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Abstract. We prove a simple formula for arbitrary cluster variables in the marked surfaces
model. As part of the formula, we associate a labeled poset to each tagged arc, such that the
associated F -polynomial is a weighted sum of order ideals. Each element of the poset has a
weight, and the weight of an ideal is the product of the weights of the elements of the ideal. In
the unpunctured case, the weight on each element is a single ŷi, in the usual sense of principal
coefficients. In the presence of punctures, some elements may have weights of the form ŷi/ŷj .
Our search for such a formula was inspired by the Fundamental Theorem of Finite Distributive
Lattices combined with work of Gregg Musiker, Ralf Schiffler, and Lauren Williams that, in some
cases, organized the terms of the F -polynomial into a distributive lattice. The proof consists
of a simple and poset-theoretically natural argument in a special case, followed by a geometric
argument using a cover of the surface to prove the general case.

Cluster variable formulas were given by James Propp [Pro02], Gabriel Carroll and Gregory
Price [CP03], and Ralf Schiffler [Sch08] for the cluster algebra of type A associated to the triangu-
lations of a polygon. These formulas were later extended for cluster algebras arising from (tagged)
triangulations of a surface [FST08, FT18a], first by Gregg Musiker and Ralf Schiffler in terms of
perfect matchings on tile graphs [MS10] for unpunctured surfaces, and later by Gregg Musiker,
Ralf Schiffler and Lauren Williams in terms of perfect matchings on snake graphs [MSW11] for
any bordered marked surface with or without punctures. Further reformulations also appeared
in [CP15, Yur19a, Yur19b]. Note that, while these formulas are often referred to as “cluster ex-
pansion formulas” in the literature, we prefer the term “cluster variable formulas” which avoids
confusion with the geometric notion of cluster expansion in the cluster fan [FZ03].

The objective of this paper is to prove a more condensed cluster variable formula for cluster
algebras on marked surfaces. We present the formula independently of the formula for snake
graphs, but lying under the surface is the observation by James Propp [Pro02, Theorem 2] that
the set of perfect matchings on a graph forms a distributive lattice. (This observation was already
mentioned in the context of snake graphs by Gregg Musiker, Ralf Schiffler, and Lauren Williams
[MSW13, Theorem 5.2]. It was also a crucial ingredient in [CS21], where it was used to charac-
terize the canonical submodule lattice of a string module. The present paper got its start from
conversations among the authors about the results of [CS21].)

The fact that the monomials in the cluster variable form a distributive lattice calls to mind the
Fundamental Theorem of Finite Distributive lattices (FTFDL), due to Birkhoff [Bir37] and found,
for example, in [Sta12, Theorem 3.4.1]. (The relevant direction here is that any finite distributive
lattice is isomorphic to the inclusion order on order ideals in its poset of join-irreducible elements.)
One is led to ask what the poset P of join-irreducible elements of this lattice is, and whether P is
relevant to the cluster variable formula. Optimistically, one would hope to write down a poset Pα
directly from a tagged arc α, and would hope that the F -polynomial associated to α is a sum of
monomials indexed by order ideals in Pα. More optimistically, one would hope that the monomials
could be recovered from order ideals in Pα simply by giving a weight to each element of Pα
such that the monomial corresponding to an order ideal of Pα is just the product of the weights
of its elements. That is precisely what happens. Most optimistically, each element e of Pα is
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Figure 1. A tagged arc and the corresponding labeled poset.

associated to a tagged arc in the initial tagged triangulation, and the weight of e is precisely the
monomial ŷi associated to that arc (in the usual principal-coefficients notation of [FT18b]). This
most optimistic possibility occurs whenever the surface has no punctures, and more generally when
the base triangulation has no self-folded triangles. In the general case, the situation is nearly as
good: Each element e of Pα is again associated to an arc, but in some cases when i and j index
the edges of a self-folded triangle, the weight on an arc is of the form ŷi/ŷj .

As usual, we may as well take the initial tagged triangulation T to have all arcs tagged plain,
except possibly at some punctures p incident to exactly two tagged arcs of T , identical except for
opposite taggings at p. (If T does not have this property, we can modify it by reversing all taggings
at certain punctures, the only cost being that we must make the same modification of taggings in
all arcs α for which we compute the cluster variable xα.) Also as usual, we will pass between T
and the ordinary triangulation T ◦ with self-folded triangles replacing pairs of coinciding arcs with
opposite tagging at one puncture, considering T and T ◦ to be different ways of viewing the same
combinatorial data.

Details on the construction of the poset Pα appear in the next section. For now, we state the
general idea and give an example. The poset Pα has a central piece that we will call P cr

α . The
undirected graph underlying the Hasse diagram of P cr

α is a path, recording essentially the sequence
of arcs of T ◦ that α crosses. In many cases when α is tagged notched at one or more endpoints, we
adjoin to P cr

α one or more chains, with each adjoined chain recording the sequence of arcs that are
incompatible with α because of its tagging at that endpoint. When α agrees, up to tagging, with
an arc in T , then the construction “degenerates” in various ways that can be precisely described.

Example 1. The left picture in Figure 1 shows an example of a marked surface (a 4-punctured
disk) with a triangulation T ◦ (with arcs numbered 1 through 11) and a tagged arc α (shown
thicker, in purple). The corresponding cluster variable is x5x6x8

x1x4x7x9
times the weighted sum of all

order ideals in the poset Pα shown in the right picture. The weight of an element is ŷi if the
element is labeled i. The weight of the element labeled 2

3 is ŷ2
ŷ3
. The poset P cr

α is like the poset
shown, but deleting the chain labeled 4 l 1 l 8 l 11 on the right. We explain this example in full
detail in Section 1.

The unpunctured case of the cluster variable formula can also be obtained from [MSW13,
Theorem 5.4]. Jon Wilson [Wil20] constructed similar weighted posets and proved similar cluster
algebra variable formulas in the “nondegenerate” cases (with some restrictions on the surface),
proving his results based on the cluster variable formulas in terms of the snake graphs of [MSW11].
Some of these posets appeared more recently in [OY22], and similar posets also appear in [Wen23],
where they are used to compute Donaldson-Thomas F -polynomials.
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We conclude this introduction with an outline of the paper and a discussion of background
references.

Section 1. We state the formula (Theorem 1.1) for the cluster variable associated to a tagged
arc and illustrate it with numerous examples. We also make a standard, slight reduction of the
theorem, showing that it needs only be proved for a subset of the tagged arcs.

Section 2. We prove in a special case that the cluster variable formula satisfies the correct exchange
relations. The point is that certain exchange relations correspond to simple, natural decomposi-
tions of the set of order ideals of the corresponding posets (Section 2.3), and to natural relations
between the g-vectors (Section 2.4).

Section 3. We prove the analog of Theorem 1.1 in the coefficient-free case. This coefficient-free
analog is a consequence of Theorem 1.1 and is not needed for the proof of Theorem 1.1. However,
it is included here as a simplified version of the proof of Theorem 1.1. More specifically, the
coefficient-free case uses only the fairly standard hyperbolic geometry of marked surfaces (avoiding
the complications of opened surfaces and the corresponding lambda lengths and tropical lambda
lengths). It is hoped that the separate treatment of this simpler coefficient-free case will serve to
illustrate a key idea of the proof before introducing the complications of the full proof. The basic
structure of the proof is an induction on the number of elements of Pα. The key idea is to pass
to a cover of part of the surface and lift the hyperbolic metric to the cover, so that the exchange
relations established in Section 2 serve as the inductive step. (In the simplest case of plain-tagged
arcs, the combinatorics of passing to a cover is similar to the construction in [MSW11, Section 7].
The construction here for arbitrary arcs and the lifting of the hyperbolic metric appear to be new.)

Section 4. We prove the full version of Theorem 1.1. The proof structure is the same as the
simplified proof in Section 3 and reuses many of the tools, but with the full machinery of opened
surfaces, lambda lengths, and tropical lambda lengths.

Section 5. The construction that takes an arc and defines the associated cluster variables as a
laminated lambda length [FT18a, Definition 15.3] is valid more generally for tagged geodesics
connecting marked points (relaxing conditions such as the requirement that the geodesic not cross
itself). We extend Theorem 1.1 to these more general tagged geodesics as Theorem 5.1. We also
give a combinatorial characterization of tagged geodesics as Proposition 5.3.

Throughout the paper, we assume the most basic background on marked surfaces in the sense
of Sergey Fomin, Michael Shapiro, and Dylan Thurston [FST08, FT18a]. Specifically, we use
without explanation the material on (tagged) arcs, (tagged) triangulations signed adjacency ma-
trices from [FST08, Sections 2–4 & 7] (summarized in [FT18a, Section 5]) and the material on
laminations and shear coordinates from [FT18a, Sections 12–13]. Later, in support of the proof,
we will review results of [FT18a] that use hyperbolic geometry and tropical hyperbolic geometry
to realize cluster variables ([FT18a, Sections 7–8] for the simpler coefficient-free case in Section 3
and [FT18a, Sections 9–10 & 14–15] for the full proof in Section 4). We also assume the most ba-
sic background on cluster algebras of geometric type, F -polynomials, and g-vectors from [FT18b,
Sections 2–3 & 5–6]. Aside from this background, the paper is completely self-contained.

1. The theorem

Let (S,M) be a marked surface and let T be a tagged triangulation of (S,M) with all arcs tagged
plain, except possibly at some punctures p incident to exactly two tagged arcs of T , identical except
for opposite taggings at p. The corresponding ordinary triangulation is denoted T ◦. Let B(T ) be
the signed adjacency matrix of T , with entries bαγ indexed by arcs α and γ in T . We associate a
principal-coefficients cluster algebra A•(T ) to (S,M) and T as usual. Specifically, extend B(T )
by appending the identity matrix below it. Let {xγ | γ ∈ T} be the initial cluster variables, and
let {yγ | γ ∈ T} be the tropical variables (which are also the coefficients at the initial seed). For
each γ ∈ T , let ŷγ = yγ

∏
β∈T x

bβγ
β .
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Given a tagged arc α in (S,M), let xα be the associated cluster variable. For each tagged
arc α, we will define the Laurent monomial gα in the initial cluster variables, the poset Pα, and
the map w : Pα → {ŷβ | β ∈ T} ∪ {ŷβ/ŷγ | β 6= γ ∈ T} that appear in the following theorem.

Theorem 1.1. The principal-coefficients cluster variable associated to a tagged arc α is

(1) xα = gα ·
∑
I

∏
e∈I

w(e),

where the sum is over all order ideals I in Pα.

The situation is simpler in the unpunctured case, or more generally when the triangulation T ◦
has no self-folded triangles, because in that case the weights w(e) are all of the form ŷα for α ∈ T .
We write arc(e) for the tagged arc α ∈ T such that w(e) = ŷarc(e). The following corollary is a
special case of Theorem 1.1.

Corollary 1.2. If the triangulation T ◦ has no self-folded triangles, then the principal-coefficients
cluster variable associated to an arc α is

xα = gα ·
∑
I

∏
e∈I

ŷarc(e),

where the sum is over all order ideals I in Pα.

In the remainder of this section, we provide the precise definitions of the Laurent monomial gα,
the poset Pα, and the weight map w that appear in Theorem 1.1 and Corollary 1.2.

1.1. Definition of the Laurent monomial gα. To define gα, we define a curve κ(α) that
coincides with α except near the endpoints of α. Specifically, if α has an endpoint p at a marked
point on the boundary of S, then κ(α) ends on a boundary segment, at a point q very near p,
chosen so that the path along the boundary from p to q keeps S on the left. If α has an endpoint
at a puncture p, where α is tagged plain, then κ(α) spirals clockwise into p. If α is tagged notched
at p, then κ(α) spirals counterclockwise into p. (This definition follows [Rea14, Section 5] and is
a modification of [FT18a, Definition 17.2].)

We define

(2) gα =
∏
γ∈T

x−bγ(T,κ(α))γ ,

where bγ(T, κ(α)) stands for the γ-entry of the shear coordinates of κ(α) with respect to T .

Example 2. Figure 2 shows κ(α) for α as in Example 1. Also shown are the contributions
(−1, 0 or 1, abbreviated as −, ◦, or +) to bγ(T, κ(α)) for each γ. As part of the definition of
shear coordinates, to find the shear coordinate b9(T, α), we must reverse the spiral on α inside the
self-folded triangle containing arc 9 and reverse the roles of arcs 9 and 10 (as shown in the right
picture in Figure 2). Similarly, to find the shear coordinate b2(T, α), we must reverse the roles of
arcs 2 and 3, but since α has no spiral inside the self-folded triangle containing arc 2, this amounts
to setting b2(T, α) equal to b3(T, α). Keeping in mind the negative sign in (2), we have justified
the assertion in Example 1 that gα = x5x6x8

x1x4x7x9
.

The following proposition is [Rea14, Proposition 5.2]. The proposition also appears as [FT17,
Lemma 8.6], where it is generalized to orbifolds.

Proposition 1.3. Given a tagged arc α, the g-vector of xα has γ-entry −bγ(T, κ(α)) for all γ ∈ T .

In light of Proposition 1.3, we call gα the g-vector of α. The proofs of Proposition 1.3 in [Rea14,
Proposition 5.2] and [FT17, Lemma 8.6] both rely on general structural results on cluster algebras.
Proposition 1.3 is an immediate corollary of Theorem 1.1, by the definition of the g-vector. Since
we do not use Proposition 1.3 in any arguments in this paper, the proof of Theorem 1.1 given here
in particular constitutes a new, direct proof of Proposition 1.3.

By [FT18b, Corollary 6.3], the content of Theorem 1.1 is Proposition 1.3 plus the assertion
that

∑
I

∏
e∈I w(e) is the F -polynomial of xα in the variables ŷi. (When we apply [FT18b,

Corollary 6.3], the denominator is 1 because we are in the principal-coefficients case.)
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Figure 2. Finding the monomial gα.

1.2. Definition of the poset Pα and the weight map w. We now proceed to define Pα and w.
The key point is that we can describe α completely by giving the sequence of arcs of T ◦ that α
crosses and noting whether α is tagged notched or plain at its endpoints.

There are degenerate cases in the construction of Pα, occurring when α coincides, up to tagging,
with an arc in T . We assume for the moment that we are not in a degenerate case.

To define Pα, we first define a smaller poset P cr
α . The tagged arc α is defined up to isotopy, and

(as is standard) we assume up to isotopy that as we move along α in a monotone fashion, when α
crosses an arc γ of T ◦, it crosses a different tagged arc before ever crossing γ again. In particular,
there is a finite set of points where α crosses arcs of T ◦. This set of points is the ground set of P cr

α .
(The endpoints of α are explicitly excluded from the ground set of P cr

α .) Two points in the ground
set are called adjacent if one can move from one point to the other along α without crossing any
other arc of T ◦. The cover relations in P cr

α come from pairs of adjacent points: Given adjacent
points e and f with e in an arc β of T and f in an arc γ of T ◦, as one moves along α from e to f ,
one cuts off a corner of a triangle of T ◦. We set e > f if the cut corner is to the right of α (as
we move along α from e to f) or e < f if the cut corner is on the left. We define P cr

α to be the
transitive closure of these cover relations.

In most cases, the weight function on P cr
α has w(e) = ŷβ , where β is the arc of T ◦ containing e.

There are two kinds of exceptions, both having to do with self-folded triangles. First, if β is the
interior edge of a self-folded triangle of T ◦ and γ is the exterior edge of the self-folded triangle and
if α passes through γ before and after passing through β at e, then w(e) =

ŷβ
ŷγ
. (In keeping with the

usual convention for passing between the tagged triangulation T and the ordinary triangulation T ◦,
the ordinary arc γ corresponds to the tagged arc that agrees with β but is tagged notched at the
interior point of the self-folded triangle.) Second, suppose α is tagged notched at a puncture p
inside a self-folded triangle with interior edge β and exterior edge γ. If e ∈ γ is the first point
where α crosses an arc of T ◦ after leaving p, then w(e) = ŷβ .

In many cases, we define Pα = P cr
α . Specifically, in the non-degenerate cases, this happens

if and only if both endpoints of α have the following property: Either α is tagged plain at the
endpoint or the endpoint is a puncture inside a self-folded triangle.

Before defining Pα in the cases where it is larger than P cr
α , we give an example of the simpler

case (Example 3). In this example (as in Example 1 and all further examples), we suppress the
actual elements of Pα (which are certain points in S) and instead show labels that indicate weights:
The arcs of T are numbered, and an element of Pα is labeled either with an integer i to indicate
a weight ŷi or with a formal quotient i

j to indicate a weight ŷi
ŷj
.
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Figure 3. An example where Pα = P cr
α .

Example 3. This example is just like Example 1, except that α is tagged plain at the top-middle
puncture in the picture, as shown in left picture of Figure 3. In this case, gα = x5x6x8

x1x7x9
and Pα = P cr

α

is shown on the right of Figure 3.

The Hasse diagram of P cr
α is, as a graph, isomorphic to a path. Thus it has two ends, given by

the last points where α crosses an arc of T ◦ before its endpoints. At each endpoint p of α that is
tagged notched and is not inside a self-folded triangle, we augment P cr

α by adding another chain C.
This chain C is constructed in a similar manner to P cr

α , as follows. From a point on α near the
endpoint p, we circle around p, crossing all arcs of T ◦ that are incompatible with α because of
the disagreement in tagging at the endpoint. The elements of C are the points of crossing, they
are ordered according to whether they cut corners left or right just as in P cr

α (necessarily with
either all left or all right), and they are labeled just as the points in P cr

α . Let e ∈ P cr
α be the last

point where α crosses an arc of T ◦ before reaching p. We attach C to P cr
α with the top element

of C covering e and the bottom element of C covered by e. (Note that because p is not inside a
self-folded triangle, C has at least two elements, so its top and bottom elements are different.) In
the simplest case, where α actually is one of the arcs in T , then gα = xα and Pα is the empty
poset.

Example 1 revisited. We continue and explain Example 1, which contrasts with Example 3. We
take T ◦ and α as shown in the left picture of Figure 1. As explained in Example 2, gα = x5x6x8

x1x4x7x9
.

The poset P cr
α is the poset shown in Figure 3. Since α is tagged notched at the top-middle

puncture, we adjoin a 4-element chain C, labeled 4, 1, 8, 11 from bottom to top, as shown in the
right picture of Figure 1. There is no chain attached to the other end of P cr

α , because that endpoint
is the interior vertex of a self-folded triangle.

Remark 1.4. We offer a heuristic explanation for the addition of a chain at an endpoint where α
is tagged notched (at a puncture not inside a self-folded triangle). The heuristic is equally good
in all such cases, but we explain it using Example 1 and Figure 1. In the surfaces model, when an
arc is tagged notched, one often thinks of it as “going around” the puncture rather than ending
there. As α approaches the puncture (at the top of Figure 1), we have recorded 7 l 5 in P cr

α , but
instead of stopping there and later adding a chain to make Pα, we make Pα directly by continuing
around the puncture (in either direction) and adding elements for the arcs we cross. Thus we
record 5 l 11 m 8 m 1 m 4. Then continuing along α in the opposite direction, we see that the
element labeled 4 is covered by the same element as before, labeled 5.
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Figure 4. An example where Pα is P cr
α plus two chains.

Example 4. We also give an example where neither endpoint of α is inside a self-folded triangle
and both endpoints are tagged notched, so that two chains are adjoined to P cr

α to make Pα. For T ◦
and α as shown in Figure 4, we have gα = x6

x4x5
. The poset P cr

α is a chain labeled 3l 2l 1l 3l 6.
At the top element of P cr

α , we adjoin a chain labeled 4 l 7, and the bottom, we adjoin a chain
labeled 5l4l6, to obtain Pα as shown in Figure 4. The cover relation 4l7 in one adjoined chain
“disappears” in the Hasse diagram (hence we show it as a dotted line), because 4 l 6 l 7 in Pα.

We now consider the degenerate cases, where α coincides, up to tagging, with an arc in T . If α
is actually an arc in T , then the gα is the initial cluster variable xα and Pα is the empty poset,
whose only order ideal is the empty set, with weight 1. The other degenerate cases are where α
coincides with an arc of T but has different taggings.

First, consider the case where α is tagged notched at only one endpoint and otherwise agrees
with an arc β of T that is not the interior edge of a self-folded triangle in T ◦. Then α and β
are compatible, so β is not in the chain C coming from arcs of T that are incompatible with α
because of tagging at that endpoint. In this case, Pα consists only of the chain C, as illustrated
in Example 5.

Example 5. The arc α shown in Figure 5 agrees with arc 1 except for its tagging at one point.
Thus Pα is the chain C illustrated in the figure. In this case, gα = x2

x3
.

We next consider the case where α coincides with the interior edge of a self-folded triangle
in T ◦. In other words, α coincides with two arcs β, β′ of T that are the same up to tagging, but α
is tagged differently than both. In this case, since α does not cross any arcs in T ◦, the poset P cr

α is
empty. Exactly one of β and β′ is compatible with α, without loss of generality β′. As before, Pα
is only the chain C consisting of the arcs that are incompatible with α at its notched endpoint, but
in this case, two elements labeled ŷβ appear in the chain, one at the top and one at the bottom,
as illustrated in Example 6.

Example 6. In Figure 6, the arc α shown coincides with arc 7 except for tagging. It also coincides
with arc 6 except for tagging, when the latter is represented as a tagged arc rather than an ordinary
arc. The arc α is compatible with arc 6 and incompatible with arc 7. The poset P cr

α is empty,
and Pα is a chain as shown in the figure. In this case, gα = 1

x7
.

Remark 1.5. Note that the heuristic of Remark 1.4 applies equally well to the cases treated in
Examples 5 and 6, the only difference being that the poset P cr

α is empty.
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Figure 6. An example where α coincides with the interior edge of a self-folded triangle.

Finally, if α agrees, except for tagging, with an arc β of T that is not the interior edge of a
self-folded triangle in T ◦ but is tagged notched at both endpoints, then two chains are “attached”
to the empty poset P cr

α . Two elements weighted ŷβ are in each chain, and the chains intersect
and interact. Each chain is obtained as before by following a path around the puncture, except
that the path starts and ends by crossing β, so that an element weighted ŷβ is at both the top
and bottom of the chain. The poset Pα is a union of the two chains, identified at their top and
bottom elements, with two additional cover relations, each having the atom in one chain below
the coatom in the other chain, as illustrated in Example 7.
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Example 7. In Figure 7, the arc α coincides with arc 6 except that α is tagged notched at both
endpoints (neither endpoint being inside a self-folded triangle). The poset Pα is the union of two
chains labeled 6l 1l 2l 6 and 6l 3l 4l 5l 6. The top elements of the chains are identified, as
are the bottom elements, and there are additional cover relations as shown. In this case, gα = 1

x5
.

Remark 1.6. We offer a heuristic explanation of the form of Pα in the cases where α agrees
with an arc in T (not the interior edge of a self-folded triangle) but is notched at both endpoints.
We will give the explanation specifically in the context of Example 7, but the explanation works
equally well in general. The idea is to think of Pα as the union of four “polygons”, similar to the
polygons that have appeared in earlier examples.

Since the arc α ends at the left puncture with the wrong tagging, it is incompatible with arc 1
of T . Imagine that the arc α, instead of ending at the left puncture, was incompatible with arc 1
by actually crossing arc 1. In this case, P cr

α would have an element labeled 1, to which we would
adjoin a chain to make the polygon 6 l 3 l 4 l 5 m 1 m 6. But also, the notch in α at the left
puncture makes it incompatible with arc 2, so, drawing α below arc 6 and letting it cross arc 2
instead of ending at the puncture, we obtain instead the polygon 3 l 4 l 5 l 6 m 2 m 3. By the
same process at the right puncture, we obtain the polygons 1l 2l 6m 5m 1 and 6l 1l 2m 3m 6.
The poset Pα is the union of these four polygons.

We now offer a more complicated example of the case where α agrees with an arc in T (not the
interior edge of a self-folded triangle) but is notched at both endpoints.

Example 8. In Figure 8, the arc α coincides with arc 3 except that α is tagged notched at both
endpoints (neither endpoint being inside a self-folded triangle). The poset Pα is the union of two
chains labeled

3 l 2 l 1 l 3 l 6 l 7/6 l 6 l 4 l 5/4 l 4 l 3

and
3 l 6 l 7/6 l 6 l 4 l 5/4 l 4 l 3 l 2 l 1 l 3,

with top elements identified and bottom elements identified, and with additional cover relations
as shown. In this case, gα = 1

x3
.

To conclude the discussion of the case where α agrees with an arc in T (not the interior edge
of a self-folded triangle) but is notched at both endpoints, we give an example where one of the
two chains contains only three elements, so that cover relations “disappear”. This happens when α
agrees with an arc in T that is in two triangles of T that combine to form a once-punctured digon.
It is impossible for both chains to contain only three elements, because if so, then S is a sphere
with three punctures, which is ruled out in the definition of a marked surface.
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Figure 8. Another example where P cr
α is empty but two chains are “attached” to it.
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Figure 9. P cr
α is empty, two chains are “attached” to it, and cover relations “disappear”.

Example 9. In Figure 9, Pα is the union of two chains labeled 1 l 2 l 1 and 1 l 3 l 4 l 1 with
top elements identified and bottom elements identified. Because of the additional cover relations
that connect the atom in one chain to the coatom in the other chain, two cover relations between
elements labeled 1 and 2 disappear and the cover relation between elements labeled 3 and 4 also
disappears (hence we show them as dotted lines). In this example, gα = 1

x1
.

The cover relation involving 3 and 4 disappears because the chain labeled 1l3l4l1 has only
four elements. In cases where one chain has three elements and the other has more than four, the
only cover relations that disappear are those in the chain with three elements.

1.3. A slight reduction of the theorem. We now reduce Theorem 1.1 to the case where α has
the following property: When α has an endpoint that is the interior vertex of a self-folded triangle
in T ◦, the tagging of α is plain at that endpoint. This kind of argument is standard in the marked
surfaces model.

First, we mention a general combinatorial symmetry that is built into the marked surfaces
model [FST08, FT18a]. (Indeed, we have already used this symmetry to assume that the tagged
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triangulation T has all arcs tagged plain, except possibly at punctures p incident to exactly two
tagged arcs of T with opposite taggings at p.)

Suppose T is a tagged triangulation and suppose p is a puncture. For any tagged arc γ, let γ′
be the arc obtained by switching the tagging of γ at p (or leaving γ unchanged if it does not have
an endpoint at p). Let T ′ be the tagged triangulation {γ′ : γ ∈ T}. Suppose we are given a tagged
arc α and an expression for the cluster variable xα with principal coefficients at T , in terms of
the initial cluster variables xγ for γ ∈ T and the tropical variables yγ for γ ∈ T . If we take that
expression and replace every xγ with xγ′ and every yγ with yγ′ , we obtain an expression for the
cluster variable xα′ with principal coefficients at T ′, in terms of the initial cluster variables xγ′

for γ′ ∈ T ′ and the tropical variables yγ′ for γ′ ∈ T ′.
This symmetry exists because the signed adjacency matrix of T and T ′ are the same by definition

(except for being indexed by arcs γ or arcs γ′) and because flips of tagged arcs commutes with
tag-switching at p. Thus, if we obtain α by a sequence of flips starting with T and write an
expression for xα using exchange relations, the corresponding sequence of flips starting with T ′

writes the same expression for xα′ .
Now, suppose T is a tagged triangulation with all arcs tagged plain, except possibly at some

punctures p incident to exactly two tagged arcs of T , identical except for opposite taggings at p.
Suppose p is one such puncture, so that p is the interior vertex of a self-folded triangle in the
corresponding ordinary triangulation T ◦. If β and γ are the two tagged arcs associated to the
self-folded triangle, then the operation of switching tags at such a p simply switches β and γ.
(That is, β′ = γ and γ′ = β.)

We see that if α is tagged notched at a puncture p that is the interior vertex of a self-folded
triangle, then an expression for xα in terms of the initial cluster variables and principal coefficients
at T can be obtained from any such expression for xα′ by replacing all instances of xβ by xγ and
vice versa. We check that the right side of Equation (1) has the same symmetry. First, κ(α)
and κ(α′) are related by reversing their spirals at p. By the definition of shear coordinates with
respect to tagged triangulations [FT18a, Definition 12.1], we see that gα and gα′ are related by
replacing all instances of xβ by xγ and vice versa. By inspection of the definition in Section 1.2, we
also see that the weighted posets Pα and Pα′ are related in the same way. (In the non-degenerate
case, see Example 3 and in the degenerate case, see Example 6.)

We have established the following reduction of Theorem 1.1.

Proposition 1.7. Assume that Equation (1) holds for every tagged arc α with the following
property: When α has an endpoint that is the interior vertex of a self-folded triangle in T ◦, the
tagging of α is plain at that endpoint. Then Equation (1) holds for every tagged arc.

2. Tidy exchange relations

Given a finite poset P with weights w : P → {ŷβ | β ∈ T} ∪ {ŷβ/ŷγ | β 6= γ ∈ T}, write

F (P ) =
∑
I

∏
e∈I

w(e),

where the sum is over all ideals I in P . (This notation suppresses the dependence of F (P ) on the
map w.) The content of Theorem 1.1 is that for any tagged arc α, the cluster variable indexed
by α has g-vector monomial gα and F -polynomial F (Pα), where the weight function on Pα is w
as defined in Section 1.2. By [FT18b, Proposition 5.1], the F -polynomials of cluster variables
are uniquely determined by the condition that initial cluster variables have F -vector 1 and the
exchange relations [FT18b, (5.3)].

Write Fα for the F -polynomial of a tagged arc α. In this section, we prove that for certain
special choices of α and T and an initial arc γ ∈ T , the exchange relation that writes Fα · Fγ in
terms of other F -polynomials Fβ also holds with Fα, Fγ , and each Fβ replaced by F (Pα), F (Pγ)
and the corresponding polynomials F (Pβ). We also show that this exchange relation records a
natural decomposition of the set of order ideals of α. Finally, we show that the relationship
between gα · gγ and the gβ is correct.
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Figure 10. Exchange relations for crossing arcs.

2.1. Exchange relation on F -polynomials. Exchange relations on F -polynomials in general
are given in [FT18b, Proposition 5.1]. In this section, we interpret them in the surface model using
the principal-coefficients version of the material in [FT18a, Sections 12–13] that realizes geometric
coefficients in terms of laminations. (See also [FT18a, Theorem 15.6].)

Throughout the section, we assume that the tagged triangulation T has all taggings plain. Thus
also the ordinary triangulation T ◦ has no self-folded triangles. Since in this case T and T ◦ coincide,
we will only use the notation T in this section. In this section, we have no need of hyperbolic
geometry, but rather we use results of [FT18a] that were proved using hyperbolic geometry.

Given an arc γ ∈ T , the elementary lamination associated to γ is a curve Lγ that is defined
precisely as κ(γ) was, except with the right and left directions swapped. Thus Lγ agrees with γ
except very close to the endpoints, where Lγ turns slightly to the right to end on a boundary
segment or spiral counterclockwise into a puncture. (In this section, we only allow plain taggings.
In general, if γ is tagged notched at one of its endpoints, then Lγ spirals clockwise into that
puncture.) Starting with principal coefficients at T , the extended exchange matrix at another
tagged triangulation T ′ has coefficient rows given by shear coordinates of elementary laminations
with respect to T ′. Specifically, in the coefficient row indexed by γ ∈ T , the entry in the column
indexed by α ∈ T ′ is bα(T ′, Lγ), the α-entry of the shear coordinates of Lγ with respect to T ′.

Since the coefficients of principal-coefficients extended exchange matrices are determined by
shear coordinates of elementary laminations, we can describe exchange relations between F -
polynomials geometrically in terms of arcs and elementary laminations. Two distinct tagged
arcs admit an exchange relation if and only if one of the following descriptions hold:

• The two arcs intersect exactly once in their interiors and, if they share endpoints, have
the same tagging at shared endpoints; or

• The two arcs share an endpoint where their taggings disagree, do not intersect in their
interiors, and, if they also share the other endpoint, they have the same tagging there.

Figure 10 illustrates the exchange relation for arcs that intersect in their interior. The arcs being
exchanged are shown in purple and are horizontal and vertical. Each picture of Figure 10 shows
four more arcs, colored red and blue and forming a quadrilateral whose diagonals are the purple
arcs, and some orange curves crossing the quadrilateral that represent elementary laminations
associated to arcs of T . There are some complications in general that we are able to avoid here
by assuming that the purple arcs have, between them, four distinct endpoints. (Otherwise, some
of the blue or red arcs may coincide or some red or blue arc may need to be replaced, in exchange
relations, by the product of two tagged arcs that coincide except for the tagging at one endpoint.)
There is one complication that we will not be able to avoid: If any endpoints of purple arcs are
tagged notched, then the orange curves agree with the elementary laminations for the arcs of T ,
except that all spirals at those endpoints are reversed.

Elementary laminations (possibly with some spirals reversed) play a role in the exchange relation
if they cross a blue arc, then the purple arcs, then the other blue arc, or if they similarly cross
a red arc, then the purple arcs, then the other red arc. Since we have assumed that T has no
notched taggings, the elementary laminations associated to arcs in T can be taken to be disjoint
from each other. (This is almost true in any case; in general, two of these elementary laminations
only intersect when they are associated to a pair of arcs that coincide except for tagging at one
endpoint.) Because the elementary laminations are disjoint from each other, it is impossible to
have some laminations crossing blue-purple-blue and at the same time other laminations crossing
red-purple-red. (In the general case, this is also true, for only slightly more complicated reasons.)
Since we have the choice of which pair of arcs to color red and which to color blue, we take
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Figure 11. Exchange relations for arcs with disagreeing tags.

the convention that the orange curves only have blue-purple-blue crossings, and the pictures in
Figure 10 are colored accordingly.

We adopt the notation Fpurple for the product of the F -polynomials of two purple arcs shown
in Figure 10, and similarly Fblue and Fred. Each orange curve shown is associated to an arc γ ∈ T ,
and ŷorange refers to the product of the variables ŷγ for all γ ∈ T whose associated orange curve has
a blue-purple-blue intersection with the quadrilateral. In general, a factor ŷγ can appear in ŷorange
more than once, but we will consider those exchange relations where each ŷγ appears at most once.
In light of our coloring convention, the F -polynomial exchange relation is

(3) Fpurple = Fblue + ŷorange · Fred.

Figure 11 illustrates the exchange relation for arcs that share a vertex where their taggings
disagree. Each picture of the figure shows the two arcs (in purple and horizontal) being exchanged
and a red and blue arc. We avoid complications by assuming that the two purple arcs have three
distinct endpoints. The same rule on reversing spirals of elementary laminations applies when
non-shared endpoints of the purple arcs are tagged notched. The notation Fpurple again refers to
the product of the F -polynomials of two purple arcs shown. The figure also shows dotted red and
blue arcs (coinciding with one of the purple arcs). The notation Fblue refers to the F -polynomial
of the one non-dotted blue arc and Fred refers to the F -polynomial of the one non-dotted red
arc. The dotted red and blue arcs are an aid to understanding the orange curves, specifically
because we care about blue-purple-blue or red-purple-red crossings, with one of these blues or
reds being dotted. It is again impossible to have both laminations crossing blue-purple-blue and
laminations crossing red-purple-red, so we again take the convention that orange curves have only
blue-purple-blue crossings. The notation ŷorange again refers to the product of the variables ŷγ for
all γ ∈ T whose associated orange curve crosses blue-purple-blue with one of these blues being
dotted. (Again, in general, a factor ŷγ can appear in ŷorange more than once, but we will avoid
that case.) Once again, the exchange relation is given by (3).

Remark 2.1. Equation (3) gives the exchange relation on F -polynomials, interpreting [FT18b,
Proposition 5.1] in terms of elementary laminations. Later, in the proof of Theorem 1.1, we will
also need the principal-coefficients case of the exchange relation on cluster variables, which can be
obtained from Equation (3) by replacing each F -polynomial by the corresponding cluster variable
and replacing ŷorange by yorange, the product of the yγ for all γ ∈ T whose associated orange curve
has a blue-purple-blue intersection.

2.2. Tidyness. We now describe conditions on T and α that turn certain exchange relations into
decompositions of the set of order ideals of Pα. We have not tried to minimize these conditions,
because we can easily satisfy them using the covering arguments in later sections. We assume as
usual that an isotopy representative of α has been chosen to minimize intersections with arcs of T .

We say that (T, α) is tidy if:
• T consists of plain-tagged arcs;
• each triangle of T has three distinct vertices and three distinct edges (so that in particular

each arc of T has two distinct endpoints);
• α has two distinct endpoints;
• no arc in T intersects the interior of α more than once;
• no arc in T both intersects the interior of α and shares an endpoint with α;
• if an arc of T has the same two endpoints as α, then α coincides with that arc except

possibly for tagging.
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Figure 12. Exchange relations for tidy arcs and initial arcs.

This tidyness condition implies the following simplifications:

• T has no self-folded triangles, so the labels of Pα are all of the form ŷγ for γ ∈ T .
• There are no repeated labels in Pα, except in the case where α coincides with an arc β

(not the interior edge of a self-folded triangle) and α has both ends notched, so that the
label ŷβ appears twice (as the minimal and maximal element of Pα, see e.g. Figure 7).
• An arc γ ∈ T is exchangeable with α if and only if it crosses α or it shares with α an

endpoint notched in α (but doesn’t coincide with α up to tagging). In other words, there
is an exchange relation exchanging xα and xγ if and only if ŷγ appears exactly once as a
label in Pα.
• For any arc γ ∈ T , the corresponding elementary lamination contributes at most once

to ŷorange.

We now consider the exchange relations for exchanging arcs α and γ in the special case
when (T, α) is tidy and γ ∈ T is exchangeable with α. The top picture of Figure 12 shows
the case where α and γ cross in their interiors (α is the horizontal purple arc, while γ is the verti-
cal purple arc). Also pictured (in gray) are the arcs of T that α crosses or shares an endpoint with,
and (in black) additional arcs that complete some triangles in T , and (in orange) the elementary
lamination Lγ (which fixes our color choices according to the convention that it should cross the
quadrilateral as blue-purple-blue). In this case, it is impossible for α to coincide with an arc of T
except for tagging, because if so, α could not cross another arc γ of T . It is possible that α is
tagged notched at either or both endpoints, in which case, the red and blue arcs at those endpoints
are also notched. However, since (T, α) is tidy, the endpoints of γ are not tagged notched.

The bottom picture of Figure 12 shows the case where α and γ share an endpoint where they
disagree on tagging, with additional grey and black arcs and orange curve as in the top picture.
In this case, it is possible that α is also tagged notched at the endpoint it does not share with γ,
in which case the red and blue arcs at that endpoint are also notched. Again in this case, the
endpoints of γ are not tagged notched.

It is important to consider the question of how general the pictures in Figure 12 are. Here are
the ways that (T, α) can differ from the pictures in the tidy case.

• The sequence of triangles between endpoints of α can vary. (This variation corresponds
to the ways that P cr

α can be any poset whose Hasse diagram, as a graph, is a path.)
• One or both of the endpoints of α may be on the boundary. When an endpoint p of α is on

the boundary, one or more of the triangles incident to p are deleted and correspondingly
two of the arcs of T incident to p become boundary segments. In this case, α is tagged
plain at p, so the arcs incident to p are irrelevant to the definition of Pα.
• The number of triangles incident to each endpoint p of α may vary (at least 2 when p is

a puncture and at least 1 when p is on the boundary).
• Some black edges may be identified with each other and/or some marked points (excluding

the endpoints of α) may be identified with each other.
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Figure 13. Exchange relations for tidy arcs and initial arcs, with digons.

• One or both endpoints of α may be the puncture in a once-punctured digon formed as the
union of two triangles of T . Figure 13 is a version of Figure 12 with these digons at both
endpoints of α in each picture. The case with digons is not qualitatively different, but
instead simply achieves the lower-bound on the number of arcs in T incident to endpoints
of α. (For that reason, we will continue to draw the cases without digons, as in Figure 12.)

• α may coincide with an arc of T .

2.3. Tidy exchange relation on posets. Assume now that (T, α) is tidy and consider γ ∈ T
exchangeable with α. We define Pred to be the weighted poset Pβ when there is a single red arc β,
or the disjoint union of the two weighted posets Pβ and Pβ′ when there are two red arcs β and β′
in the exchange relation. Note that F (Pred) is then the product of the F (Pβ) for the (one or two)
red arcs in the exchange relation. We define Pblue similarly. (We could also define Ppurple, but
since Pγ is the empty poset, Ppurple would always equal Pα.)

Proposition 2.2. Suppose (T, α) is tidy and γ ∈ T is exchangeable with α, and denote by eγ the
element of Pα labeled ŷγ . Then

• Pblue is obtained from Pα by deleting all elements weakly above eγ ,
• Pred is obtained from Pα by deleting all elements weakly below eγ ,
• ŷorange is the product of the weights of the elements weakly below eγ in Pα.

Hence, the weighted sum F (Pα) of order ideals in Pα decomposes into

• the weighted sum F (Pblue) of order ideals in Pα that do not contain eγ and
• the weighted sum ŷorange · F (Pred) of order ideals in Pα that contain eγ .

This yields the poset exchange relation

(4) F (Pα) = F (Pblue) + ŷorange · F (Pred).

Example 10. To illustrate Proposition 2.2 and its proof, we give a series of examples in Fig-
ures 14–21. Each figure has purple, red, and blue arcs as in Figure 12 or Figure 13. The top-left
picture shows the arcs of T that intersect the purple arc α, colored orange if the corresponding
laminations (with spirals reversed as appropriate) have blue-purple-blue intersections and colored
gray otherwise. The top-right picture shows the corresponding laminations, with the same color
coding. The purple arc γ that is being exchanged with α will always appear orange in the pictures,
so we identify γ explicitly in the figures. The arc γ can also be located using the positions of the
red and blue arcs. In other cases where an arc should be two colors (either red and orange or
purple and orange), both colors are shown side by side. Below the pictures, we identify γ, give
the monomial ŷorange, and picture the posets Pα, Pblue, and Pred.
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Figure 14. First example of Proposition 2.2.
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Figure 15. Second example of Proposition 2.2.
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Figure 16. Third example of Proposition 2.2.



POSETS FOR F -POLYNOMIALS IN CLUSTER ALGEBRAS FROM SURFACES 17

12

3 4 5 6 7
8 9

Arc 2 is γ ŷorange = ŷ2ŷ3ŷ4
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Figure 17. Fourth example of Proposition 2.2.
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Figure 18. Fifth example of Proposition 2.2.
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Figure 19. Sixth example of Proposition 2.2.
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Figure 20. Seventh example of Proposition 2.2.
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Figure 21. Eighth example of Proposition 2.2.

Proof of Proposition 2.2. We continue the notation eδ for the element of Pα labeled ŷδ, for δ ∈ T .
In the one case where there are two elements of Pα labeled ŷδ, namely the case where α coincides
with δ except that α has both endpoints tagged notched, we take eδ to mean the bottom element
of Pα, not the top element.

For the statement about ŷorange, we need to show that, for every arc δ ∈ T , we have eδ ≤ eγ
if and only if the lamination associated to δ (with spirals reversed where it shares an endpoint
with α that is notched in α) has a blue-purple-blue intersection, or equivalently, ŷδ is a factor
of ŷorange. It will also be clear that these factors appear with multiplicity 1. (In the case where α
coincides with δ except that α has both endpoints notched, the top element of Pα labeled ŷδ is
of course never below eγ .) One of the purple arcs is α, so if the lamination associated to δ ∈ T
has a blue-purple-blue intersection, then in particular δ has some intersection with α, so we will
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consider only arcs of T that intersect α. It is impossible for α to coincide with γ except for tagging,
because in that case ŷγ occurs as a label in Pα either 0 or 2 times. This contradicts the hypothesis
that (T, α) is tidy and γ ∈ T is exchangeable with α.

For the statement about Pred, suppose ρ is one of the red arcs. We can choose an isotopy
representative of ρ such that every element eδ of Pρ is also an element of Pα. Furthermore, two
elements of Pρ form a cover relation in Pρ if and only if they form a cover relation in Pα. If ρ and σ
are the two red arcs, then Pρ and Pσ are disjoint subsets of Pα, and Pred is their disjoint union.
We will show that each eδ appears in Pred if and only if eδ 6≤ eγ in Pα. When we have showed
that, since we obtain Pred from Pα by deleting a lower order ideal, and since the cover relations
in Pred are the same as in Pα, we can conclude that the partial order on Pred is the restriction of
the partial order on Pα, as desired.

There are two main cases to consider: The arc γ may cross α or it may share an endpoint
with α where α is tagged notched. In either case, if δ ∈ T does not intersect α or if δ shares an
endpoint of α where α is tagged plain, then neither Pα nor Pred contain an element eδ, and the
associated lamination can only make red-purple-blue intersections. See Figures 14, 15, 17, and 18.
Thus we will not consider such arcs δ below.

In both cases, and in every case for δ, we give a simple condition on δ that is easily equivalent
to eδ ≤ eγ , to the lamination associated to δ having a blue-purple-blue intersection, and to eδ not
being an element of Pred. To avoid unnecessary repetition of words, in every case, we simply state
below what that condition is.

Case 1. γ crosses α. In this case, α does not coincide with an arc of T .

Subcase 1.1. δ crosses α. See Figures 14, 15, and 16. As we move from eγ along α to eδ, each
arc that we cross has a left and right endpoint. The condition is that γ and δ share their right
endpoints and each arc of T crossed in between γ and δ also shares that right endpoint.

Subcase 1.2. δ shares an endpoint p with α such that α is tagged notched at p. See Figure 16.
Let t be the triangle in T that has p as a vertex and contains part of α in its interior. (This t is
bounded by the last arc of T crossed by α and by two arcs of T that share the endpoint p with α.)
The condition is that all three of the following statements hold: every arc crossed by α between eγ
and p shares its right endpoint with γ; the arc δ is an edge of t; and δ shares its right endpoint
with γ. (The notion of “right endpoint” for δ is from the point of view of someone moving along α
from eγ to p. Thus p is the left endpoint of δ.) Equivalently, there is a much simpler condition: δ
coincides with the red arc whose endpoint is p, except that that red arc is notched at p where δ is
plain. (To consider blue-purple-blue intersections in this case, the reversal of spirals at the notched
endpoint is crucial.)

Case 2. γ shares an endpoint p with α where α is tagged notched. This includes the cases where α
coincides with δ except for tagging, and in those cases, no arcs in T cross α.

Subcase 2.1. δ shares the endpoint p. See Figures 17, 18, 19, 20, and 21. The condition is that
one can move from γ to δ clockwise around p without crossing α.

We clarify the condition in cases where δ coincides with α except for tagging: We have already
supposed that α is tagged notched at p. If α coincides with δ and is tagged plain at its other
endpoint, then there is no element eδ in Pα or Pred. If α is tagged notched at both ends and
otherwise coincides with δ, recall that the notation eδ means the bottom element of Pα, not the
top element. (In any case, the top element is not below eγ .) In this case, we consider the condition
to be fulfilled (because, moving from γ to δ clockwise around p, we arrive at α but do not cross it.

Subcase 2.2. δ crosses α. See Figures 17, 18, and 19. Again, arcs crossed by α have a left
endpoint and a right endpoint from the point of view of someone moving along α from eδ to p.
Let t be the triangle in T that has p as a vertex and contains part of α in its interior. The
condition is that the following three statements hold: the arc γ is an edge of t; every arc crossed
by α between eδ and p shares its left endpoint with γ; and δ shares its left endpoint with γ. (The
“left endpoint” of γ is the other endpoint, not p.)
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γ

γ γ γ

Figure 22. The γ-entry of gα and gblue, when γ crosses α, Case 1 in the proof of Proposition 2.3.1.

Subcase 2.3. α is also tagged notched at its other endpoint q and δ shares the endpoint q with α.
See Figures 18, 19, 20, and 21. Let u be the triangle of T having q as a vertex and containing part
of α in its interior. We use the terms left and right from the point of view of someone moving
along α from q to p. The condition is that the following four statements hold: the arc γ is an edge
of t; the arc δ is an edge of u; every arc of T crossed by α (if there are any) shares its left endpoint
with γ; and δ shares its left endpoint with γ. (The left endpoint of δ is the other endpoint, not q.)

This concludes our proof of the statement about Pred and the statement about ŷorange. Reversing
the orientation of S exchanges the red arcs with the blue arcs and replaces the partial order Pα
with the dual partial order. The statement about Pblue thus follows from the statement about Pred
and this orientation-reversal symmetry. Finally, decomposing the order ideals of Pα depending on
whether or not they contain eγ yields the poset exchange relation of Equation (4). �

2.4. g-vectors in tidy exchange relations. We next describe the relation among the g-vectors
appearing in the exchange. We again assume that (T, α) is tidy and consider γ ∈ T exchangeable
with α. Write gblue for the product of monomials gβ associated to the blue arcs, and similarly gred.
The notation of specialization to “y = 1” in the following proposition is shorthand for setting every
tropical variable to 1.

Proposition 2.3. If (T, α) is tidy and γ ∈ T is exchangeable with α, then
1. gblue = xγ · gα and
2. gred = xγ · gα · ŷorange

∣∣
y=1

.

The proof of Proposition 2.3 has a similar feel as that of Proposition 2.2. We separate the
proofs of the two items.

Proof of Proposition 2.3.1. We show that gblue = xγ · gα, in two cases, depending on whether γ
crosses α or shares an endpoint of α where α is tagged notched. In either case, let Q be the
quadrilateral consisting of γ and the two triangles of T having γ as an edge.

Case 1. γ crosses α. Write β and β′ for the two blue arcs. The curve κ(β) follows κ(α) from
near one endpoint of α through the same intersections with triangles of T until they both enter Q
through the same side of Q and then both cross γ before κ(β) ends near an endpoint of γ and κ(α)
continues. The curve κ(β′) has the same relationship with κ(α), but starting from the other
endpoints. We see that the shear coordinates of κ(β) and κ(β′) add up to a vector that agrees
with the shear coordinates of κ(α) except at the γ-entry. It remains only to check, in all four
subcases of how κ(α) can cross Q, that the γ-entry of the sum of the shear coordinates of κ(β)
and κ(β′) is one less than the γ-entry of the shear coordinates of κ(α). This simple check is shown
in Figure 22. In the figure, κ(α) and the contribution to its shear coordinates at γ are shown in
purple, while κ(β) and κ(β′) and the contributions to their shear coordinates at γ are shown in
blue.

Case 2. γ shares an endpoint of α where α is tagged notched. Let β be the one blue arc.
Then κ(β) follows κ(α) from near the other endpoint (not the shared endpoint) of α through the
same intersections with triangles of T until they both enter Q through the same side of Q. At that
point, κ(β) turns right and leaves Q just to the left of the other endpoint (not the shared endpoint)
of γ and either hits a boundary segment or spirals clockwise into that endpoint, while κ(α) turns
left and spirals counterclockwise into the shared endpoint. Thus the shear coordinates of κ(β)
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γ γ

Figure 23. The γ-entry of gα and gblue, when γ shares an endpoint with α, notched in α, Case 2
in the proof of Proposition 2.3.1.

agree with the shear coordinates of κ(α) except at the γ-entry. We check that the γ-entry of the
shear coordinates of κ(β) is one less than the γ-entry of the shear coordinates of κ(α). The check
is again simple and is shown in Figure 23, where there are two subcases corresponding to the two
possible sides through which κ(β) and κ(α) might enter Q. �

Proof of Proposition 2.3.2. To show that gred = xγ ·gα · ŷorange
∣∣
y=1

, it is convenient to rewrite the
identity as gred/gα = xγ · ŷorange

∣∣
y=1

.
Given an orange arc (an arc δ such that eδ ≤ eγ in Pα), there are two triangles of T containing δ

as an edge. Since ŷδ = yδ
∏
β∈T x

bβδ
β , the Laurent monomial ŷδ

∣∣
y=1

is the product xβxβ′ for the two
edges β and β′ (one in each triangle) that are counterclockwise of δ, divided by the similar product
of the two edges that are clockwise, except that if any of these edges are boundary segments, then
we leave them out. Thus ŷorange

∣∣
y=1

is the product of these contributions, over all orange edges.
Because the exponent vector of gα is the negative of the shear coordinates of κ(α) and gred is

the negative of the (sum of the) shear coordinates of κ applied to the red arc(s), we can rephrase
the assertion that gred/gα = xγ · ŷorange

∣∣
y=1

in terms of shear coordinates. Specifically, taking
the shear coordinates of κ(α) minus the (sum of the) shear coordinate(s) of κ applied to the red
arc(s), the entry at each arc must equal the corresponding exponent in ŷorange

∣∣
y=1

, plus 1 in the
entry for γ.

We will verify that this equality between the difference of shear coordinates and the exponents
on xγ · ŷorange

∣∣
y=1

. We again argue in two cases, depending on whether γ crosses α or shares an
endpoint of α where α is tagged notched.

Case 1. γ crosses α. From the proof of Proposition 2.2 (Case 1), we see that every orange arc δ
shares an endpoint with γ. Indeed, for each endpoint p of γ, there is a sequence (possibly a
singleton) containing γ and all arcs of T that are clockwise of γ at p up to a particular arc (not
skipping any arcs). The sequence does not extend beyond the red arc, but its last entry might be
the red arc (in which case, the red arc and α are tagged notched at the other end of the red arc,
opposite from p). If δ is this last orange arc at p, consider the triangle t that has δ as an edge and
is clockwise of δ at p. Let η be the edge of t that shares the endpoint p with δ and let ζ be the
other edge. Similarly, let η′ and ζ ′ be the analogous arcs associated with the other endpoint of γ.

There are three subcases, depending on whether there is a non-singleton sequence of arcs
at neither end of γ, at one end, or at both. Figure 24 shows, in these three cases, all of the
contributions, positive and negative, to the exponents of cluster variables in xγ · ŷorange

∣∣
y=1

. These
contributions are on the orange arcs and the arcs η, ζ, η′, and ζ ′.

The exponent of xη in ŷorange
∣∣
y=1

is 1 and the exponent of xζ is −1. Since δ is the last orange
arc, κ(α) does not cross η, but rather enters the triangle t through ζ. (If δ coincides with the red
arc, we are using the fact that the other end of the red arc is notched.) There are two possibilities
for where κ(α) comes from before crossing ζ. Figure 25 shows that the shear coordinates of κ(α)
minus the sum of the shear coordinates of κ applied to the red arcs has the correct entry at ζ
and η. (It is possible that η is a boundary segment, in which case the contribution to η disappears
both in the shear coordinates and in ŷorange

∣∣
y=1

.) The same is true replacing ζ and η with ζ ′

and η′. Since κ(α) coincides with κ of one of the red arcs until they both cross ζ, they have the
same shear coordinates for every arc of T crossed by κ(α) before it crosses ζ.
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Figure 24. Exponents in xγ · ŷorange
∣∣
y=1

, Case 1 in the proof of Proposition 2.3.2.
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Figure 25. Shear coordinates at ζ and η, Case 1 in the proof of Proposition 2.3.2.
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Figure 26. Shear coordinates of α on the orange arcs, Case 1 in the proof of Proposition 2.3.2.

γ
ζ

γ γ

Figure 27. Exponents in xγ · ŷorange
∣∣
y=1

and shear coordinates of α and the red arc, Subcase 2.1
in the proof of Proposition 2.3.2.

It remains only to show that the shear coordinates of κ(α) minus the sum of the shear coor-
dinates of κ applied to the red arcs has the correct entries at the orange arcs. Indeed, κ applied
to the red arcs has is disjoint from the orange arcs, so the point is the shear coordinates of κ(α).
This shear coordinate computation is shown in Figure 26, in the same three cases as Figure 24,
and with the same result.

Case 2. γ shares an endpoint of α where α is tagged notched. Again, the proof of Proposition 2.2
(this time Case 2), indicates that every orange arc δ shares an endpoint with γ. Let p be the
endpoint common endpoint of γ and α (where α is notched) and let q be the other endpoint of γ
(not of α). There are five subcases.

Subcase 2.1. γ is the only orange arc. This case is illustrated in Figure 27. The left picture of the
figure shows all contributions to the exponent vector of xγ · ŷorange

∣∣
y=1

. The curve κ(α) crosses the
curve labeled ζ after leaving p and there are two possibilities for where κ(α) goes after crossing ζ.
The middle and right picture verify, for these two possibilities, that the shear coordinates of κ(α)
minus the shear coordinates of κ of the red arc have entries that agree with the exponent vector
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Figure 28. Exponents in xγ · ŷorange
∣∣
y=1

and shear coordinates of α and the red arc, Subcase 2.2
in the proof of Proposition 2.3.2.

γ

ζ

γ γ

Figure 29. Exponents in xγ · ŷorange
∣∣
y=1

and shear coordinates of α and the red arc, Subcase 2.3
in the proof of Proposition 2.3.2.

γ
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Figure 30. Exponents in xγ · ŷorange
∣∣
y=1

and shear coordinates of α and the red arc, Subcase 2.4
in the proof of Proposition 2.3.2.

of xγ · ŷorange
∣∣
y=1

. The configuration shown in the right picture includes the possibility that α
coincides with an arc of T except for being notched at one side.

Subcase 2.2. All orange arcs share the endpoint p and there are at least 2 non-orange arcs at p.
This case is illustrated and verified in Figure 28, where the pictures are analogous to those in
Figure 27. In this case, the configuration shown in the middle picture includes the possibility
that α coincides with an arc of T except for being notched at both sides and the right picture
again includes the possibility that α coincides with an arc of T except for being notched at one
side.

Subcase 2.3. All orange arcs share the endpoint p and there is exactly 1 non-orange arc at p.
This case is illustrated and verified in Figure 29, with pictures analogous to previous cases. Again,
the middle picture includes the possibility that α coincides with an arc of T except for being
notched at both sides and the right picture includes the possibility that α coincides with an arc
of T except for being notched at one side.

Subcase 2.4. All arcs at p are orange and there is exactly one orange arc at q aside from γ. This
case is Figure 30. The arc γ and the other orange arc with an endpoint q bound a triangle whose
third side is also orange. The middle picture includes the possibility that α coincides with an arc
of T except for being notched at both sides.

Subcase 2.5. All arcs at p are orange and there is more than one orange arc at q aside from γ.
This case is Figure 31, which is like the previous figures, except that the top picture shows the
exponent vector of xγ · ŷorange

∣∣
y=1

and the bottom two pictures show the shear coordinates of κ(α)

and of κ applied to the red arc. �
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γ
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Figure 31. Exponents in xγ · ŷorange
∣∣
y=1

and shear coordinates of α and the red arc, Subcase 2.5
in the proof of Proposition 2.3.2.

3. Hyperbolic geometry and the coefficient-free case

In this section, we prove the analog of Theorem 1.1 in the coefficient-free case. This is a
specialization of Theorem 1.1 by setting all of the tropical variables yγ to 1. The coefficient-
free case is not used in the proof of Theorems 1.1 in Section 4, but rather serves to illustrate
the remaining key idea of the proof using the simpler of the two hyperbolic-geometric settings
of [FT18a]. We continue the notation (S,M) for a marked surface and T for a fixed tagged
triangulation, again assumed to have all arcs tagged plain, except possibly at some punctures p
incident to exactly two tagged arcs of T , identical except for opposite taggings at p. We also
continue the notation T ◦ for the ordinary triangulation corresponding to T .

The coefficient-free case of the theorem associates the same poset Pα to a tagged arc α, but
with a different weighting. For e ∈ Pα, we define the weight w̃(e) to be the monomial obtained
from w(e) by setting all tropical variables yγ to 1. Thus when w(e) is ŷγ for some γ ∈ T ,
then w̃(e) =

∏
δ∈T x

bδγ
δ . When w(e) =

ŷβ
ŷγ
, then w̃(e) = 1 because in this case bδβ = bδγ for

all δ ∈ T .
Theorem 3.1. The coefficient-free cluster variable associated to a tagged arc α is

(5) xα = gα ·
∑
I

∏
e∈I

w̃(e),

where the sum is over all order ideals I in Pα.

The entire discussion in Section 1.3 holds in the coefficient-free case verbatim (but omitting the
tropical variables yγ or setting them all to 1), so in particular we have the following version of
Proposition 1.7.

Proposition 3.2. Assume that Equation (5) holds for every tagged arc α with the following
property: When α has an endpoint that is the interior vertex of a self-folded triangle in T ◦, the
tagging of α is plain at that endpoint. Then Equation (5) holds for every tagged arc.

3.1. Lambda lengths. In preparation for the proof of Theorem 3.1, we explain how cluster vari-
ables can be realized in terms of certain hyperbolic lengths. (Proofs of statements left unjustified
here are found in [FT18a, Chapters 7–8].) More precisely, the initial cluster variables can be taken
as indeterminates (constrained to be positive) whose values determine certain hyperbolic lengths
in the surface and thus determine a hyperbolic metric and a choice of certain curves called horo-
cycles. Although it is the initial cluster variables that determine the metric, it is more pleasant
to explain the construction in the reverse order, starting from a metric, choosing horocycles, and
measuring certain lengths that determine the initial cluster variables.

Given (S,M) and T , choose a finite-area hyperbolic metric with constant curvature −1 on S\M
with a cusp at each point in M, with the property that each boundary segment is a geodesic. Since
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the arcs in T ◦ are defined up to isotopy, we can also assume that they are geodesics. At each
marked point p, choose a horocycle hp, meaning a curve that is orthogonal to every geodesic
that limits to p. This hyperbolic metric together with the choice of horocycles is a decorated
hyperbolic structure on (S,M). Given a geodesic γ that limits to marked points p and q, the
distance along the geodesic between hp and hq is finite (in contrast to the distance along the
geodesic between p and q). The signed length l(γ) is this finite distance, counted as positive
if the segment of γ between hp and hq is outside the disks they define, zero if hp, hq, and γ all
intersect at the same point, and otherwise negative if the segment of γ between hp and hq is inside
the disks they define. The lambda-length of γ is defined to be λ(γ) = exp(l(γ)/2).

The first key result about lambda lengths [FT18a, Theorem 7.4] is that an arbitrary assignment
of a positive number to each arc in T ◦ and to each boundary segment of (S,M) uniquely deter-
mines a decorated hyperbolic structure such that the arcs and boundary segments are geodesics
and the assigned numbers are the lambda lengths. (In the language of [FT18a, Theorem 7.4],
there is a bijection from the set of such assignments to the decorated Teichmüller space , the
space of decorated hyperbolic structures. Indeed, [FT18a, Theorem 7.4] says that the map is a
homeomorphism.)

When p is a puncture, the horocycle hp has a finite positive length L(hp) in the hyperbolic
metric, and L(hp) specifies hp uniquely among horocycles at p. The conjugate horocycle h̄p is
the unique horocycle at p whose length satisfies L(h̄p)L(hp) = 1. The lambda length of a tagged
arc γ is defined just as in the untagged case, except that at each endpoint p where γ is tagged
notched, we use the conjugate horocycle h̄p in place of hp.

The lambda lengths of the tagged arcs in T determine the lambda lengths of the ordinary arcs
in T ◦ and vice versa. Specifically, suppose β and γ are tagged arcs in T that coincide except that
their taggings are both plain at one endpoint q but disagree at the other endpoint p, and suppose
that δ is the ordinary arc in T ◦ with both endpoints at q and follows β and γ closely to form a
loop around p. Then

(6) λ(δ) = λ(β)λ(γ).

(This is [FT18a, Lemma 8.2].) Thus in particular, we can arbitrarily choose positive lambda
lengths xγ for the tagged arcs in γ ∈ T and for the boundary segments to uniquely determines
a hyperbolic metric with constant curvature −1 and a choice of horocycles. The chosen lambda
lengths can be thought of as indeterminates which then determine the lambda lengths of all
other tagged arcs. Taking these chosen lambda lengths to be the initial cluster variables for an
exchange pattern with initial exchange matrix B(T ), the cluster variables in the exchange pattern
are indexed by tagged arcs in (S,M). Each tagged arc has a geodesic representative whose lambda
length is the associated cluster variable. This is part of [FT18a, Theorem 8.6]. That theorem does
not take coefficient-free cluster algebras but rather boundary coefficients, but we can recover the
coefficient-free case by setting the lambda length of each boundary component to be 1.

We can now interpret Theorem 3.1 as the assertion that a given tagged arc α in (S,M) has
lambda length gα ·

∑
I

∏
e∈I w̃(e), where as always the sum is over all order ideals I in Pα.

3.2. The tile cover of a tagged arc. The key to Theorem 3.1 is to construct a tagged arc α′
in a new surface (S′,M′), equipped with a triangulation T ′ and a decorated hyperbolic structure
such that the lambda length λ(α′) is the same as λ(α), but with simpler combinatorics (that is,
so that (T ′, α′) is tidy in the sense of Section 2.2). This will allow us to use Proposition 2.2 in an
inductive proof of the theorem.

A given triangle t of T ◦ may not have three distinct edges and three distinct vertices. Define
a tile of t to be an ideal triangle with three distinct edges and three distinct vertices and with
a hyperbolic metric such that the interior of the tile is isometric to the interior of t. The metric
on the interior of the tile uniquely determines a metric on the edges, and since we have assumed
that the arcs in T ◦ are geodesic, the edges of the tile are also geodesic. The tile again has cusps
at its vertices. The tile is naturally equipped with horocycles at each of its vertices, namely the
images of the horocycles on vertices of t. If two triangles t and u of T ◦ share an edge, then we can
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identify a tile of t and a tile of u along that edge in such a way that their decorated hyperbolic
structures agree on the edge and define a decorated hyperbolic structure on their union.

Given a tagged arc α, the tile cover of α is a tagged arc α′ in a surface (S′,M′) with a
decorated hyperbolic structure and a triangulation T ′, constructed as follows and illustrated in
Example 11 and Figures 32–38. (Strictly speaking, we should say “a” tile cover, since there are
choices to be made at the end of the construction. We say “the” tile cover because the relevant
parts of the tile cover are completely determined by α and T .) The crucial property of the tile
cover is that (T ′, α′) is tidy in the sense of Section 2. We only construct the tile cover when α has
the following property: If α has an endpoint p that is the interior vertex of a self-folded triangle
in T ◦, then α is tagged plain there. (We will only need this case because of Proposition 3.2 in the
coefficient-free case and Proposition 1.7 in the principal-coefficients case.)

First, assume α does not coincide, except for tagging, with an arc of T ◦. Then α can be
decomposed into a finite collection of segments, each of which has its endpoints on arcs of T ◦
(possibly at marked points) and otherwise not intersecting the arcs of T ◦. Thus each segment is
contained in some triangle of T ◦. For each of these segments construct a tile from the triangle
containing it. Since α can intersect the same triangle multiple times, we might construct multiple
tiles for a given triangle. Furthermore, at each endpoint of α that is not the interior point of a
self-folded triangle in T ◦, construct a tile for each triangle-corner of a triangle at that endpoint. A
triangle of T ◦ can have 0, 1, 2, or 3 corners at that endpoint, so again some triangles may become
multiple tiles. At each endpoint of α that is the interior point of a self-folded triangle in T ◦,
construct two copies of the tile for the self-folded triangle. Then identify all of these triangles in
the natural way: For each endpoint of α, identify the tiles on their edges around the endpoint in
the order that the triangle corners appear around that endpoint. (When an endpoint p of α is the
interior point of a self-folded triangle in T ◦, arrange the two tiles for that triangle about p to form
a digon whose two edges correspond to the exterior edge of the self-folded triangle. If an endpoint
of α is the puncture in a once-punctured digon formed by two triangles in T ◦, identify the tiles
for the two triangles so that the same is true of the corresponding endpoint of α in T ′.) Then
continue identifying edges to join the segments of α in order and lift α to a tagged arc α′ (the
union of the lifts of the segments) in the union of the tiles. The union of the tiles is topologically
a disk.

If α coincides, except for tagging, with an arc of T ◦, then instead of making tiles for segments
of α, make two tiles, for the triangles on both sides of α. If α coincides with the interior edge of a
self-folded triangle, then the two tiles are identical. Again at each endpoint where α, construct a
tile for each triangle corner (without making additional copies of the tiles for the triangles on both
sides of α). The edges of these tiles are then identified in the natural way around each endpoint
of α. If α coincides with the interior edge of a self-folded triangle in T ◦, then the tiles from the two
sides of α are glued together to form a digon. If α coincides with an interior edge of a punctured
digon in T ◦, then α′ also coicides with an interior edge of a punctured digon in T ′. The union of
the tiles is again a disk.

In either case, embed the disk into some larger marked surface (S′,M′) with a tagged triangu-
lation T ′ containing the tiles as triangles, with edges of tiles constituting boundary segments of S′
if and only if they come from boundary segments of S. This can be done in such a way that T
consists of plain-tagged arcs and each triangle of T has three distinct vertices and three distinct
edges (as is already true of the tiles). Crucially, (T ′, α′) is tidy.

Example 11. We illustrate the combinatorics of the tile cover in Figures 32–38. In each figure,
the left picture shows α as a tagged arc in (S,M). The marked surface (S,M) and the tagged
triangulation T are the same in Figures 32–33 and in Figures 34–37. The ordinary triangulation T ◦
is pictured, and the labeling of arcs of T ◦ implies a labeling of the tagged arcs of T as usual. (In
Figure 32 for example, 2 labels the tagged arc that agrees with 3 but with a notch at highest
puncture shown, and similarly 10 labels the tagged arc that agrees with 11 but with a notch.) In
each figure, the right picture shows the tile cover α′ in (S′,M′). The picture shows only the part
of (S′,M′) that is constructed explicitly. Gray shading indicates certain triangle edges that are
boundary segments in (S′,M′). All other edges shown are arcs, not boundary segments. Figure 34
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Figure 32. The tile cover of a tagged arc.
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Figure 33. The tile cover of a tagged arc.

continues the example of Figure 5. Figure 35 continues the example of Figure 6 and illustrates
the reduction in Section 1.3: In Figure 35, the arc α is no longer tagged notched at the right
puncture, and correspondingly, the roles of arcs 6 and 7 have been exchanged. Figure 36 continues
the example of Figure 8.

Remark 3.3. The definition of the tile cover uses more tiles than are required for the results
of this section: We could have left out the triangles surrounding endpoints of α that are tagged
plain. The extra triangles around punctures will be needed in Section 4 when we prove the full
version of Theorem 1.1.

The tiles that form the tile cover of α come equipped with a decorated hyperbolic structure: By
construction, each tile gets this structure from a triangle of T ◦, and the structure agrees on shared
edges of tiles. The chosen horocycles at marked points in M lift to tiles along with the hyperbolic
metric, and horocycles in adjacent tiles join to make horocycles in (S′,M′). In order to apply the
results of Section 2 to the tile cover of α, we need to correctly determine the lambda lengths of
the arcs of T ′ in this decorated hyperbolic structure to (S′,M′). (In fact, it is only necessary to
determine the lambda lengths of the edges of tiles, because these determine the hyperbolic metric
on the union of the tiles.) This is essentially straightforward, but with one small wrinkle coming
from self-folded triangles.
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Figure 34. The tile cover of a tagged arc.
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Figure 35. The tile cover of a tagged arc.

As before, let xβ stand for the lambda length of a tagged arc β ∈ T , so that the initial cluster
is {xβ | β ∈ T}. We emphasize that β is a tagged arc in T , not an ordinary arc in T ◦. For most
arcs β, the distinction is meaningless, but if β is tagged notched at one endpoint (and thus by
our assumptions on T coincides with another arc γ of T that is tagged plain), then β is not the
ordinary arc (loop) that forms the outer edge of a self-folded triangle of T ◦. However, it is that
loop that lifts to become an arc in the triangulation T ′ of (S′,M′). In this situation, Equation (6)
says that the loop has lambda length xβxγ . Thus the lambda lengths of tile edges are as follows:
If the edge comes from a boundary segment of (S,M), then its lambda length is 1. If the edge
comes from an arc β that is not the outer edge of a self-folded triangle of T ◦, then its lambda
length is xβ . If the edge comes an arc δ that is the outer edge of a self-folded triangle of T ◦,
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Figure 36. The tile cover of a tagged arc.
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Figure 37. The tile cover of a tagged arc.

then its lambda length is xβxγ , where β and γ are the two tagged arcs of T corresponding to that
self-folded triangle.

Example 12. Continuing Example 11, we describe the lambda lengths of the arcs and boundary
segments shown in tile cover (the right picture) in Figure 38. We use the numbering of arcs of T ◦
shown in the left picture. The boundary segments (indicated by gray shading) each have lambda
length 1. Arcs labeled 2 have lambda length x1x2. Any other arc labeled i has lambda length xi.
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Figure 38. The tile cover of a tagged arc.

3.3. Proof of the coefficient-free version of the main theorem. The last ingredients in
the proof of Theorem 3.1 are three lemmas that relate a tagged arc α to its tile cover α′. All
three lemmas have the hypothesis that wherever α has an endpoint that is the interior vertex of a
self-folded triangle in T ◦, the tagging of α is plain at that endpoint. In each lemma, α′ is the tile
cover of α in (S′,M′).

Lemma 3.4. The lambda length λ(α) in (S,M) equals the lambda length λ(α′) in (S′,M′).

Proof. We have decomposed α into a finite collection of segments according to the triangulation T ◦,
constructed a tile in T ′ for each segment with the same local hyperbolic metric, and transported the
horocycles in the corresponding corners of the tiles. Crucially, whenever α is tagged notched at one
of its endpoints p, the length of the horocycle hp is the same as the length of the horocycle at the
corresponding point in the tile cover. (The neighborhood of every puncture p maps isometrically
to the neighborhood of the corresponding puncture in the tile cover, except when p is the interior
vertex of a self-folded triangle of T ◦. However, by hypothesis, α must be tagged plain at any such
puncture.) Therefore, in any case where the lambda length of α involves a conjugate horocycle,
the lift of that conjugate horocycle to the tile cover is precisely the conjugate horocycle in (S′,M′).
We see that the length l(α) of the segment of α in (S,M) between the horocycles corresponding
to its endpoints equals the length l(α′) of the segment of α′ in (S′,M′) between the horocycles
corresponding to its endpoints. Thus λ(α′) = exp(l(α′)/2) = exp(l(α)/2) = λ(α). �

Lemma 3.5. The g-vector gα in (S,M) equals the g-vector gα′ in (S′,M′).

Proof. The monomial gα′ is the product of the lambda lengths λ(γ′) raised to the exponent
−bγ′(T ′, κ(α′)) over all arcs γ ∈ T ′. (Recall that bγ′(T ′, κ(α′)) is the entry, in position γ, of the
shear coordinate of κ(α′) with respect to T ′.) Since T ′ has all arcs tagged plain, for any γ ∈ T ′,
there is quadrilateral in T ′ with γ′ as a diagonal. There is a contribution λ(γ′)±1 to gα′ every
time κ(α′) crosses that quadrilateral through opposite sides, but by construction, κ(α′) makes
at most one crossing of every quadrilateral in T ′. For every quadrilateral crossed, there is a
corresponding pair of triangles in T (in (S,M)), crossed by α, and sharing an edge that is an
arc γ ∈ T ◦. Possibly α crosses γ many times, but this crossing makes the same contribution ±1
as the contribution from α′ crossing γ′.

If γ is not the exterior edge of a self-folded triangle in T ◦, then λ(γ) is xγ and, by construc-
tion λ(γ′) is also xγ . If γ is the exterior edge of a self-folded triangle in T ◦, then let δ be the
interior edge. There are two possibilities: Either this crossing of γ by κ(α) happens as κ(α) passes
through the self-folded triangle, or this crossing happens as κ(α) spirals into the interior vertex of
the triangle.

The case where κ(α) passes through the triangle is illustrated in Figure 39 (Example 13). In
this case, by the definition of the shear coordinate in the presence of self-folded triangles, this
crossing of γ contributes the same ±1 to the shear coordinates at the entries γ and δ. Thus
the contribution of this crossing of γ is xγxδ. By construction λ(γ′) is also xγxδ. (In this case
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Figure 39. Computing gα and gα′ .

where κ(α) passes through the self-folded triangle, it is impossible for γ to be the interior edge of
a self-folded triangle in T ◦, because if so, any crossing of γ by α lifts to a crossing of γ′ by α that
contributes nothing to the shear coordinate.)

The case where κ(α) spirals into the interior edge appears in Figure 39 but also more specifically
in Figure 40. This crossing either contributes +1 to the γ-entry of the shear coordinates of κ(α)
and contributes nothing to the δ-entry or contributes nothing to the γ-entry and contributes −1
to the δ-entry, thus contributing either xγ or x−1δ to gα. In either case, since α′ is tagged plain at
this endpoint, there is a contribution −1 to the shear coordinate of one of the arcs in T ′ that is a
lift of the interior edge. (This occurs because κ(α′) crosses that arc of T ′ and then hits an arc of
T ′ that does not come from a tile.) When the crossing contributes +1 to the γ-entry of the shear
coordinates of κ(α), the crossing by κ(α′) contributes +1 to the shear coordinate given by the
lift of γ, and the net contribution to gα′ is (xγxδ) · x−1δ = xγ . When the crossing contributes −1
to the δ-entry of the shear coordinates of κ(α), the crossing by κ(α′) contributes 0 to the shear
coordinate given by the lift of γ, and the net contribution to gα′ is x−1δ . �

Example 13. Figure 39 shows the computations of gα and gα′ , continuing the example of
Figure 33. Both endpoints of α are at the same puncture, the interior vertex of a self-folded
triangle. Following κ(α) to the right from this point and keeping in mind the minus sign in
the exponent in Equation (2), the contributions to gα are x11x−114 x7x

−1
2 x−13 x1x

−1
9 x11. If we fol-

low α′ in the same direction (from the top of the picture on the right), the contributions to gα′

are x11x−114 x7(x2x3)−1x1x
−1
9 x11. Figure 40 shows two much simpler examples that illustrate the

two possibilities for shear coordinates of κ(α) and κ(α′) when α has an endpoint at the interior
vertex of a self-folded triangle.

Lemma 3.6. F (Pα)
∣∣
y=1

= F (Pα′)
∣∣
y=1

, where the notation of specializing to “y = 1” is shorthand
for setting every tropical variable to 1.

Proof. The posets are isomorphic by construction, and we check that corresponding ideals have
the same weight in the sense of w̃ (setting the tropical variables to 1 in w). Indeed, it is simple to
check that corresponding elements have the same weight.

If γ is an arc in T ◦, then ŷγ
∣∣
y=1

is the product
∏
β∈T x

bβγ
β . Here bβγ is the βγ-entry of the

exchange matrix (i.e. signed adjacency matrix) associated to T . If γ is not the interior edge of a
self-folded triangle, then there is a positive contribution to the exponent of xβ for every triangle
of T ◦ in which β precedes γ in clockwise order, and, if β is the interior edge of a self-folded
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Figure 40. Computing gα and gα′ (self-folded triangle possibilities).

triangle with exterior edge δ, a positive contribution to the exponent of xβ for every triangle of T ◦
in which β precedes δ in clockwise order. Negative contributions to the exponent of xβ are the
same, but with “clockwise” replaced with “counterclockwise” throughout. (If γ is the exterior edge
of a self-folded triangle and β is the interior edge, then the positive and negative contributions to
the exponents of xβ cancel.) If γ is the interior edge of a self-folded triangle, then by the definition
of the signed adjacency matrix, the product

∏
β∈T x

bβγ
β is the same as for the exterior edge.

For a lift of γ to the edge γ′ of a tile in the tile cover (S′,M′), the corresponding product
is
∏
β′∈T ′ λ(β′)bβ′γ′ . The contributions to this product have the same description, except that

there are no self-folded triangles in T ′. Instead, when β′ is the lift of the exterior edge β of a
folded triangle whose interior edge is δ, the lambda length λ(β′) is xβxδ. When γ the exterior
edge of a self-folded triangle with interior edge δ, the tile for that triangle has edges with lambda
lengths xγxδ, xδ, and xδ. Thus the contributions of xδ to

∏
β′∈T ′ λ(β′)bβ′γ′ cancel, just as they

cancel in
∏
β∈T x

bβγ
β . When γ is the interior edge of a self-folded triangle with exterior edge δ, the

lift γ′ is the edge of two tiles each with edges of lambda lengths xγ , xγ and xγxδ, and the edges
with lambda lengths xγxδ are adjacent in the quadrilateral formed by the two tiles. Thus all of
the contributions to

∏
β′∈T ′ λ(β′)bβ′γ′ cancel, so that the product is 1.

Suppose e is an element of Pα and e′ is the corresponding element of Pα′ . The above considera-
tions show that if w(e) = ŷγ (so that γ is not the interior edge of a self-folded triangle), then w̃(e)

and w̃(e′) both equal
∏
β∈T x

bβγ
β . They also show that if w(e) = ŷγ/ŷδ (so that γ is the interior

edge of a self-folded triangle with exterior edge δ), then w̃(e) and w̃(e′) both equal 1. �

Finally, we prove the coefficient-free case of the main result.

Proof of Theorem 3.1. By Proposition 3.2, we need only prove the theorem for tagged arcs α
that are plain at any endpoint that is the interior vertex of a self-folded triangle. We write (5)
as λ(α) = gα · F (Pα)

∣∣
y=1

, with notation as in Lemma 3.6.
Suppose α is a tagged arc in (S,M). We argue by induction on the number of elements of Pα

that λ(α) = gα · F (Pα)
∣∣
y=1

. Specifically, the inductive hypothesis is that the formula holds for
any tagged arc α′ in any triangulated marked surface such that Pα′ has fewer elements than Pα.
The base of the induction is when Pα is empty. In this case, the sum is empty, and α is either an
arc in T or is the exterior edge of a self-folded triangle in T ◦. If α is an arc in T , then gα = xα, as
desired. If α is the exterior edge of a self-folded triangle in T ◦, then gα = xβxβ′ , where β and β′
are the two tagged arcs in T associated to the self-folded triangle. This is correct in light of (6).
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If Pα is not empty, then construct the tile cover α′ in a marked surface (S′,M′) with a trian-
gulation T ′. By construction, α′ has distinct endpoints and does not cross itself, so it is a tagged
arc in (S′,M′). Also, Pα′ is isomorphic (ignoring the weighting for a moment) to Pα. Further-
more, (T ′, α′) is tidy, so there is an arc γ′ ∈ T ′ such that ŷγ′ occurs exactly once as a label in Pα,
and Proposition 2.2 applies. Applying (4) to α′ and multiplying through by xγ · gα′ , we obtain

(7) xγ′ · gα′ · F (Pα′) = xγ′ · gα′ · F (Pblue) + xγ′ · gα′ · ŷorange · F (Pred).

The labeled posets Pblue and Pred, their labels in the ŷ-monomials, and the monomial ŷorange all
refer, of course, to the triangulation T ′ of (S′,M′).

The quantity F (Pblue) in Equation (7) is the product of one or two polynomials F (Pδ′) for
tagged arcs δ′ in (S′,M′), and each of these posets Pδ′ has strictly fewer elements than Pα′ ,
which has the same number of elements as Pα. By induction, the lambda length λ(δ′) in (S′,M′)
is gδ′ · F (Pδ′)

∣∣
y=1

. Each δ′ is a tagged arc, so this lambda length is a cluster variable xδ′ .
Similarly, F (Pred) is the product of one or two polynomials F (Pδ′) and by induction, the lambda
length of each δ′ is gδ′ · F (Pδ′)

∣∣
y=1

, which is again a cluster variable xδ′ .
Specializing all tropical variables to 1 and appealing to Proposition 2.3, the right side of (7)

becomes the right side of the exchange relation exchanging xα′ and xγ′ . We conclude that the
cluster variable xα′ is given by gα′ · F (Pα′)

∣∣
y=1

. This cluster variable is the lambda length λ(α′).
We have seen that λ(α′) = gα′ · F (Pα′)

∣∣
y=1

, which shows that λ(α) = gα · F (Pα)
∣∣
y=1

by
Lemmas 3.4, 3.5 and 3.6. �

4. Tropical hyperbolic geometry and the principal coefficients case

We now prove the full version of Theorem 1.1, which can be rephrased as follows: the cluster
variable xα equals the g-vector gα times the weighted sum F (Pα). The proof follows the same
outline and uses some of the same results as in Section 3. We begin by explaining how cluster
variables with principal coefficients can be realized in terms of laminations and certain hyper-
bolic lengths and corresponding tropical hyperbolic lengths. More details are found in [FT18a,
Chapters 9–15].

4.1. Opened surfaces. As before, we are given a marked surface (S,M) and a tagged trian-
gulation T with all arcs tagged plain, except possibly at some punctures p incident to exactly
two tagged arcs of T , identical except for opposite taggings at p. The corresponding ordinary
triangulation is T ◦. The tagged triangulation determines a multi-lamination L of (S,M). General
choices of L lead to arbitrary coefficients of geometric type, but for principal coefficients at T ,
the multi-lamination L consists of elementary laminations Lγ for tagged arcs γ ∈ T , as defined in
Section 2.1. We will also consider a multilamination A consisting of elementary laminations for
arcs in T ◦.

Recall the construction reviewed in Section 3.1: Once (S,M) and T are fixed, there is a bijection
from the set of tuples of positive numbers indexed by T to the set of decorated hyperbolic struc-
tures on (S,M)—meaning hyperbolic structures with constant curvature −1 and distinguished
horocycles about each marked point—with all boundary segments having lambda length 1. The
tuples of positive numbers describe the lambda lengths xα of the arcs α ∈ T . Once a particular
decorated hyperbolic structure is chosen (or equivalently, once the lambda lengths xα are chosen),
every tagged arc has a lambda length. The lambda length of a tagged arc γ, as a function of the
lambda lengths xα, is the coefficient-free cluster variable associated to γ.

The analogous construction with principal coefficients is summarized as follows: Once (S,M)
and T are fixed (and thus L is fixed to be the elementary laminations associated to T ), we choose
two tuples of positive numbers, each tuple indexed by T . For each tagged arc α ∈ T , we choose a
positive real number xα that will eventually be its laminated lambda length. For each elementary
lamination Lγ (for γ ∈ T ), we choose a positive real weight yγ that will play the role of a tropical
variable. (In [FT18a], these tropical variables are denoted qi.) These pairs of tuples determine an
opening of S (a surface in which some of the punctures are replaced by holes, meaning removed
disks with an orientation), a hyperbolic metric with curvature −1 on the opened surface and
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horocycles on all of the non-opened marked points, with boundary conditions on the metric that
determine the lambda lengths of the boundary segments and the holes in terms of the yγ . Once an
opening, hyperbolic metric, and horocycles are chosen (or equivalently, once the laminated lambda
lengths xα and the weights yγ are chosen), every tagged arc has a laminated lambda length. The
laminated lambda length of an arc γ, as a function of the xα and the yγ , is the principal-coefficients
cluster variable associated to γ. We now provide more details.

The transverse measure lLγ (p) of a puncture p with respect to an elementary lamination Lγ
is 1 for each endpoint of γ that is at p and tagged plain and −1 for each endpoint of γ that is
at p and tagged notched, and otherwise zero. Since it is possible for γ to have both endpoints at p
if they have the same tagging, these contributions can combine to make 2 or −2 but can never
cancel. (In this definition of transverse measure of a puncture, we have combined [FT18a, (14.2)]
with the definition of Lγ and the definition of a lift of a lamination that will be given below.) The
transverse measure lLγ (β) of a boundary segment β with respect to Lγ is the number of times
(0, 1, or 2) that Lγ has an endpoint on β. Thus if q is the right endpoint of β (right as we stand
on β looking towards the interior of S), then in light of the definition of Lγ , the transverse measure
of β is the number of endpoints of γ that are at q. The tropical lambda length is defined to
be c(s) =

∏
γ∈T y

lLγ (s)
γ for s a puncture or boundary segment. (Later, when we define tropical

lambda lengths of tagged arcs, we use the notation cL. There, L stands for a particular lift of the
multilamination L to the opened surface. However, the tropical lambda lengths of punctures and
boundary segments are independent of the lift, and we suppress the subscript L here.)

To make an opening of (S,M), we choose some subset P of the punctures and open those by
replacing each p ∈ P with a hole Cp (a new boundary component where an open disk is removed
from S) with marked point Mp on Cp. Each Cp for p ∈ P is given an orientation, clockwise or
counterclockwise. The opening depends on the choice of the weights yγ . Specifically, we use these
weights to assign lambda lengths to holes and boundary segments in the opened surface, thus
constraining the choice of which holes are opened, the orientations of opened holes, the hyperbolic
metric, and the choice of horocycles at marked points on the boundary, as we now explain.

Assuming some opening of (S,M), choose a finite-area hyperbolic metric σ with constant cur-
vature −1 with a cusp at each non-opened marked point, with each boundary segment a geodesic,
including the holes Cp. (We emphasize that there are no cusps at the points Mp for opened punc-
tures p.) The signed length l(p) of an opened puncture p is the hyperbolic length of Cp if Cp
is oriented clockwise in the opened surface or the negative of the length of Cp if it is oriented
counterclockwise. The signed length of an unopened puncture is 0. Assuming also some choice of
horocycles at marked points on the boundary, we define the signed length l(α) of a boundary
component between the horocycles at its endpoints as in Section 3.1. The lambda length of a
puncture or boundary segment s is defined to be λ(s) = el(s)/2.

We constrain the choice of the hyperbolic metric σ by specifying lambda lengths for the punc-
tures and boundary segments: Every puncture or boundary segment s had lambda length λ(s)
equal to the tropical lambda length c(s). The tropical lambda lengths of punctures and boundary
segments depend only on the weights yγ . (For more general coefficients, they depend on the choice
of a weighted multilamination, but we have fixed principal coefficients and thus fixed the multil-
amination.) Thus the assigned lambda lengths of punctures and boundary segments also depend
only on the weights yγ . In particular, the weights yγ determine the opening of surface: If c(p) = 1
for some puncture p, then the puncture p is not opened. If c(p) > 1, then p is opened and Cp is
oriented clockwise, and if c(p) < 1 then p is opened and Cp is oriented counterclockwise.

4.2. Laminated lambda lengths. We have seen how the weights yλ determine an opening
of (S,M) and place constraints on the hyperbolic metric and horocycles by specifying lambda
lengths of the opened punctures and the boundary segments. We will eventually impose additional
constraints coming from the xγ . But first, we define laminated lambda lengths of tagged arcs.

At each Mp, for p an opened puncture, there is a perpendicular horocyclic segment hp
near Cp. This is a short segment of the horocycle that contains Mp and is perpendicular to
every geodesic spiraling into Cp in the direction of the chosen orientation. We also define a
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conjugate perpendicular horocycle hp near Cp: Let Mp be the point on Cp a signed dis-
tance 2 ln

∣∣λ(p)− λ(p)−1
∣∣ from Mp in the direction against the orientation of Cp. Let hp be the

segment at Mp that is perpendicular to every geodesic spiraling into Cp opposite of the chosen
orientation.

Now let α be any tagged arc in (S,M). We will need two different types of lifts of α to
the opened surface. First, an arbitrary lift α in a topological sense, meaning that α maps to α
under that map that collapses all opened punctures back down to punctures in (S,M). Second, a
corresponding geodesic ασ in the opened surface: The geodesic ασ is like a lift of α except that at
any endpoint p of alpha that is opened, the geodesic spirals around Cp, with the direction of the
chosen orientation of Cp if α is tagged plain at p or against the orientation of Cp if α is tagged
notched there.

We will define the laminated lambda length of α as the ratio of the ordinary lambda length and
tropical lambda length of the lift α. In particular, this ratio will not depend on the choice of lift.

We first define the lambda length of α, beginning with the case where, at any endpoints of α that
are opened punctures, α twists far enough about Cp in the direction that ασ spirals. We choose a
segment [ασ] of ασ that starts at the intersection of ασ with a horocycle or perpendicular horocyclic
segment at one endpoint of α (a conjugate horocycle or conjugate perpendicular horocyclic segment
if α is notched at that endpoint), follows ασ and ends at the intersection of ασ with a horocycle
or perpendicular horocyclic segment at the other endpoint (again conjugate if α is notched there).
When ασ spirals about an opened puncture at one or both endpoints, there are infinitely many
choices of such a segment, but we choose it so that when we extend [ασ] in a particular way, we
obtain a curve that is isotopic to α: At an endpoint p of α that is not an opened puncture, we
extend [ασ] along ασ all the way to p. At an endpoint p of α that is an opened puncture where α
is tagged plain, we extend [ασ] by following the perpendicular horocyclic segment hp toMp. At an
endpoint p of α that is an opened puncture where α is tagged notched, we extend [ασ] by following
the conjugate perpendicular horocyclic segment hp to Mp and then following Cp to Mp, in the
direction that agrees with the orientation of Cp. The signed length l([ασ]) is the hyperbolic
length of [ασ], signed as in Section 3.1. (Thus l([ασ]) is negative when the endpoint of [ασ]
where ασ crosses a horocycle hp is closer to the other endpoint of α than it is to p. When p is an
opened puncture, one can choose the lift α so that [ασ] spirals far enough about Cp to make l([ασ])

positive.) The lambda length λ(α) is el([ασ ])/2.
If α does not spiral far enough about some opened puncture, its lambda length is defined by the

following rule: When we pass from α to a different lift with one additional spiral in the clockwise
direction, we multiply the lambda length by λ(p). By adding clockwise and/or counterclockwise
twists at one or both endpoints of α, we obtain a different lift that “twists far enough” as in the
paragraph above, and then apply the rule to find the lambda length of α. (The well-definition
of the lambda length, in light of this rule, is establishes as [FT18a, Lemma 10.7]. See [FT18a,
Definition 10.6].)

We next define the tropical lambda length cL(α) of α. Following [FT18a, Section 14], we define
the tropical lambda length for a lift of α to a “fully” opened surface, meaning a surface where
every puncture of (S,M) is opened. We reuse the notation α for this lift. As explained below
in Remark 4.1, this is harmless because the tropical lambda length is independent of the details
of how α is lifted to the fully opened surface near punctures that are not opened in the partially
opened surface.

We arbitrarily choose, for each elementary lamination Lγ , a lifted lamination Lγ in the (fully)
opened surface that corresponds to Lγ except that anywhere Lγ spirals into a puncture p that is
opened, the lift Lγ instead ends on Cp \{Mp} and formally retains a “memory” of the spiral in the
following sense: Lγ formally includes the data of an orientation of Cp in the direction opposite to
the direction that Lγ spirals. (Recall that the opening of the surface also includes an orientation
of Cp for every puncture p that is opened. The orientations in the opening and orientations in the
lifted laminations are independent, and we will be careful to distinguish them.) We write L for
the multilamination consisting of the chosen lift Lγ of each Lγ . The laminated lambda lengths of
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tagged arcs depend on this choice of liftings, but we fix the choice and we need not be concerned
with the dependence. For details, see [FT18a, Remark 14.8].

To define the tropical lambda length cL(α) of α, we first suppose that, at each endpoint p
of α, the lift α twists sufficiently many times around Cp in the direction given by Lγ or in the
opposite direction if α is tagged notched at the shared endpoint. The tropical lambda length is
defined by way of the transverse measure. We assume that isotopy representatives of α and Lγ
have been chosen to minimize intersections. The transverse measure lLγ (α) of α relative to
a lifted elementary lamination Lγ is the number of intersections between α and Lγ , plus an
additional contribution |lLγ (p)| for each endpoint p where α is tagged notched. (The additional
contribution |lLγ (p)| is 1 or 2; it is 2 if and only if γ has both endpoints at p.) The tropical

lambda length is defined to be cL(α) =
∏
γ∈T y

lLγ (α)

γ .
If α does not twist sufficiently far about some opened puncture p, then the tropical lambda

length cL(α) is determined using the following rule: When we pass from α to a different lift with
one additional spiral in the clockwise direction (or counterclockwise if α is notched at p), we
multiply the tropical lambda length by c(p).

Remark 4.1. It is harmless to define the tropical lambda length of α in terms of a lift to the
fully opened surface. To see why, recall that a puncture p is un-opened if and only if c(p) = 1.
Since lifts of α that differ only in the number of twists at p are related by multiples of c(p), the
tropical lambda length of α is independent of how we lift α further to the fully opened surface.

The laminated lambda length of α is xL(α) = λ(α)
cL(α)

. Because of the rules for how lambda
lengths and tropical lambda lengths change when we change the lift of α and because λ(p) = c(p)
for every puncture p, the laminated lambda length is well defined (i.e. independent of the choice
of lift α).

Once the tagged triangulation T and the lifts L of the elementary laminations Lγ for γ ∈ T are
fixed, the choice of positive real weights yγ and the choice of positive real numbers xγ uniquely
determines an opening of (S,M), hyperbolic metric on the opened surface, and horocycles about
the non-opened marked points such that xL(γ) = xγ for every γ ∈ T [FT18a, Corollary 15.5].
Thus, given T , L, the yγ and the xγ , every tagged arc in (S,M) has a well-defined (principal-
coefficients) laminated lambda length. The laminated lambda lengths of tagged arcs, when viewed
as functions of the xγ and the yγ , are the cluster variables in the cluster algebra with initial
cluster {xγ : γ ∈ T}, initial exchange matrix equal to the signed adjacency matrix of T , principal
coefficients at T , and tropical variables yγ for γ ∈ T . (This is part of [FT18a, Theorem 15.6].)

Recall from Section 3.1 (Equation (6)) that the lambda lengths of the tagged arcs in T determine
the lambda lengths of the ordinary arcs in T ◦ and vice versa. Precisely the same thing is true for
laminated lambda lengths. Suppose β and γ are tagged arcs in T that coincide except that both
are tagged plain at one endpoint q but they have different taggings at p, and suppose that δ is the
ordinary arc in T ◦ that is a loop at q, following β and γ around p. Then

(8) xL(δ) = xL(β)xL(γ).

The ordinary arc δ is not a tagged arc, but it has a laminated lambda length, measured from hq
to hq. Equation (8) is a combination of [FT18a, Lemma 10.14], which says that λ(δ) = λ(β)λ(γ)

for appropriate lifts δ, β, and γ, and [FT18a, Lemma 14.10], which says that cL(δ) = cL(β)cL(γ).

4.3. Proof of the main theorem. In this section, we prove Theorem 1.1.
Let α be a tagged arc in (S,M). For the proof of Theorem 3.1, we constructed the tile cover α′

of α in a surface (S′,M′) with triangulation T ′ and lifted the hyperbolic structure of (S,M) to
the tile cover, so that lambda lengths were preserved. For the proof of Theorem 1.1, we lift all of
the data that defines the laminated lambda lengths to the tile cover. As before, when passing to
the tile cover, we assume that when α has an endpoint that is the interior vertex of a self-folded
triangle in T ◦, the tagging of α is plain at that endpoint.

Start with the tagged triangulation T of (S,M) and choose positive real numbers xγ and yγ
for each tagged arc γ ∈ T . Let these choices determine an opening of (S,M), a hyperbolic metric
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on the opened surface, and a choice of horocycles about the non-opened marked points, as in
Section 4.2. In particular, the laminated lambda length of each tagged arc γ ∈ T is xγ .

We lift these laminated lambda lengths to determine laminated lambda lengths of all tile edges
in (S,M). Equation (8) determines the laminated lambda lengths of all arcs in T ◦ that are not
in T : For every self-folded triangle in T ◦ corresponding to tagged arcs β and γ in T , with β tagged
notched and γ tagged plain at the interior vertex, the exterior edge of the self-folded triangle has
laminated lambda length xβxγ . Thus we lift laminated lambda lengths of tagged arcs in T to
laminated lambda lengths of tile edges in T ′ exactly as we lifted lambda lengths of tagged arcs in
Section 3.2. (See Example 12.)

The weighted multilamination on (S,M) that defines an opening (and places some constraints
on the metric) consists of elementary laminations Lγ with weights yγ , for γ ∈ T . Since the
tagged arcs γ ∈ T don’t necessarily all lift to the tile edges in T ′ (but rather the arcs in T ◦

do), this weighted multilamination does not lift to the right weighted lamination on (S′,M′). We
will define an alternative weighted multilamination A that defines the same opening and places
the same constraints on the metric. Specifically, A consists of the elementary lamination Lγ for
each γ ∈ T ◦, with weight is yγ unless γ is an edge of a self-folded triangle in T ◦. For the edges
of a self-folded triangle corresponding to tagged arcs β and γ in T , with β tagged notched and γ
tagged plain at the interior vertex, the weights are as follows: Let δ ∈ T ◦ be the exterior edge of
the self-folded triangle and identify the internal edge with γ. Then the weight of Lγ in A is yγ

yβ

and the weight of Lδ is yβ .

Example 14. We describe the weights in the alternative multilamination A in the left picture of
Figure 32. Arcs labeled 3 have weights y3

y2
and arcs labeled 11 have weights y11

y10
. Any other arc

labeled i has weight yi.

The following lemma is immediate from the definition of tropical lambda lengths of boundary
segments and punctures.

Lemma 4.2. The weighted multilaminations L and A assign the same tropical lambda lengths to
punctures and boundary segments as the principal coefficients weighted lamination.

Lemma 4.2 means that the weighted multilaminationA defines the same opening of (S,M) as L.
Furthermore, the lambda lengths of punctures and boundary components are the same for the two
weighted laminations. We will see that, for the right choice of lifting of the two multilaminations
to the opened surface, the tropical lambda lengths of all tagged arcs are also the same.

Choose a lift L of the principal-coefficients weighted multilamination L to the opened surface
so that, whenever two tagged arcs β, γ ∈ T coincide except that β is notched at p and γ is
tagged plain at p, the corresponding lifted elementary laminations Lβ and Lγ differ only in that β
twists one additional time about Cp in the clockwise direction (and also necessarily differ in the
orientation of Cp, with Lγ having a clockwise orientation). Choose a lift A of the alternative
weighted lamination A that agrees with the lift of L where the arcs in T ◦ coincide with plain-
tagged arcs in T and for every arc δ in T ◦ that is the exterior edge of a self-folded triangle with
interior edge γ, the lift of Lδ traces closely along the lift of Lγ , goes around the interior vertex,
and traces closely back along the lift of γ.

Lemma 4.3. If α is a tagged arc and α is any lift of α, then cL(α) = cL(α).

Proof. Suppose δ is the exterior edge of a self-folded triangle with interior edge γ and β is the
tagged arc that agrees with γ but is tagged notched at the interior vertex p. We need to check
that the (multiplicative) contributions of Lβ and Lγ to cL(α) are the same as the contributions
of Lγ and Lδ to cA(α).

Away from any endpoint of α that is at p, the lifts Lβ and Lγ agree, and there is contribution
yβyγ to cL(α) each time α intersects Lβ and Lγ . The corresponding contribution to cA(α) is y2β

yγ
yβ
,

because the weight of δ is yβ , the weight of γ is yγ
yβ
, and (away from p), Lδ traces along Lγ twice.

To deal with contributions to cL(α) and cA(α) at any endpoints of α that are at p, we first look
at how these contributions change when α changes. Since Lβ carries a counterclockwise orientation



38 VINCENT PILAUD, NATHAN READING, AND SIBYLLE SCHROLL

γβ

γ

β

α

γδ δ
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α

Figure 41. An illustration of the proof of Lemma 4.3.

of Cp and Lγ carries a clockwise orientation, whenever α is given an additional clockwise twist
at Cp, the tropical lambda length cL(α) is multiplied by a factor of yγ

yβ
(or yβ

yγ
if α is notched

at p). Since the weight of γ in A is yγ
yβ
, when α is given an additional clockwise twist, cA(α) is

also multiplied by a factor of yγ
yβ

(or yβ
yγ

if α is notched). Thus, to prove that the contributions
to cL(α) and cA(α) at p are the same, we may make a convenient choice of the lift α. By matching
the spirals of α to those of Lγ , we will assume that α does not intersect Lγ at p. (See Figure 41,
where labels β, γ, and δ are shorthand for Lβ , Lγ , and Lδ. The left picture shows L and the right
picture shows A.)

For a moment, assume that the endpoint of α is tagged plain at p. Then Lγ contributes a
factor 1 to cL(α). Since Lβ twists clockwise about Cp once more than Lγ , a lift of α with one
more clockwise twist would have contribution 1 from Lβ as well. Since we obtain α by adding one
counterclockwise twist to a lift with contribution 1 from Lβ and since Lβ carries a counterclockwise
orientation at p, the contribution of Lβ to cL(α) is yβ . Because Lδ follows Lγ to p, goes around p,
and then follows Lγ again, α intersects Lδ exactly once at p. Since also α does not intersect Lγ
at p, the contribution to cA(α) at p is again yβ .

If the endpoint of α is tagged notched at p, there are additional contributions of y−1β and yγ
to cL(α) at p and there is an additional contribution of yγyβ to cA(α) at p. �

Remark 4.4. It may seem surprising that different weighted multilaminations give the same
laminated lambda lengths. To avoid this non-uniqueness of multilaminations, one would need to
replace laminations with the quasi-laminations of [Rea14, Section 4]. However, for the present
purposes, the non-uniqueness is a benefit, because it allows us to lift the multilamination to the
tile cover in the right way. Indeed, the fact that we lift the alternative multilamination rather than
the principal coefficients lamination accounts for the fractional labels on some elements of Pα.

In light of Lemmas 4.2 and 4.3, we lift the alternative weighted multilamination A to the
tile cover. This is done by making the lamination correct in each tile. The result is a principal
coefficients weighted multilamination on the tile cover where the weights have been specialized to
match the weights on the alternative weighted multilamination in (S,M).

Example 15. Continuing Example 14, the weights on the right picture of Figure 32 are y3
y2

for
arcs labeled 3, y11y10

for arcs labeled 11, and otherwise yi for arcs labeled yi.

Now that we know the weights on the arcs in T ′, we can prove the following strengthening of
Lemma 3.6.

Lemma 4.5. If α′ is the tile cover of α, then F (Pα) = F (Pα′).

Proof. Elements of the posets have “weights”, and there are also “weights” yγ for γ ∈ T . Both
kinds of weights appear in this proof, but for clarity, we will use the word “weight” in this proof
only for the weights on the posets and refer to the yγ as “y-variables”.

The two posets are isomorphic by construction, and we check that corresponding elements have
the same weights. We checked in the proof of Lemma 3.6 that corresponding elements of the
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posets have the same weight when all the y-variables are specialized to 1. Since each weight is a
Laurent monomial in the x- and y-variables, we complete the proof by showing that corresponding
elements of the posets have the same weight when all the x-variables are specialized to 1. We
make that specialization for the remainder of the proof.

In Pα, an element corresponding to crossing an arc γ ∈ T ◦ is weighted yγ unless γ is the
interior edge of a self-folded triangle, in which case it is weighted yγ

yβ
, where β is the exterior edge.

Every element of Pα′ is weighted by a single y-variable in the sense of the weighted lamination
on (S′,M′). Since we lifted the alternative weighted lamination to (S′,M′), this is again yγ
unless γ is an interior edge, in which case it is yγ

yβ
, where β is the exterior edge. �

The opening of (S,M) can be made by cutting corners from triangles in T ◦. We obtain the
opening of (S′,M′) by making corresponding cuts in the tiles and glueing the tiles together so that
the removed corners become holes. At any endpoints of α that are opened, the neighborhood of
the hole is the same in (S,M) as in (S′,M′), except when an endpoint of α is the interior vertex
of a self-folded triangle. In that case, the neighborhood of the hole in (S′,M′) is a double cover of
the neighborhood of the hole in (S,M). We lift the hyperbolic metric to the tiles (minus removed
corners) and also lift the horocycles, conjugate horocycles, perpendicular horocyclic segments,
and conjugate perpendicular horocyclic segments. In the case where the neighborhood of the hole
in (S′,M′) is a double cover, we obtain two marked points (and two perpendicular horocyclic
segments). Of the two marked points, we retain the one that is the endpoint of α′ and ignore the
other (and its perpendicular horocyclic segment).

Moving forward, we assume all the structure on (S′,M′) that was lifted from (S,M) as described
above. The following is the analog of Lemma 3.4 for the principal coefficients case.

Lemma 4.6. If α′ is the tile cover of α, then the laminated lambda length λ(α) in (S,M) equals
the laminated lambda length λ(α′) in (S′,M′).

Proof. Take any lift α′ of the tile cover α′ that lies within the tiles in the opening of (S′,M′). There
is a projection of the opening of (S′,M′) to the opening of (S,M) by sending each tile isometrically
to the corresponding triangle, and we write α for the projection of α′. As the notation suggests, α
is a lift of α to the opening of (S,M).

The simple idea of the proof is as follows: The lambda length of α′ equals the lambda length
of α because the hyperbolic structure on the opening of (S′,M′) is lifted, tile by tile, from the
hyperbolic structure on the opening of (S,M)—everywhere where α passes through the surface—
and furthermore, all horocycles, conjugate horocycles, perpendicular horocyclic segments, and
conjugate perpendicular horocyclic segments relevant to α′ are lifted from the corresponding hor-
cycles, etc. relevant to α. Similarly, the weighted multilamination on (S′,M′) is lifted from the
alternative weighted multilamination on (S,M), so the tropical lambda length of α′ equals the
tropical lambda length of α with respect to the alternative weighted multilamination, and thus
by Lemma 4.3 equals the principal coefficients tropical lambda length of α. Since the laminated
lambda length is the ratio of the lambda length over the tropical lambda length, it follows that
the laminated lambda length of α equals the laminated lambda length of α′.

This simple argument is complete and correct in most cases, but fails when one or both endpoints
of α is at the interior vertex p of a self-folded triangle in T ◦. The issue is that the neighborhood
of Cp, which is vital to computing both lambda lengths and tropical lambda lengths, does not lift
to the neighborhood of an opened puncture in the opening of (S′,M′). Instead, the neighborhood
of Cp is doubly covered by the neighborhood of an opened puncture in the opening of (S′,M′).
The argument is easily rescued in such cases. As in the proof of Lemma 3.4, a crucial point is that
in such cases, α is tagged plain at p. Another crucial point is how lambda lengths and tropical
lambda lengths change when the lifts are changed by inserting additional twists about Cp.

Let δ be the exterior edge of the self-folded triangle whose interior vertex is p, let γ be the
interior edge, and let β be the tagged arc that agrees with γ but is tagged notched at p. The
puncture p′ in (S′,M′) corresponding to this endpoint of α is contained in two tiles. The two
edges incident to p′ both have laminated lambda lengths xγ . The weights on the corresponding
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elementary laminations are both yγ
yβ
. Thus the tropical lambda length of p′ is c(p′) =

y2γ
y2β
, and this

also equals λ(p′).
In (S,M), on the other hand, there is one edge of T ◦ incident to p, with lambda length xγ . The

associated elementary lamination has weight yγ
yβ
, so c(p) =

yγ
yβ

= λ(p). The fact that c(p′) = c(p)2

is consistent with the fact that the neighborhood of Cp′ doubly covers the neighborhood of Cp.
We can now easily see that the tropical lambda lengths of α and α′ are still equal, despite the

local double cover. The orientation of Cp in Lγ is clockwise, as is the orientation of Cp′ in the
two copies of Lγ that were lifted to (S′,M′). For a moment, assume that the lift α′ so that it
twists far enough clockwise about Cp′ and so that α also twists far enough about Cp. (We can do
this at both endpoints of α if necessary. Since the requirement is that α must twist far enough
clockwise at both endpoints, this can be done even if the endpoints of α are both at p.) Now
every contribution of Lγ to the tropical lambda length of α in (S,M) lifts to a corresponding
contribution (with the same weight) to the tropical lambda length of α′ in (S′,M′).

We see that, for a particular choice of α′, the tropical lambda lengths of α and α′ are equal.
When we change the lift of α′ by adding a clockwise twist about Cp′ , we multiply the tropical
lambda length of the lift by c(p′) = y2γ/y

2
β . This changes the corresponding lift of α by adding two

clockwise twists about Cp, thus multiplying the tropical lambda length by (yγ/yβ)2. Thus for any
particular choice of α′, the tropical lambda lengths of α and α′ are equal.

We can similarly see that the lambda lengths of α and α′ are equal. In the definition of
these lambda lengths, we need the lifts to twist far enough in a particular direction. The direction
around Cp′ and the direction around Cp are related by the projection from the tile cover to (S,M).
Thus we can take a lift of α′ that twists far enough and projects to a lift of α that twists far
enough. In this case, the segment [α′σ′ ] projects to the segment [ασ], where we have written σ′

for the hyperbolic metric on (S′,M′). Since σ′ is the lift of σ, these two segments have the same
signed length and therefore the two lifts have the same lambda length. To change these two lifts
to α′ and α, we multiply them respectively by λ(p′)k = y2kγ /y

2k
β and λ(p)2k = y2kγ /y

2k
β for some k.

Thus λ(α′) = λ(α). (We can make the same argument if both endpoints of α are interior vertices
of a self-folded triangle, and if the endpoints of α coincide, the directions of “twisting far enough”
are the same at both endpoints of α′.) �

We now prove the main result of the paper. The proof parallels the proof of Theorem 3.1 and
uses some of the same subsidiary results.

Proof of Theorem 1.1. Suppose α is a tagged arc in (S,M). By Proposition 1.7, we can assume
that when α has an endpoint that is the interior vertex of a self-folded triangle in T ◦, the tagging
of α is plain at that endpoint. We need to show that

λ(α) = gα · F (Pα).

We argue by induction on the number of elements of Pα, more specifically taking this inductive
hypothesis: the formula holds for any tagged arc α′ in any triangulated marked surface such
that Pα′ has fewer elements than Pα. The base of the induction, when Pα is empty, is easy, and
details are in the proof of Theorem 3.1.

If Pα is not empty, then construct the tile cover α′ in a marked surface (S′,M′) with a triangula-
tion T ′. Lift the opening, hyperbolic metric, weighted multilamination A, and specified laminated
lambda lengths to (S′,M′) as explained above. By construction, Pα′ is isomorphic with Pα as
unweighted posets, and (T ′, α′) is tidy. Thus there is an arc γ′ ∈ T ′ such that ŷγ′ occurs exactly
once as a label in Pα. Thus, just as in the proof of Theorem 3.1 (Equation (7)), Proposition 2.2
says that

(9) xγ′ · gα′ · F (Pα′) = xγ′ · gα′ · F (Pblue) + xγ′ · gα′ · ŷorange · F (Pred).

The quantity F (Pblue) in Equation (9) is the product of one or two polynomials F (Pδ′) for tagged
arcs δ′ in (S′,M′). Each of these posets Pδ′ has strictly fewer elements than Pα. By induction,
the laminated lambda length of δ′ in (S′,M′) is gδ′ · F (Pδ′), and this is the cluster variable as-
sociated to δ′ in (S′,M′). Similarly, F (Pred) is the product of one or two polynomials F (Pδ′)
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and by induction, the laminate lambda length of each δ′ is gδ′ · F (Pδ′), which is again a cluster
variable xδ′ . Proposition 2.3.1 (applied to α′) says that the first term on the right side of Equa-
tion (9) is gblue · F (Pblue), which is the product of the cluster variables for the (one or two) blue
arcs. Writing yorange for the product of the coefficient variables yγ for orange arcs γ ∈ T , Propo-
sition 2.3.2 says that the second term on the right side of Equation (9) is yorange · gred · F (Pred),
which is yorange times the product of the cluster variables for the (one or two) red arcs. Thus the
right side of (9) is the right side of the exchange relation exchanging the cluster variables for α′
and γ. (See Remark 2.1.) We conclude that the cluster variable for α′ in (S′,M′) is gα′ · F (Pα′).
This cluster variable is the laminated lambda length of α′ in (S′,M′). Lemma 4.6 now says that
the laminated lambda length of α in (S,M) is gα′ ·F (Pα′), which equals gα ·F (Pα), by Lemmas 3.5
and 4.5. �

5. Laminated lambda lengths of tagged geodesics

Given a hyperbolic metric on S \M, we will use the term tagged geodesic for any geodesic
in S that limits to points in M at both ends and is tagged plain or notched at each of its endpoints
that is a puncture. (The definition of a tagged arc requires that the arc not intersect itself, that
it may not bound a once-punctured monogon, and that, if its two endpoints coincide, they must
have the same tagging. For tagged geodesics, we drop all of these requirements, but we keep the
requirement that tags at boundary points are plain.) The construction in [FT18a, Definition 15.3],
reviewed in Sections 3 and 4, extends to the definition of a (laminated) lambda length xα for any
tagged geodesic α. In this section, we extend Theorems 1.1 and 3.1 to all tagged geodesics. We
also give a combinatorial characterization of tagged geodesics.

5.1. Extending the theorems. The following theorem extends Theorem 1.1 by weakening the
hypotheses on α.

Theorem 5.1. The principal-coefficients laminated lambda length of a tagged geodesic α is

(10) xα = gα ·
∑
I

∏
e∈I

w(e),

where the sum is over all order ideals I in Pα.

The theorem associates to any tagged geodesic α both a g-vector and an F -polynomial, in the
same sense as for cluster variables. The g-vector is gα and the F -polynomial is F (Pα).

If we set all the yγ to 1, then c(p) = 1 for every puncture, so the opened surface has none of the
punctures opened. Thus the lift L is the same as L and also every tagged geodesic α has α = α, so
lambda lengths in the (not) opened surface are the same as lambda lengths in the coefficient-free
model. Also, cL(α) = 1 for every α, so laminated lambda lengths are the same as ordinary lambda
lengths. Thus the entire laminated lambda length construction collapses to the coefficient-free
lambda length construction. We conclude that setting all yγ to 1 in Theorem 5.1 implies the
following theorem, which extends Theorem 3.1.

Theorem 5.2. Suppose all boundary components of (S,M) have lambda length 1. The lambda
length of a tagged geodesic α is

(11) λ(α) = gα ·
∑
I

∏
e∈I

w̃(e),

where the sum is over all order ideals I in Pα.

We deduce Theorem 5.1 from Theorem 1.1 using a variation on the tile cover construction.

Proof of Theorem 5.1. Suppose α is a tagged geodesic. If α is a tagged arc, then we are done
by Theorem 1.1, so assume α is not a tagged arc. In particular, α does not coincide, except for
tagging, with an arc of T ◦.

We lift α to a tagged arc α′ using a variation of the tile cover construction. As in Section 3.2,
decompose α into segments, each having its endpoints on arcs of T ◦ and otherwise not intersecting
the arcs of T ◦. Construct a tile for each segment as before, except at any endpoint of α that is
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the interior vertex of a self-folded triangle. At each such endpoint, keep the self-folded triangle
instead of making a tile. Identify all of these triangles in the natural way.

Lift the opening, multilamination, hyperbolic structure, and specified lamination lengths to
the tile cover as in Section 3.2, with the obvious simplifications due to keeping some self-folded
triangles. Lemmas 3.5, 4.5 and 4.6 hold by essentially the same proofs. (For Lemma 3.5, the proof
is simpler because the endpoints of α remain like the left pictures of Figure 40 instead of the right
pictures. For Lemma 4.5, the proof is simpler because there are no double covers to account for.)
Since α′ is a tagged arc Equation (10) holds for α′ by Theorem 1.1. By the analogs of these three
lemmas, Equation (10) holds for α. �

5.2. Combinatorial tagged geodesics. Theorem 5.1 applies to all tagged geodesics in (S,M),
but it is more convenient to apply the theorem to curves that are determined combinatorially,
rather than by the metric. As a byproduct of the proof of the theorem, we explain how to do that.

A combinatorial tagged geodesic in (S,M) consists of two (not necessarily distinct) marked
points p and q in M, a tagging at each of the points that is a puncture, and a sequence of arcs
of T ◦, either a single arc in T ◦ with endpoints p and q or a sequence satisfying the following
conditions: the sequence starts with the an arc opposite p in some triangle in T ◦; the sequence
ends with the arc opposite q in some triangle in T ◦; every pair of adjacent entries in the sequence
are distinct arcs in the same triangle of T ◦; and the sequence of triangles determined by pairs of
adjacent entries does not have the same triangle twice in a row. Combinatorial tagged geodesics
are defined up to the symmetry of swapping endpoints and reversing the sequence.

A combinatorial tagged geodesic determines, up to isotopy, a tagged curve in S connecting
the two endpoints and crossing arcs of T ◦ according to the sequence (or instead coinciding with
the one arc in the sequence). In the other direction, if α is a tagged geodesic in (S,M), then α
determines (up to reversing) a sequence of arcs of T ◦ in the obvious way: If α coincides with an
arc in T ◦, then the sequence consists of that arc. Otherwise, the sequence consists of the arcs
of T ◦ crossed by α on the way from one endpoint of α to the other.

Proposition 5.3. If α is a tagged geodesic in (S,M), then the endpoints of α, its taggings, and
the sequence determined by α constitute a combinatorial tagged geodesic in (S,M). Conversely,
given any combinatorial tagged geodesic in (S,M), the curve it determines is isotopic to a unique
tagged geodesic in (S,M).

Proof. Suppose α is a tagged geodesic in (S,M). If α coincides with an arc in T ◦, there is nothing
to check, so suppose not. Since the arcs in T ◦ are also geodesics and since the hyperbolic metric
on (S,M) has constant curvature −1, α does not intersect the same arc in T ◦ twice without
intersecting some other arc in between. Thus the sequence of arcs crossed by α satisfies all the
conditions of a combinatorial tagged geodesic.

Conversely, given a combinatorial tagged geodesic, let α be a tagged curve in S determined by
the combinatorial tagged geodesic. We construct a tile cover α′ for α, ignoring the requirement
that α is plain at any endpoint that is the interior point of a self-folded triangle. Since α′ is
isotopic to an arc in (S′,M′), there is an isotopy representative of α′ that is geodesic. For the
reasons given in the previous paragraph, this geodesic representative visits the same sequence of
arcs of T ′ as α′. The geodesic descends to a geodesic in (S,M) that is isotopic to α. �

Acknowledgments. We thank Salvatore Stella for helpful conversations.

References

[Bir37] Garrett Birkhoff. Rings of sets. Duke Math. J., 3(3):443–454, 1937.
[CP03] Gabriel D. Carroll and Gregory Price. Two new combinatorial models for the ptolemy recurrence. Un-

published memo, 2003.
[CP15] Cesar Ceballos and Vincent Pilaud. Cluster algebras of type D: pseudotriangulations approach. Electron.

J. Combin., 22(4):Paper 4.44, 27, 2015.
[CS21] İlke Çanakçı and Sibylle Schroll. Lattice bijections for string modules, snake graphs and the weak Bruhat

order. Adv. in Appl. Math., 126: Paper No. 102094, 22, 2021.
[FST08] Sergey Fomin, Michael Shapiro, and Dylan Thurston. Cluster algebras and triangulated surfaces. I.

Cluster complexes. Acta Math., 201(1):83–146, 2008.



POSETS FOR F -POLYNOMIALS IN CLUSTER ALGEBRAS FROM SURFACES 43

[FT17] Anna Felikson and Pavel Tumarkin. Bases for cluster algebras from orbifolds. Adv. Math., 318:191–232,
2017.

[FT18a] Sergey Fomin and Dylan Thurston. Cluster algebras and triangulated surfaces. Part II: Lambda lengths.
Mem. Amer. Math. Soc., 255(1223):v+97, 2018.

[FT18b] Sergey Fomin and Dylan Thurston. Cluster algebras and triangulated surfaces Part II: Lambda lengths.
Mem. Amer. Math. Soc., 255(1223):v+97, 2018.

[FZ03] Sergey Fomin and Andrei Zelevinsky. Y -systems and generalized associahedra. Ann. of Math. (2),
158(3):977–1018, 2003.

[MS10] Gregg Musiker and Ralf Schiffler. Cluster expansion formulas and perfect matchings. J. Algebraic Com-
bin., 32(2):187–209, 2010.

[MSW11] Gregg Musiker, Ralf Schiffler, and Lauren Williams. Positivity for cluster algebras from surfaces. Adv.
Math., 227(6):2241–2308, 2011.

[MSW13] Gregg Musiker, Ralf Schiffler, and Lauren Williams. Bases for cluster algebras from surfaces. Compos.
Math., 149(2):217–263, 2013.

[OY22] Ezgi Kantarcı Oğuz and Emine Yıldırım. Cluster algebras and oriented posets. Preprint,
arXiv:2211.08011, 2022.

[Pro02] James Propp. Lattice structure for orientations of graphs. Preprint, arXiv:math/0209005, 2002.
[Rea14] Nathan Reading. Universal geometric cluster algebras from surfaces. Trans. Amer. Math. Soc.,

366(12):6647–6685, 2014.
[Sch08] Ralf Schiffler. A cluster expansion formula (An case). Electron. J. Combin., 15(1): Research paper 64, 9,

2008.
[Sta12] Richard P. Stanley. Enumerative combinatorics. Volume 1, volume 49 of Cambridge Studies in Advanced

Mathematics. Cambridge University Press, Cambridge, second edition, 2012.
[Wen23] Daping Weng. F-polynomials of Donaldson-Thomas transformations. Preprint, arXiv:2303.03466, 2023.
[Wil20] Jon Wilson. Surface cluster algebra expansion formulae via loop graphs. Preprint, arXiv:2006.13218,

2020.
[Yur19a] Toshiya Yurikusa. Cluster expansion formulas in type A. Algebr. Represent. Theory, 22(1):1–19, 2019.
[Yur19b] Toshiya Yurikusa. Combinatorial cluster expansion formulas from triangulated surfaces. Electron. J.

Combin., 26(2):Paper No. 2.33, 39, 2019.

CNRS & LIX, École Polytechnique, Palaiseau
Email address: vincent.pilaud@lix.polytechnique.fr
URL: http://www.lix.polytechnique.fr/~pilaud/

North Carolina State University
Email address: reading@math.ncsu.edu
URL: https://nreadin.math.ncsu.edu

Universität zu Köln, Germany and NTNU, Norway
Email address: schroll@math.uni-koeln.de
URL: https://sites.google.com/site/sibylleschroll/

http://arxiv.org/abs/2211.08011
http://arxiv.org/abs/math/0209005
http://arxiv.org/abs/2303.03466
http://arxiv.org/abs/2006.13218
http://www.lix.polytechnique.fr/~pilaud/
https://nreadin.math.ncsu.edu
https://sites.google.com/site/sibylleschroll/

	1. The theorem
	1.1. Definition of the Laurent monomial g
	1.2. Definition of the poset P and the weight map w
	1.3. A slight reduction of the theorem

	2. Tidy exchange relations
	2.1. Exchange relation on F-polynomials
	2.2. Tidyness
	2.3. Tidy exchange relation on posets
	2.4. g-vectors in tidy exchange relations

	3. Hyperbolic geometry and the coefficient-free case
	3.1. Lambda lengths
	3.2. The tile cover of a tagged arc
	3.3. Proof of the coefficient-free version of the main theorem

	4. Tropical hyperbolic geometry and the principal coefficients case
	4.1. Opened surfaces
	4.2. Laminated lambda lengths
	4.3. Proof of the main theorem

	5. Laminated lambda lengths of tagged geodesics
	5.1. Extending the theorems
	5.2. Combinatorial tagged geodesics
	Acknowledgments

	References

