
PERMUTREES

VINCENT PILAUD AND VIVIANE PONS

Abstract. We introduce permutrees, a unified model for permutations, binary trees, Cam-

brian trees and binary sequences. On the combinatorial side, we study the rotation lattices

on permutrees and their lattice homomorphisms, unifying the weak order, Tamari, Cambrian
and boolean lattices and the classical maps between them. On the geometric side, we provide

both the vertex and facet descriptions of a polytope realizing the rotation lattice, specializing to

the permutahedron, the associahedra, and certain graphical zonotopes. On the algebraic side,
we construct a Hopf algebra on permutrees containing the known Hopf algebraic structures on

permutations, binary trees, Cambrian trees, and binary sequences.
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1. Introduction

Binary words, binary trees, and permutations are three combinatorial families that share a
common pattern linking their combinatorics to geometry and algebra. For example, the family of
binary words of size n is naturally endowed with the boolean lattice structure. Its Hasse diagram
corresponds to the skeleton of an n-dimensional hypercube. Finally, all binary words index the
basis of a Hopf algebra [GKL+95] whose product is encoded in the boolean lattice (the product
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of two basis elements is given by a sum over an interval in the boolean lattice). We find a similar
scheme for the other families which we summarize in Figure 1. Recently, the family of Cambrian
trees was also shown to share a similar pattern: Cambrian trees generalize the notion of binary
trees, they are naturally endowed with N. Reading’s (type A) Cambrian lattice structure [Rea06],
they correspond to the vertices of C. Hohlweg and C. Lange’s associahedra [HL07], and they index
the basis of G. Chatel and V. Pilaud’s Cambrian algebra [CP17].

All these families are related through deep structural properties from all three aspects: combi-
natorics, geometry, and algebra. As lattices, the boolean lattice on binary sequences is both a sub-
and a quotient lattice of the Tamari lattice on binary trees, itself a sub- and quotient lattice of the
weak order on permutations [BW91, Rea06]. As polytopes, the cube contains J.-L. Loday’s asso-
ciahedron [Lod04] which in turn contains the permutahedron [Zie95, Lecture 0]. And as algebras,
the descent Hopf algebra on binary sequences of [GKL+95] is a sub- and quotient Hopf algebra of
J.-L. Loday and M. Ronco’s Hopf algebra on binary trees [LR98, HNT05], itself a sub- and quo-
tient algebra of C. Malvenuto and C. Reutenauer’s Hopf algebra on permutations [MR95, DHT02].
More generally, these exemples led to the development of necessary and sufficient conditions to
obtain combinatorial Hopf algebras from lattice congruences of the weak order [Rea05] and from
rewriting rules on monoids [HNT05, Pri13].

All these different aspects have been deeply studied but until now, these families have been
considered as different kind of objects. In this paper, we unify all these objects under a unique
combinatorial definition containing structural, geometric, and algebraic information. A given
family type (binary words, binary trees, Cambrian trees, permutations) can then be encoded by a
special decoration on [n]. Our definition also allows for interpolations between the known families:
we obtain combinatorial objects that are structurally “half” binary trees and “half” permutations.
This leads in particular to new lattice structures (see Figures 11 and 14), to new polytopes (see
Figures 15 and 16) and to new combinatorial Hopf algebras (see Section 4).

We call our new objects permutrees. They are labeled and oriented trees where each vertex can
have one or two parents and one or two children, and with local rules around each vertex similar
to the classical rule for binary trees (see Defintion 1 for a precise statement). We will explore in
particular the following features of permutrees:

Combinatorics: We describe a natural insertion map from (decorated) permutations to
permutrees similar to the binary tree insertion. The fibers of this map define a lattice
congruence of the weak order. Therefore, there is an homomorphism from the weak order
on permutations to the rotation lattice on permutrees. It specializes to the classical weak
order on permutations [LS96], the Tamari order on binary trees [MHPS12], the Cambrian
lattice on Cambrian trees [Rea06, CP17], and the boolean lattice on binary sequences.

Geometry: We provide the vertex and facet description of the permutreehedron, a polytope
whose graph is the Hasse diagram of the rotation lattice on permutrees. The permutreehe-
dron is obtained by deleting facets from the classical permutahedron. It specializes to the
classical permutahedron [Zie95, Lecture 0], to J.-L. Loday’s and C. Hohlweg and C. Lange’s
associahedra [Lod04, HL07], and to the parallelepiped generated by {ei+1 − ei | i ∈ [n− 1]}.

Algebra: We construct a Hopf algebra on permutrees and describe the product and coprod-
uct in this algebra and its dual in terms of cut and paste operations on permutrees. It con-
tains as subalgebras C. Malvenuto and C. Reutenauer’s algebra on permutations [MR95,
DHT02], J.-L. Loday and M. Ronco’s algebra on binary trees [LR98, HNT05], G. Chatel
and V. Pilaud’s algebra on Cambrian trees [CP17], and I. Gelfand, D. Krob, A. Lascoux,
B. Leclerc, V. S. Retakh, and J.-Y. Thibon’s algebra on binary sequences [GKL+95].

All our constructions and proofs are generalizations of previous work, in particular [CP17]
from which we borrow the general structure of the paper. Nevertheless, we believe that our main
contribution is the very unified definition of permutrees which leads to natural constructions,
simple proofs, and new objects in algebra and geometry.
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Figure 1. Summary of lattice structures, polytopes, and Hopf algebras on 3
families of combinatorial objects

2. Permutrees

2.1. Permutrees and leveled permutrees. This paper focuses on the following family of trees.

Definition 1. A permutree is a directed tree T with vertex set V endowed with a bijective vertex
labeling p : V→ [n] such that for each vertex v ∈ V,

(i) v has one or two parents (outgoing neighbors), and one or two children (incoming neighbors);
(ii) if v has two parents (resp. children), then all labels in the left ancestor (resp. descendant)

subtree of v are smaller than p(v) while all labels in the right ancestor (resp. descendant)
subtree of v are larger than p(v).

The decoration of a permutree is the n-tuple δ(T) ∈ { , , , }n defined by

δ(T)p(v) =


if v has one parent and one child,

if v has one parent and two children,

if v has two parents and one child,

if v has two parents and two children,

for all vertex v ∈ V. Equivalently, one can record the up labels δ∨(T) = {i ∈ [n] | δ(T)i = or }
of the vertices with two parents and the down labels δ∧(T) = {i ∈ [n] | δ(T)i = or } of the
vertices with two children. If δ(T) = δ, we say that T is a δ-permutree.

We denote by PT (δ) the set of δ-permutrees, by PT (n) =
⊔
δ∈{ , , , }n PT (δ) the set of all

permutrees on n vertices, and by PT :=
⊔
n∈N PT (n) the set of all permutrees.

Definition 2. An increasing tree is a directed tree T with vertex set V endowed with a bijective
vertex labeling q : V→ [n] such that v → w in T implies q(v) < q(w).

Definition 3. A leveled permutree is a directed tree T with vertex set V endowed with two bijective
vertex labelings p, q : V → [n] which respectively define a permutree and an increasing tree. In other
words, a leveled permutree is a permutree endowed with a linear extension of its transitive closure
(given by the inverse of the labeling q).
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Figure 2. A permutree (left), an increasing tree (middle), and a leveled per-
mutree (right). The decoration is .

Figure 2 provides examples of a permutree (left), an increasing tree (middle), and a leveled
permutree (right). We use the following conventions in all figures of this paper:

(i) All edges are oriented bottom-up — we can thus omit the edge orientation;
(ii) For a permutree, the vertices appear from left to right in the order given by the labeling p

— we can thus omit the vertex labeling;
(iii) For an increasing tree, the vertices appear from bottom to top in the order given by the

labeling q — we can thus omit the vertex labeling;
(iv) In particular, for a leveled permutree with vertex labelings p, q : V → [n] as in Definition 3,

each vertex v appears at position
(
p(v), q(v)

)
— we can thus omit both labelings;

(v) In all our trees, we decorate the vertices with , , , or depending on their number of
parents and children, following the natural visual convention of Definition 1;

(vi) In a permutree, we often draw a vertical red wall below and vertices and above and
vertices to mark the separation between the left and right descendant or ancestor subtrees

of these vertices.

Example 4. For specific decorations, permutrees specialize to classical combinatorial families:

(i) Permutrees with decoration n are in bijection with permutations of [n]. Indeed, such a
permutree is just a path of vertices labeled by [n].

(ii) Permutrees with decoration n are in bijection with rooted planar binary trees on n ver-
tices. Indeed, such a permutree has a structure of rooted planar binary tree, and its la-
beling p : V→ [n] is just the inorder labeling which can be recovered from the binary tree
(inductively label each vertex after its left subtree and before its right subtree).
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Figure 3. Leveled permutrees corresponding to a permutation (left), a leveled
binary tree (middle left), a leveled Cambrian tree (middle right), and a leveled
binary sequence (right).
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(iii) Permutrees with decoration in { , }n are precisely the Cambrian trees of [CP17].
(iv) Permutrees with decoration n are in bijection with binary sequences with n − 1 letters.

Indeed, such a tree can be transformed to a sequence of letters u or d whose ith letter records
whether the vertex i is a child of the vertex i+ 1 or the opposite.

(v) Permutrees with decoration in { , }n are in bijection with acyclic orientations of the
graph with vertices [n] and an edge between any two positions separated only by ’s in the
decoration.

Figure 3 illustrates these families represented as permutrees. The goal of this paper is to propose
a uniform treatment of all these families and of the lattices, morphisms, polytopes, and Hopf
algebras associated to them.

Remark 5. There are two natural operations on permutrees, that we call symmetrees, given by
horizontal and vertical reflections. Denote by T (resp. T ) the permutree obtained from T by a
horizontal (resp. vertical) reflection. Its decoration is then δ(T ) = δ(T) (resp. δ(T ) = δ(T) ),
where δ (resp. δ ) denotes the decoration obtained from δ by a mirror image (resp. by intervert-
ing and decorations).

Remark 6. Observe that the decorations of the leftmost and rightmost vertices of a permutree
are not really relevant. Namely, consider two decorations δ, δ′ ∈ { , , , }n such that δ′

is obtained from δ by forcing δ′1 = δ′n = . Then there is a bijection from δ-permutrees to
δ′-permutrees which consists in deleting the left (resp. right) incoming and outgoing edges — if
any — of the leftmost (resp. rightmost) vertex of a δ-permutree. See Figure 4 (left).

When δ = δ′ δ′′, there is a bijection between PT (δ) and PT (δ′ ) × PT ( δ′′). In one
direction, we send a δ-permutree T to the pair of permutrees (T′,T′′) where T′ (resp. T′′) is the
(δ′ )-permutree (resp. the ( δ′′)-permutree) on the left (resp. right) of the (|δ′| + 1)th vertex
of T. In the other direction, we send a pair of permutrees (T′,T′′) to the δ-permutree T obtained
by merging the rightmost vertex of T′ with the leftmost vertex of T′′. See Figure 4 (right).
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Figure 4. Some bijections between permutrees: the leftmost and rightmost dec-
orations do not matter (left), and a decoration yields a product (right).

Remark 7. Permutrees can as well be seen as dual trees of certain {2, 3, 4}-angulations. We keep
the presentation informal as we only need the intuition of the construction in this paper.

For a given decoration δ ∈ { , , , }n, we construct a collection Pδ of points in the plane
as follows. We first fix p0 = (0, 0) and pn+1 = (n + 1, 0) and denote by C the circle with
diameter p0pn+1. Then for each i ∈ [n], we a place at abscissa i a point p0

i on p0pn+1 if δi = ,
a point p−i on the circle C and below p0pn+1 if δi ∈ { , }, and a point p+

i on the circle C and
above p0pn+1 if δi ∈ { , }. Note that when δi = , we have both p−i and p+

i at abscissa i.
Figure 5 shows the point set Pδ for δ = .

An arc in Pδ is an abscissa monotone curve connecting two external points of Pδ, not passing
through any other point of Pδ, and not crossing the vertical line at abscissa i if δi = . Arcs are
considered up to isotopy in R2 r Pδ. In particular, we can assume that the arcs joining two con-
secutive points on the boundary of the convex hull of Pδ are straight. We call {2, 3, 4}-angulation
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Figure 5. Permutrees (left) and {2, 3, 4}-angulations (right) are dual to each
other.

of Pδ a maximal set of non-crossing arcs in Pδ. An example is given in Figure 5. As observed in
this picture, one can check that a {2, 3, 4}-angulation decomposes the convex hull of Pδ into dian-
gles, triangles and quadrangles. In fact, for each j ∈ [n], there is one diangle around p0

j if δj = ,

one triangle {p±i ,p
±
j ,p

±
k } with i < j < k if δj ∈ { , }, and one quadrangle {p±i ,p

−
j ,p

+
j ,p

±
k }

with i < j < k if δj = .
We associate to a {2, 3, 4}-angulation of Pδ its dual permutree with

• a vertex in each {2, 3, 4}-angle: the jth vertex is a vertex in the diangle enclosing p0
j

if δj = , a vertex (resp. ) in the triangle {p±i ,p
±
j ,p

±
k } with i < j < k if δj =

(resp. ), and a vertex in the quadrangle {p±i ,p
−
j ,p

+
j ,p

±
k } with i < j < k if δj = ,

• an edge for each arc: for each arc α, there is an edge from the {2, 3, 4}-angle adjacent to α
and below α to the {2, 3, 4}-angle adjacent to α and above α.

2.2. Permutree correspondence. In this section, we present a correspondence between the
permutations of Sn and the leveled δ-permutrees for any given decoration δ ∈ { , , , }.
This correspondence defines a surjection from the permutations of Sn to the δ-permutrees by
forgetting the increasing labeling. This surjection will be a special case of the surjections described
in Section 2.7. We follow here the presentation of the Cambrian correspondence in [CP17].

We represent graphically a permutation τ ∈ Sn by the (n × n)-table, with rows labeled by
positions from bottom to top and columns labeled by values from left to right, and with a dot at
row i and column τ(i) for all i ∈ [n]. (This unusual choice of orientation is necessary to fit later
with the existing constructions of [LR98, HNT05, CP17].)

A decorated permutation is a permutation table where each dot is decorated by , , , or .
See the top left corner of Figure 6. We could equivalently think of a permutation where the
positions or the values receive a decoration, but it will be useful later to switch the decoration
from positions to values. The p-decoration (resp. v-decoration) of a decorated permutation τ is the
sequence δp(τ) (resp. δv(τ)) of decorations of τ ordered by positions from bottom to top (resp. by
values from left to right). For a permutation τ ∈ Sn and a decoration δ ∈ { , , , }n,
we denote by τδ (resp. by τ δ) the permutation τ with p-decoration δp(τδ) = δ (resp. with
v-decoration δv(τ

δ) = δ). We let Sδ := {τδ | τ ∈ Sn} and Sδ :=
{
τ δ
∣∣ τ ∈ Sn

}
. Finally, we let

S{ , , , } :=
⊔
n∈N

δ∈{ , , , }n

Sδ =
⊔
n∈N

δ∈{ , , , }n

Sδ

denote the set of all decorated permutations.
In concrete examples, we underline the down positions/values (those decorated by or )

while we overline the up positions/values (those decorated by or ): for example, 2751346 is the
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Figure 6. The insertion algorithm on the decorated permutation 2751346.

decorated permutation represented on the top left corner of Figure 6, where τ = [2, 7, 5, 1, 3, 4, 6],
δp = and δv = .

The insertion algorithm transforms a decorated permutation τ to a leveled permutree Θ(τ). As
a preprocessing, we represent the table of τ (with decorated dots in positions (τ(i), i) for i ∈ [n])
and draw a vertical red wall below the down vertices and above the up vertices. These walls
separate the table into regions. Note that the number of children (resp. parents) expected at each
vertex is the number of regions visible below (resp. above) this vertex. We then sweep the table
from bottom to top (thus reading the permutation τ from left to right) as follows. The procedure
starts with an incoming strand in between any two consecutive down values. At each step, we
sweep the next vertex and proceed to the following operations depending on its decoration:

(i) a vertex decorated by or catches the only incoming strands it sees, while a vertex
decorated by or connects the two incoming strands just to its left and to its right,

(ii) a vertex decorated by or creates a unique outgoing strand, while a vertex decorated by
or creates two outgoing strands just to its left and to its right.

The procedure finishes with an outgoing strand in between any two consecutive up values. See
Figure 6.

Proposition 8. The map Θ is a bijection from δ-decorated permutations to leveled δ-permutrees.

Proof. First, we need to prove that the map Θ is well-defined. This relies on the following invariant
of the sweeping algorithm: along the sweeping line, there is precisely one strand in each of the
intervals separated by the walls. Indeed, this invariant holds when we start the procedure and is
preserved when we sweep any kind of vertex. Therefore, the sweeping algorithm creates a graph
whose vertices are the decorated dots of the permutation table together with the initial and final
positions of the strands and where no edge crosses a red wall. It follows that this graph is a tree
(a cycle would force an edge to cross a red wall), and it is a leveled permutree (the walls separate
left and right ancestor or descendant subtrees). To prove that Θ is bijective, we already observed
that a leveled permutree T is a permutree endowed with a linear extension τ . We can consider
that τ is decorated by the decorations of the vertices of T. Finally, one checks easily that when
inserting the decorated permutation τ , the resulting leveled permutree is Θ(τ) = T. �
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For a decorated permutation τ , we denote by P(τ) the permutree obtained by forgetting the
increasing labeling in Θ(τ) and by Q(τ) the increasing tree obtained by forgetting the permutree
labeling in Θ(τ). These trees should be thought of as the insertion and recording trees of the
permutree correspondence, in analogy to the insertion and recording tableaux in the Robinson-
Schensted correspondence [Sch61]. The same analogy was already done for the sylvester correspon-
dence [HNT05] and the Cambrian correspondence [CP17]. The following statement was observed
along the previous proof.

Proposition 9. The decorated permutations τ ∈ Sδ such that P(τ) = T are precisely the linear
extensions of (the transitive closure of) the permutree T.

Example 10. Following Example 4, the δ-permutree P(τ) is:

(i) a path with vertices labeled by τ when δ = n,
(ii) the binary tree obtained by successive insertions (in a binary search tree) of the values of τ

read from right to left when δ = n,
(iii) the Cambrian tree obtained by the insertion algorithm described in [CP17] when δ ∈ { , }n,
(iv) a permutree recording the recoils of τ when δ = n. Namely, for i ∈ [n− 1], the vertex i is

below the vertex i+ 1 in P(τ) if τ−1(i) < τ−1(i+ 1), and above otherwise.

For example, the leveled permutrees of Figure 3 were all obtained by inserting the permuta-
tion 2751346 with different decorations.

2.3. Permutree congruence. In this section, we characterize the decorated permutations which
give the same P-symbol in terms of a congruence relation defined by a rewriting rule. We note that
this is just a straightforward extension of the definitions of the sylvester congruence by F. Hivert,
J.-C. Novelli and J.-Y. Thibon [HNT05] and of the Cambrian congruence of N. Reading [Rea06].

Definition 11. For a decoration δ ∈ { , , , }n, the δ-permutree congruence is the equiva-
lence relation on Sδ defined as the transitive closure of the rewriting rules

UacV bW ≡δ UcaV bW if a < b < c and δb = or ,
UbV acW ≡δ UbV caW if a < b < c and δb = or ,

where a, b, c are elements of [n] while U, V,W are words on [n]. Note that the decorations of a
and c do not matter, only that of b which we call the witness of the rewriting rule.

The permutree congruence is the equivalence relation on all decorated permutations S{ , , , }
obtained as the union of all δ-permutree congruences:

≡ :=
⊔
n∈N

δ∈{ , , , }n

≡δ .

Proposition 12. Two decorated permutations τ, τ ′ ∈ S{ , , , } are permutree congruent if and
only if they have the same P-symbol:

τ ≡ τ ′ ⇐⇒ P(τ) = P(τ ′).

Proof. It boils down to observe that two consecutive vertices a, c in a linear extension τ of a
δ-permutree T can be switched while preserving a linear extension τ ′ of T precisely when they
belong to distinct ancestor or descendant subtrees of a vertex b of T. It follows that the vertices a, c
lie on either sides of b so that we have a < b < c. If δb = or and a, c appear before b
in τ , then they belong to distinct descendant subtrees of b and τ = UacV bW can be switched
to τ ′ = UcaV bW . If δb = or and a, c appear after b in τ , then they belong to distinct
ancestor subtrees of b and τ = UbV acW can be switched to τ ′ = UbV caW . �

Recall that the (right) weak order on Sn is defined as the inclusion order of (right) inversions,
where a (right) inversion of τ ∈ Sn is a pair of values i < j such that τ−1(i) > τ−1(j). This order
is a lattice with minimal element [1, 2, . . . , n− 1, n] and maximal element [n, n− 1, . . . , 2, 1].

A lattice congruence of a lattice (L,≤,∧,∨) is an equivalence relation ≡ on L which respects
the meet and join operations: x ≡ x′ and y ≡ y′ implies x ∧ y ≡ x′ ∧ y′ and x ∨ y ≡ x′ ∨ y′ for
all x, x′, y, y′ ∈ L. For finite lattices, it is equivalent to require that equivalence classes of ≡ are
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intervals of L and that the maps π↓ and π↑ respectively sending an element to the bottom and top
elements of its equivalence class are order preserving.

The quotient of L modulo the congruence ≡ is the lattice L/≡ whose elements are the equiva-
lence classes of L under ≡, and where for any two classes X,Y ∈ L/≡, the order is given by X ≤ Y
if and only if there exist representatives x ∈ X and y ∈ Y such that x ≤ y, and the meet (resp. join)
is given by X ∧ Y = x ∧ y (resp. X ∨ Y = x ∨ y) for any representatives x ∈ X and y ∈ Y .

N. Reading deeply studied the lattice congruences of the weak order, see in particular [Rea04,
Rea15]. Using his technology, in particular that of [Rea15], we will prove in the next section that
our permutree congruences are as well lattice congruences of the weak order.

Proposition 13. For any decoration δ ∈ { , , , }n, the δ-permutree congruence ≡δ is a
lattice congruence of the weak order on Sδ.

Corollary 14. The δ-permutree congruence classes are intervals of the weak order on Sn. In
particular, the following sets are in bijection:

(i) permutrees with decoration δ,
(ii) δ-permutree congruence classes,

(iii) permutations of Sn avoiding the patterns ac-b with δb ∈ { , } and b-ac with δb ∈ { , },
(iv) permutations of Sn avoiding the patterns ca-b with δb ∈ { , } and b-ca with δb ∈ { , }.

Example 15. Following Example 4, the δ-permutree congruence ≡ is:

(i) the trivial congruence when δ = n,
(ii) the sylvester congruence [HNT05] when δ = n,
(iii) the Cambrian congruence [Rea04, Rea06, CP17] when δ ∈ { , }n,
(iv) the hypoplactic congruence [KT97, Nov00] (σ ≡ τ if and only if σ and τ have the same

descent sets) when δ = n.

Remark 16. In [Rea04], N. Reading defines a notion of homogeneous congruences of the weak
order. For example, the parabolic congruences cover all homogeneous degree 1 congruences. It
turns out that the permutree congruences cover all homogeneous degree 2 congruences. In other
words, the permutree congruences are precisely the lattice congruences obtained by contracting a
subset of side edges of the bottom hexagonal faces of the weak order together with all edges forced
by these contractions. For example, as illustrated in Figure 14, for each δ ∈ { , , , }4, the
δ-permutree congruence is the finest congruence which contracts the edges

[1324, 3124] if δ2 ∈ { , }, [2134, 2314] if δ2 ∈ { , },
[1243, 1423] if δ3 ∈ { , }, [1324, 1342] if δ3 ∈ { , }.

2.4. Arc diagrams. We now interpret the permutree congruence in terms of the arc diagrams of
N. Reading [Rea15]. We first briefly recall some definitions adapted to suit better our purposes
(in contrast to the presentation of [Rea15], our arc diagrams are horizontal to fit our conventions).

Consider the n points {q1, . . . ,qn} where qi = (i, 0). An arc diagram is a set of abscissa
monotone curves (called arcs) joining two points qi and qj , not passing through any other point qk,
and such that:

• no two arcs intersect except possibly at their endpoints,
• no two arcs share the same left endpoint or the same right endpoint (but the right endpoint

of an arc may be the left endpoint of another arc).

Two arcs are equivalent if they have the same endpoints qi,qj and pass above or below the same
points qk for i < k < j, and two arc diagrams are equivalent if their arcs are pairwise equivalent.
In other words, arc diagrams are considered up to isotopy. Denote by An the set of arc diagrams
on n points.

There are two similar maps asc and desc from Sn to An: given a permutation τ ∈ Sn, draw
the table with a dot at row i and column τ(i) for each i ∈ [n], trace the segments joining two
consecutive dots corresponding to ascents (resp. descents) of τ , let the points and segments fall
down to the horizontal line, allowing the segments connecting ascents (resp. descents) to curve
but not to pass through any dot, and call the resulting arc diagram asc(τ) (resp. desc(τ)). See
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7

64

42

1

3

5

1
2
3
4
5
6
7

76421 3 5

Figure 7. The arc diagrams asc(τ) (green, up) and desc(τ) (pink, down) associ-
ated to the permutation τ = 2537146 (left) and the arc diagrams asc(T) (green,
up) and desc(T) (pink, down) associated to a permutree T (right).

Figure 7 (left) for an illustration. It is proved in [Rea15] that asc and desc define bijections from Sn

to An.
Consider now a decoration δ ∈ { , , , }n. Draw a vertical wall below each point qi

with δi ∈ { , } and above each point qi with δi ∈ { , }. We denote by Uδ the set of arcs
which do not cross any of these walls. Note that this is very similar to [Rea15, Example 4.9] where
each point qi is incident to precisely one wall. The following lemma is immediate.

Lemma 17. For any τ ∈ Sn, the arc diagram asc(τ) (resp. desc(τ)) uses only arcs in Uδ if
and only if τ avoids the patterns ac-b with δb ∈ { , } and b-ac with δb ∈ { , } (resp. the
patterns ca-b with δb ∈ { , } and b-ca with δb ∈ { , }).

Consider now two arcs α with endpoints qi,qj , and β with endpoints qk,q`. Then α is a
subarc of β if k ≤ i ≤ j ≤ ` and α and β pass above or below the same points qm for i < m < j.
Consider now a subset U of all possible arcs which is closed by subarcs. Denote by An(U) the
set of arc diagrams consisting only of arcs of U . It is then proved in [Rea15] that asc−1(An(U))
(resp. desc−1(An(U))) is the set of bottom (resp. top) elements of the classes of a lattice congru-
ence ≡U of the weak order. We therefore obtain the proof of Proposition 13.

Proof of Proposition 13. For any decoration δ ∈ { , , , }n, the set Uδ of arcs not crossing
any wall is clearly closed by subarcs. It follows that asc−1(An(Uδ)) (resp. desc−1(An(Uδ))) is the
set of bottom (resp. top) elements of the classes of a lattice congruence ≡Uδ of the weak order. But

Lemma 17 ensures that asc−1(An(Uδ)) (resp. desc−1(An(Uδ))) are precisely the bottom (resp. top)
elements of the classes of the permutree congruence ≡δ. The two congruences ≡Uδ and ≡δ thus
coincide which proves that ≡δ is a lattice congruence of the weak order. �

We conclude this section with a brief comparison between permutrees and arc diagrams. Con-
sider a permutree T, delete all its leaves, and let its vertices fall down to the horizontal axis,
allowing the edges to curve but not to pass through any vertex. The resulting set of oriented arcs
can be decomposed into the set asc(T) of increasing arcs oriented from i to j with i < j and the
set desc(T) of decreasing arcs oriented from j to i with i < j. The following observation, left to
the reader, is illustrated in Figure 7 (right).

Proposition 18. The set asc(T ) is the arc diagram asc(τ) of the maximal linear extension τ of T
while the set desc(T) is the arc diagram desc(σ) of the minimal linear extension σ of T.
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··· · ·
··· 5 6
· · 4 .

···· · ·· · ·
···· 14 18 24
·· · 10 12 .
· · 8 . .

····· · ··· ·· ·· · · · · ·· · ·
····· 42 56 60 76 84 120
··· · 28 36 36 . 48 .
·· ·· 25 30 36 . . .
·· · 20 24 . . . .
· · · 20 24 . . . .
· · 16 . . . . .

······ · ···· ·· ··· ··· ·· · ·· · · · ·· · ··· ·· ·· · · · · ·· · ·
······ 132 180 200 200 248 280 288 324 408 480 720
···· · 84 112 120 112 . 152 168 168 . 240 .
··· ·· 70 90 90 . 108 . 120 . 144 . .
·· ··· 70 84 . 90 108 108 . . . . .
··· · 56 72 72 . . . 96 . . . .
·· ·· 56 60 . . 72 . . . . . .
· ·· · 50 . 72 72 . . . 96 . . .
·· · · 50 60 . 60 . 72 . . . . .
·· · 40 48 . . . . . . . . .
· · · 40 . 48 . . . . . . . .
· · 32 . . . . . . . . . .

Table 1. All factorial-Catalan numbers C(δ) for |δ| ∈ {3, 4, 5, 6}. Each row
(resp. column) corresponds to all decorations with a fixed subset of positions
marked with (resp. ). For example, we read in row ·· ··· and column · ·· ·
of the bottom table that C(δ1 δ4 δ6) = 108 for any δ1, δ4, δ6 ∈ { , }. Dots
inside the table correspond to overlapping sets of positions of and . These
tables give all factorial-Catalan numbers up to the mirror symmetry of Remark 5.

2.5. Numerology. In this section, we discuss enumerative properties of permutrees. We call
factorial-Catalan number the number C(δ) of δ-permutrees for δ ∈ { , , , }n. The values
of C(δ) for |δ| ∈ {3, 4, 5, 6} are reported in Table 1. To evaluate these numbers, we proceed in two
steps: we first show that the number of δ-permutrees only depends on the positions of the and

in δ, and then give summation formulas for factorial-Catalan numbers C(δ) for δ ∈ { , , }n.

2.5.1. Only and matter. According to Corollary 14, δ-permutrees are in bijection with per-
mutations of Sn avoiding the patterns ac-b with δb ∈ { , } and b-ac with δb ∈ { , }. We
construct a generating tree Tδ for these permutations. This tree has n levels, and the nodes at
level m are labeled by the permutations of [m] whose values are decorated by the restriction of δ
to [m] and avoiding the two patterns ac-b with δb ∈ { , } and b-ac with δb ∈ { , }. The
parent of a permutation in Tδ is obtained by deleting its maximal value. See Figure 8 for examples
of such generating trees.

Proposition 19. For any decorations δ, δ′ ∈ { , , , }n such that δ−1( ) = δ′−1( ) and
δ−1( ) = δ′−1( ), the generating trees Tδ and Tδ′ are isomorphic.

For the proof, we consider the possible positions of m+ 1 in the children of a permutation τ at
level m in Tδ. Index by {0, . . . ,m} from left to right the gaps before the first letter, between two
consecutive letters, and after the last letter of τ . We call free gaps the gaps in {0, . . . ,m} where
placing m+ 1 does not create a pattern ac-b with δb ∈ { , } and b-ac with δb ∈ { , }. They
are marked with a blue point • in Figure 8.

Lemma 20. Any permutation at level m with g free gaps has g children in Tδ, whose numbers of
free gaps

• all equal g + 1 when δm+1 = ,
• range from 2 to g + 1 when δm+1 = or ,
• all equal 2 when δm+1 = .
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•234•1 •24•31 •4•231 •324•1 •34•21 •4•321 •1234• •124•3 •14•23 •4•123 •1324• •134•2 •14•32 •4•132 •3124• •314•2 •34•12 •4•312

•2•3•1 •3•2•1 •1•2•3• •1•3•2• •3•1•2•

•2•1 •1•2•

•1•

•4•123 •123•4• •4•132 •13•4•2 •4•312 •3•4•12 •4•213 •213•4• •4•231 •23•4•1 •4•321 •3•4•21

•123• •13•2 •3•12 •213• •23•1 •3•21

•1•2• •2•1•

•1•

Figure 8. The generating trees Tδ for the decorations δ = (top) and
δ = (bottom). Free gaps are marked with blue dots.

Proof. Let τ be a permutation at level m in Tδ with g free gaps. Let σ be the child of τ in Tδ
obtained by inserting m + 1 at a free gap j ∈ {0, . . . ,m}. Then the free gaps of σ are 0, j + 1
together with

• all free gaps of τ if δm+1 = ,
• the free gaps of τ after j if δm+1 = ,
• the free gaps of τ before j + 1 if δm+1 = ,
• no other free gaps if δm+1 = . �

Proof of Proposition 19. Order the children of a node of Tδ from left to right by increasing number
of free gaps as in Figure 8. Lemma 20 shows that the shape of the resulting tree only depends on
the positions of and in δ. It ensures that the trees Tδ and Tδ′ are isomorphic and provides
an explicit bijection between the δ-permutrees and δ′-permutrees when δ−1( ) = δ′−1( ) and
δ−1( ) = δ′−1( ). �

Proposition 19 immediately implies the following equi-enumeration result.

Corollary 21. The factorial-Catalan number C(δ) only depends on the positions of the symbols
and in δ.

Using more carefully the description of the generating tree in Lemma 20, we obtain the following
recursive formulas for the factorial-Catalan numbers.

Corollary 22. Let δ ∈ { , , , }n and δ′ be obtained by deleting the last letter δn of δ. The
number C(δ, g) of permutations avoiding ac-b with δb ∈ { , } and b-ac with δb ∈ { , } and
with g free gaps satisfies the following recurrence relations:

C(δ, g) =



11g>2 · (g − 1) ·C(δ′, g − 1) if δn = ,

11g≥2 ·
∑

g′≥g−1

C(δ′, g′) if δn = or ,

11g=2 ·
∑
g′≥2

g′ ·C(δ′, g′) if δn = ,

where 11X is 1 if X is satisfied and 0 otherwise.
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The last corollary can be used to compute the factorial-Catalan number C(δ) =
∑
g≥2 C(δ, g)

inductively from C(δ, 2) = 1 for any δ of size 1. We will see however different formulas in the
remainder of this section.

2.5.2. Summation formulas. By Corollary 21, it is enough to understand the factorial-Catalan
number C(δ) when δ ∈ { , , }n. Following Remark 6, we first observe that we can also get
rid of the symbols.

Lemma 23. Assume that δ = δ′ δ′′, then C(δ) = C(δ′ ) ·C( δ′′).

We can therefore focus on the factorial-Catalan number C(δ) when δ ∈ { , }n. Note that
when δ ∈ { , }n, all δ-permutrees have a single outgoing strand, and are therefore rooted. This
enables us to derive recursive formulas for factorial-Catalan numbers.

Proposition 24. For any decoration δ ∈ { , }n, the factorial-Catalan number C(δ) satisfies
the following recurrence relation

C(δ) =
∑

i∈δ−1( )

C(δ|[n]ri) +
∑

i∈δ−1( )

C(δ|[1,...,i−1]) ·C(δ|[i+1,...,n])

Proof. We group the δ-permutrees according to their root. The formula thus follows from the
obvious bijection between δ-permutree T with root i and

• δ|[n]ri-permutrees if δi = ,
• pairs of δ|[1,...,i−1]- and δ|[i+1,...,n]-permutrees if δi = . �

Proposition 25. For any decoration δ ∈ { , }n, the factorial-Catalan number C(δ) satisfies
the following recurrence relation

C(δ) =
∑

i∈δ−1( )

J⊆δ−1( )

C(δ|[1,...,i−1]rJ) ·C(δ|[i+1,...,n]rJ) · |J |!

Proof. Similar as the previous proof except that we group the δ-permutrees according to their
topmost vertex. Details are left to the reader. �

We conclude by the following statement which sums up the results of this numerology section.

Corollary 26. For any decoration δ, the factorial-Catalan number C(δ) is given by the recurrence
formula

C(δ) =
∏
k∈[m]

∑
i∈[bk−1,bk]∩δ−1( )

J⊆[bk−1,bk]∩δ−1( )

C(δ|[bk−1,...,i−1]rJ) ·C(δ|[i+1,...,bk]rJ) · |J |!

where {b0 < b1 < · · · < bm} = {0, n} ∪ δ−1( ).

Example 27. Following Example 4, the previous statements specialize to classical formulas for

(i) the factorial n! = C( n) [OEI10, A000142],
(ii) the Catalan number 1

n+1

(
2n
n

)
= C( n) = C(δ) for δ ∈ { , }n [OEI10, A000108], and

(iii) the power 2n−1 = C( n) [OEI10, A000079].

Other relevant subfamilies of decorations will naturally appear in Section 4. Namely, we are
particularly interested in the subfamilies of decorations given by all words in Dn on a given
subset D of { , , , }. See Table 2.

Remark 28. In general, the factorial-Catalan number is always bounded by 2n−1 ≤ C(δ) ≤ n!.
Moreover, we even have C(δ) ≤ 1

n+1

(
2n
n

)
if δ contains no , while C(δ) ≥ 1

n+1

(
2n
n

)
if δ contains

no . This follows from Corollary 22 but will even be easier to see from decoration refinements
in the next section.

We refer to Table 1 for the values of all factorial-Catalan numbers C(δ) for all decorations δ
such that |δ| ∈ {3, 4, 5, 6}.

https://oeis.org/A000142
https://oeis.org/A000108
https://oeis.org/A000079
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D
∑
δ∈Dn C(δ) for n ∈ [10] reference

{ , , , } 4 32 320 3584 43264 553472 7441920 104740864 −
{ , , } 3 18 144 1368 14688 173664 2226528 30647808 −
{ , , } 3 18 126 936 7164 55800 439560 3489696 −

{ , , } or { , , } 3 18 135 1134 10287 99306 1014039 10933542 −
{ , } or { , } 2 8 44 296 2312 20384 199376 2138336 [OEI10, A077607]

{ , } 2 8 40 224 1360 8864 61984 467072 −
{ , } or { , } 2 8 36 168 796 3800 18216 87536 [OEI10, A084868]

{ , } 2 8 40 224 1344 8448 54912 366080 [OEI10, A052701]
{ } 1 2 6 24 120 720 5040 40320 [OEI10, A000142]

{ } or { } 1 2 5 14 42 132 429 1430 [OEI10, A000108]
{ } 1 2 4 8 16 32 64 128 [OEI10, A000079]

Table 2. Sums of the factorial-Catalan numbers over subfamilies of decorations
given by all words on a given subset of { , , , }.

2.6. Rotations and permutree lattices. We now extend the rotation from binary trees to all
permutrees. This local operation only exchanges the orientation of an edge and rearranges the
endpoints of two other edges.

Definition 29. Let i → j be an edge in a δ-permutree T, with i < j. Let D denote the only
(resp. the right) descendant subtree of vertex i if δi ∈ { , } (resp. if δi ∈ { , }) and let U
denote the only (resp. the left) ancestor subtree of vertex j if δj ∈ { , } (resp. if δj ∈ { , }).
Let T′ be the oriented tree obtained from T just reversing the orientation of i → j and attaching
the subtree U to i and the subtree D to j. The transformation from T to T′ is called rotation of
the edge i→ j. See Figure 9.

The following statement shows that the rotation of the edge i→ j is the only operation which
exchanges the orientation of this edge while preserving all other edge cuts. An edge cut in a
permutree T is the ordered partition (I ‖ J) of the vertices of T into the set I of vertices in the
source set and the set J = [n] r I of vertices in the target set of an oriented edge of T.

Proposition 30. The result T′ of the rotation of an edge i → j in a δ-permutree T is a
δ-permutree. Moreover, T′ is the unique δ-permutree with the same edge cuts as T, except the
cut defined by the edge i→ j.

Proof. We first observe that T′ is still a tree, with an orientation of its edges and a bijective
labeling of its vertices by [n]. To check that T′ is still a δ-permutree, we need to check the local
conditions of Definition 1 around each vertex of T′. Since we did not perturb the labels nor the
edges incident to the vertices of T distinct from i and j, it suffices to check the local conditions
around i and j. By symmetry, we only give the arguments around i. We distinguish two cases:

• If i is an down vertex in T (decorated by or ), then D is the right descendant of i
in T, so that all labels in D are larger than i. Moreover, all labels in the right ancestor and
descendant of j (if any) are larger than j, which is in turn larger than i. It follows that
all labels in the right descendant of i in T′ are larger than i. Finally, the left descendant
of i in T′ is the left descendant of i in T, so all its labels are still smaller than i.

• If i is an up vertex in T (decorated by or ), then U belongs to the right ancestor
of i in T, so that all labels in U are larger than i. It follows that all labels in the right
ancestor of i in T′ are larger than i. Finally, the left ancestor of i in T′ is the left ancestor
of i in T, so all its labels are still smaller than i.

This closes the proof that T′ is a δ-permutree. By construction, the δ-permutree T′ clearly has
the same edge cuts as T, except the cut corresponding to the edge i→ j. Any δ-permutree with
this property is obtained from T by reversing the edge i → j to an edge i ← j and rearranging

https://oeis.org/A077607
https://oeis.org/A084868
https://oeis.org/A052701
https://oeis.org/A000142
https://oeis.org/A000108
https://oeis.org/A000079


PERMUTREES 15

U

DD

U

i

j

i

j
U

DD

U

i j

j j

i j

U

DD

U

i j i j

U

DD

U

i i
j

j

U

DD

U

i

i j

i

i j
U

DD

U

i j

i j

i j

i j
U

DD

U

i j

i

i j

i
U

DD

U

i

i

i

i

j

j

U

DD

U
i j

jj

i j
U

DD

U
i j i j

U

DD

U

j

i

j

i
U

D

i

D

U
i

j

j

U

DD

U
j j

i

i

U

DD

U

j j

i

i

U

D D

U

i

ji

j

U

DD

U
j

j

j

i

i
j

i
j

Figure 9. Rotations in permutrees: in each box, the tree T (left) is transformed
into the tree T′ (right) by rotation of the edge i → j. The 16 boxes correspond
to the possible decorations of i and j.

the neighbors of i and j. But it is clear that the rearrangement given in Definition 29 is the only
one which preserves the local conditions of Definition 1 around the vertices i and j. �

Remark 31. Following Remark 7, a rotation on permutrees is dual to a flip on {2, 3, 4}-angulations
of Pδ. Namely, after deletion of an internal arc from a {2, 3, 4}-angulation, there is a unique distinct
internal arc that can be inserted to complete to a new {2, 3, 4}-angulation. See Figure 10.
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Figure 10. A sequence of two rotations on permutrees, and the corresponding
flips on {2, 3, 4}-angulations.
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Define the increasing rotation graph on PT (δ) to be the graph whose vertices are the δ-
permutrees and whose arcs are increasing rotations T → T′, i.e. where the edge i → j in T
is reversed to the edge i ← j in T′ for i < j. See Figure 11. The following statement, adapted
from N. Reading’s work [Rea06], asserts that this graph is acyclic, that its transitive closure defines
a lattice, and that this lattice is closely related to the weak order. See Figure 11.

Proposition 32. The transitive closure of the increasing rotation graph on PT (δ) is a lattice,
called δ-permutree lattice. The map P : Sδ → PT (δ) defines a lattice homomorphism from the
weak order on Sδ to the δ-permutree lattice on PT (δ).

Proof. For two δ-permutree congruence classes X,Y , define X ≤ Y if and only if there are rep-
resentatives σ ∈ X and τ ∈ Y such that σ ≤ τ in weak order. By Proposition 13, this order
defines a lattice on the δ-permutree congruence classes. Moreover, these classes correspond to the
δ-permutrees by Proposition 12. Therefore, we only have to show that the quotient order on these
classes coincides with the order given by increasing flips on the δ-permutrees. For this, it suffices to
check that if two permutations σ and τ differ by the transposition of two consecutive values i < j,
then the δ-permutrees P(σ) and P(τ) either coincide or differ by the rotation of the edge i → j.
If σ ≡δ τ , then we have P(σ) = P(τ) by Proposition 12. If σ 6≡δ τ , then i and j are consecutive
values comparable in P(σ), so that P(σ) contains the edge i→ j. We then check locally that the
effect of switching i and j in the insertion process precisely rotates this edge in P(σ). �

Note that the minimal (resp. maximal) δ-permutree is an oriented path from 1 to n (resp. from n
to 1) with an additional incoming leaf at each down vertex (decorated by or ) and an additional
outgoing leaf at each up vertex (decorated by or ). See Figure 11.

Example 33. Following Example 4, the δ-permutree lattice is:

(i) the weak order on Sn when δ = n,
(ii) the Tamari lattice defined by right rotations on binary trees when δ = n,
(iii) the (type A) Cambrian lattices of N. Reading [Rea06] when δ ∈ { , }n,
(iv) the boolean lattice when δ = n.

Remark 34. Note that different decorations generally give rise to different permutree lattices. In
fact, although it preserves the number of δ-permutrees by Corollary 21 and the number of Schröder
δ-permutrees by Corollary 104, changing a to a in the decoration δ may change both the
δ-permutree lattice and the rotation graph on δ-permutrees. For example, the rotation graphs for
the decoration and both have 248 vertices but are not isomorphic. Note
however that the symmetrees discussed in Remark 5 provide lattice (anti)-isomorphisms between
the permutree lattices for the decorations δ, δ and δ .

2.7. Decoration refinements. Order the possible decorations by 4 { , } 4 (in other
words, by increasing number of incident edges). Let δ, δ′ be two decorations of the same size n.
If δi 4 δ′i for all i ∈ [n], then we say that δ refines δ′, or that δ′ coarsens δ, and we write δ 4 δ′.
The set of all decorations of size n ordered by refinement 4 is a boolean lattice with minimal
element n and maximal element n.

For any permutation τ ∈ Sn and any decoration δ ∈ { , , , }n, we denote by τ δ ∈ Sδ the
permutation τ whose values get decorated by δ. Observe now that for any two decorations δ 4 δ′,
the δ-permutree congruence refines the δ′-permutree congruence: σδ ≡δ τ δ =⇒ σδ

′ ≡δ′ τ δ
′
.

See Figure 14 for an illustration of the refinement lattice on the δ-permutree congruences for all
decorations δ ∈ · { , , , }2 · .

In other words, all linear extensions of a given δ-permutree T are linear extensions of the same
δ′-permutree T′. This defines a natural surjection map Ψδ′

δ : PT (δ)→ PT (δ′) from δ-permutrees

to δ′-permutrees for any two decorations δ 4 δ′. Namely, the image Ψδ′

δ (T) of any δ-permutree T
is obtained by inserting any linear extension of T seen as a permutation decorated by δ′.

This surjection Ψδ′

δ can be described visually as follows, see Figure 12. We start from a δ-
permutree, with vertices labeled from left to right as usual. We then redecorate its vertices
according to δ′ and place the corresponding vertical red walls below the down vertices (decorated
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Figure 12. Refinement by cut and stretch: starting from a permutree decorated
with (left), we redecorate its vertices with (middle
left), cut and reconnect its edges along the resulting red walls (middle right), and
stretch the resulting -permutree (right).

by or ) and above the up vertices (decorated by or ). The result is not a permutree at
the moment as some edges of the tree cross some red walls. In order to fix it, we cut the edges
crossing red walls and reconnect them with vertical segments as illustrated in Figure 12 (middle
right). Finally, we stretch the picture to see a δ′-permutree with our usual straight edges.

Note that if ≡ and ≈ are two lattice congruences of the same lattice L and ≡ refines ≈, then
the map sending a class of L/≡ to its class in L/≈ is a lattice homormorphism. Since the δ-
permutree lattice is isomorphic to the quotient of the weak order by the δ-permutree congruence
by Proposition 32, we obtain the following statement.

Proposition 35. The surjection Ψδ′

δ defines a lattice homomorphism from the δ-permutree lattice
to the δ′-permutree lattice.

Example 36. When δ = n, the surjection Ψδ′

δ is just the P-symbol described in Section 2.2.
The reader can thus apply the previous description to see pictorially the classical maps described in
Example 10 (BST insertion, descents). For example, we have illustrated in Figure 13 an insertion
of a permutation in a binary tree seen with this cut and stretch interpretation. Besides these
maps, the surjection Ψδ′

δ specializes when δ = n and δ′ = n to the classical canopy map from
binary trees to binary sequences, see [LR98, Vie07].

1

2

3
4

5

6

7

7641 2 3 5 7641 2 3 57641 2 3 5

Figure 13. BST insertion seen as the refinement map from a n-permutree
(i.e. a permutation of Sn) to a n-permutree (i.e. a binary tree on [n]).
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3. Permutreehedra

In this section, we show that the known geometric constructions of the associahedron [Lod04,
HL07, LP17] extend in our setting. We therefore obtain a family of polytopes which interpolate
between the permutahedron, the associahedra, and some graphical zonotopes. We call these
polytopes permutreehedra .

We refer to [Zie95] or [Mat02, Chapter 5] for background on polytopes and fans. Let us just
remind that a polytope is a subset P in Rn defined equivalently as the convex hull of finitely many
points in Rn or as a bounded intersection of finitely many closed half-spaces of Rn. The faces
of P are the intersections of P with its supporting hyperplanes. A polyhedral fan is a collection of
polyhedral cones of Rn closed under faces and which intersect pairwise along faces. The (outer)
normal cone of a face F of P is the cone generated by the outer normal vectors of the facets
(codimension 1 faces) of P containing F . Finally, the (outer) normal fan of P is the collection of
the (outer) normal cones of all its faces.

We denote by (ei)i∈[n] the canonical basis of Rn and let 11 :=
∑
i∈[n] ei. All our constructions

will lie in the affine subspace

H :=

{
x ∈ Rn

∣∣∣∣ ∑
i∈[n]

xi =

(
n+ 1

2

)}
.

3.1. Permutree fans. We consider the (type A) Coxeter arrangement defined by the hyper-
planes {x ∈ Rn | xi = xj} for all 1 ≤ i < j ≤ n. It defines a complete simplicial fan, called the
braid fan. Each maximal cone C of this fan corresponds to a permutation given by the order of
the coordinates of any point of C. More precisely, we can associate to each permutation τ the
maximal cone C�(τ) :=

{
x ∈ Rn

∣∣ xτ−1(1) ≤ · · · ≤ xτ−1(n)

}
of the braid fan.

Define now the incidence cone C(T) and the braid cone C�(T) of a permutree T as the cones

C(T) :=
n+ 1

2
11 + cone {ei − ej | ∀ i→ j in T} =

{
x ∈ H

∣∣∣∣ ∑
j∈J

xj
|J |
≤
∑
i∈I

xi
|I|
, ∀ (I ‖ J) ∈ EC(T)

}

C�(T) := {x ∈ H | xi ≤ xj , ∀ i→ j in T} =
n+ 1

2
11 + cone

{∑
j∈J

ej
|J |
−
∑
i∈I

ei
|I|

∣∣∣∣ ∀ (I ‖ J) ∈ EC(T)

}
,

where EC(T) denotes the set of edge cuts of T. Note that these two cones both lie in the space H,
are simplicial, and are polar to each other. We use these cones to construct the permutree fan.

Proposition 37. For any decoration δ ∈ { , , , }n, the set of cones {C�(T) | T ∈ PT (δ)},
together with all their faces, forms a complete simplicial fan F(δ) of H called δ-permutree fan.

Proof. The statement is a special case of a general result of N. Reading [Rea05, Theorem 1.1], but
we give a direct short proof for the convenience of the reader. A cone C�(T) is the union of the
cones C�(τ) over all linear extensions τ of T. Since the sets of linear extensions of the δ-permutrees
form a partition of Sn (δ-permutree congruence classes), we already know that the cones C�(T)
for all T ∈ PT (δ) are interior disjoint and cover the all space Rn. Now any δ-permutree T is
adjacent by rotation to n other δ-permutrees T1, . . . ,Tn. If Tk is obtained from T by rotating
the edge i → j with edge cut (I ‖ J), it has precisely the same edge cuts as T except the edge
cut (I ‖ J). The cone C�(Tk) thus shares all but one ray of C�(T). We conclude that each facet
of C�(T) is properly shared by another cone C�(T′). Since the cones C�(T) for all T ∈ PT (δ) are
interior disjoint, it shows that no such cone can improperly share a (portion of a) facet with C�(T).
We obtain that all cones intersect properly which concludes the proof that we have a complete
simplicial fan. �

Proposition 38. Consider two decorations δ 4 δ′ and the surjection Ψδ′

δ : PT (δ) → PT (δ′)

defined in Section 2.7. For any δ-permutree T and its image T′ = Ψδ′

δ (T), we have

C(T) ⊇ C(T′) and C�(T) ⊆ C�(T′).

In other words, the δ-permutree fan F(δ) refines the δ′-permutree fan F(δ′).
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Proof. We have seen in the definition of Ψδ′

δ that all linear extensions of T are linear extensions

of T′ = Ψδ′

δ (T). Since the cone C�(T) is the union of the cones C�(τ) over all linear extensions τ
of T, we obtain that C�(T) ⊆ C�(T′). The inclusion C(T) ⊇ C(T′) follows by polarity. �

Example 39. Following Example 4, the δ-permutree fans specialize to:

(i) the braid fan when δ = n,
(ii) the (type A) Cambrian fans of N. Reading and D. Speyer [RS09] when δ ∈ { , }n,
(iii) the fan defined by the hyperplane arrangement xi = xi+1 for each i ∈ [n− 1] when δ = n,
(iv) the fan defined by the hyperplane arrangement xi = xj for each i < j ∈ [n − 1] such

that δ|(i,j) = j−i−1 when δ ∈ { , }n.

3.2. Permutreehedra. We are now ready to construct the δ-permutreehedron whose normal fan
is the δ-permutree fan. As for J.-L. Loday’s or C. Hohlweg and C. Lange’s associahedra [Lod04,
HL07], our permutreehedra are obtained by deleting certain inequalities in the facet description of
the classical permutahedron. We thus first recall the vertex and facet descriptions of this polytope.
The permutahedron Perm(n) is the polytope obtained as

(i) either the convex hull of the vectors p(τ) := [τ−1(i)]i∈[n] ∈ Rn, for all permutations τ ∈ Sn,

(ii) or the intersection of the hyperplane H = H=([n]) with the half-spaces H≥(J) for ∅ 6= J ⊆ V,
where

H=(J) :=

{
x ∈ Rn

∣∣∣∣ ∑
j∈J

xj =

(
|J |+ 1

2

)}
and H≥(J) :=

{
x ∈ Rn

∣∣∣∣ ∑
j∈J

xj ≥
(
|J |+ 1

2

)}
.

Its normal fan is precisely the braid fan described in the previous section. An illustration
of Perm(4) is given on the bottom of Figure 16.

From this polytope, we construct the δ-permutreehedron PT(δ), for which we give both vertex
and facet descriptions:

(i) The vertices of PT(δ) correspond to δ-permutrees. We associate to a δ-permutree T a
point a(T) ∈ Rn whose coordinates are defined by

a(T)i =


1 + d if δi = ,

1 + d+ `r if δi = ,

1 + d− `r if δi = ,

1 + d+ `r − `r if δi = ,

where d denotes the number of the descendants i in T, ` and r denote the sizes of the left and
right descendant subtrees of i in T when δi ∈ { , }, and ` and r denote the sizes of the
left and right ancestor subtrees of i in T when δi ∈ { , }. Note that a(T) is independent
of the decorations of the first and last vertices of T.

(ii) The facets of PT(δ) correspond to the δ-building blocks, that is, to all subsets I ⊂ [n] such
that there exists a δ-permutree T which admits (I ‖ J) as an edge cut. We associate to a
δ-building block I the hyperplane H=(I) and the half-space H≥(I) defined above for the
permutahedron. Note that δ-building blocks are easy to compute on the dual representation
described in Remark 7: any internal arc α in Pδ corresponds to the building block Iα of the
indices of all points pk below α, including the endpoints of α in the upper convex hull of Pδ

(and excluding 0 and n + 1). For example, when δ ∈ { , }n, the building blocks are the
subsets I such that I ∩ δ−1( ) is an interval of δ−1( ).

As an illustration, the vertex corresponding to the permutree of Figure 2 is [7,−4, 3, 8, 1, 12, 1] and
the facet corresponding to the edge 3→ 4 in the permutree of Figure 2 is x1 + x2 + x3 ≥ 6.

Theorem 40. The permutree fan F(δ) is the normal fan of the permutreehedron PT(δ) defined
equivalently as

(i) either the convex hull of the points a(T) for all δ-permutrees T,
(ii) or the intersection of the hyperplane H with the half-spaces H≥(B) for all δ-building blocks B.
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Figure 15. The permutreehedra PT( ) (left) and PT( ) (right).

Figure 15 illustrates the permutreehedra PT( ) and PT( ). For more examples,
Figure 16 shows all δ-permutreehedra for δ ∈ · { , , , }2 · . We restrict to the cases
when δ1 = δ4 = as the first and last symbols of δ do not matter for PT(δ) (see Remark 6).

Our proof of Theorem 40 is based on the following characterization of the valid right hand
sides to realize a complete simplicial fan as the normal fan of a convex polytope. A proof of this
statement can be found e.g. in [HLT11, Theorem 4.1].

Theorem 41 ([HLT11, Theorem 4.1]). Given a complete simplicial fan F in Rd, consider for each
ray ρ of F a half-space H≥ρ of Rd containing the origin and defined by a hyperplane H=

ρ orthogonal

to ρ. For each maximal cone C of F , let a(C) ∈ Rd be the intersection of the hyperplanes H=
ρ

for ρ ∈ C. Then the following assertions are equivalent:

(i) The vector a(C′)−a(C) points from C to C′ for any two adjacent maximal cones C, C′ of F .
(ii) The polytopes

conv {a(C) | C maximal cone of F} and
⋂

ρ ray of F

H≥ρ

coincide and their normal fan is F .

To apply this theorem, we start by checking that our point a(T) is indeed the intersection of
the hyperplanes corresponding to the cone C(T).

Lemma 42. For any permutree T, the point a(T) is the intersection point of the hyperplanes H=(I)
for all edge cuts (I ‖ J) of T.

Proof. Let x denote the intersection point of the hyperplanes H=(I) for all edge cuts (I ‖ J) of T.
Fix k ∈ [n]. Each cut given by the incoming and outgoing edges of vertex k provides an equation

of the form
∑
i∈I xi =

(|I|+1
2

)
. Combining these equations (more precisely, adding the outgoing

equations and substracting the incoming equations), we obtain the value of xk in terms of the
sizes d, `, r, `, r defined earlier. We distinguish four cases, depending on the decoration of i:

xk =


(
d+2

2

)
−
(
d+1

2

)
= 1 + d if δi = ,(

`+r+2
2

)
−
(
`+1

2

)
−
(
r+1

2

)
= 1 + d+ `r if δi = ,(

d+r+2
2

)
+
(
d+`+2

2

)
−
(
d+1

2

)
−
(
d+`+r+1

2

)
= 1 + d− `r if δi = ,(

`+r+r+2
2

)
+
(
`+r+`+2

2

)
−
(
`+1

2

)
−
(
r+1

2

)
−
(
`+r+`+r+1

2

)
= 1 + d+ `r − `r if δi = . �
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We can now check that Condition (i) in Theorem 41 holds. This requires a short case analysis
of the rotation on permutrees (see Definition 29 and Figure 9).

Lemma 43. Let T,T′ be two permutrees connected by the rotation of the edge i → j ∈ T to the
edge i← j ∈ T′. Then the difference a(T′)− a(T) is a positive multiple of ei − ej.

Proof. Analyzing the 16 possible situations presented in Figure 9, we obtain that

a(T′)− a(T) = (`+ 1)(r + 1)(ei − ej),

where ` is the sum of the sizes of the left subtrees of i (if any), and r is the sum of the sizes of the
right subtrees of j (if any). The result follows since ` ≥ 0 and r ≥ 0. �

Proof of Theorem 40. Direct application of Theorem 41, where (i) holds by Lemmas 42 and 43. �

Example 44. Following Example 4, the δ-permutreehedron PT(δ) specializes to:

(i) the permutahedron Perm(n) when δ = n,
(ii) the associahedron Asso(n) of J.-L. Loday [SS93, Lod04] when δ = n,
(iii) the associahedra Asso(δ) of C. Hohlweg and C. Lange [HL07, LP17] when δ ∈ { , }n,
(iv) the parallelepiped Para(n) with directions ei − ei+1 for each i ∈ [n− 1] when δ = n,
(v) the graphical zonotope Zono(δ) generated by the vectors ei−ej for each i < j ∈ [n−1] such

that δ|(i,j) = j−i−1 when δ ∈ { , }n.

See Figure 16 for examples when n = 4.

3.3. Further geometric topics. We now explore several miniatures about permutreehedra. All
are inspired from similar properties known for the associahedron, see e.g. [LP17] for a survey.

3.3.1. Linear orientation and permutree lattice. The δ-permutree lattice studied in Section 2.6
naturally appears in the geometry of the δ-permutreehedron PT(δ). Denote by U the vector

U := (n, n− 1, . . . , 2, 1)− (1, 2, . . . , n− 1, n) =
∑
i∈[n]

(n+ 1− 2i) ei.

Proposition 45. When oriented in the direction U , the 1-skeleton of the δ-permutreehedron PT(δ)
is the Hasse diagram of the δ-permutree lattice.

Proof. By Theorem 40, the 1-skeleton of PT(δ) is the rotation graph on δ-permutrees. It thus
only remains to check that increasing rotations are oriented as U . Consider two δ-permutrees T,T′

connected by the rotation of the edge i → j ∈ T to the edge i ← j ∈ T′ such that i < j. Then
according to Lemma 43 (and using the same notations), we have

〈U | a(T′)− a(T) 〉 = (`+ 1)(r + 1)〈U | ei − ej 〉 = 2(`+ 1)(r + 1)(j − i) > 0. �

3.3.2. Matriochka permutreehedra. We have seen in Proposition 38 that the δ-permutree fan F(δ)
refines the δ′-permutree fan F(δ′) when δ 4 δ′. It implies that all rays of F(δ′) are also rays
of F(δ), and thus that all inequalities of the δ′-permutreehedron PT(δ′) are also inequalities of
the δ-permutreehedron PT(δ).

Corollary 46. For any two decorations δ 4 δ′, we have the inclusion PT(δ) ⊆ PT(δ′).

In other words, the poset of (n − 1)-dimensional permutreehedra ordered by inclusion is iso-
morphic to the refinement poset on the decorations of · { , , , }n−2 · (remember that
the decorations on the first and last vertices do not matter by Remark 6). Chains along this poset
provide Matriochka permutreehedra. This poset is illustrated on Figure 16 when n = 4.

3.3.3. Parallel facets. It is known that the permutahedron Perm(n) has 2n−1 − 1 pairs of parallel
facets, while all associahedra Asso(δ) of C. Hohlweg and C. Lange [HL07, LP17] as well as the par-
allelepiped Para(n) have n−1 pairs of parallel facets. This property extends to all permutreehedra
as follows.
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Proposition 47. Consider a decoration δ ∈ { , , , }n, assume without loss of generality
that δ1 6= and δn 6= , let 1 = u0, u1, . . . , uv−1, uv = n be the positions in δ such that δui 6= ,
and let ni = ui − ui−1 − 1 be the sizes of the (possibly empty) blocks of in δ. Then the
permutreehedron PT(δ) has ∑

i∈[v]

(2ni+1 − 1)

pairs of parallel facets whose normal vectors are the characteristic vectors of

• the sets [ui−1] ∪X for i ∈ [v] and X ⊆ (ui−1, ui), and
• the sets X for i ∈ [v] and ∅ 6= X ( (ui−1, ui).

Proof. Pairs of parallel facets correspond to pairs of complementary building blocks. As already
mentioned, it is easier to think of building blocks as arcs in Pδ: the building block corresponding
to an arc α is the set Iα of indices of all points pk below α, including the endpoints of α in the
upper convex hull of Pδ (and excluding 0 and n+ 1). Let pi,pj with i < j denote the endpoints
of α, and define Jα := (i, j) ∩ δ−1( ) and Kα := (i, j) r δ−1( ). Observe that

• if p0 and pn+1 are both above α, then Jα ⊆ Iα ⊆ Kα,
• if p0 is below α while pn+1 is above α, then [1, i] ∪ Jα ⊆ Iα ⊆ [1, i] ∪Kα,
• if p0 is above α while pn+1 is below α, then [j, n] ∪ Jα ⊆ Iα ⊆ [j, n] ∪Kα,
• if p0 and pn+1 are both below α, then [1, i] ∪ [j, n] ∪ Jα ⊆ Iα ⊆ [1, i] ∪ [j, n] ∪Kα.

We conclude that if Iα and Iβ are complementary, then

• either there is i ∈ [v] such that Iα = [1, ui−1] ∪X and Iβ = [ui + 1, n] ∪ (ui−1, ui) rX for
some X ⊆ (ui−1, ui) (or the opposite),

• or there is i ∈ [v] such that Iα = X and Iβ = [n]rX for some ∅ 6= X ( (ui−1, ui) (or the
opposite).

The enumerative formula is then immediate. �

3.3.4. Common vertices. It is combinatorially relevant to characterize which vertices are common
to two nested permutreehedra. For example, note that [1, 2, . . . , n − 1, n] and [n, n − 1, . . . , 2, 1]
are common vertices of all (n − 1)-dimensional permutreehedra. The other common vertices are
characterized in the following statement.

Proposition 48. Consider two decorations δ 4 δ′, a δ-permutree T and a δ′-permutree T′. The
following assertions are equivalent:

(i) the vertex a(T) of PT(δ) coincides with the vertex a(T′) of PT(δ′),
(ii) the cone C(T) of PT(δ) coincides with the cone C(T′) of PT(δ′),

(iii) the normal cone C�(T) of PT(δ) coincides with the normal cone C�(T′) of PT(δ′),

(iv) the fiber of T′ under the surjection Ψδ′

δ is the singleton (Ψδ′

δ )−1(T′) = {T},
(v) T and T′ have precisely the same linear extensions,

(vi) T and T′ coincide up to some empty descendant or ancestors,
(vii) for each i ∈ [n] with δi ∈ { , } but δ′i ∈ { , } (resp. with δi ∈ { , } but δ′i ∈ { , }),

the vertex i of T is not above (resp. below) an edge of T, and T′ is obtained from T by adding
one empty descendant (resp. ancestor) subtree at each such vertex i,

(viii) for each i ∈ [n] with δi ∈ { , } but δ′i ∈ { , } (resp. with δi ∈ { , } but δ′i ∈ { , }),
the vertex i of T′ has at least one empty descendant (resp. ancestor), and T is obtained
from T′ by deleting one empty descendant (resp. ancestor) subtree at each such vertex i.

Proof. Since PT(δ′) is obtained from PT(δ) by deleting facet inequalities, and since PT(δ) is
simple, a vertex a(T) is common to PT(δ) and PT(δ′) if and only if the facets containing a(T)
are common to PT(δ) and PT(δ′). This proves (i) ⇐⇒ (ii). The equivalence (ii) ⇐⇒ (iii) is
immediate by polarity. The equivalence (iii)⇐⇒ (iv) follows by Proposition 38. The equivalence
(iii) ⇐⇒ (v) holds since C�(T) is the union of the cones C�(τ) over all linear extensions τ of T.
The equivalence (ii)⇐⇒ (vi) holds since C(T) has a facet for each internal edge of T. Finally, the

equivalence (vi)⇐⇒ (vii)⇐⇒ (viii) directly follow from the description of Ψδ′

δ in Section 2.7. �
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In particular, since n 4 δ for any decoration δ, Proposition 48 characterizes the common
points of the permutahedron Perm(n) with any permutreehedron PT(δ). Call δ-singleton a per-
mutation τ corresponding to such a common vertex, that is, such that P−1(P(τ)) = {τ}. In the
next section, we will need the following consequences of Proposition 48.

Lemma 49. Let τ ∈ Sn be a δ-singleton and let i, j ∈ [n] be such that τ(i) = j. Then

• if δj ∈ { , }, then either τ([1, i− 1]) ⊆ [1, j − 1] or τ([1, i− 1]) ⊆ [j + 1, n];
• if δj ∈ { , }, then either τ([i+ 1, n]) ⊆ [1, j − 1] or τ([i+ 1, n]) ⊆ [j + 1, n].

Proof. Let T be the n-permutree obtained by insertion of τ . By Proposition 48, if δj ∈ { , },
then the vertex j of T is not above an edge of T. Equivalently, all vertices of T below j are either
to the left or to the right of j. In other words, if i = τ−1(j), we have either τ([1, i− 1]) ⊆ [1, j− 1]
or τ([1, i− 1]) ⊆ [j + 1, n]. The second part of the statement is symmetric. �

Lemma 50. Consider a decoration δ ∈ · { , , , }n−2 · , and denote by I1, . . . , Ip the
blocks of consecutive decorations in δ. Then a permutation τ and its opposite τ̄ = τ · [n, . . . , 1]
are both δ-singletons if and only if there exists (π1, . . . , πp) ∈ SI1×· · ·×SIp such that τ = π1 ·. . .·πp
or τ̄ = π1 · . . . · πp.

Proof. Let i, j ∈ [n] be such that τ(i) = j and δj ∈ { , }. Since τ is a δ-singleton, τ([1, i−1]) is
a subset of either [1, j−1] or [j+1, n] by Lemma 49. Since τ̄ is a δ-singleton and τ̄(n+ 1− i) = j,
τ([i+ 1, n]) = τ̄([1, n− i]) is a subset of either [1, j − 1] or [j + 1, n] by Lemma 49. If τ([1, i− 1])
and τ([i + 1, n]) are both subsets of [1, j − 1] (resp. of [j + 1, n]), then j = n (resp. j = 1)
which contradicts our assumption that δn = (resp. that δ1 = ). By symmetry, we con-
clude that for all i, j ∈ [n] with τ(i) = j and δj 6= , we have either τ([1, i − 1]) ⊆ [1, j − 1]
and τ([i+ 1, n]) = [j + 1, n], or τ([1, i − 1]) ⊆ [j + 1, n] and τ([i + 1, n]) = [1, j − 1]. The result
immediately follows. �

3.3.5. Isometrees. We now consider isometries of the permutreehedron PT(δ) and between distinct
permutreehedra PT(δ) and PT(δ′). As already observed, PT(δ) is independent of the first and
last decorations δ1 and δn. In this section, we assume without loss of generality that δ1 = δn = .

For a permutation τ ∈ Sn, we denote by ρτ : Rn → Rn the isometry of Rn given by permutation
of the coordinates ρτ (x1, . . . , xn) = (xτ(1), . . . , xτ(n)). We write ρi = ρ(i i+1) for the exchange of
the ith and (i+ 1)th coordinates. With these notations, we have the following observation.

Proposition 51. If δi = δi+1 = , then ρi is an isometry of the permutreehedron PT(δ). Thus,
if I1, . . . , Ip are the blocks of consecutive in δ, then for any Π = (π1, . . . , πv) ∈ SI1 × · · · ×SIp ,
the map ρΠ := ρπ1

◦ · · · ◦ ρπp is an isometry of the permutreehedron PT(δ).

Proof. Assume that δi = δi+1 = . Then there are no local condition around vertices i and i+ 1
in the definition of δ-permutrees. Therefore, exchanging the labels i and i+1 in any δ-permutree T
results in a new δ-permutree T′. Moreover, the vertices associated to T and T′ are related
by a(T′) = ρi(a(T)). We conclude that ρi is indeed an isometry of the permutreehedron PT(δ). �

Remember now the two symmetrees discussed in Remark 5. Denote by T (resp. T ) the
permutree obtained from T by a horizontal (resp. vertical) symmetry, and denote by δ (resp. δ )
the decoration obtained from δ by a mirror image (resp. by interverting and decorations),
so that δ(T ) = δ(T) (resp. δ(T ) = δ(T) ). Finally, we write δ = (δ ) = (δ ) .

Proposition 52. For any permutree T, we have

a(T )i = a(T)n+1−i and a(T )i = n+ 1− a(T)i.

Consequently, the permutreehedra PT(δ), PT(δ ), PT(δ ), and PT(δ ) are all isometric.

Proof. The formulas immediately follow by case analysis from the definition of a(T)i. �

We denote by χ : (x1, . . . , xn) 7→ (xn, . . . , x1) and θ : (x1, . . . , xn) 7→ (n+1−x1, . . . , n+1−xn)
the two maps of Proposition 52. To follow Remark 5, we call them isometrees. The main result of
this section claims that the isometries of Propositions 51 and 52 are essentially the only isometries
preserving permutreehedra.
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Proposition 53. Let δ, δ′ ∈ · { , , , }n−2 · and denote by I1, . . . , Ip and I ′1, . . . , I
′
q the

blocks of consecutive decorations in δ and δ′ respectively. If ρ is an isometry of Rn which sends
the permutreehedron PT(δ) to the permutreehedron PT(δ′), then δ′ ∈ {δ, δ , δ , δ } and there
are Π ∈ SI1 × · · · ×SIp and Π′ ∈ SI′1

× · · · ×SI′q
such that ρ−1

Π′ ◦ ρ ◦ ρ
−1
Π ∈ {Id, χ, θ, χ ◦ θ}.

Proof. By Proposition 48, the δ-singletons correspond to the cones of the permutree fan F(δ)
that are single braid cones. Since the isometry ρ sends the permutreehedron PT(δ) to the per-
mutreehedron PT(δ′), it sends the permutree fan F(δ) to the permutree fan F(δ′), and thus the
δ-singletons to the δ′-singletons. Therefore, ρ sends any pair (τ, τ̄) of opposite δ-singletons to a
pair (τ ′, τ̄ ′) of opposite δ′-singletons. By Lemma 50, there is Π := (π1, . . . , πp) ∈ SI1 × · · · ×SIp

such that τ = π1 · . . . · πp or τ̄ = π1 · . . . · πp, and there is Π′ := (π′1, . . . , π
′
q) ∈ SI′1

× · · · ×SI′q such

that τ ′ = π′1 · . . . · π′q or τ̄ ′ = π′1 · . . . · π′q. Therefore, the isometry Γ := ρ−1
Π′ ◦ ρ ◦ ρ

−1
Π stabilizes the

pair of opposite singletons {[1, . . . , n], [n, . . . , 1]}, and thus the center O := n+1
2 11 of the permuta-

hedron Perm(n). For any subset ∅ 6= U ⊆ [n] of cardinality u := |U |, the distance from O to the
hyperplane H=(U) is

d
(
O,H=(U)

)
=

nu (n− u)√
u2 + (n− u)2

.

Observe that the function

x 7−→ x (1− x)√
x2 + (1− x)2

is bijective on
[
0, 1

2

]
. It follows that the isometry Γ sends the hyperplane H=(U), for ∅ 6= U ⊆ V,

to an hyperplane H=(U ′) for some ∅ 6= U ′ ⊆ [n] with |U ′| = |U | or |U ′| = n − |U |. Ob-
serve moreover that the facets of Perm(n) defined by the hyperplanes H=({i}) for i ∈ [n] are
pairwise non-adjacent, but that the facet defined by H=({i}) is adjacent to all facets defined
by H=(V r {j}) for j ∈ [n] r {i}. Therefore, the hyperplanes H=({i}) for i ∈ [n] are either
all sent to the hyperplanes H=({j}) for j ∈ [n], or all sent to the hyperplanes H=([n] r {j})
for j ∈ [n].

Assume first that we are in the former situation. Define a map γ : [n] → [n] such that the
hyperplane H=({i}) is sent by Γ to the hyperplane Γ

(
H=({i})

)
= H=({γ(i)}) for any i ∈ [n].

It follows that Γ(ei) = eγ(i). Since Γ is a linear map, it sends the characteristic vector of any
subset ∅ 6= U ⊆ [n] to the characteristic vector of γ(U). Thus, the map γ defines an isomorphism
from the δ-building blocks to the δ′-building blocks. However, up to an horizontal reflection, the
δ-building blocks determine the decoration δ. Indeed, we immediately derive from the description
of building blocks in terms of arcs in the point set Pδ that

• δj ∈ { , } if and only if {j} is a δ-building block,
• δj ∈ { , } if and only if [n] r {j} is a δ-building block, and
• two labels i, j ∈ [n] are only separated by in δ if and only if they belong to complemen-

tary δ-building blocks.

We conclude that Γ ∈ {Id, χ} in this first situation.
Finally, if we were in the latter situation above, then we just apply a vertical reflection to the

decoration δ. By Proposition 52, it composes Γ by a symmetry θ and thus places us back in the
situation treated above. We conclude that Γ ∈ {θ, χ ◦ θ} in this second situation. �

Corollary 54. Consider a decoration δ ∈ · { , , , }n−2 · , and let n1, . . . , np denote the
sizes of the blocks of consecutive in δ. Then the isometry group of the permutreehedron PT(δ)
has cardinality n1! · · ·np! (1 + 11δ=δ − 11δ= n) (1 + 11

δ∈{δ ,δ }).

We finally consider the number x(n) of isometry classes of n-dimensional permutreehedra. We
have x(0) = 1 (a point), x(1) = 1 (a segment), x(2) = 3 (an hexagon, a pentagon, a quadrilateral),
and Figure 16 shows that x(3) = 7. In general, x(n) is given by the following statement.
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Corollary 55. The number x(n) isometry classes of n-dimensional permutreehedra is the number
of orbits of decorations δ ∈ · { , , , }n−1 · under the symmetrees δ 7→ δ and δ 7→ δ .
It is given by the formula

x(n) = 2n−4
(
2n + (−1)n + 7

)
for n ≥ 1. Its generating function is given by

∑
n∈N x(n)tn = (1−3t−5t2+7t3)/(1−4t−4t2+16t3).

See [OEI10, A225826].

Proof. The first sentence is a direct consequence of Proposition 53. For the second part, note
that x(n) = 2n−4

(
2n + (−1)n + 7

)
satisfies the recursive formulas:

(?) x(2k) = 4 · x(2k − 1)− 4k−1 and x(2k + 1) = 16 · x(2k − 1)− 9 · 4k−1,

for k ≥ 1 with initial values x(0) = x(1) = 1. There is left to prove that the number of orbits satis-
fies these recurrences as well. LetXn be the set of orbits of decorations δ ∈ · { , , , }n−1 ·
(of size n+ 1 such that the corresponding permutreehedron is of dimension n) under the symme-
trees δ 7→ δ and δ 7→ δ . We write Xn = An tBn tCn tDn tEn as a disjoint union of 5 subsets
according to the symetrees of the orbit:

• An contains the orbits of the form {δ} where δ = δ = δ = δ (like ),
• Bn contains the orbits of the form {δ, δ } where δ = δ 6= δ = δ (like ),
• Cn contains the orbits of the form {δ, δ } where δ = δ 6= δ = δ (like ),
• Dn contains the orbits of the form {δ, δ = δ } where δ = δ 6= δ = δ (like ),
• En contains the orbits of the form {δ, δ , δ , δ }, where all symmetrees of δ are distinct

(like ).

We write the corresponding numbers with lower case letters such that

x(n) = a(n) + b(n) + c(n) + d(n) + e(n).

Now we can obtain recursive formulas for these number by a simple case by case combinatorial
generation: orbits of decorations of odd sizes 2k + 1 (even dimension 2k) are obtained by adding
a letter of { , , , } in the middle of a decoration of size 2k and orbits of decorations of even
sizes 2k+2 (odd dimension 2k+1) are obtained by adding a word of { , , , }2 in the middle
of a decoration of size 2k. Depending on the symmetree subset of the original decoration of size
2k, this process will have redundancies (adding two different letters can lead to one single orbit)
and will lead to the following recursive formulas:

a(2k) = 2 · a(2k − 1) a(2k + 1) = 2 · a(2k − 1)

b(2k) = 2 · b(2k − 1) b(2k + 1) = 4 · b(2k − 1) + a(2k − 1)

c(2k) = a(2k − 1) + 4 · c(2k − 1) c(2k + 1) = 4 · c(2k − 1) + a(2k − 1)

d(2k) = 2 · d(2k − 1) d(2k + 1) = 4 · d(2k − 1) + a(2k − 1)

e(2k) = b(2k − 1) + d(2k − 1) + 4 · e(2k − 1) e(2k + 1) = 2 · a(2k − 1) + 6 · b(2k − 1) + 6 · c(2k − 1)

+ 6 · d(2k − 1) + 16 · e(2k − 1)

for k ≥ 1 with initial values a(1) = 1 and b(1) = c(1) = d(1) = e(1) = 0. In particular, we obtain

a(2k + 1) = 2k and b(2k + 1) = c(2k + 1) = d(2k + 1) = 2 · 4k−1 − 2k−1.

By a basic computation, one checks that the number x(n) of orbits in Xn satisfies (?).
For completeness, note that x(n) can be expressed as

x(n) = 4 · x(n− 1) + 4 · x(n− 2)− 16 · x(n− 3)

for n ≥ 4 with initial values x(0) = 1, x(1) = 1, x(2) = 3 and x(3) = 7. Therefore, its generating
function is given by ∑

n∈N
x(n)tn =

1− 3t− 5t2 + 7t3

1− 4t− 4t2 + 16t3
. �

https://oeis.org/A225826
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3.3.6. Permutrees versus signed tree associahedra. To conclude this section on permutreehedra,
we want to mention that these polytopes were already constructed very implicitly. Indeed, any
permutreehdron is a product of certain faces of the signed tree associahedra studied in [Pil13].
More specifically, for any decoration in { , }n, the permutreehedron is a graph associahedron
as constructed in [CD06, Pos09, Zel06]. We believe however that the present construction is much
more explicit and reflects relevant properties of these polytopes, which are not necessarily apparent
in the general construction of [Pil13] (in particular the combinatorial and algebraic properties of
the permutrees which do not hold in general for arbitrary signed tree associahedra).

4. The permutree Hopf algebra

This section is devoted to algebraic aspects of permutrees. More precisely, using the same
idea as G. Chatel and V. Pilaud in [CP17] we construct a Hopf algebra on permutrees as a
subalgebra of a decorated version of C. Malvenuto and C. Reutenauer’s algebra. In turn, our
algebra contains subalgebras isomorphic to C. Malevenuto and C. Reutenauer’s Hopf algebra on
permutations [MR95], J.-L. Loday and M. Ronco’s Hopf algebra on binary trees [LR98], G. Chatel
and V. Pilaud Hopf algebra on Cambrian trees [CP17], and I. Gelfand, D. Krob, A. Lascoux,
B. Leclerc, V. S. Retakh, and J.-Y. Thibon’s algebra on binary sequences [GKL+95]. In other
words, we obtain an algebraic structure in which it is natural to multiply permutations with binary
trees, or Cambrian trees with binary sequences. To keep our paper short, we omit the proofs of
most statements as they are straightforward and similar to that of [CP17, Section 1.2].

4.1. The Hopf algebra on (decorated) permutations. We briefly recall here the definition
and some elementary properties of a decorated version of C. Malvenuto and C. Reutenauer’s Hopf
algebra on permutations [MR95]. For n, n′ ∈ N, let

S(n,n′) := {τ ∈ Sn+n′ | τ1 < · · · < τn and τn+1 < · · · < τn+n′}
denote the set of permutations of Sn+n′ with at most one descent, at position n. The shifted
concatenation τ τ̄ ′, the shifted shuffle τ �̄ τ ′, and the convolution τ ?τ ′ of two permutations τ ∈ Sn

and τ ′ ∈ Sn′ are classically defined by

τ τ̄ ′ := [τ1, . . . , τn, τ
′
1 + n, . . . , τ ′n′ + n] ∈ Sn+n′ ,

τ �̄ τ ′ :=
{

(τ τ̄ ′) ◦ π−1 | π ∈ S(n,n′)
}

and τ ? τ ′ :=
{
π ◦ (τ τ̄ ′) | π ∈ S(n,n′)

}
.

For example,

12 �̄ 231 = {12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312},
12 ? 231 = {12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231}.

We also use the notation τ\τ ′ = τ τ̄ ′ and τ/τ ′ = τ̄ ′τ .
As shown by J.-C. Novelli and J.-Y. Thibon in [NT10], these definitions extend to decorated

permutations as follows. The decorated shifted shuffle τ �̄ τ ′ is defined as the shifted shuffle of
the permutations where decorations travel with their values, while the decorated convolution τ ? τ ′

is defined as the convolution of the permutations where decorations stay at their positions. For
example,

12 �̄ 231 = {12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312},
12 ? 231 = {12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231}.

Using these operations, we can define a decorated version of C. Malvenuto and C. Reutenauer’s
Hopf algebra on permutations [MR95].

Definition 56. We denote by FQSym{ , , , } the Hopf algebra with basis (Fτ )τ∈S{ , , , } and
whose product and coproduct are defined by

Fτ · Fτ ′ =
∑

σ∈τ �̄ τ ′

Fσ and 4Fσ =
∑

σ∈τ?τ ′
Fτ ⊗ Fτ ′ .

We now recall well-known properties of C. Malvenuto and C. Reutenauer’s Hopf algebra on
permutations which easily translate to similar properties of FQSym{ , , , }.
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Proposition 57. A product of weak order intervals in FQSym{ , , , } is a weak order interval:

for any two weak order intervals [µ, ω] ⊆ Sδ and [µ′, ω′] ⊆ Sδ′ , we have( ∑
µ≤τ≤ω

Fτ
)
·
( ∑
µ′≤τ ′≤ω′

Fτ ′
)

=
∑

µ\µ′≤σ≤ω/ω′
Fσ,

where ≤ denotes the weak order on Sδδ′ .

Corollary 58. For τ ∈ Sδ, define

Eτ =
∑
τ≤τ ′

Fτ ′ and Hτ =
∑
τ ′≤τ

Fτ ′

where ≤ is the weak order on Sδ. Then (Eτ )τ∈S and (Hτ )τ∈S are multiplicative bases of FQSym:

Eτ · Eτ
′

= Eτ\τ
′

and Hτ ·Hτ
′

= Hτ/τ
′
.

A permutation τ ∈ Sδ is E-decomposable (resp. H-decomposable) if and only if there exists k ∈ [n− 1]
such that τ([k]) = [k] (resp. such that τ([k]) = [n]r [k]). Moreover, FQSym{ , , , } is freely gen-

erated by the elements Eτ (resp. Hτ ) for all E-indecomposable (resp. H-indecomposable) decorated
permutations τ .

We will also consider the dual Hopf algebra of FQSym{ , , , }, defined as follows.

Definition 59. We denote by FQSym∗{ , , , } the Hopf algebra with basis (Gτ )τ∈S{ , , , } and
whose product and coproduct are defined by

Gτ ·Gτ ′ =
∑

σ∈τ?τ ′
Gσ and 4Gσ =

∑
σ∈τ �̄ τ ′

Gτ ⊗Gτ ′ .

4.2. Subalgebra. We now construct a subalgebra of FQSym{ , , , } whose basis is indexed by
permutrees. Namely, we denote by PT the vector subspace of FQSym{ , , , } generated by the
elements

PT :=
∑

τ∈S{ , , , }
P(τ)=T

Fτ =
∑

τ∈L(T)

Fτ ,

for all permutrees T. For example, for the permutree of Figure 2 (left), we have

P = F2135476 + F2135746 + F2137546 + · · ·+ F7523146 + F7523416 + F7523461 (90 terms).

The following statement is similar to [CP17, Theorem 24], which was inspired from similar
arguments for Hopf algebras arising from lattice quotients of the weak order [Rea05] and from
rewriting rules in monoids [Pri13].

Theorem 60. PT is a Hopf subalgebra of FQSym{ , , , }.

Once we have observed this property, it is interesting to describe the product and coproduct in
the Hopf algebra PT directly in terms of permutrees. We briefly do it in the next two statements.

Product For any permutrees T,T′, denote by T\T′ (resp. by T/T′) the permutree obtained by
grafting the rightmost outgoing (resp. incoming) edge of T to the leftmost incoming (resp. outgo-
ing) edge of T′ while shifting all labels of T′. An example is given in Figure 17 (left).

Proposition 61. For any permutrees T,T′, the product PT · PT′ is given by

PT · PT′ =
∑

S

PS,

where S runs over the interval between T\T′ and T/T′ in the δ(T)δ(T′)-permutree lattice.
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Figure 17. Grafting two permutrees (left) and cutting a permutree (right).

Coproduct Define a cut of a permutree S to be a set γ of edges such that any geodesic vertical
path in S from a down leaf to an up leaf contains precisely one edge of γ. Such a cut separates
the permutree S into two forests, one above γ and one below γ, denoted A(S, γ) and B(S, γ),
respectively. An example is given in Figure 17 (right).

Proposition 62. For any permutree S, the coproduct 4PS is given by

4PS =
∑
γ

( ∏
T∈B(S,γ)

PT

)
⊗
( ∏

T′∈A(S,γ)

PT′

)
,

where γ runs over all cuts of S and the products are computed from left to right.

Example 63. Following Example 4, let us underline relevant subalgebras of the permutree al-
gebra PT. Namely, for any collection ∆ of decorations in { , , , }∗ stable by shuffle, the
linear subspace of PT generated by the elements Pδ for δ ∈ ∆ forms a subalgebra PT∆ of PT. In
particular, PT contains the subalgebras:

(i) PT{ }∗ isomorphic to C. Malvenuto and C. Reutenauer’s Hopf algebra on permutations [MR95],
(ii) PT{ }∗ isomorphic to J.-L. Loday and M. Ronco’s Hopf algebra of on binary trees [LR98],
(iii) PT{ , }∗ isomorphic to G. Chatel and V. Pilaud’s Hopf algebra on Cambrian trees [CP17],
(iv) PT{ }∗ isomorphic to I. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. S. Retakh, and J.-

Y. Thibon’s algebra on binary sequences [GKL+95],

as well as all algebras PTD∗ for any subset D of the decorations { , , , }. The dimensions of
these algebras are given by the number of permutrees with decorations in D∗, gathered in Table 2.
Interestingly, the rules for the product and the coproduct in the permutree algebra PT provide
uniform product and coproduct rules for all these Hopf algebras.

4.3. Quotient algebra. The following statement is automatic by duality from Theorem 60.

Theorem 64. The graded dual PT∗ of the permutree algebra PT is the quotient of FQSym∗{ , , , }
under the permutree congruence ≡. The dual basis QT of PT is expressed as QT = π(Gτ ), where π
is the quotient map and τ is any linear extension of T.

Similarly as in the previous section, we can describe combinatorially the product and coproduct
of Q-basis elements of PT∗ in terms of operations on permutrees.

Product Call gaps the n + 1 positions between two consecutive integers of [n], including the
position before 1 and the position after n. A gap γ defines a geodesic vertical path λ(T, γ) in a
permutree T from the bottom leaf which lies in the same interval of consecutive down labels as γ
to the top leaf which lies in the same interval of consecutive up labels as γ. See Figure 19. A
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multiset Γ of gaps therefore defines a lamination λ(T,Γ) of T, i.e. a multiset of pairwise non-
crossing geodesic vertical paths in T from down leaves to up leaves. When cut along the paths of
a lamination, the permutree T splits into a forest.

Consider two Cambrian trees T and T′ on [n] and [n′] respectively. For any shuffle s of their
decorations δ and δ′, consider the multiset Γ of gaps of [n] given by the positions of the down
labels of δ′ in s and the multiset Γ′ of gaps of [n′] given by the positions of the up labels of δ in s.
We denote by T s\T′ the Cambrian tree obtained by connecting the up leaves of the forest defined
by the lamination λ(T,Γ) to the down leaves of the forest defined by the lamination λ(T′,Γ′).

Example 65. Consider the permutrees T© and T� of Figure 18. To distinguish decorations in T©

and T�, we circle the symbols in δ(T©) = and square the symbols in δ(T�) = .
Consider now an arbitrary shuffle s = of these two decorations. The resulting
laminations of T© and T�, as well as the permutree T©

s\T� are represented in Figure 18.
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Figure 18. (a) The two initial permutrees T© and T�. (b) Given the shuffle
s = , the positions of the and are reported in T© and the
positions of the and are reported in T�. (c) The corresponding laminations.
(d) The permutrees are split according to the laminations. (e) The resulting
permutree T©

s\T�.

Proposition 66. For any permutrees T,T′, the product QT ·QT′ is given by

QT ·QT′ =
∑
s

QT s\T′ ,

where s runs over all shuffles of the decorations of T and T′.

Coproduct For a gap γ, we denote by L(S, γ) and R(S, γ) the left and right subpermutrees
of S when split along the path λ(S, γ). An example is given in Figure 19.

Proposition 67. For any permutree S, the coproduct 4QS is given by

4QS =
∑
γ

QL(S,γ) ⊗QR(S,γ),

where γ runs over all gaps between vertices of S.
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Figure 19. A gap γ between 3 and 4 (left) defines a vertical cut (middle) which
splits the permutree vertically (right).

4.4. Further algebraic topics. To conclude this section, we explore some more advanced prop-
erties of the permutree algebra.

4.4.1. Multiplicative bases and indecomposable elements. For a permutree T, define

ET :=
∑

T≤T′

PT′ and HT :=
∑

T′≤T

PT′ .

The next statement follows from Corollary 58 and Proposition 61.

Proposition 68. (ET)T∈PT and (HT)T∈PT are multiplicative bases of PT :

ET · ET′ = ET\T′ and HT ·HT′ = HT/T′ .

We now consider decomposition properties of permutrees. Since the E- and H-bases have similar
properties, we focus on the E-basis and invite the reader to translate the following properties to
the H-basis.

Proposition 69. The following properties are equivalent for a permutree S:

(i) ES can be decomposed into a product ES = ET · ET′ for non-empty permutrees T,T′;
(ii) ([k] ‖ [n] r [k]) is an edge cut of S for some k ∈ [n− 1];

(iii) at least one linear extension τ of S is decomposable, i.e. τ([k]) = [k] for some k ∈ [n].

The tree S is then called E-decomposable and the edge cut ([k] ‖ [n] r [k]) is called splitting.

We are interested in E-indecomposable elements. We first understand the behavior of decom-
posability under rotations.

Lemma 70. Let T be a δ-permutree, let i → j be an edge of T with i < j, and let T′ be the
δ-permutree obtained by rotating i→ j in T. Then

(i) if T is E-indecomposable, then so is T′;
(ii) if T is E-decomposable while T′ is not, then δi 6= or i = 1, and δj 6= or j = n.

Proof. Denote by L and L (resp. R and R) the index sets of the left (resp. right) ancestor and
descendant subtrees of i (resp. of j) in T and T′ (using ∅ if there is no such subtree), and let U
and D denote the ancestor and descendant subtrees as in Figure 9. The main observation is
that the two permutrees T and T′ have the same cuts except the cut corresponding to the edge
between i and j. Namely, the cut C :=

(
{i} ∪ L ∪ L ∪D

∥∥ {j} ∪R ∪R ∪ U) in T is replaced

by the cut C ′ :=
(
{j} ∪R ∪R ∪D

∥∥ {i} ∪ L ∪ L ∪ U) in T′. Since i < j, the cut C ′ cannot be
splitting, so that T′ is automatically E-indecomposable when T is E-indecomposable. Assume
now that T is E-decomposable while T′ is not and that δi = . Then the cut C is splitting so
that {i} ∪ L ∪D � {j} ∪R ∪R ∪ U (where X � Y means that x < y for all x ∈ X and y ∈ Y ).
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Figure 20. The four generators of the upper ideal of E-indecomposable
δ-permutrees for the decoration δ = .

But L � {i} � D since δi = . Therefore L � {i, j} ∪ R ∪ R ∪ D ∪ U . Since T′ is E-
indecomposable, this implies that L = ∅ since otherwise the cut

(
L
∥∥ {i, j} ∪R ∪R ∪D ∪ U)

of T′ would be splitting. Therefore, i = 1. We prove similarly that δj = implies j = n. �

Corollary 71. The set of E-indecomposable δ-permutrees is an upper ideal of the δ-permutree
lattice.

Remark 72. Note that contrarily to the Cambrian algebra, this ideal is not primitive in general.
For example, the ideal of δ-permutrees for the decoration δ = illustrated in Figure 2
is generated by the 4 permutrees illustrated in Figure 20.

4.4.2. Dendriform structures. Dendriform algebras were introduced by J.-L. Loday in [Lod01,
Chap. 5]. In a dendriform algebra, the product · is decomposed into two partial products · = ≺+�
satisfying:

x ≺
(
y · z

)
=
(
x ≺ y

)
≺ z,

x �
(
y ≺ z

)
=
(
x � y

)
≺ z,

x �
(
y � z

)
=
(
x · y

)
� z.

It is well known that the shuffle product on permutations can be decomposed into �̄ = ≺ + �
where for τ = στn and τ ′ = σ′τ ′n′ we have

τ ≺ τ ′ := (σ �̄ τ ′)τn and τ � τ ′ := (τ �̄σ′)τ̄ ′n′ .

This endows C. Malvenuto and C. Reutenauer’s algebra on permutations with a dendriform algebra
structure defined on the F-basis by

Fτ ≺ Fτ ′ =
∑

σ∈τ≺τ ′
Fσ and Fτ � Fτ ′ =

∑
σ∈τ�τ ′

Fσ.

It turns out that some subalgebras of the permutree algebra are stable under these dendriform
operations ≺ and �.

Proposition 73. For any subset ∆ of { , }∗ stable by shuffle, the subalgebra of the permutree
algebra PT generated by {PT | T ∈ PT (δ), δ ∈ ∆} is stable by the dendriform operations ≺ and �.

Proof. Let δ ∈ { , }n and δ′ ∈ { , }n′ , let T ∈ PT (δ) and T′ ∈ PT (δ′), and let τ = στn ∈ Sδ

and τ ′ = σ′τ ′n′ ∈ Sδ′ be such that T = P(τ) and T′ = P(τ ′). Then

PT ≺ PT′ =
∑

P(στ̄ ′τn)≤S≤T/T′

PS and PT � PT′ =
∑

T\T′≤S≤P(σ̄′ττ̄ ′
n′ )

PS.

Indeed, PT ≺ PT′ is the sum of Fσ for τ τ̄ ′ ≤ σ ≤ τ̄ ′τ such that σn+n′ = τn. These permutations
are exactly all linear extensions of the trees S such that T\T′ ≤ S ≤ T/T′ whose root is τn.
Therefore, PT ≺ PT′ is the sum of PS for all these trees. Similarly, PT � PT′ is the sum of PS for
the trees S such that T\T′ ≤ S ≤ T/T′ whose root is τ̄ ′n′ . �
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Remark 74. Note that the assumption that ∆ ⊂ { , }∗ in Proposition 73 is necessary. For
example, we have

P ≺ P = (F213 + F231) ≺ (F132 + F312)

contains F234651 but not F234615 although P(234651) = P(234615).

4.4.3. Integer point transform. We now show that the product of two permutrees can be inter-
preted in terms of their integer point transforms. This leads to relevant equalities for permutrees
with decorations in { , }.

Definition 75. The integer point transform ZS of a subset S of Rn is the multivariate generating
function of the integer points inside S:

ZS(t1, . . . , tn) =
∑

(i1,...,in)∈Zn∩S

ti11 · · · tinn .

For a permutree T, we denote by ZT the integer point transform of the cone

C�(T) :=

{
x ∈ Rn+

∣∣∣∣ xi ≤ xj for any edge i→ j of T with i < j
xi < xj for any edge i→ j of T with i > j

}
.

Note that this cone differs from the cone C�(T) defined in Section 3.1 in two ways: first it leaves
in Rn+ and not in H, second it excludes the facets of C�(T) corresponding to the decreasing edges
of T (i.e. the edges i → j with i > j). We denote by Zτ the integer point transform of the
chain τ1 → · · · → τn for a permutation τ ∈ Sn. The following statements are classical.

Proposition 76. (i) For any permutation τ ∈ Sn, the integer point transform Zτ is given by

Zτ (t1, . . . , tn) =

( ∏
i∈[n]

(
1− tτi · · · tτn

)−1
)( ∏

i∈[n−1]
τi>τi+1

tτi+1 · · · tτn
)
.

(ii) The integer point transform of an arbitrary permutree T is given by ZT =
∑
τ∈L(T) Zτ , where

the sum runs over the set L(T) of linear extensions of T.
(iii) The product of the integer point transforms Zτ and Zτ ′ of two permutations τ ∈ Sn and τ ′ ∈ Sn′

is given by the shifted shuffle

Zτ (t1, . . . , tn) · Zτ ′(tn+1, . . . , tn+n′) =
∑

σ∈τ �̄ τ ′

Zσ(t1, . . . , tn+n′).

In other words, the linear map from FQSym to the rational functions defined by Ψ : Fτ 7→ Zτ
is an algebra morphism.

Proof. For Point (i), we just observe that the cone
{
x ∈ Rn+

∣∣ xτi ≤ xτi+1
for all i ∈ [n− 1]

}
is

generated by the vectors eτi + · · · + eτn , for i ∈ [n], which form a (unimodular) basis of the lat-
tice Zn. A straightforward inductive argument shows that the integer point transform of the cone{
x ∈ Rn+

∣∣ xτi ≤ xτi+1 for all i ∈ [n− 1]
}

is thus given by
∏
i∈[n]

(
1 − tτi · · · tτn

)−1
. The second

product of Zτ is then given by the facets which are excluded from the cone C�(τ).
Point (ii) follows from the fact that the cone C�(T) is partitioned by the cones C�(τ) for the

linear extensions τ of T.
Finally, the product Zτ (t1, . . . , tn) · Zτ ′(tn+1, . . . , tn+n′) is the integer point transform of the

poset formed by the two disjoint chains τ and τ̄ ′, whose linear extensions are precisely the permu-
tations which appear in the shifted shuffle of τ and τ ′. This shows Point (iii). �

It follows from Proposition 76 that the product of the integer point transforms of two permutrees
behaves as the product in the permutree algebra PT.

Corollary 77. For any two permutrees T ∈ PT (n) and T′ ∈ PT (n′), we have

ZT(t1, . . . , tn) · ZT′(tn+1, . . . , tn+n′) =
∑

T\T′≤ S≤T/T′

ZS(t1, . . . , tn+n′).
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Proof. Omitting the variables (t1, . . . , tn+n′) for concision, we have

ZT · ZT′ = Ψ(PT) ·Ψ(PT′) = Ψ(PT · PT′) = Ψ

(∑
S

PS

)
=
∑

S

Ψ(PS) =
∑

S

ZS,

where the sums run over the permutrees S of the increasing flip lattice interval [T\T′,T/T′]. �

Finally, we specialize this result to permutrees with decorations in { , }∗. The main obser-
vation is the following.

Proposition 78. The integer point transform of any permutree T with decoration in { , }∗ is
given by

ZT(t1, . . . , tn) =

( ∏
(I ‖ J)∈EC(T)

(
1−

∏
j∈J

tj
)−1
)( ∏

(I ‖ J)∈DEC(T)

∏
j∈J

tj

)
,

where EC(T) denotes the set of all edge cuts of T (including the artificial edge cut (∅ ‖ [n])) and
DEC(T) denotes the decreasing edge cuts of T, i.e. those corresponding to edges i→ j with i > j.

Proof. Consider the cone C defined by the inequalities 0 ≤ xi for all i ∈ [n] and xi ≤ xj for all
edges i → j in T. As the decoration of T is in { , }∗, the tree T is naturally rooted at its
bottommost vertex r. Since there is a path from r to any other vertex v, the inequalities 0 ≤ xr
and xi ≤ xj for all edges i → j in T already imply all other inequalities 0 ≤ xi for i ∈ [n] r {r}.
We therefore obtain that the cone C is defined by n inequalities and thus is simplicial. Moreover,
we easily check that the rays of C are given by the characteristic vectors

∑
j∈J ej for all edge

cuts (I ‖ J) ∈ EC(T), including the vector 11 for the artificial edge cut (∅ ‖ [n]). We obtain that

the integer point transform of C is
∏

(I ‖ J)∈EC(T)

(
1 −

∏
j∈J tj

)−1
. Finally, the second product

of ZT is given by the facets which are excluded from C to obtain C�(T). �

Corollary 79. For any permutrees T ∈ PT (n) and T′ ∈ PT (n′) with decorations in { , }∗,
we have∏

(I ‖ J)∈DEC(T)

∏
j∈J tj∏

(I ‖ J)∈EC(T)

(
1−

∏
j∈J tj

) · ∏
(I ‖ J)∈DEC(T′)

∏
j∈J tn+j∏

(I ‖ J)∈EC(T′)

(
1−

∏
j∈J tn+j

) =
∑

S

∏
(I ‖ J)∈DEC(S)

∏
j∈J tj∏

(I ‖ J)∈EC(S)

(
1−

∏
j∈J tj

) ,
where S ranges over the permutree lattice interval [T\T′,T/T′].

Example 80. For example, we have the following equality of rational functions:

Z · Z = (1− x1)−1x1(1− x3)−1(1− x1x2x3)−1 · (1− x4)−1

= (1− x1)−1x1(1− x3x4)−1(1− x4)−1(1− x1x2x3x4)−1

+ (1− x1)−1x1(1− x3x4)−1(1− x3)−1x3(1− x1x2x3x4)−1

+ (1− x1x2x3)−1x1x2x3(1− x1)−1x1(1− x3)−1(1− x1x2x3x4)−1

= Z + Z + Z .

Remark 81. Note that the simple product formula for the integer point transform ZT does not
hold for an arbitrary permutree T. Indeed, the cone C�(T) is not always simplicial. For example,

the cone C�( ) is generated by the vectors [0, 1, 0], [0, 1, 1], [1, 1, 0], [1, 1, 1], where the first is not

the characteristic vector
∑
j∈J ej for an edge cut (I ‖ J) of .

5. Schröder permutrees

This section is devoted to Schröder permutrees which correspond to the faces of the permutree-
hedra. It is largely inspired from the presentation of [CP17, Part 3].
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Figure 21. A Schröder permutree (left), an increasing tree (middle), and a 3-
leveled Schröder permutree (right).

5.1. Schröder permutrees. In this section, we focus on the following family of trees.

Definition 82. For δ ∈ { , , , }n and X ⊆ [n], we define X∨ := {x ∈ X | δx ∈ { , }}
and X∧ := {x ∈ X | δx ∈ { , }}. A Schröder δ-permutree is a directed tree S with vertex set V
endowed with a vertex labeling p : V→ 2[n] r∅ such that

(i) the labels of S partition [n], i.e. v 6= w ∈ V⇒ p(v) ∩ p(w) = ∅ and
⋃
v∈V p(v) = [n];

(ii) each vertex v ∈ V has one incoming (resp. outgoing) subtree SvI (resp. SIv) for each interval I
of [n] r p(v)∧ (resp. of [n] r p(v)∨) and all labels of SvI (resp. of SIv) are subsets of I.

For δ ∈ { , , , }n, we denote by SchrPT(δ) the set of Schröder δ-permutrees, and we de-
fine SchrPT(n) :=

⊔
δ∈{ , , , }n SchrPT(δ) and SchrPT :=

⊔
n∈N SchrPT(n).

Definition 83. A k-leveled Schröder δ-permutree is a directed tree with vertex set V endowed with
two labelings p : V → 2[n] r ∅ and q : V → [k] which respectively define a Schröder δ-permutree
and an increasing tree (meaning that q is surjective and v → w in S implies that q(v) < q(w)).

Figure 21 illustrates a Schröder permutree and a 3-leveled Schröder permutree. For example, for
the node v labeled by p(v) = {4, 6}, we have p(v)∧ = {4, 6} so that [7]rp(v)∧ = {1, 2, 3}t{5}t{7}
and v has 3 incoming subtrees and p(v)∨ = {4} so that [7] r p(v)∨ = {1, 2, 3} t {5, 6, 7} and v
has 2 outgoing subtrees. Note that each level of a k-leveled Schröder permutree may contain more
than one node.

Example 84. Following Example 4, observe that Schröder δ-permutrees specialize to classical
families of combinatorial objects:

(i) Schröder n-permutrees are in bijection with ordered partitions of [n], i.e. with sequences
λ :=λ1|λ2| . . . |λk−1|λk where λi ⊆ [n] are such that

⋃
i∈[k] λi = [n] and λi∩λj = ∅ for i 6= j.

(ii) Schröder n-permutrees are precisely Schröder trees, i.e. planar rooted trees where each
node has at least two children.

(iii) Schröder δ-permutrees with δ ∈ { , } are Schröder Cambrian trees [CP17, Section 3.1].
(iv) Schröder n-permutrees are in bijection with ternary sequences of length n− 1.

Figure 22 illustrates these families represented as Schröder permutrees. In this section, we provide
a uniform treatment of these families.
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Figure 22. Leveled Schröder permutrees corresponding to an ordered partition
(left), a leveled Schröder tree (middle left), a leveled Schröder Cambrian tree
(middle right), and a leveled ternary sequence (right).
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Figure 23. Schröder permutrees (left) and dissections (right) are dual to each
other.

Remark 85. Similar to Remark 7, Schröder δ-permutrees are dual trees of dissections of Pδ, that
is, non-crossing sets of arcs in Pδ (as defined in Remark 7). See Figure 23 for an illustration.
Note that contracting an edge in a Schröder permutree corresponds to deleting an arc in its dual
dissection.

We will need the following statement in the next section.

Lemma 86. Schröder δ-permutrees are stable by edge contraction.

Proof. Let e = v → w be an edge in a Schröder δ-permutree S, and let S/e be the tree obtained by
contraction of e, where the contracted vertex vw gets the label p(vw) = p(v)∪p(w). Condition (i)
of Definition 82 is clearly satisfied. For Condition (ii), let I1, . . . , Ip be the intervals of [n]rp(w)∧,
where Ii is the interval which contains p(v), and let J1, . . . , Jq be the intervals of [n] r p(v)∧.
Observe that for all j ∈ [q], all labels of SvJj are all included in Ii (because SvJj belongs to SwIi) and

in Jj . Therefore, the descendant subtrees SwI1 , . . . ,S
w
Ii−1

,SvJ1 , . . . ,S
v
Jq
,SwIi+1

, . . . ,SwIp of vw in S/e

indeed belong to the intervals I1, . . . , Ii−1, Ii ∩ J1, . . . , Ii ∩ Jq, Ii+1, . . . , Ip of [n] r p(vw). The
proof is similar for ancestor subtrees of vw in S/e. The other vertices of S/e have not changed
locally. �

Let S,S′ be two Schröder δ-permutrees. We say that S refines S′ if S′ can be obtained from S
by contraction of some edges.

5.2. Faces. Consider a Schröder permutree S. For i, j ∈ [n], we write i → j if there are ver-
tices v, w of S such that i ∈ p(v), j ∈ p(w) and v = w or v → w is an edge in S. We say
that (I ‖ J) is an edge cut of S if I (resp. J) is the union of all labels of the vertices in the source
(resp. sink) set of an edge of S. Define the braid cone C�(S) of S as the cone

C�(S) := {x ∈ H | xi ≤ xj for any i→ j in S} = cone

{∑
j∈J

ej

∣∣∣∣ for all edge cuts (I ‖ J) of S

}
.

Proposition 87. The map S 7→ C�(S) is a lattice homomorphism from the refinement lattice
on Schröder δ-permutrees to the inclusion lattice on the cones of the δ-permutree fan F(δ). In
particular,

F(δ) = {C�(S) | S Schröder δ-permutree} .

Proof. Contracting an edge v → w in S corresponds to forcing the inequalities xi ≤ xj to become
equalities xi = xj for i ∈ p(v) and j ∈ p(w). Reciprocally, since the cone C�(S) is simplicial, its
faces are obtained by forcing some of its inequalities to become equalities, which corresponds to
contracting some edges in S. The result immediately follows. �
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Figure 24. The insertion algorithm on the decorated ordered parti-
tion 125|37|46.

Proposition 88. For any Schröder δ-permutree S, the set

F(S) := conv {a(T) | T δ-permutree refining S} =
⋂

(I ‖ J) cut of S

H≥(I)

is a face of the δ-permutreehedron PT(δ). Moreover, the map S 7→ F(S) is a lattice homomorphism
from the refinement lattice on Schröder δ-permutrees to the face lattice of the δ-permutreehedron PT(δ).

Proof. Since the normal fan of the δ-permutreehedron PT(δ) is the δ-permutree fan F(δ) by The-
orem 40, there is a face F(S) whose normal cone is C�(S). This face is given by the inequalities
of PT(δ) corresponding to the rays of C�(S), that is, by the inequalities H≥(I) for the edge
cuts (I ‖ J) of S. Moreover, a δ-permutree satisfies these inequalities if and only if it refines S,
which proves the second equality. Finally, the lattice homomorphism property is a direct conse-
quence of Proposition 87. �

5.3. Schröder permutree correspondence. We now define an analogue of the permutree cor-
respondence and P-symbol, which will map decorated ordered partitions of [n] to Schröder per-
mutrees. We represent graphically an ordered partition λ :=λ1| · · · |λk of [n] into k parts by
the (k×n)-table with a dot at row i and column j for each j ∈ λi. See Figure 24 (left). We denote
by Pn the set of ordered partitions of [n] and we set P :=

⊔
n∈N Pn.

A decorated ordered partition is an ordered partition table where each dot receives a decoration
of { , , , }. For a decoration δ ∈ { , , , }n, we denote by Pδ the set of ordered
partitions of [n] decorated by δ, and we set P{ , , , } :=

⊔
n∈N,δ∈{ , , , }n Pδ.

Given such a decorated ordered partition λ :=λ1| · · · |λk, we construct a leveled Schröder-
Cambrian tree Θ?(λ) as follows. As a preprocessing, we represent the table of λ (with a dot
at row i and column j for each j ∈ λi), we draw a vertical red wall below the down dots (dec-
orated by or ) and above the up dots (decorated by or ), and we connect into nodes
the dots at the same level which are not separated by a wall. Note that we might obtain several
nodes per level. We then sweep the table from bottom to top as follows. The procedure starts
with an incoming strand in between any two consecutive down values. At each level, each node v
(connected set of dots) gathers all strands in the region below and visible from v (i.e. not hidden
by a vertical wall) and produces one strand in each region above and visible from v. The procedure
finished with an outgoing strand in between any two consecutive up values. See Figure 24.

Example 89. As illustrations of the Schröder permutree correspondence, the leveled Schröder
permutrees of Figure 22 were all obtained by inserting the ordered partition 125|37|46 with different
decorations.

Proposition 90. The map Θ? is a bijection from decorated ordered partitions to leveled Schröder-
Cambrian trees.

Proof. The proof is similar to that of Proposition 8. �

For a decorated ordered partition λ, we denote by P?(τ) the permutree obtained by forgetting
the increasing labeling in Θ?(τ). Note that a decorated ordered partition of [n] into k parts is
sent to a Schröder permutree with at least k internal nodes, since some levels can be split into
several nodes.
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Similar to Proposition 9, the following characterization of the fibers of the map P? is im-
mediate from the description of the Schröder permutree correspondence. For an ordered parti-
tion λ :=λ1| . . . |λk, we write λ−1(i) the index of the part such that i ∈ λλ−1(i). For a Schröder
permutree S, we write i→ j in S if the node of S containing i is below the node of S containing j,
and i ∼ j in S if i and j belong to the same node of S. We say that i and j are incomparable in S
when i 6→ j, j 6→ i, and i 6∼ j.

Proposition 91. For any Schröder δ-permutree S and decorated ordered partition λ ∈ Pδ, we
have P?(λ) = S if and only if i ∼ j in S implies λ−1(i) = λ−1(j) and i → j in S implies
λ−1(i) < λ−1(j). In other words, λ is obtained from a linear extension of S by merging parts
which label incomparable vertices of S.

5.4. Schröder permutree congruence. Similar to the permutree congruence, we now charac-
terize the fibers of P? by a congruence defined as a rewriting rule. Remember that we write X � Y
when x < y for all x ∈ X and y ∈ Y , that is, when max(X) < min(Y ).

Definition 92. For a decoration δ ∈ { , , , }n, the Schröder δ-permutree congruence is the
equivalence relation on Pδ defined as the transitive closure of the rewriting rules

U |a|c|V ≡?δ U |ac|V ≡?δ U |c|a|V,

where a, c are parts while U, V are sequences of parts of [n], and there exists a � b � c such
that δb ∈ { , } and b ∈

⋃
U , or δb ∈ { , } and b ∈

⋃
V . The Schröder permutree congruence

is the equivalence relation ≡? on P{ , , , } obtained as the union of all Schröder δ-permutree
congruences.

For example, 12|5|37|46 ≡? 125|37|46 ≡? 125|7|3|46 6≡? 125|7|46|3.

Proposition 93. Two decorated ordered partitions λ, λ′ ∈ P{ , , , } are Schröder permutree
congruent if and only if they have the same P?-symbol:

λ ≡? λ′ ⇐⇒ P?(λ) = P?(λ′).

Proof. It boils down to observe that two consecutive parts a and c of an ordered partition U |a|c|V
in a fiber (P?)−1(S) can be merged to U |ac|V and even exchanged to U |c|a|V while staying
in (P?)−1(S) precisely when they belong to distinct subtrees of a node of S. They are there-
fore separated by the vertical wall above (resp. below) a value b with a � b � c and such
that δb ∈ { , } and b ∈

⋃
U (resp. δb ∈ { , } and b ∈

⋃
V ). �

We now see the Schröder permutree congruence as a lattice congruence. We first need to remem-
ber the facial weak order on ordered partitions as defined by D. Krob, M. Latapy, J.-C. Novelli,
H. D. Phan and S. Schwer in [KLN+01]. This order extends the classical weak order on permu-
tations of [n]. This order was also extended to faces of permutahedra of arbitrary finite Coxeter
groups by P. Palacios and M. Ronco [PR06] and studied in detail by A. Dermenjian, C. Hohlweg
and V. Pilaud [DHP18].

Definition 94. The coinversion map coinv(λ) :
(

[n]
2

)
→ {−1, 0, 1} of an ordered partition λ ∈ Pn

is the map defined for i < j by coinv(λ)(i, j) = sign(λ−1(i)− λ−1(j)). The facial weak order ≤ is
the poset on ordered partitions defined by λ ≤ λ′ if coinv(λ)(i, j) ≤ coinv(λ′)(i, j) for all i < j.

The following properties of the facial weak order were proved in [KLN+01] and extended for
arbitrary finite Coxeter groups in [DHP18].

Proposition 95 ([KLN+01]). The facial weak order on the set of ordered partitions is a lattice.

Proposition 96 ([KLN+01]). The cover relations of the weak order < on Pn are given by

λ1| · · · |λi|λi+1| · · · |λk < λ1| · · · |λiλi+1| · · · |λk if λi � λi+1,

λ1| · · · |λiλi+1| · · · |λk < λ1| · · · |λi|λi+1| · · · |λk if λi+1 � λi.

We now use the facial weak order to understand better the Schröder permutree congruence.
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Proposition 97. For any decoration δ ∈ { , , , }n, the Schröder δ-permutree congru-
ence ≡?δ is a lattice congruence of the facial weak order on Pδ.

Proof. We could write a direct proof that the classes of the Schröder δ-permutree congruence are
intervals and that the up and down projection maps are order preserving. This was done for
example in [CP17, Proposition 105]. To avoid this tedious proof, we prefer to refer the reader
to [DHP18] which states that a lattice congruence of the weak order automatically transposes to
a lattice congruence of the facial weak order. �

Corollary 98. The Schröder δ-permutree congruence classes are intervals of the facial weak order
on Pn. In particular, the following sets are in bijection:

(i) Schröder permutrees with decoration δ,
(ii) Schröder δ-permutree congruence classes,

(iii) partitions of Pn avoiding the patterns a|c-b and ac-b for δb ∈ { , } and b-a|c and b-ac
for δb ∈ { , }, where a� b� c,

(iv) partitions of Pn avoiding the patterns c|a-b and ac-b for δb ∈ { , } and b-c|a and b-ac
for δb ∈ { , }, where a� b� c.

It follows that the Schröder permutrees inherit a lattice structure defined by S < S′ if and only
if there exist ordered partitions λ, λ′ such that P?(λ) = S, P?(λ′) = S′ and λ < λ′ in facial weak
order. We now provide another interpretation of this lattice.

Definition 99. We say that the contraction of an edge e = v → w in a Schröder permutree S
is increasing if p(v)� p(w) and decreasing if p(w)� p(v). The Schröder δ-permutree lattice is
the transitive closure of the relations S < S/e (resp. S/e < S) for any Schröder δ-permutree S and
any edge e ∈ S defining an increasing (resp. decreasing) contraction.

Proposition 100. The map P? defines a lattice homomorphism from the facial weak order on Pδ

to the Schröder δ-permutree lattice. In other words, the Schröder δ-permutree lattice is isomorphic
to the lattice quotient of the facial weak order by the Schröder δ-permutree congruence.

Proof. Let λ < λ′ be a cover relation in the weak order on Pδ. Assume that λ′ is obtained by
merging the parts λi � λi+1 of λ (the other case being symmetric). Let u denote the rightmost
node of P?(λ) at level i, and v the leftmost node of P?(λ) at level i + 1. If u and v are not
comparable, then P?(λ) = P?(λ′). Otherwise, there is an edge u → v in P?(λ) and P?(λ′) is
obtained by the increasing contraction of u→ v in P?(λ). �

Examples of Schröder δ-permutree lattices for δ = 3, 3 and 3 are illustrated in Figure 25.

Figure 25. The Schröder δ-permutree lattices for δ = 3 (left), 3 (middle)
and 3 (right).
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•|3••|2|1| •|23••|1| •|2|3••|1| •|3••|12| •|123••| •|12|3••| •|3••|1|2| •|13••|2| •|1|3••|2| •|1|23••| •|1|2|3••|

•|2••|1| •|12••| •|1••|2••|

•|1••|

•|3••|2|1| •|23••|1| •|2••|3••|1| •|2••|13••| •|2••|1••|3••| •|3••|12| •|123••| •|12••|3••| •|3••|1|2| •|13••|2| •|1••|3••|2| •|1••|23••| •|1••|2••|3••|

•|2••|1••| •|12••| •|1••|2••|

•|1••|

Figure 26. The generating trees Sδ for the decorations δ = (top) and
δ = (bottom). Free gaps are marked with blue dots.

5.5. Numerology. According to Corollary 98, Schröder δ-permutrees are in bijection with or-
dered partitions of Pn avoiding the patterns a|c-b and ac-b for δb ∈ { , } and b-a|c and b-ac
for δb ∈ { , }. Similar to Section 2.5, we construct a generating tree Sδ for these ordered parti-
tions. This tree has n levels, and the nodes at level m are labeled by the ordered partitions of [m]
whose values are decorated by the restriction of δ to [m] and avoiding the four forbidden patterns.
The parent of an ordered partition in Sδ is obtained by deleting its maximal value. See Figure 26
for examples of such trees.

As in Section 2.5, we consider the possible positions of m + 1 in the children of an ordered
partition λ at level m in Sδ. We call free gaps the positions where placing m+ 1 does not create
a forbidden pattern. They are marked with a blue point • in Figure 26. Note that free gaps can
appear at the end of a part of λ, on a separator | in between two parts of λ, or at the beginning or
end of λ. We therefore include two fake separators at the beginning and at the end of λ. Except
the first free gap at the beginning of λ, all free gaps come by pairs of the form ••|: if m + 1 can
be inserted at the end of a part, it can as well be inserted on the next separator. Therefore, any
ordered partition has an odd number of free gaps. Our main tool is the following lemma. Its
proof, similar to that of Lemma 20, is left to the reader.

Lemma 101. Any ordered partition at level m with 2g+ 1 free gaps and s internal separators has

• g+1 children with 2g+3 free gaps and s+1 internal separators, and g children with 2g+1
free gaps and s separators when δm+1 = ,

• one child with 2g′ + 1 free gaps and s internal separator for each g′ ∈ [g], and one child
with 2g′+1 free gaps and s+1 internal separators for each g′ ∈ [g+1] when δm+1 ∈ { , },

• g + 1 children with 3 free gaps and s + 1 internal separators, and g children with 3 free
gaps and s separators when δm+1 = .

Ordering the children of a node of Sδ in increasing number of free gaps and increasing number
of separators, we obtain the following statement similar to Proposition 19.

Proposition 102. For any decorations δ, δ′ ∈ { , , , }n such that δ−1( ) = δ′−1( ) and
δ−1( ) = δ′−1( ), the generating trees Sδ and Sδ′ are isomorphic.

Finally, similar to Corollary 22, we obtain the following inductive formulas for the number of
Schröder permutrees.
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Corollary 103. Let δ ∈ { , , , }n and δ′ be obtained by deleting the last letter δn of δ. The
number S(δ, g, s) of ordered partitions avoiding a|c-b and ac-b for δb ∈ { , } and b-a|c and b-ac
for δb ∈ { , } and with 2g+1 free gaps and s internal separators satisfies the following recurrence
relations:

S(δ, g, s) =



11g≥1
s≥g−1

·
(

g · S(δ′, g, s) + g · S(δ′, g − 1, s− 1)

)
if δn = ,

11g≥1
s≥g−1

·
( ∑

g′≥g

S(δ′, g′, s) +
∑

g′≥g−1

S(δ′, g′, s− 1)

)
if δn = or ,

11g=1 ·
(∑
g′≥1

g′ · S(δ′, g′, s) +
∑
g′≥1

(g′ + 1) · S(δ′, g′, s− 1)

)
if δn = ,

where 11X is 1 if X is satisfied and 0 otherwise.

Note that for any δ ∈ { , , , }n, the f -vector of the permutreehedron PT(δ) is given by

fk(PT(δ)) =
∑
g∈N

S(δ, g, n− 1− k).

For example the f -vector of PT( ) is [1, 324, 972, 1125, 630, 175, 22, 1].

Corollary 104. The f -vector of the permutreehedron PT(δ) only depends on the positions of the
and in δ.

Example 105. Following Example 4, observe that the f -vector of the permutreehedron PT(δ)
specializes to the following well-known sequences of numbers:

(i) when δ = n,

fk(PT( n)) =

n−k∑
j=0

(−1)j
(
n− k
j

)
(n− k − j)n

is the number of ordered partitions of [n] into n−k parts [OEI10, A019538] and
∑
k fk(PT( n))

is a Fubini number [OEI10, A000670],
(ii) when δ ∈ { , }n,

f(PT(δ)) =
1

n− k

(
n− 1

n− k − 1

)(
2n− k
n− k − 1

)
is the number of dissections of a convex (n + 2)-gon with n − k − 1 non-crossing diagonals
[OEI10, A033282] and

∑
k fk(PT(δ)) is a Schröder number [OEI10, A001003],

(iii) when δ = n,

fk(PT( n)) = 2n−1−k
(
n− 1

k

)
is the number of words of length n−1 on {−1, 0, 1} with k occurrences of 0 [OEI10, A000244]
and

∑
k fk(PT( n)) = 3n−1 [OEI10, A000670].

Note that for any δ ∈ { , , , }n, the kth entry hk(PT(δ)) of the h-vector of the per-
mutreehedron PT(δ) is the number of δ-permutrees with k increasing edges (i.e. edges i → j
with i < j). Since the f -vector only depends on the positions of the and in δ, so does the
h-vector. We therefore obtain the following statement.

Corollary 106. The number of δ-permutrees with k increasing edges (i.e. edges i→ j with i < j)
only depends on the positions of the and in δ.

Example 107. Following Example 4, observe that the h-vector of the permutreehedron PT(δ)
specializes to the following well-known sequences of numbers:

(i) the Eulerian numbers [OEI10, A008292] when δ = n,
(ii) the Narayana numbers [OEI10, A001263] when δ ∈ { , }n,
(iii) the binomial coefficients [OEI10, A007318] when δ = n.

https://oeis.org/A019538
https://oeis.org/A000670
https://oeis.org/A033282
https://oeis.org/A001003
https://oeis.org/A013609
https://oeis.org/A000244
https://oeis.org/A008292
https://oeis.org/A001263
https://oeis.org/A007318
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5.6. Refinement. Similar to Section 2.7, consider two decorations δ, δ′ ∈ { , , , }n such
that δ 4 δ′ (that is, such that δi 4 δ′i for all i ∈ [n] where the order on { , , , } is given
by 4 { , } 4 ).

The Schröder δ-permutree congruence then refines the Schröder δ′-permutree congruence. There-

fore, we obtain a natural surjection Ψ?δ
′

δ : SchrPT(δ) → SchrPT(δ′): for any ordered partition λ

of [n], Ψ?δ
′

δ sends the Schröder permutree obtained by insertion of λ decorated by δ to the Schröder
permutree obtained by insertion of λ decorated by δ′. This surjection can as well be interpreted
directly on our representation of the Schröder permutrees as in Figure 12, where now both the
blocks and the edges can be refined.

Finally, similar to Proposition 35, we obtain the following statement.

Proposition 108. The surjection Ψ?δ
′

δ defines a lattice homomorphism from the Schröder δ-
permutree lattice to the Schröder δ′-permutree lattice.

5.7. Schröder permutree algebra. To conclude this section on Schröder permutrees, we briefly
mention their Hopf algebra structure. Following [CP17], we first reformulate in terms of ordered
partitions the Hopf algebra of F. Chapoton [Cha00] indexed by the faces of the permutahedra.

We define two restrictions on ordered partitions. Consider an ordered partition µ of [n] into p
parts. For I ⊆ [p], we let nI := | {j ∈ [n] | ∃ i ∈ I, j ∈ µi} | and we denote by µ|I the ordered
partition of [nI ] into |I| parts obtained from µ by deletion of the parts indexed by [p] r I and
standardization. Similarly, for J ⊆ [n], we let pJ := | {i ∈ [p] | ∃ j ∈ J, j ∈ µi} | and we denote
by µ|J the ordered partition of [|J |] into pJ parts obtained from µ by deletion of the entries in [n]rJ
and standardization. For example, for the ordered partition µ = 16|27|4|35 we have µ|{2,3} = 13|2
and µ|{1,3,5} = 1|23.

The shifted shuffle λ �̄λ′ and the convolution λ ? λ′ of two ordered partitions λ ∈ Pn and λ′ ∈
Pn′ are defined by:

λ �̄λ′ :=
{
µ ∈ Pn+n′ | µ|{1,...,n} = λ and µ|{n+1,...,n+n′} = λ′

}
,

and λ ? λ′ :=
{
µ ∈ Pn+n′ | µ|{1,...,k} = λ and µ|{k+1,...,k+k′} = λ′

}
.

For example,

1|2 �̄ 2|13 = {1|2|4|35, 1|24|35, 1|4|2|35, 1|4|235, 1|4|35|2, 14|2|35, 14|235,

14|35|2, 4|1|2|35, 4|1|235, 4|1|35|2, 4|135|2, 4|35|1|2},

1|2 ? 2|13 = {1|2|4|35, 1|3|4|25, 1|4|3|25, 1|5|3|24, 2|3|4|15,

2|4|3|15, 2|5|3|14, 3|4|2|15, 3|5|2|14, 4|5|2|13}.
These definitions extend to decorated ordered partitions: decorations travel with their values

in the shifted shuffle product, and stay at their positions in the convolution product.
We denote by OrdPart{ , , , } the Hopf algebra with basis (Fλ)λ∈P{ , , , } and whose product

and coproduct are defined by

Fλ · Fλ′ =
∑

µ∈λ �̄λ′

Fµ and 4Fµ =
∑

µ∈λ?λ′
Fλ ⊗ Fλ′ .

This indeed defines a Hopf algebra, which is just a decorated version of that [Cha00].
Finally, we denote by SchrPT the vector subspace of OrdPart{ , , , } generated by

PS :=
∑

λ∈P{ , , , }
P?(λ)=S

Fλ,

for all Schröder permutree S. We skip the proof of the following statement.

Theorem 109. SchrPT is a Hopf subalgebra of OrdPart{ , , , }.

Relevant subalgebras of the Schröder permutree algebra are the Hopf algebras of F. Chapo-
ton [Cha00] on the faces of the permutahedra, associahedra and cubes, as well as the Schröder
Cambrian Hopf algebra of G. Chatel and V. Pilaud [CP17, Part 3]. As in Section 4, we invite
the reader to work out direct combinatorial rules for the product and coproduct in the Schröder
permutree algebra. Examples can be found in [CP17, Part 3].
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