G′. We
just have to verify that the number of hidden configurations in the set
{(gi, gi+1, g

′
i, g

′
i+1) | 0 ≤ i ≤ k} is less than in {(fi, fi+1, f

′
i , f

′
i+1) | 0 ≤

i ≤ k}. But

(i) the number of hidden configurations in {(gi, gi+1, g
′
i, g

′
i+1) | i <

p or q ≤ i} is exactly the same as in {(fi, fi+1, f
′
i , f

′
i+1) | i <

p or q ≤ i},
(ii) there is no hidden configuration in {(gi, gi+1, g

′
i, g

′
i+1) | p < i <

q− 1}, whereas there is one in {(fi, fi+1, f
′
i , f

′
i+1) | p < i < q− 1},
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(iii) the edges (gp, gp+1, g
′
p, g

′
p+1) (resp. (gq−1, gq, g

′
q−1, g

′
q)) do not form

a hidden configuration.

�

We now define the inverse transformation.

Definition 7.4. Let T be a k-triangulation of the n-gon and E be a
k-crossing. Let [s1, s1+k], . . . , [sk, s2k] denote its edges, with s1 ≺ s2 ≺
. . . ≺ s2k. Assume further that s1, . . . , sk are consecutive in the cyclic
order of the n-gon (that is sk = s1 + k − 1). We call E an external
k-crossing. Let s0 be a new vertex on the circle, between s1 − 1 and s1.

We call inflating of E at Js1, skK in T the set of edges T
E

whose
underlying set of points is the set Vn ∪ {s0} and which is constructed
from T as follows (see Fig. 14):

(i) for any edge of T whose vertices are not in {s1, . . . , sk} just copy
the edge;

(ii) add all the edges [s0, si], for 1 ≤ i ≤ k;
(iii) replace any edge of the form [si, t] with 1 ≤ i ≤ k, and sk ≺ t 4

sk+i (resp. sk+i 4 t ≺ s1) by the edge [si, t] (resp. [si−1, t]).

Remark 7.5. We are abusing notation: if E contains more than k
consecutive vertices, then the result of the inflating of E depends on the
k-consecutive points we choose. It would also be an abuse of language
to say that we inflate the cyclic interval Js1, skK since several k-crossings
may be adjacent to these k points. For example, when k = 1, we have
to specify both an edge and a vertex of this edge to define an inflating.

Observe that:

(1) Any k-relevant edge f of T
E

arises from a unique edge f ′ of T .

(2) If f and g are two k-relevant edges of T
E

that cross, and f ′ and
g′ are the two edges of T that give f and g respectively, then
f ′ and g′ cross as well.

Point (2) ensures that T
E

is (k + 1)-crossing-free. Moreover, it is

easy to see that |T
E
| = |T | + 2k = k(2(n + 1) − 2k − 1). Thus, by

Corollary 4.4, we get:

Lemma 7.6. T
E

is a k-triangulation of the (n + 1)-gon.

Theorem 7.7. Flattening and inflating are inverse operations. More
precisely:

(i) if e is a k-boundary edge of a k-triangulation T , and E denotes
the k-crossing of T e consisting of edges that arise as gluing of two

edges of T , then T e

E
= T ;
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Figure 16. The inflating of the 2-crossing {[1, 4], [2, 7]} at
J1, 2K in the 2-triangulation of Figure 2.

(ii) if E is a k-crossing with k consecutive vertices s1, . . . , sk, and e

denotes the edge [s0, sk] of T
E
, then T

E

e = T .

Example 7.8. Figure 16 shows the inflating of 2-crossing {[1, 4], [2, 7]}
at J1, 2K in the 2-triangulation of Figure 2. The new 2-star is colored
in red.

We can now use these inverse transformations to prove additional
results on k-triangulations by induction.

Corollary 7.9. Let N(n, k) denote the number of k-triangulations of
an n-gon. The quotient N(n+1, k)/N(n, k) equals the average number
of k-crossings on the first k points among all k-triangulations of the
n-gon.

For example,

(i) For k = 1, we get that N(n + 1, 1)/N(n, 1) equals the average
degree of vertex 1 in triangulations of the n-gon. Since the average
degree of all triangulations of the n-gon is the same and equal
to (4n − 6)/n we recover the well-known recursion for Catalan
numbers:

Cn−1 =
4n − 6

n
Cn−2.

(ii) For n = 2k + 1 we have that N(2k + 1, k) = 1 (the unique k-
triangulation is the complete graph) and the number of k-crossings
using the first k vertices in this k-triangulation is k+1 (any choice
of k of the last k + 1 vertices gives one k-crossing). In particular,
we recover the fact that N(2k + 2, k) = k + 1 (see Example 1.1).

(iii) Unfortunately, for n > 2k + 1 it is not true that the number
of k-crossings using k consecutive vertices is independent of the
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k-triangulation. Otherwise we would have that N(n + 1, k) ·
n/N(n, k) is an integer, equal to that number (as happens in the
case of triangulations).

The following lemma is another example of the use of a recursive
argument. It is equivalent to Theorem 10 in [Nak00], where the proof
uses flips.

Lemma 7.10. Any k-triangulation of the n-gon contains at most k(n−
2p − 1) p-relevant edges, for any k ≤ p ≤ n−1

2
.

Proof. When n = 2p + 1, it is true since there are no p-relevant edges.
Suppose now that n > 2p + 1. Let T be a k-triangulation of the

n-gon. Let e = [u, u+k] be a k-boundary edge of T . It is easy to check
that if g is a k-relevant edge of T of length ℓ, then the corresponding
edge g′ in T e has length ℓ or ℓ − 1, and the later is possible only if
g = [v, v + ℓ] with v 4 u ≺ u + k 4 v + ℓ.

Let E be the k-crossing of T e that arise from the edges of the k-star
of T containing e. Let F be the set of edges of E of length at least p.
Let G denote the set of edges of length p of T e \E arising from an edge
of length p + 1 of T .

Any non p-relevant edge of T er(E∪G) (resp. of E\F ) arise from one
(resp. two) non p-relevant edge of T . Thus we obtain by induction that
the number of p-relevant edges is at most k(n−1−2p−1)+ |F |+ |G|.

To conclude, we only have to observe that any two edges of F ∪ G
are crossing, which implies that |F | + |G| = |F ∪ G| ≤ k. �

To close this section, observe that the result of flattening several
k-boundary edges of a k-triangulation is independent of the order. In-
deed, let e and f be two distinct k-boundary edges of a k-triangulation
T . Let e′ (resp. f ′) denote the edge of T f (resp. T e) arising from e
(resp. f). Then e′ (resp. f ′) is a k-boundary edge of T f (resp. T e)
and

T f
e′

= T ef ′
.

In particular, one can define the flattening of a set of k-boundary edges.
Similarly, it is possible to define the inflating of a set of edges-disjoint

k-crossings of a k-triangulation.

8. Further topics and open questions

In this section, we discuss further topics and open questions related
to multi-triangulations. We hope that at least some of them may be
easier to prove and understand looking at k-triangulations as “com-
plexes of k-stars”.
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Figure 17. A Dick path (a) and a Dyck 3-path (b) of semi-
length 6.

The number of k-triangulations. Remember that Jonsson proved
in [Jon03] that

Theorem 8.1. The number of k-triangulations of the n-gon is equal
to the determinant

det(Cn−i−j)1≤i,j≤k =

∣∣∣∣∣∣∣∣




Cn−2 Cn−3 . . . Cn−k Cn−k−1

Cn−3 Cn−4 . . . Cn−k−1 Cn−k−2
...

...
. . .

...
...

Cn−k−1 Cn−k−2 . . . Cn−2k+1 Cn−2k




∣∣∣∣∣∣∣∣
,

where Cm = 1
m+1

(
2m
m

)
denotes the m-th Catalan number.

Remark 8.2. An explicit product formula for the value of this deter-
minant, first found by Viennot, can be found in [Jon03, p. 130]. For
the asymptotics of it, observe that the recurrence Cn = 4n−2

n+1
makes

each entry equal to Cn times a rational function of degree at most 2k
in n. Since Cn ∈ Θ(4nn−3/2) we conclude that, for fixed k, the number
of k triangulations of an n-gon grows as 4nk, modulo a rational function
of degree O(k2) in n.

On the other hand, the Catalan determinant in this statement also
counts two other classes of objects:

(i) Dyck k-paths of semi-length n − 2k:
A Dyck path of semi-length ℓ is a lattice path using north steps

N = (0, 1) and east steps E = (1, 0) starting from (0, 0) and
ending at (ℓ, ℓ), and such that it never goes below the diagonal
y = x (see Fig. 17 (a)). We call Dyck k-path of semi-length ℓ any
k-tuple (d1, . . . , dk) of Dyck paths of semi-length ℓ such that each
di never goes above di−1, for 2 ≤ i ≤ k (see Fig. 17 (b)).

That the Catalan determinant of Theorem 8.1 also counts the
number of Dyck k-paths of semi-length n−2k is proved in [DCV86].
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Figure 18. (a) a stack polyomino of shape (2, 3, 5, 6, 2, 2);
(b) a filling of this polyomino, with a shaded 2-diagonal; (c)
the polyomino A7.

(ii) Maximal (k +1)-diagonal-free fillings of the triangular polyomino
An:

A stack polyomino of shape (s1, . . . , sr) (where there exists t ∈
{1, . . . , r} such that 0 < s1 ≤ . . . ≤ st and st ≥ . . . ≥ sr > 0) is
the following subset of Z2, whose elements are called boxes :

{(i, j) | 1 ≤ i ≤ r, 0 ≤ j ≤ si}.

A filling of a polyomino is an assignment of 0 and 1 to its boxes.
For ℓ ∈ N, an ℓ-diagonal of a filling of a polyomino Λ is a chain
(α1, β1), . . . , (αℓ, βℓ) of ℓ boxes of Λ filled with 1 and such that

• α1 < α2 < . . . < αℓ and β1 < β2 < . . . < βℓ, and
• the rectangle {(α, β) | α1 ≤ α ≤ αℓ, β1 ≤ β ≤ βℓ} is a subset

of Λ.
See Figure 18 for an illustration (we use the matrix convention to
index the boxes of a polyomino; that is, the row index increases
as we go down). See [Jon05, Kra06, Rub07] for more details.

Let An denote the polyomino {(i, j) | 0 ≤ i ≤ n − 2, 1 ≤
j ≤ n − i − 1} (see Fig. 18). That maximal (k + 1)-diagonal-
free fillings of the triangular polyomino An are enumerated by the
determinant of Theorem 8.1 is proved in [HT92].

Let us now give a little overview of the different proofs of Theo-
rem 8.1:

(1) First, Jonsson gives in [Jon03] a direct, but complicated, proof
using induction on n, based in an analogue of our Corollary 7.9.
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(2) In [Jon05], Jonsson gives another proof, this time indirect. He
observes that given any subset E of En, an ℓ-crossing of E cor-
responds to an ℓ-diagonal in the upper triangular part of the
adjacency matrix of E. In particular, this gives a straightfor-
ward bijection between k-triangulations of an n-gon and maxi-
mal (k + 1)-diagonal-free fillings of another polyomino, namely

Ωn := {(i, j) | 0 ≤ i ≤ n − 2, i + 1 ≤ j ≤ n − 1}.

Example 8.3. In Figure 19, we show the filling of Ω8 that
corresponds to the 2-triangulation of the octagon of Figure 2.
For the sake of clarity, we have omitted 0’s and replaced 1’s by
dots. We also have shaded the 2-relevant boxes of Ω8.

Jonsson then proves that the number of maximal (k+1)-diagonal-
free fillings of a stack polyomino of shape (s1, . . . , sr) depends
only on its content, that is, the multiset {s1, . . . , sr}. Thus, he
can use the polyomino An instead of Ωn, and the aforementioned
result of [HT92], to enumerate k-triangulations.

(3) Krattenthaler [Kra06], studying different restrictions on diag-
onals in fillings of polyominoes, proves in a simpler way that
the number of fillings of a stack polyomino only depends on its
content. Rubey [Rub07] generalizes this same result to moon
polyominoes. He also emphasizes that “the problem of finding
a completely bijective proof [...] remains open. However, it
appears that this problem is difficult”.

(4) Elizalde [Eli06] gives an explicit bijection between 2-triangu-
lations and Dyck 2-paths. He begins with coloring the relevant
edges of a 2-triangulation with two colors. Then, each color
defines one of the two Dyck paths.

Our hope would be that looking at k-triangulations as complexes
of k-stars might perhaps be used to give a general explicit bijection
between k-triangulations and Dyck k-paths. Observe that the number
n − 2k of k-stars equals the semi-length of the Dyck k-paths we need
to construct. Hence, the idea would be to use each k-star to represent
one pair of steps in each path.

To close this discussion, remember that Catalan numbers also count
many other “Catalan structures” (see Exercise 6.19 in [Sta99]). Rooted
binary trees seem particularly important for our topic since they are
dual graphs of triangulations. It would be interesting to understand
the corresponding objects for k-triangulations.
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Figure 19. The filling of Ω8 that corresponds to the 2-
triangulation of Figure 2.

Rigidity. A triangulation of a convex n-gon is a minimally rigid object
in the plane. That is to say, any continuous movement of its vertices
that preserves all edges lengths extends to an isometry of the plane, and
the triangulation is a minimal graph for this property. Moreover, it is
generically so, meaning that the same is true for all embeddings of the
same graph with sufficiently generic choice of positions for the vertices.
See [Gra01] for a very nice expository introduction to combinatorial
rigidity, and [GSS93] for a more technical one.

In the plane, generic minimal rigidity of a graph G = (V, E) is equiv-
alent to the following Laman property : |E| = 2|V | − 3 and any sub-
graph on 2 ≤ m ≤ |V | vertices has less than 2m−3 edges. The Laman
property is a special case of the following:

Definition 8.4. A graph G = (V, E) is said to be (p, q)-sparse if |E ′| ≤
p|V (E ′)| − q for any subset E ′ of E.

Sparsity for several families of parameters (p, q) is relevant in rigidity
theory, matroid theory and pebble games. See [LS07, ST07] and the
references therein. Observe that Corollary 4.4 implies:

Corollary 8.5. k-triangulations are
(
2k,

(
2k+1

2

))
-sparse graphs.

Being
(
d,

(
d+1
2

))
-sparse is a necessary, but not sufficient for d > 2,

condition for a graph being generically minimally rigid in dimension
d [GSS93]. This suggests the following conjecture:

Conjecture 8.6. Every k-triangulation is generically minimally rigid
in dimension 2k.

We can prove this conjecture for k = 2:
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u u v

X Y Z X Y Z

Figure 20. A vertex split on 3 edges.

Theorem 8.7. Every 2-triangulation is a generically minimally rigid
graph in dimension 4.

Proof. We prove by induction on n that 2-triangulations are generically
rigid in dimension 4. Minimality then follows from the fact that a
generically rigid graph in dimension d needs to have at least nd−

(
d+1
2

)

edges.
Induction begins with the unique 2-triangulation on 5 points, that

is, the complete graph K5, which is generically rigid in dimension 4.
For the inductive step, let us recall the following graph-theoretic

construction called “vertex split” (see Fig. 20 and [Whi90] for more
details). Let G be a graph, u a vertex of G and U the adjacent vertices
of u. Let U = X ⊔ Y ⊔ Z be a partition of U . A vertex split of u on
|Y | edges is the graph G′ obtained from G as follows:

(i) remove the edges [u, z], for z ∈ Z;
(ii) add a new vertex v;
(iii) add new edges [u, v], [v, y], for y ∈ Y and [v, z], for z ∈ Z.

The key result that we need is that a vertex split on d − 1 edges
in a generically rigid graph in dimension d is also generically rigid in
dimension d [Whi90].

So, let n ≥ 5 and assume that we have already proved that every
2-triangulation of the n-gon is rigid. Let T be a 2-triangulation of the
(n+1)-gon. Let S be a 2-star of T with at least two 2-boundary edges
(such a 2-star exists since it appears in the “outer” side of any 2-ear).
It is easy to check that inverse transformation of the flattening of S is
exactly a vertex split on 3 edges. Thus, the result follows. �

Generalizing this proof, observe that if T is a k-triangulation and S a
k-star of T with k k-boundary edges (or equivalently k− 1 consecutive
k-ears), then the inverse transformation of the flattening of S is exactly
a vertex split on 2k − 1 edges. However, our proof of Theorem 8.7
can not be directly applied since there exist k-triangulations with no
k-star containing k k-boundary edges, or equivalently, without k − 1
consecutive k-ears, for k ≥ 3 (see Fig. 21).
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Figure 21. A 3-triangulation without 2 consecutives 3-ears.

Multi-associahedron. Let ∆n,k be the simplicial complex of all sub-
sets of k-relevant edges of En that do not contain any (k + 1)-crossing.
Facets and ridges in ∆n,k are k-triangulations of the n-gon and flips be-
tween them. Corollary 4.4 proves that ∆n,k is pure, and Corollary 5.4
suggests that it could be a sphere; that this is the case and, more-
over, that this sphere is vertex-decomposable (in particular, shellable)
was proved in [Jon03, Jon05, DGJM08]. But it remains a main open
question to know whether ∆n,k is polytopal. That is, whether it is the
boundary complex of a polytope.

Figure 22. The dual of the simplicial complex ∆6,1 and a
realization of the corresponding associahedron.

So far, we only know that this holds for:

• k = 1: ∆n,1 is the boundary complex of the polar of the associ-
ahedron (see Fig. 22). Various realizations have been proposed;
among others see [BFS90, FR05, HL07, Lee89, Lod04].

• n = 2k + 1: there is a unique k-triangulation.
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• n = 2k + 2: there are k + 1 k-triangulations (Example 1.1) and
∆2k+2,k is realized by the k-simplex.

• n = 2k + 3:

Lemma 8.8. For any k ≥ 1, the simplicial complex ∆2k+3,k

is realized by the cyclic polytope of dimension 2k with 2k − 3
vertices.

Proof. The set of k-relevant edges of the (2k+3)-gon forms a cy-
cle C of length 2k+3 (in fact, it forms a (2k+3)-star). It is easy
to check that the sets of k-relevant edges of k-triangulations of
the (2k+3)-gon are exactly the subsets of C that satisfy Gale’s
evenness condition, and thus correspond to facets of the cyclic
polytope (see Theorem 0.7 of [Zie95]). �

In our opinion, k-stars are a promising tool to answer this ques-
tion: first because they give a better understanding of flips in k-
triangulations and some constructions of the associahedron are based
on understanding flips; but moreover because one of the most natu-
ral ways of constructing the associahedron is as a secondary polytope,
which obviously uses triangles [BFS90, San06].

Another possible way of constructing this polytope could be based
on rigidity of k-triangulations, mimicking the construction in [RSS03]
(see also [RSS06]).

Surfaces. Regarding a k-triangulation T of the n-gon as a complex
of k-stars naturally defines a polygonal complex C(T ) as follows:

(i) the vertices of C(T ) are the vertices of the n-gon;
(ii) the edges of C(T ) are the k-boundary edges and k-relevant edges

of T ;
(iii) the facets of C(T ) are the k-stars of T , considered as (2k+1)-gons.

Since every k-relevant edge belongs to two k-stars and every k-boundary
edge belongs to one, this complex is a surface with boundary, with
gcd(n, k) boundary components. Also, it is orientable since the natu-
ral orientation of each k-star can be inherited on each polygon. Hence,
from its Euler characteristic, we derive its genus:

gn,k =
1

2
(2 − f + e − v − b) =

1

2
(2 − n + k + kn − 2k2 − gcd(n, k)).

That is, the surface does not depend on the k-triangulation T but only
on n and k. We denote Sn,k this surface. The polygonal complex C(T )
of each k-triangulation provides a polygonal decomposition of Sn,k.

Figure 23 shows the surfaces associated to the 2-triangulations Tmin
n,2

for n = 6, 7 and 8.
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Figure 23. Examples of decompositions of surfaces asso-
ciated to the 2-triangulations Tmin

6,2 , Tmin
7,2 and Tmin

8,2 .

Apart from its beauty, this interpretation of k-triangulations as poly-
gonal decompositions of surfaces is interesting for the following reason.

Let T be a k-triangulation of the n-gon, and let f be a k-relevant
edge of T . Let R and S be the two k-stars of T containing f , and let e
be the common bisector of R and S. Let X and Y be the two k-stars
of T△{e, f} containing e.

Then T \{f} can be viewed as a decomposition of Sn,k into n−2k−2
(2k + 1)-gons and one 4k-gon, obtained from C(T ) by gluing the two
(2k+1)-gons R and S along the edge f . And then T△{e, f} is obtained
from T \ {f} by splitting this 4k-gon into the two (2k +1)-gons X and
Y .

As an example, in Figure 24 we have drawn the decomposition of
the cylinder corresponding to the 2-triangulation Tmin

6,2 . The second 2-

triangulation is obtained from Tmin
6,2 by flipping the edge [1, 4], and we

have represented the decomposition of the cylinder obtained by flipping
the edge on the surface. If we now flip [0, 3] and then [2, 5], we obtain
again the triangulation Tmin

6,2 .
Observe that although the corresponding decomposition is combi-

natorially the same as in the first picture, it has been “twisted” on
the surface. This phenomenon can be interpreted as a homomorphism
between
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Figure 24. A cycle of flips.

(i) the fundamental group πn,k of the graph of flips Gn,k (i.e. the
set of closed walks in Gn,k, based at an initial k-triangulation,
considered up to homotopy), and

(ii) the mapping class group Mn,k of the surface Sn,k (i.e. the set of
diffeomorphisms of the surface Sn,k into itself that preserve the
orientation and that fix the boundary of Sn,k, considered up to
isotopy [Bir74, Iva02]).

It may be interesting to understand the image and the kernel of this
homomorphism. In particular, if this homomorphism is surjective, this
interpretation provides a new combinatorial description of the mapping
class group of Sn,k.

This homomorphism is actually a monodromy action. Let Gn,k de-
note the set of embeddings f : T → Sn,k, where T ranges over all k-
triangulations of the n-gon, and embeddings are considered modulo iso-
topy. We make Gn,k into a graph, lifting flips between k-triangulations
as in the example above. Then, the “forgetful map” is a covering map
Gn,k → Gn,k. The mapping class group is the group of deck transforma-
tions of this cover and the above homomorphism is the corresponding
monodromy action.

Chirotopes. Let T be a k-triangulation and let S be a k-star of T .
If we consider our n-gon with vertices in the unit circle C ⊂ R2, then
lines that intersect C form a Möbius strip in the dual RP 2. It is easy to
check that the set of all geometric bisectors of a k-star S (including the
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edges of S as limit cases) form a pseudoline ℓS in the Möbius strip. Fur-
thermore, as Michel Pocchiola pointed out to us, Theorem 3.5 affirms
that the two pseudolines corresponding to two k-stars of T intersect
exactly once. Thus, the set of pseudolines associated to the k-stars of
T is an arrangement of pseudolines in RP 2. In particular, it defines
a chirotope or oriented matroid (of rank 3) χT on the set of k-stars
of T [BVS+99, Knu92, RGZ04]. This is an analogue to the chirotope
(or pseudo-line arrangement) that Pocchiola and Vegter introduce for
pseudotriangulations [PV94, PV96, RSS06].

We can also define the chirotope directly (that is, in the “primal
space”) as follows. Let S, S ′ and S ′′ be three k-stars of T . Let u and
v be vertices of S and S ′ respectively such that [u, v] is the unique
common bisector of S and S ′. We define χT (S, S ′, S ′′) to be negative if
S ′′ has more vertices in Ku, vJ than in Kv, uJ, and positive in the other
case (it is easy to see that S ′′ can not have has many vertices in Ku, vJ
and in Kv, uJ).

This chirotope provides a new interpretation of some of the results
in this paper. For example, external k-stars (i.e. k-star containing at
least one k-boundary edge) are exactly the elements on the convex hull
of this chirotope. Thus, Corollary 6.2 of Section 6 can be rewritten as:
the number of k-ears of a k-triangulation T of the n-gon is n minus
the number of k-stars of the convex hull of χT . Remember also that
external k-stars where relevant in Section 7. More technical details and
further results on this topic will be given in a subsequent paper.
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