THE HOPF ALGEBRA OF INTEGER BINARY RELATIONS

VINCENT PILAUD AND VIVIANE PONS

ABSTRACT. We construct a Hopf algebra on integer binary relations that contains under the
same roof several well-known Hopf algebras related to the permutahedra and the associahedra:
the Malvenuto—Reutenauer algebra on permutations, the Loday—Ronco algebra on planar binary
trees, and the Chapoton algebras on ordered partitions and on Schréder trees. We also derive
from our construction new Hopf structures on intervals of the weak order on permutations and
of the Tamari order on binary trees.
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An integer binary relation is a binary relation on [n]:={1,...,n} for some n € N. Integer posets

are integer binary relations that are moreover posets (i.e. reflexive, antisymmetric and transitive).
Many fundamental combinatorial objects (see Table 1 left) can be thought of as specific integer
posets. This observation was used in [CPP17] to reinterpret classical lattice structures (see Table 1
middle) as specializations (subposets or sublattices) of a lattice structure called the weak order
on posets. This interpretation enables to consider simultaneously all these specific integer posets
and motivated the emergence of permutrees [PP18], which are combinatorial objects interpolating
between permutations, binary trees, and Cambrian trees [CP17].

In this paper, we continue the exploration of the algebraic combinatorics of integer binary
relations and integer posets, focussing on Hopf structures. We construct a Hopf algebra on integer
binary relations where

(i) the product R - S of two relations R,S is the sum of all relations that contain R at the
beginning and S at the end as induced subrelations,
(ii) the coproduct A(R) of a relation R is the sum of the tensor products of the subrelations
induced by R over all possible partitions [n] = A U B that correspond to a total cut of R.
We then reinterpret classical Hopf algebras [MR95, LR98, Cha00] (see Table 1 right) as specializa-
tions (quotients or subalgebras) of the integer poset algebra. Moreover, we obtain Hopf structures
on the intervals of the weak order and on the intervals of the Tamari lattice, that remained
undiscovered to the best of our knowledge.

VPi was partially supported by the French ANR grants SC3A (15 CE400004 01) and CAPPS (17 CE400018).
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combinatorial object lattice structure Hopf algebra
permutations weak order Malvenuto—Reutenauer algebra [MRI5]
binary trees Tamari lattice Loday—Ronco algebra [LR98]
ordered partitions facial weak order [KLN*01, PR06, DHP18] | Chapoton algebra on ordered partitions [Cha00]
Schroder trees facial Tamari order [PR06, DHP18] Chapoton algebra on Schréder trees [Cha00]
weak order intervals interval lattice of the weak order NEW, see Sections 3.3.2 and 3.4.1
Tamari order intervals | interval lattice of the Tamari lattice [CP15] NEW, see Section 4.4

TABLE 1. Algebraic structures on classical combinatorial objects that can be
reinterpreted as integer binary relations. See also Figure 3 for the connections
between the Hopf algebras.

1. INTEGER BINARY RELATIONS

Our main object of focus are binary relations on integers. An integer (binary) relation of
size n is a binary relation on [n]:={1,...,n}, that is, a subset R of [n]?. As usual, we write
equivalently (u,v) € R or uRw, and similarly, we write equivalently (u,v) € R or uRv. Throughout
the paper, all relations are implicitly assumed to be reflexive (z R z for all « € [n]), although we
often forget to include the diagonal {(u,u) | u € [n]} in our descriptions. We denote by R, the

set of all (reflexive) binary relations on [n] and let R:= [ |5 Rn.

1.1. Weak order. A lattice structure called the weak order on integer binary relations has been
defined in [CPP17]. We recall its definition here as we will latter use this order to give a combi-
natorial description of the product.

Let I,,:= {(a,b) € [n]* | a < b} and D, := {(b,a) € [n]* | a < b}. Observe that I, UD,, = [n]?
while I, ND,, = {(a,a) | a € [n]}. We say that the relation R € R,, is increasing (resp. decreasing)
when R C I, (resp. R C D,,). The increasing and decreasing subrelations of an integer relation R €
R, are the relations defined by:

R":= RNI, ={(a,b) €R|a<b} and RP*:=RND, ={(ha) €R|a<b}.
In our pictures, we always represent an integer relation R € R,, as follows: we write the numbers
1,...,n from left to right and we draw the increasing relations of R above in blue and the decreasing

relations of R below in red. Although we only consider reflexive relations, we always omit the
relations (7,7) in the pictures (as well as in our explicit examples). See e.g. Figure 1.

Definition 1. The weak order on R, is given by R < S if R'"® D S qnd RPec C SPee,

Note that the weak order is obtained by combining the refinement lattice on increasing subre-
lations with the coarsening lattice on decreasing subrelations. It explains the following statement.

Proposition 2. The weak order (R, <) is a graded lattice whose meet and join are given by
R AR S = (Rlnc U SInC) U (RDec N SDec) and R Vg S — (Rlnc n S|nC) U (RDec U SDEC).

1.2. Hopf algebra. We consider the vector space kR := @, -, kR, indexed by all integer binary
relations of arbitrary size. We denote by (FRR)rer the standard basis of kR. In this section, we
define a product and coproduct that endow kR with a Hopf algebra structure.

We denote by Ry := {(i,j) € [k)? ‘ T ka} the restriction of an integer relation R € R,, to
a subset X = {z1,...,2;} C [n]. Intuitively, it is just the restriction of the relation R to the
subset X which is then standardized to obtain a proper integer binary relation.

1.2.1. Product. The product that we define on binary integer relation generalizes the shifted shuffle
of permutations: for R € R,, and S € R,,, deleting the first m values (resp. last n values) in any
relation of the shifted shuffle RIS yields the relation S (resp. R).

For m,n € N, we denote by mm ={m+1,...,m+n} the interval [n] shifted by m. For m € N
and S € R,,, we denote by S := {(m +14,m + ) | (i,7) € S} the shifted relation. We also simply

use [n] and S when m is clear from the context.
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FIGURE 1. Interval corresponding to a product of relations.

For R € R,, and S € R,,, we define R\S:=RUS U ([m] x [n]) and R/S:=RUS U ([n] x [m]).
Definition 3. For two relations R € Ry, and S € Ry, define the shifted shuffle RS as the set
of relations RUSUIUD for all possible I C [m] x [n] and D C [n] x [m)].

Remark 4. Note that the shifted shuffle of R € R,, and S € R,, has cardinality |[R LS| = 2™,
Example 5. For instance,

FR ~ -FR, =FR — +FR ~ +FR — + - +FR .
123 123 123

where the sum ranges over all relations in the interval of Figure 1.

Proposition 6. For Re R,,, Se€ R,, and T € Ry, 4n, we have
TeRWS < T[m]:RandTm:S <~ R\S=<T<xR/S

Proof. The first equivalence is immediate. Assume now that T = RUSUTUD for some I C [m] x [n]
and D C Ja]  [m]. Then T" = R"" U S™UT C R"US™U([m] x [n]) = (R\S)"™ and
TPee = RPeUSP“UD D RP<US ™ = (R\S)P* so that R\S < T. Similarly T < R/S. Conversely,
if R\S < T < R/S, then R = R\S[m] < Tpn) < R/Spm) = R, thus Tjy,; = R. Similarly T =S, O

Definition 7. The product of two integer relations R € R,, and S € R, is
FRy - FRg = Z FRr.
TeR WS

Proposition 8. The product - defines an associative graded algebra structure on kR.

Proof. For R € R,, and S € R, all relations in TS belong to R,,+, by definition. More-
over, for R € R;,,S € R, T € R,, Proposition 6 ensures that the relations in (R1US) LT and

in R (SLWT) are the relations U € R,y 4140 such that Uy, = T, Upm =Sand U[ min = T. O
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By Proposition 6, we know that this product can be interpreted as a sum over an interval. We
now prove a property slightly more general.

Proposition 9. The product of two intervals is an interval: for R X R’ in Ry, and S xS in R,

( Z ]FRU>~< Z ]FRV>< Z IE‘RT>.
R USR/ SxV<S R\S<T<R’/S’

( > IFRU>-< > FRV>: > > FRr
RUR/ SxV=s R<U<R TeU WV
SxV<xS’

Proof. We have

First note that all coefficients are equal to 1. Indeed, any relation T of the sum belongs to exactly

one set ULV as U and V are uniquely defined by U = T|,,) and V = TW' The only thing to

prove is then
{TER|R\S<T<R/St= || {TeR|U\<T<U/V}

R<U=<R’
SxV<s’

where the union on the right is disjoint. Let us call A the set on the left and B the set on the
right. It is clear that B C A. Indeed, for T' € B, we have U\V T < U/V for some R < U x R/
and S < V x S: this gives directly R\S < T < R//S’. Conversely, let T € R be such that
R\S < T < R’/S". This means (R’/S)" C T C (R\S)" and (R’/S")Pec D TPe O (R\S)Pec.
This is still true if the relations are restricted to [m] (resp. [n]). For U:=T},) and V:= T we
get that (R\S)j,) = R < U R = (R'/S')}, and R\S)pr =8 =<V < S = (R’/S’)m. Now
T =UUVUI with I C ([m] x [n]) U ([n] x [m]) which means T'€ UV. O

1.2.2. Coproduct. We now define a coproduct on integer relations using total cuts.

Definition 10. A total cut (X,Y) of a relation T € Ry, is a partition [p] = X UY such that x Ty
and yT = for all x € X and y € Y. For two relations R € R,, and S € R,, define the
convolution RS as the set of relations T € Ry, which admit a total cut (X,Y) such that Tx = R
and Ty = S.

Remark 11. Note that the convolution of R € R,, and S € R, has cardinality R S| = ("'").

Definition 12. The coproduct of an integer relation T € R is
A(FRr):= » FRp@FRs.
TeRxS

Example 13. For instance,

A(FR ~.) =FR . ®FRo +FR, ®FR, ,+FR~®FR, +FRs @FR

where the terms in the coproduct arise from the total cuts ({1, 2,3}, @), ({1},{2,3}), ({1,3},{2}),
and (2,{1,2,3}).

Proposition 14. The coproduct /\ defines a coassociative graded coalgebra structure on kKR.

Proof. For R € R,, and S € R, all relations in T xS belong to R,,+, by definition. Moreover,
for R € Rpm,S € Ry, T € Ry, the relations in (R *S) T and in R * (S = T) are precisely the
relations U € R, 4n+to such that there is a partition [m +n+ 0] = X UY U Z such that

oUX:T,Uy:SandUZ:T. O
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1.2.3. Hopf algebra. We now combine the algebra and coalgebra structures on kR to a Hopf al-
gebra. Recall that a combinatorial Hopf algebra is a combinatorial vector space endowed with
an associative product - and a coassociative coproduct A which satisfy the compatibility re-
lation A(FRg - FRs) = A(FRR) - A(FRg), where the last product is defined componentwise
by (a®0b)-(c®d)=(a-c)® (b-d).

Proposition 15. The product - of Definition 7 and the coproduct /\ of Definition 12 endow kR
with a Hopf algebra structure.

Example 16. Before giving the formal proof, let us illustrate on an example the compatibility
relation A(FRg -FRs) = A(FRR) - A(FRg). For that, let R and S both be the unique relation of
size 1. On the one hand, we have:

A(FR,)-A(FR)) = (FR, @ FRg + FRy ® FR ) - (FR, @ FRg + FRo ® FR )
= (FR,-FR)) @ FRs +2(FR, @ FR ) + FRy ® (FR -FR ),
with
FR, -FR,=FR, ,+FR ~ +FR ,+FR ~.
On the other hand, we have: ) )
A(FR,-FR,) =A(FR, ,+FR ~, +FR,, +FR1:2)
= AR, ) +AFR ) + AFR, ) + AFR )
= (FR, ,FRs +FRy ®FR | ) + (FR ~,®FRs +FR @ FR +FRs @ FR )
+(FR, ,®FRg +FR, ®FR, +FRy ®FR, ) + (FR -, ® FRg + FR; ®FR )
= (FR, ZZFFRQJrFRI 2+IFR1~2)®]FR@—|—2M(IFRI®IF7£1) m
+FRs ® (FR, ,+FR ~ +FR,  +FR ~).
Therefore ) )
A(FR,-FR,) = A(FR)) - A(FR).
Proof of Proposition 15. We have
AFRR) - AFRs) = Y FRy it i @ FRy (soivi iy = O(FRr - FRs),
where the sum ranges over all total cuts (X,Y) of R and (U, V) of S and all relations
rex) =[O, peon™ xxp, reyyx VT and VY < (V)

The first equality directly follows from the definitions. For the second equality, observe that for
any T € RIS, the total cuts of T are precisely of the form (X LT, Y LUV"™") where (X,Y) is a
total cut of R and (U, V) is a total cut of S such that X x V' and Y x U are both subsets of T
while V" x X and U™ x Y are both subsets of the complement of T. O

1.2.4. Multiplicative bases. In this section, we describe multiplicative bases of kR and study the
indecomposable elements of R for these bases. For a relation R € R, we define

ER® = > FRx and HR®= > FRr.
R<R/ R'<R

Example 17. For instance, ER'’=FR ,+FR , and HR'’=FR ,+FR ~ .

Proposition 18. The sets (ER®)rer and (HR®)rer form multiplicative bases of kR with
ERE-ERS =ER®™S  and  HR®.-HRS = HR®/S.

Proof. First note that the elements of (ERF)rer (resp. (HRR)rer) are linearly independent:
each element ER® contains a leading term FRy and so the transition matrix is triangular. The
product formula is a direct consequence of Proposition 9. O
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Example 19. For instance,
ER'*-ER'= (FR, ,+FR ) -FR,
=FR, Z-IFR]—i-?FR1 , R,
] 3+FR/}+'~+FR =ER

2 1 2 3 12 3

—— ~ ~
Note that even though ER and HR have very simple definitions for the product, the definition
of the coproduct is now more complicated than on FR. In particular, we now have some coefficients

greater than 1 which appear as in the example below.

=FR — +---+FR

123

Example 20. For instance,
AER"?) = A(FR ~,+FR ~ +FR, ,+FR, )
=FR ~ ®FRgy —&-i’Rl @FR, + IF’R; ®FR ~ +FR ~ @ FRg + FRy ® FR ~,
+FR, ,®FRgz +FRyz ®FR, ,+FR, ,®FRgy —HF;%] ®FR, —HFRg@JFRTZ
—ER'*®@ER? +2(ER' ® ER') + ER®  ER' °. B
Definition 21. We say that a relation T is under-indecomposable (resp. over-indecomposable)
if there is no R and S in R with |R| > 1 and [S| > 1 such that T = R\S (resp. T =R/S).

Proposition 22. The algebra kKR is freely generated by the elements ERT where T is under-
indecomposable (resp. by the elements HRT where T is over-indecomposable).

We will prove this proposition only for ERT. Besides, we will work solely with the notion of
under-indecomposable which we will simply call indecomposable in the rest of paper when there is
no ambiguity. The proof of Proposition 22 relies on the results of [LR06] on the (co-)freeness of
(co-)associative algebras.

Definition 23 ([LR06, p. 7]). A unital infinitesimal bialgebra (H, -, A) is a vector space H equipped
with a unital associative product - and a counital coassociative coproduct A which are related by
the unital infinitesimal relation:

(%) Alz-y)=(e1) - Aly) +Ax)-(1oy) +r0Y,
where the product - on H @ H and the reduced coproduct A are given by
(z@y) (@' 2y)=(-2)@y-y), ad &A@)=Al)-(@1+10).

Note that this is not the classical compatibility relation satisfied by the product - and the
coproduct A of a Hopf algebra. In particular, (R,-,A) is not a unital inifinesimal bialgebra.
Nevertheless we will prove that for another coproduct A, then (R,-, A) is a unital inifinesimal
bialgebra. We can then use the main result of [LRO06].

Theorem 24 ([LRO6, p.2]). Any graded unital infinitesimal bialgebra is isomorphic to the non-
commutative polynomials algebra equipped with the deconcatenation coproduct.

The isomorphism is explicit. Each element x of H can be written uniquely as a product
& = 1 Ty...- xk such that the elements x; are primitive, i.e. A(x;) = 0. In other words, the
algebra (H,-) is freely generated by the primitive elements for the coproduct A. In our case, we
will exhibit a coproduct A such that (R,-, A) satisfies (x) and, as a corollary of [LRO6], we get
that (R,-) is freely generated by the primitive elements of A.

Definition 25. A primitive cut is a total cut of the form ([i], [p] \ [i]) for some 0 <i < p.

For example, the relation "> admits a primitive cut at 2. Every relation T € R, admits at

least two primitive cuts (&, [p]) and ([p], @) which we call the trivial primitive cuts. Moreover,
T = R\S if and only if T admits a primitive cut at |R|. In particular, if T is indecomposable,
then T does not admit any non-trivial primitive cut. We define a coproduct A on the basis ER by

A(ER")= > ER"@ERS.
T=R\S
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By definition, this is the dual of the product - on ER. This is also a sum over all primitive cuts
of the relation T and by extension, A(ERT) is a sum over all non-trivial primitive cuts of T.

Example 26. For instance

A
5

i(ER' ) =ER'@ER''+ER''®ER' and  X(ER 5:"‘) —ER' @ ER .

We have that ERT is primitive for & (i.e. A(ERT) = 0) if and only if T is indecomposable.
Now, Proposition 18 is a direct consequence of the following statement together with Theorem 24.
Proposition 27. (R,-, A) is a unital infinitesimal bialgebra.

Proof. Let R € R,, and S € R,, with p =m + n. We have on the one hand
A:=a(ER®-ERS) = x(ER™) = Y ERW @ ERY,
R/\S’=R\S
and on the other hand
B:=(ER® @ ER') - X (ER®) + A (ERY) - (ER' @ ER®) + ER" © ER®

= Z ERE\St @ ERS2 + Z ERE @ ERR2\S | ERR @ ERS.
stl\SQ R:Rl\RQ

We want to prove that A = B. The sum A is over all non-trivial primitive cuts of R\S. The
relation R\S admits a primitive cut at m by definition which means that the term ER? @ ERS
appears in the sum. Now, let 0 < k < m.
e If R\S admits a primitive cut at k', this means in particular that R admits a primitive
cut at k. We have R = R1\Rg for some Ry € Ry, and Ry € R,,—k. It is easy to check that
R\S restricted to {k+1,...,p} is indeed equal to R3\S.
e Reciprocally, if R admits a primitive cut at k, i.e. R = R;\Rg with Ry € Ry, we have all
(1,7) € R\S and (j,7) ¢ R\S for i < k and k < j < m by definition of the primitive cut
and also for ¢ < k and m < j < p by definition of R\S. This means that R\S admits a
primitive cut R’\S’” = R\S at k. The relation R’ is the restriction of R\S to [k] and it is
then equal to Ry. The relations S’ is the restriction of R\S to {k+1,...,p} and is equal

to RQ\S
We can use a similar argument for & > m and we then obtain that the primitive cuts of R\S
exactly correspond to the primitive cuts of S which proves the result. O

As an algebra, kR is then generated by indecomposable relations. It is well known that there
is a direct relation between the Hilbert series of an algebra and the generating series of its inde-
composable elements. Namely, if

F(z):=Y Rpa" =1+x+ 42 + 642° + 4098z* + ...
n>0
is the Hilbert series of kR, where R,, = 2*("~1 is the number of (reflexive) integer binary relations,
then it is related to the the generating series I(x) of indecomposable relations by
1

1—I(x)
In particular, the number of indecomposable relations I,, can be computed by an inclusion—
exclusion formula

= R(z).

L= > (-)""'R,, ...R,,
ni+--Fng=n
which gives the coefficients of Table 2. There does not seem to be another, more direct, com-
binatorial enumeration. Nevertheless, indecomposable relations do have an interesting structural
property when looking at the weak order lattice.

Proposition 28. The set of indecomposable relations of size n forms an upper-ideal of the weak
order lattice on Ry, (i-e. if R is indecomposable, then any S with R < S is also indecomposable).
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nil 2 3 4 5
R,|1 4 64 4096 1048576
I,|1 3

57 3963 1040097

TABLE 2. Number of binary relations and indecomposable binary relations on [n].

Proof. Consider two binary relations R, S € R,, such that R < S and S admits a primitive cut at
some k. For all i < k < j, we have ¢ S j and j$ ¢ since k is a primitive cut of S. Since R < S, we
have R'™ D S'" and RPe C SPe¢, and thus i Rj and j$i for all i < k < j. This implies that R
also admits a primitive cut at k. O

Note however that the ideal of indecomposable relations might have multiple minimal elements.
For example for n = 2, there are 3 indecomposable relations (over 4 relations in total) and 2
minimal elements: 1 » and .

2. INTEGER POSETS

We now focus on integer posets, i.e. integer relations that are reflexive (x R x), transitive
(zRyRz = zRz) and antisymmetric (z Ry = yR z). Let P, be the set of all posets on [n] and
let P:=|],~o Rn-

As we will only work with posets in the rest of the paper, we generally prefer to use notations
like <1, €, which speak for themselves, rather than our previous notations R,S for arbitrary
binary relations. It also allows us to write a > b for b < a, in particular when a < b.

We still denote by =< the weak order given in Definition 1. The following statement is the
keystone of [CPP17].

Theorem 29 ([CPP17, Thm. 1]). The weak order on the integer posets of Py, is a lattice.

We now define a Hopf algebra on posets. We consider the vector space kP := @nZO kP,, indexed
by all integer posets of arbitrary size. We denote by (FP4)4ep the standard basis of kP.

Proposition 30. For any R,S € R,

(i) if the shifted shuffle R\US contains at least a poset, then R and S are both posets,
(i) if R and S are both posets, then all relations in the convolution R xS are posets.

Therefore, the vector subspace of kKR generated by integer relations which are not posets is a Hopf
ideal of (KR, ,A). The quotient of the integer relation algebra (KR,-, /) by this ideal is thus a
Hopf algebra (KP,-, ) on integer posets.

Proof. For (i), let R € R,, and S € R,, be such that the shifted shuffle RIS contains a poset T.
Then R = Tj,) and S = Tm are antisymmetric and transitive since T is.

For (ii), consider two posets R,S € P and let T € R+ S. Let (X,Y) be the total cut of T such
that Ty = R and Ty = S. We prove that T is a poset:

Antisymmetry: Let u,v € N. If u and v both belong to X (resp. to Y), thenu Tv = vT u
since Tx = R (resp. Ty = S) is antisymmetric. Otherwise, u T v if and only if u € X
and v € Y, while v T w if and only if v € X and v € Y. Thus T is antisymmetric.

Transitivity: Let u,v,w € N such that u ToTw. If u and w both belong to X (resp. to Y),
then so does v and v T w since Tx = R (resp. Ty = S) is transitive. Otherwise, u € X
and w €Y (since TN(Y x X) =@ and u TvTw), thus u Tw (since X xY C T). Thus T
is transitive. (]

Remark 31. Although not needed for the Hopf algebra quotient, observe that the convolution
satisfies a property similar to Proposition 30 (i): if R,S € R are such that the convolution R xS
contains at least a poset, then R and S are both posets.

For any poset <1, we denote by FP the image of FR 4 through the trivial projection kR — kP.
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FIGURE 2. Interval corresponding to a product of posets. Its is obtained from
Figure 1 by deleting all binary relations which are not posets.

Example 32. In practice, for two posets <1, 4 € P, we compute the product FP,-FP¢ in kP by
deleting all non-poset summands in the product FR - FR ¢ in kR:

FP,-FP, =FP . +FP — +FP . +FP  +FP . +FP _ .
123 12 3 12 3 1 Z/MS 12,“3 1\72,}/3

The coproduct is even simpler: all relations that appear in the coproduct A(FR4) of a poset <
are automatically posets by Remark 31:

A(]FPI,;%) —FP . ©FPy +FP, @FP, ,+FP ~ ®FP, +FPs O FP . .

Proposition 33. For < € P, and € € P,,, the product FPo - FP ¢ is the sum of FP4, where 4
runs over the interval between <1\« and </« in the weak order on P, yn.

Proof. Tt is a direct consequence of Proposition 6 and the fact that for any two posets <1, € € P,
the relations <\« and <1/« are both posets. d

Example 34. For instance, the product FP ~, - FP  corresponds to the interval of Figure 2
from FP .. toFP in the weak order on Ps.

123 123
——

In a similar way, we directly obtain multiplicative bases EP and HP by taking the quotient of
the bases ER and HR respectively:

EP<= > FPq and HP =) FPq
<45« <<
Note that if R is a relation that is not a poset, then the quotient EP® of the element ERF is

not equal to 0: the leading term FRFE is sent to 0 and so EPR can be expressed as a sum of
elements EPR’ where R’ is a poset with R’ < R.
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Proposition 35. The sets (EPY)qep and (HPV)4ep form multiplicative bases of kP with
EPY.-EP*=EPN\Y  and HPY -HP*=HPV.

Besides, as an algebra, kP is freely generated by the elements (EP) where < is under-indecomposable
and, equivalently, by the elements (HP<) where < is over-indecomposable.

Proof. This derives directly from Proposition 18 and the fact that if < and <« are posets, then <1\ <
and <1/« are also posets. To prove that the algebra is freely generated by the indecomposable
elements, one can follow the proof of Proposition 22 as everything still holds when restricting to
posets. O

In the next two sections of the paper, we will use the Hopf algebra on integer posets constructed
in this section to reinterpret classical Hopf algebras on permutations [MR95] (see Sections 3.1, 3.3.1
and 3.4.2), ordered partitions [Cha00] (see Section 3.3.3), binary trees [LR98] (see Sections 4.1
and 4.4) and Schroder trees [Cha00] (see Section 4.4). Moreover, we obtain Hopf structures on the
intervals of the weak order (see Sections 3.3.2 and 3.4.1) and on the intervals of the Tamari lattice
(see Section 4.4), that remained undiscovered to the best of our knowledge. All these algebras and
their connections are summarized in Table 1 and Figure 3.

Permutations (84) Binary trees
kWOEP kTOEP
(45)
(69) (45)
Relations (30) Posets (51) Weak order (84) Tamari
kR kP W intervals «———  intervals
kWOIP kTOIP
(55) (55)
Ordered (84) , Schroder trees
partitions kTOFP
kWOFP

FIGURE 3. A roadmap through the different Hopf algebras studied in this paper.
An arrow — indicates a quotient Hopf algebra, while an arrow — indicates a Hopf
subalgebra. The label on each arrow refers to the corresponding proposition.

3. PERMUTATIONS, WEAK ORDER INTERVALS, AND ORDERED PARTITIONS

We now consider our first three families of specific integer posets. These families respectively
correspond to the elements (WOEP), the intervals (WOIP) and the faces (WOFP) in the classi-
cal weak order on permutations. We construct Hopf algebras on WOEP, WOIP and WOFP as
quotients (Section 3.3) or subalgebras (Section 3.4) of the integer poset Hopf algebra (P,-, A).
For the constructions as quotients, the important point is that all these families of posets are
defined by local conditions on their relations, and that a contradiction to these conditions can-
not be destroyed by the product or the coproduct. For the constructions as subalgebras, we use
surjections from posets to WOEP or WOIP whose fibers are stable by product and coproduct.
Using quotients or subalgebras, we construct Hopf algebras on WOEP (resp. WOFP) isomorphic
to the Malvenuto—Reutenauer Hopf algebra on permutations [MR95] (resp. to the Chapoton Hopf
algebra on surjections [Cha00]), and we obtain a Hopf algebra on intervals of the weak order that
was not constructed earlier to the best of our knowledge.
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3.1. Permutations and the Malvenuto—Reutenauer algebra. Recall that the classical weak
order on the permutations of &,, is defined by ¢ < 7 if and only if inv(es) C inv(7), where
inv(o) = {(a,b) € [n]* | a < b and 0~ *(a) < o~'(b)} denotes the inversion set of o. This order is
a lattice with minimal element [1,2,...,n] and maximal element [n,...,2,1].

For two permutations o € &,,, and 7 € &,,, the shifted shuffle o U T (resp. the convolution oxT)
is the set of permutations of &,, 4, whose first m values (resp. positions) are in the same relative
order as o and whose last n values (resp. positions) are in the same relative order as 7. For
example,

1211231 = {12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312},
and 12231 = {12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231}.

Recall that the Malvenuto—Reutenauer Hopf algebra [MR95] is the Hopf algebra on permutations
with product - and coproduct A defined by

Fo-Fri= Y F, and AF,)= > F,oF,.
P

pET LT CoxT

Example 36. For example, we have
Fio-Fy =Fio3 + Fi3o +F3i2 and A(Fi32) =Fi320 @ Fg + F1 @ Fo1 +Fi2 @ Fy + Fg @ Fiso.

Remark 37. For 0 € 6,, and 7 € &, we have o L7 = [o\7,0/7]. More generally, for any
permutations 0 < 0’ € &, and 7 < 7’ € &,,, we have

(éFA)( 2 F“)— > F.

TIuIT! o\T=xv<o'/T’
In other words, weak order intervals are stable by the product - on &. Note that there are not
stable by the coproduct A.

3.2. Weak order element, interval and face posets. We now briefly recall how the elements,
the intervals and the faces of the classical weak order can be interpreted as specific interval posets
as developed in [CPP17].

3.2.1. Elements. We interpret each permutation ¢ € &,, as the weak order element poset <,
defined by u <, v if 07 (u) < 071 (v). In other words, the poset <, is the chain o(1) <, ... <,
o(n). See Figure 4 for an example with o = 2751346.

o = 2751346 — g =1 2 3 4 5 6 7

FIGURE 4. A Weak Order Element Poset (WOEP).

We define
WOEP,, := {<, | 0 € &,,} and  WOEP:= |_| WOEP,,.
neN
These posets are clearly characterized as follows, which enables to recover the weak order on
permutations.

Lemma 38. A poset < is in WOEP,, if and only if a <b or a > b for all a,b € [n].

Proposition 39 ([CPP17, Prop. 23 & 24]). The map o — <, is a lattice isomorphism from the
weak order on permutations of &, to the sublattice of the weak order on P, induced by WOEP,,.
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3.2.2. Intervals. We now present a similar interpretation of the intervals of the weak order.

For o < ¢’ € &,,, we consider the weak order interval [o,0']:= {7 € &,, | 0 < 7 < 0’}. The per-
mutations of the interval [0, o’] are precisely the linear extensions of the weak order interval poset
Ljo,07] = ﬂa_\q_\w, r =y Ny = <1!;‘F U <P see the example on Figure 5.
N
o' =3421 —— <ey=1 2 3 4

N (=

3241 3412

| | | .

3214 3142 Dlo,0)= <ImcU <P = 2 3 4
N S

3124 1342

‘/ 2 3 4/

0=1324 — =1
FIGURE 5. A Weak Order Interval Poset (WOIP).

We define

WOIP, = {<poq |0 <0’ €6,}  and  WOIP= | | WOIP,.

neN

Weak order interval posets are precisely the integer posets which admit both a minimal and
a maximal linear extension. They were characterized by A. Bjorner and M. Wachs [BW91] as
follows.

Proposition 40 ([BW91, Thm. 6.8]). A poset < is in WOIP,, if and only ifa < ¢ = (a < b or b < c)
andat>c=(a>borbr>c) forall<a<b<c<n.

This condition clearly contains two separate conditions on the increasing subrelation and on the
decreasing subrelation of <1, and it will be convenient to split these conditions. We thus consider
the set IWOIP,, (resp. DWOIP,,) of posets of P,, which admit a weak order maximal (resp. minimal)
linear extension. These posets are characterized as follows.

Proposition 41 ([CPP17, Prop. 32]). For a poset < € P,

e J€IWOIP, <= V1<a<b<c<n, adc=a<borbec,
e e DWOIP, «<—= V1<a<b<ec<n, ad>c=alborb>ec.

Moreover,

e if < € IWOIP,,, its mazimal linear extension is <™= <U{(b,a) | a < b incomparable in <},
e if < € DWOIP,,, its minimal linear extension is <™ .= <qU{(a,b) | a < b incomparable in <1}.

See Figure 6 for an example.
Finally, the weak order on WOIP,, corresponds to the Cartesian product lattice on the intervals,
described in the following statement.

Proposition 42 ([CPP17, Prop. 27 & Coro. 28]).
!/

(i) If o S 0" and 7 X 7" in &y, then o o) S Qryr) &= 0 ST and o’ S 7.

(ii) The weak order on WOIP,, is a lattice with meet <jg,o/) AwolP <[r,7/] = Uorer, o/ rar] AN
join <is.o1 Vwolp <jrr] = Pover over]. However, the weak order on WOIP,, is not a
sublattice of the weak order on P,,.
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€ IWOIP | € DWOIP gmaxle minle

)

yes no 1

—
V)
w
e

¢
)

no yes 1 2 3 4

—
V)
w
W~

)l
)
)l

yes yes 1 2 3 4 1 2 3 4

—
[
w
=

(
Q
(

FIGURE 6. Examples of IWOIP and DWOIP with their maximum (resp. mini-
mum) linear extensions.

m=125[37]46 <+— <=1 2 3 4 5 6 T
FIGURE 7. A Weak Order Face Poset (WOFP).

3.2.3. Faces. Recall that the permutahedron Perm(n):= conv{(o1,...,0,) | ¢ € &,} has vertices
in bijections with permutations of &,, and faces in bijections with ordered partitions of [n]. In
this paper, we see an ordered partition 7 of [n] as a weak order face poset <, defined by u <1 v
if 771(u) < 771(v) (meaning the block of u is before the block of v in 7). See Figure 7 for an
example with 7 = 125|37]46.

We define

WOFP,, := {<, | m ordered partition of [n]} and WOFP := |_| WOFP,,.
neN

Again, the posets of WOFP,, admit a simple local characterization and the weak order on WOFP,,
corresponds to a relevant lattice on faces of the permutahedron previously considered in [KLNT01,
PRO0O6, DHP18].

Proposition 43 ([CPP17, Prop. 30]). A poset < is in WOFP,, if and only if < € WOIP,, (Propo-
sition 40) and (a <b <= b>c) and (a>b <= b<c) foralla <b< c witha 4 c and a ¥ c.

Proposition 44 ([CPP17, Sect. 2.1.3]).

(i) For any ordered partitions w, 7" of [n], we have <Qx < Qv <= 7 < 7 in the facial weak
order of [KLNT01, PR06, DHP18].

(i) The weak order on WOFP,, is a lattice but not a sublattice of the weak order on Py, nor
on WOIP,,.

3.3. Quotient algebras. We now construct Hopf algebras on WOEP, WOIP and WOFP as quo-
tient algebras of the integer poset algebra. For all these constructions, the crucial point is that
all these families of posets are characterized by local conditions on their relations, and that a
contradiction to these conditions cannot be destroyed by the product or the coproduct on posets.
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3.3.1. Elements. We first interpret the Malvenuto—Reutenauer Hopf algebra as a quotient of the
integer poset Hopf algebra (kP, -, A). For that, we use the characterization of Lemma 38.

Proposition 45. For any <, 4 € P,

(i) if the shifted shuffle <L 4 contains a total order, then < and <« are total orders,

(i) if < and <4 are both total orders, then all relations in the convolution <Ix <« are total orders.
Therefore, the vector subspace of kP generated by integer posets that are not total is a Hopf ideal
of (kP,-, ). The quotient of the integer poset Hopf algebra (KP, -, A) by this ideal is thus a Hopf
algebra (KWOEP° . A) on total orders.

Proof. For (i), let < € P,,, and 4 € P, be such that the shifted shuffle <11l « contains a total
order -. Then < = ;) and € = —|m are total orders.

For (ii), consider two total orders <i, « € WOEP and let 4 € < 4. Let (X,Y) be the total
cut of 4 such that 4x = < and dy = «. Let u,v € N. If u and v both belong to X (resp. to Y),
then u 4 v or v 4 u since 4x = < (resp. 1y = <) is total. Otherwise, u 4 v if and only if u € X
and v € Y, while v 4w if and only if v € X and v € Y. Thus - is total. O

Remark 46. Although not needed for the Hopf algebra quotient, observe that the convolution
satisfies a property similar to Proposition 45 (i): if <1, 4 € P are such that the convolution < x <
contains at least a total order, then <1 and <« are both total orders.

For any weak order element poset <1, we denote by FWEL® the image of FR through the
trivial projection kR — kP.

Example 47. In practice, for any two total orders <1, 4« € WOEP, we compute the product
FWEY® - FWEZY" in kWOEP by deleting all summands not in WOEP in the product FR-FR 4
in kR:

]FWEq“° FWE°= FWE® +FWE™® +FWE™

12? 123 123
~ —

The coproduct is even simpler: all relations that appear in the coproduct A(FR4) of a total
order <« € WOEP are automatically in WOEP by Remark 46:

A (FWqu ) — FWE™ @ FWEL® + FWE™ © ]FWEq“° + FWE™ @ FWE™ + FWES® @ FWE™_

123 1‘2’3 123

Proposition 48. The map F, — FWEZL defines a Hopf algebra isomorphism from the Malvenuto—
Reutenauer Hopf algebra on permutations [MR95] to the quotient Hopf algebra (KWOEP° -/ A).

Proof. We just need to show that for any two permutations ¢ € G,, and 7 € G,,, we have

(Qe <) NWOEP ={<q, |peoiit} and <ox<, ={<,|pE€o*T}.
For the shuffle product, consider first an element of (<, W <1,) NWOEP. By definition, it is of the
form <, for some p € &,,,1,,. Moreover, <, C <, so that the first m values of p are in the order
of o0 and <, C <, so that the last n values of p are in the order of 7. Thus p € oLI7. Conversely,
for p € oI T, we have
<p = UU{(i,) | i € [m],j € [n],p~" (@) }0{Gd) | i € lml.j € lnl,p™" (1) > p~ ()}
Therefore, <1, € <, I ;. The proof for the convolution is similar and left to the reader. O

Example 49. Compare Examples 36 and 47.
In particular, Proposition 37 can be restated on WOEP as follow.

Proposition 50. For any < € WOEP,,, and € € WOEP,,, the product FWEY® - FWEY® is the sum
of FWEX™, where 4 runs over the interval between <\« and <1/« in the weak order on WOEP,,,4,.

Proof. Tt is a direct consequence of Proposition 6 and the fact that for any two <1, 4 € WOEP,
the relations <\ € and </« are both total orders. Indeed, for any two permutations ¢ and 7, we
have <,\<; =<\, and <o /< =<5/7- O
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3.3.2. Intervals. We now present a Hopf algebra structure on intervals of the weak order. Before
we start, let us make some observations:

e By Remark 37, the product - of the Malvenuto-Reutenauer algebra provides a natural
algebra structure on weak order intervals. However, this does not define a Hopf algebra
on weak order intervals as intervals are not stable by the coproduct A on &. Indeed, note
that A(Fugg +F4123) contains F; ® F123 and F; ® F315 but not F; ® F135 while 132 belongs
to the weak order interval [123, 312].

e To the best of our knowledge, the Hopf algebra presented below did not appear earlier in
the literature. In fact, we are not aware of any Hopf algebra on weak order intervals.

e The construction below relies on the local conditions characterizing WOIP in Proposi-
tion 40. As shown in Proposition 41, these conditions can be split to characterize sepa-
rately IWOIP and DWOIP. Therefore, we obtain similar Hopf algebra structures on IWOIP
and DWOIP, although we do not explicitly state all results for IWOIP and DWOIP.

Proposition 51. For any <, 4 € P,

(i) if (<L €4) NWOIP # &, then < € WOIP and € € WOIP,
(i1) if < € WOIP and 4 € WOIP, then (<1+ €) C WOIP.

Therefore, the vector subspace of kP generated by P ~ WOIP is a Hopf ideal of (kP,-,A). The
quotient of the integer poset algebra (kP, -, ) by this ideal is thus a Hopf algebra (KWOIPI° -/ A)
on weak order intervals. A similar statement holds for IWOIP and DWOIP.

Proof. We make the proof for IWOIP, the proof for DWOIP is symmetric, and the result follows
for WOIP = IWOIPNDWOIP. For (i), let <t € P, and « € P,, be such that the shifted shuffle < 11 «
contains a poset 1 € IWOIP,,,;,,. Let 1 < a < b < ¢ < m be such that a << ¢. Then a H ¢
(since ;) = <), which ensures that a 4 b or b 4 ¢ (since 4 € IWOIP,,,), and we obtain
that a < bor b < ¢ (again since ,,,) = <1). We conclude that <1 € IWOIP,,, by the characterization
of Proposition 41, and we prove similarly that <€ € IWOIP,,.

For (ii), consider two weak order interval posets <1, €4 € IWOIP and let 4 € <+ «. Let (X,Y)
be the total cut of - such that 4x = < and <y = «. Consider a < b < ¢ such that a 4 ¢c. We
distinguish three situations according to the repartition of {a,b,c} in the partition X UY:

e Assume first that {a,b,c} C X. Since Hx = < is in IWOIP, we obtain that a 4b or b - c.
The argument is identical if {a,b,c} C Y.

e Assume now that {a,c} C X and b € Y. Then a - b since X x Y C 4. The argument is
identical if {a,c} € Y and b € X.

e Finally, assume that {a,c} € X and {a,¢} € Y. Then we have ¢ € X and ¢ € YV
(since a 4 cand (Y x X) N = @). Since X x Y C -, we obtain that « 4 b if b € Y,
while b4 cif b e X.

We therefore obtain that a 4 ¢ = (¢ 4 borb - ¢) and we conclude that 4 € IWOIP by the
characterization of Proposition 41. O

Remark 52. Although not needed for the Hopf algebra quotient, observe that the convolution
satisfies a property similar to Proposition 51 (i): if <1, €4 € P are such that the convolution < * <
contains at least one element in WOIP, then < and <« are both in WOIP.

For any weak order interval poset <1, we denote by FWI%'® the image of FR o through the trivial
projection kR — kP.

Example 53. In practice, for any two weak order interval posets <, 4 € WOIP, we compute
the product FWIE® - FWIY® in kWOIP® by deleting all summands not in WOIP in the prod-
uct FR4 - FR ¢ in kR:

FWI™ . FWIT°= FWI™ £ FWI™ 4 FWIT® 4 FWI™® 4 FWI™

123 123 123 123 123
~ —
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The coproduct is even simpler: all relations that appear in the coproduct A(FR4) of an element
in WOIP are automatically in WOIP by Remark 52:
A(]er‘ff’ ) = FWI™ @ FWIS® + FWI™ @ FWI™* FWIS® @ FWI™
123 12 3 12 3
Proposition 54. For any < € WOIP,, and € € WOIP,,, the product FWIY® - FWIY® is the sum
of FWIE™, where - runs over the interval between <\« and </« in the weak order on WOIP,, 4.

Proof. Tt is a direct consequence of Proposition 6 and the fact that for any two weak order interval
posets <1, 4 € WOIP, the relations <1\« and </« are both weak order interval posets. Indeed, for
any o < o’ and T < 7'/7 we have <][(.,70/]\<][T,7-/] =<[o\r,0/\7] and <1[gyg/]/<[.,.’,,./] =[o/7,0"/7']" O

3.3.3. Faces. We now construct a Hopf algebra on faces of the permutahedra as a Hopf subalgebra
of the poset Hopf algebra. We will see in Proposition 59 that the resulting Hopf algebra was already
considered by F. Chapoton in [Cha00].

Proposition 55. For any <, 4 € P,

(i) if (<L €) "WOFP # &, then < € WOFP and € € WOFP,

(ii) if < € WOFP and 4 € WOFP, then (<« 4) C WOFP.
Therefore, the vector subspace of kP generated by P ~ WOFP is a Hopf ideal of (KP,-, ). The
quotient of the poset Hopf algebra (KP,-, ) by this ideal is thus a Hopf algebra (KWOFPI° ./ A)
on faces of the permutahedron.

Proof. For (i), let < € P, and « € P,, be such that the shifted shuffle <1 L1 « contains a weak order
face poset 4 € WOFP,,,,. Since WOFP C WOIP, Proposition 51 (i) ensures that < € WOIP,,
and € € WOIP,,. Consider now 1 < a < b < ¢ < m such that a 4 ¢ and a ¥ ¢. Then a A ¢
and a I/ ¢ (since ) = <), which ensures that a 40 <= bk canda b <= b-c
(since 4 € WOFP,,,1,,), and we obtain that a 9 b <= b cand a > b <= b < ¢ (again
since i, = <1). We conclude that <« € WOFP,,, by the characterization of Proposition 43, and
we prove similarly that €4 € WOFP,,.

For (ii), consider two weak order face posets <1, 4« € WOFP and let 4 € <1 x «. Since we
have WOFP C WOIP, Proposiiton 51 (ii) ensures that 4 € WOIP. Let (X,Y") be the total cut of 4
such that 4y = < and 4y = «. Consider a < b < ¢ such that ¢ A/ c and a t/c. Since X xY C -,
we obtain that {a,c} C X or {a,c} C Y. Since 1x = < and 1y = <« are in WOFP, we obtain
that a 4b <= btk cand akF b < b - c. We conclude that + € WOFP by the characterization
of Proposition 43. O

Remark 56. Although not needed for the Hopf algebra quotient, observe that the convolution
satisfies a property similar to Proposition 55 (i): if <1, 4 € P are such that the convolution <1 * <«
contains at least one element in WOFP, then <1 and <« are both in WOFP.

For any weak order face poset <, we denote by FWF¥° the image of FR through the trivial
projection kR — kP.

Example 57. In practice, for two weak order face posets <, 4 € WOFP, we compute the prod-
uct FWF%°-FWF%® in kWOFP by deleting all summands not in WOFP in the product FR 4-FR 4
in kR:
FWF® - FWFI“°= FWI? + FWFY°® + FWF°
12 ! 123 123 1238
The coproduct is even simpler: all relations that appear in the coproduct A(FR ) of an element
in WOFP are automatically in WOFP by Remark 56:
A (IE‘WF“E? ) = FWF™® @ FWFL® + FWF™ @ FWFU4 FWFS® @ FWF
123 1723 L2 123

It turns out that the resulting algebra was studied in [Cha00]. Consider an ordered partition 7
of [m] into k parts, and an ordered partition p of [n] into ¢ parts. As for permutations (see
Section 3.1), the shifted shuffle w11 p (resp. the convolution 7 x p) is the set of ordered partitions
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whose first k& values (resp. first m positions) are in the same relative order as m and whose last ¢
values (resp. last n positions) are in the same relative order as p. Here, relative order means in
an earlier block, in the same block, or in a later block. Note that the shifted shuffle may merge
blocks of 7 with blocks of p: all ordered partitions in 7 LU p have at least min(k, ¢) blocks and at
most k 4 ¢ blocks. In contrast, the convolution just adds up the numbers of blocks. For example,

12102131 = {1|2]4/53, 1]24|53, 1|4]2|53, 1]4|253, 1|4]53|2, 14]2|53, 14|253,
14]532, 4]1|2|53, 4|1]253, 4]1|53|2, 4|153|2, 4]53|1]2},

1)2 % 2|31 = {1]2/4/53, 1|3]4]52, 1|4]3|52, 1|5/3]42, 2
204]3|51, 2|5|3]41, 3]4|2|51, 3|5[2|41, 4

3

5

4)51,
2[31}.

5

The Chapoton Hopf algebra [Cha00] is the Hopf algebra on ordered partitions with product - and
coproduct A defined by

F, -F.i= Y F, and A(F,)= > F,oF,.

pEo T pECKT

We refer to [Cha00, CP17] for more details and just provide an example of product and coproduct
in this Hopf algebra.

Example 58. For example, we have
Fia-F1 =Fi93 + Fi23 + F3)12 and  A(F32) = Fi32 @ Fg +F12 @ F1 + Fg @ Fyg)2.

Proposition 59. The map Fr — FWF® defines a Hopf algebra isomorphism from the Chapoton
Hopf algebra on ordered partitions [Cha00] to (kWOFPI® . A).

Proof. The proof is similar to that of Proposition 48 and left to the reader. O

Example 60. Compare Examples 58 and 57.

Proposition 61. For any < € WOFP,,, and €4 € WOFP,,, the product FWFX°-FWF° is the sum
of FWFY' | where - runs over the interval between <1\« and <1/« in the weak order on WOFP,,,,,.

Proof. 1t is a direct consequence of Proposition 6 and the fact that for any two weak order face
posets <1, 4 € WOFP, the relations <1\« and <1/« are both weak order face posets. ]

3.4. Subalgebras. We now construct Hopf algebras on WOEP and WOIP as subalgebras of the
integer poset algebra. For this, we use surjections from all posets to WOEP or WOIP whose fibers
are stable by product and coproduct. We consider the IWOIP increasing deletion, the DWOIP
decreasing deletion, and the WOIP deletion defined in [CPP17, Sect. 2.1.4] by

<I|WO|Pid=<\{(a,c)|E|a<b1<---<bk<c,a;éb1§él-~-5dbk¢lc},

<PWOIPdd — g\ {(c,a) | Fa<by < <by<c, alfbi b by},

WOIPd _ ( DWOIPdd )'WOIPid = ( 4WOIPid )DWOIPdd.

< <

These operations are illustrated on Figure 8.

It is proved in [CPP17, Sect. 2.1.4] that <"OPid ¢ |WOIP and <PWOPdd ¢ DWOIP for
any < € P. In fact, < — <WOPd (resp. g = <PWOIPAd) g a4 projection from P to IWOIP
(resp. DWOIP). Therefore, <"VO'Pd ¢ WOIP for any <€ P and < +— <WO'd is a projection
from P to WOIP.

3.4.1. Intervals. Here, we use the fibers of the projections < — <WOIPid "y 4DWOIPdd 514
< — <WOPd t6 construct Hopf subalgebras of the poset Hopf algebra. For this, we need the
compatibility of these projections with the shuffle and the convolution on posets.

Lemma 62. For any < € Py and any 1 < g <r < p, we have

WOIPd
) = (<WOIPd)

(<1[qm] [q,r]"
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<]|WO|PIC|

e W .
A

F1cUrEe 8. The IWOIP increasing deletion and the DWOIP decreasing deletion.

Therefore, for any 4 € WOIP,,, and <€’ € WOIP,,,

{<€ P [ ()0 = wand (<O =<} = || {<€Pppn | V=<

<c«qud’
NWOIP

A similar statement holds for <+ <'WOP and for < s PWOIPdd,

Proof. We make the proof for IWOIP, the proof for DWOIP is symmetric, and the result follows
for WOIP = IWOIP N DWOIP. The first statement immediately follows from the fact that the
condition to delete (a,c) in <™O'Pid only involves relations of <i in the interval [a, c]. By Proposi-
tion 6, («( «') NIWOIP is the set of < € IWOIP,,,, such that <) = € and <@ = <«', which
shows the second statement. O

WOIPd Moreover,

Lemma 63. For any < € Pp, the total cuts of < are precisely the total cuts of <
if (X,Y) is a total cut of <, then

(<]WOIPd)X — (<]X)WOIPd and (<]WOIPd)Y _ (qy)WOIPd.
Therefore, for any € € WOIP, with a total cut (X,Y),

4WOIPd Ax)VOPd — qx aNY xX)=0
{ceP|< ‘}{QEP (<y )WOPd — @ and (X xY)C < [

IWOIPid DWOIPdd

A similar statement holds for <1 +— < and for <— <

Proof. We make the proof for IWOIP, the proof for DWOIP is symmetric, and the result follows
for WOIP = IWOIPNDWOIP. Consider a partition [p] = X UY. Assume that (X,Y) is a total cut
of <1 and consider z € X and y € Y. If y < x, then z <"OPid 4 since (x,y) e<Pec= (¢'WOIPid)Dec,
If z < y, then  <™OPid 4 gince 2 < y and for any 2 = by < by < --- < by < bpyp1 = ¥,
we have by < g1, where ¢ is maximal such that b, € X. Finally, y 4"OPd 2 since y 4 z
and <™"OPid C 4 We conclude that (X,Y) is a total cut of <"OPid The reverse inclusion is
similar.

We now consider a total cut (X,Y) of < and prove that (<"OPid) v — (<x)WOIPid (the other
equality is similar). Observe first that ((<'WOIPid)y)Pec — (()WOIPId)Dec — 4Dec 55 we focus
on increasing relations. Let z1 < --- < x,,, be the elements of X, and consider 1 < i < j < m.
If (i,) € (<«™OPid) v then z; < x; and there is no x; < by < --- < by < x; such that z; 4 b; #

- 4 b, 4 z;. In particular, there is no such by, . .., by, in X and we obtain that (i, j) € (<1x)"WO'Pid,
Conversely, assume that (i,5) € (<1x)WO'Pid and consider x; = by < by < -+ < by < bpy1 = xj.
We distinguish two cases:

o If by = x;,,...,bp = x;, all belong to X. Since (i,7) € (<1x)WOPd there is ¢ such
that iy <x t¢+1. This implies that by <1 by41.
e Otherwise, consider the last ¢ such that by € X. Then b, € Y and we have by < byy.
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In both cases, we have obtained that there is ¢ such that by, < byy1. We therefore obtain
that (z;,2;) €<™OPd 5o that (i,7) € (<x)WOIPHd,
Finally, the last statement is just a reformulation of the former. O

For 4 € WOIP, consider the element
FWIS® = Y FP..

where the sum runs over all < € P such that <"VO'Pd= 4. We denote by KWOIP*® the linear
subspace of kP spanned by the elements IFWIS:b for 4 € WOIP. We define similarly subspaces
spanned by the fibers of the IWOIP and the DWOIP deletions.

Proposition 64. The subspace KWOIP*® is stable by the product - and the coproduct /\ and thus
defines a Hopf subalgebra of (kP,-,A\). A similar statement holds for IWOIP and DWOIP.

Proof. The proof is a computation relying on Lemmas 62 and 63. We therefore make the proof
here for WOIP, the same proof works verbatim for IWOIP or DWOIP. We first show the stability
by product. For € € WOIP,,, and 4’ € WOIP,,, we have by Lemma 62

IFW|:ub.1FW|S:P:< 3 1@794)( 3 IFm): S FP FP.

—WOIPd — —/WOIPd — LWOIPd _
{/WOIPd _ o/
= > 2 FPa= ), FPa= ), D FP
WOIPd_ g <A1€Pm+n LEPm4n <c«4 4/ QWOIPd=<
—/WOIPd _ 4/ <1[m]24 (<][m])W0|Pc|:4 NWOIP
M1
Q=" (qm)WO'P“:q’
_ sub
= > FwILP.
<«
NnWolp

We now show the stability by coproduct. For €4 € WOIP,,, we have by Lemma 63

A(]FWP:b):A( > 11«*7%) > AFPL) = D > FPay @FPg,

WOIPd — ¢ QWOIPd — o WOIPd—q  (X,Y) total
cut of
- ¥ SEerrn = 5 (5 m)e( 3w

(X,Y) total <WOIPd— g (X,Y) total ~—WOIPd— —/WOIPd — -

cut of « cut of «

= E: FWI%® @ FWIS®. O

(X,Y) total

cut of «

Proposition 65. The map FWIE® — ]FWIS:b defines a Hopf algebra isomorphism from the
quotient Hopf algebra KWOIPI° to the Hopf subalgebra KWOIP™®. A similar statement holds
for IWOIP and DWOIP.

Proof. This is immediate since the formulas for the product and coproduct on the bases (FWI%®)
and (FWIS®) coincide:

FWiq-FWig = > FWIl,  and  AFWI)= Y  FWi @FWlg,. O
<cqL <« (X,Y) total
NWOIP cut of «
3.4.2. Elements. We now construct a Hopf algebra on WOEP as a subalgebra of the integer poset
algebra. To this end, consider the two maps from P to WOEP defined by

WOEPId IWOIPid)maxIe WOEPdd DWOIPdd)minIe

< = (< and < = (<

We need to describe the fibers of these maps.
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Lemma 66. For < € P, and €4 € WOEP,,, we have

o <WOEPHd — @ <= for all (a,c) € (<~ €)' there exists a < b < c such that a » b » c,
o WOEPdd — @ «—= for all (c,a) € (<1 \ 4)P there exists a < b < ¢ such that a €4 b < c.

Proof. We only prove the first statement, the second is symmetric. Assume <WOEPid — 4

and (a,c) € (<1~ €4)'™. Since (a,c) is deleted in <WOEPId — (4WOIPidymaxle it ig already deleted
in <'WOIPid " Therefore, there exists a < by < --- < by < ¢ such that a £ b; 4 --- 4 by 4 c. By
definition of <4 = (<'WOIPidymaxle "this implies that a » by » ... » by B c.

Conversely, assume that for all (a,c) € (<1~ €)' there exists a < b < ¢ such that a » b » c.
Assume by contradiction that <WOEPd -£ 4. By definition of <WOEPid — (4WOIPidymaxle = t},iq
implies that there exists (a,c) € (<™OPid )", Choose such an (a,c) with ¢ — a minimal.
Since (a,c) € (<WOPid ( Q)" C (< €)', there exists a < b < c¢ such that a » b » c.
Since a <™OPid ¢ we have a <WOPid p or b <WOIPd ¢ thus either (a,b) or (b,c) belongs

to (<'WOIPid  q)'" contradicting the minimality of ¢ — a. O

We now study the compatibility of the projections <1 — <"WOEPid and < — <WOEPAd with poset
restrictions and cuts.
Lemma 67. For any < € Pp and any 1 < g <r < p, we have

WOEPid WOEPid WOEPdd WOEPdd
(<g.m) = (< I )[q,r] and (<fg.m) = (< )[q,r]'

Proof. Same as Lemma 62 since the presence of (a,c) in both < +— <'WOPid and < s <™l only
depends on the relations of < in the interval [a, ¢]. O

In contrast, Lemma 63 does not apply verbatim here since <1 has in general less total cuts
than <WOEPid and <WOEPdd  \We adapt this lemma as follows.

WOEPid WOEPdd

Lemma 68. For any < € Py, all total cuts of < are total cuts of both < and <
Moreover, for any < € P, and €4 € WOEP,,, and for any total cut (X,Y) of both < and <,

o <WOEP — @ if and only if (<ix)"VOEPY = @y and (<1y)WOEPH = 4y,
o <WOEPdd — @ if and only if (<x)WOEPH — @y and (<ly )WOEPH = 4y,

Proof. We only prove the statement for <"WOEP the proof for <"WOEP4 is symmetric. Consider a
total cut (X,Y) of <andlet 2 € X and y € Y. If 2 > g, then (x,y) € <P C <WOEPd Tf 1 <y,
then for any z < b < y, we have either b € X and thus b <y, or b € Y and thus = < b. Therefore,
(z,y) € <WOIPid C qWOEPId e conclude that (X,Y) is also a total cut of <WOEPid,

Consider now < € P, and € € WOEP,,, and a total cut (X,Y’) of both < and «. Assume first
that <WOEPd — 4. Consider (a,c) € (<ix \ «x)"". Since <WOEPd = q and (a,c) € (< \ <),
Lemma 66 ensures that there is ¢ < b < ¢ such that a » b » ¢. Since (X,Y) is a cut of «, we
obtain that b € X. Therefore, a »x b »x c. We conclude by Lemma 66 that (<1X)WOEPid = dx.
The proof is identical for (<1y )WOEPd — 4y .

Conversely, assume that (<x )WOEPd = 4 and (<y = «y. Consider (a,c) € (<1~ €)',
Since (X,Y) is a total cut of both < and <, we know that a and ¢ either both belong to X or
both belong to Y, say for instance X. Since (<1x)"WOEP'd = qx we now that there exists a < b < ¢
such that a »x b »x ¢. We conclude by Lemma 66 that WOEPid _ 4. O

)WOEPid

For € € WOEP, consider the elements

FWEL™ = Y FPy and FWEY™:= > FP..
<eP

qeP

WOEPid _ WOEPdd __

<

We denote by kWOEP*"?" and kWOEP**™ the linear subspaces of kP spanned by the elements IE‘WEi”bi
and FWES®? respectively for € € WOEP.

< < <

Proposition 69. The subspaces KWOEP™® and kWOEP*™ are stable by the product - and the
coproduct A\ and thus defines Hopf subalgebras of (kKP,-, ).
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Proof. We only make the proof for KWOEP**®' the statement for KWOEP*"®? is symmetric. We
first show the stability by product. Using Lemma 67, and the exact same computation as in the
first part of the proof of Proposition 64, replacing WOIP by WOEP, we obtain that
ubi ubi ubi
FWEL™ -FWESY = > FWELY.

<cqL <
NWOEP

We now show the stability by coproduct. For 4 € WOEP,,, we have by Lemma 68

A(]FWE:““)ZA( > IFPQ): Y OAFP)= Y > FPa, @FP,

WOEPid — JWOEPid — WOEPid— ¢ (X,Y) total
cut of <
= > > FPay @FPqy = > ( > IFP4>®< > 1F7a,>
(X,Y) total WOEPid_ 4 (X,Y) total “ -WOEPid— ¢ —/WOEPid — 4
cut of « with total cut of «
cut (X,Y)
_ subi subi
= Y FWELY @ FWEL
(X,Y) total
cut of «

Proposition 70. The map FWE%L® — FWESL® (resp. FWEL® s FWEL™) defines a Hopf al-
gebra isomorphism from the quotient Hopf algebra KWOEPY to the Hopf subalgebra KWOEPP
(resp. KWOEP™ ). Therefore, KWOEP™® and kWOEP™® are isomorphic to the Malvenuto-
Reutenauer Hopf algebra on permutations [MR95].

Proof. This is immediate since the formulas for the product and coproduct on the bases (FWE¥"®),

(FWES ) and (FWES™) coincide:

FWEq FWEe¢ = > FWE, and AFWE) = Y  FWEe @FWE,. O
<cqL <« (X,Y) total
NWOEP cut of «

4. BINARY TREES, TAMARI INTERVALS, AND SCHRODER TREES

We now consider three families of specific integer posets corresponding to the elements (TOEP),
the intervals (TOIP) and the faces (TOFP) in the Tamari order on binary trees. We construct
Hopf algebras on TOEP, TOIP and TOFP as subalgebras (Section 3.4) of the integer poset Hopf
algebra (P, -, A\), using surjections from posets to TOEP, TOIP of TOFP whose fibers are stable
by product and coproduct. We obtain Hopf algebras on TOEP (resp. TOFP) isomorphic to the
Loday—Ronco Hopf algebra on binary trees [LRI8] (resp. to the Chapoton Hopf algebra on Schroder
trees [Cha00]), and we obtain a Hopf algebra on Tamari intervals that was not constructed earlier
to the best of our knowledge.

4.1. Binary trees and the Loday—Ronco algebra. We always label the vertices of a binary
tree T in inorder, meaning that each vertex is labeled after all vertices of its left child and before
all vertices of its right child. This labeling makes T a binary search tree, meaning that the label of
each vertex is larger than all labels in its left child and smaller than all labels in its right child. For
a permutation o, we denote by bt(o) the tree obtained by binary search tree insertion of o: it is
obtained by inserting the entries of o from right to left such that each intermediate step remains a
binary search tree. Said differently, bt(o) is the unique binary search tree T such that if vertex i is
a descendant of vertex j in T, then i appears before j in o. An example is illustrated in Figure 9.

Recall that the classical Tamari lattice is the lattice on binary trees whose cover relations are
the right rotations. It is also the lattice quotient of the weak order under the congruence relation
given by the fibers of the binary search tree insertion.
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o -

/6\ /6\ /6\ / N /6\ /6 /6
/4\ /4\ 0N e e e
/0N — N\ /3\ \ /3\ \ /3\ \
70N 70N /1\ /1
5 \ 5
7 N\ 7 N 7\
7 N\ 7 N\
2

FIGURE 9. Binary search tree insertion of the permutation o = 2751346.

Finally, recall that the Loday—Ronco algebra [LR98] is the Hopf subalgebra of the Malvenuto—
Reutenauer algebra generated by the elements

Fr = Z F,

ceS
bt(o)=T
for all binary trees T.
Example 71. For instance
F ) -F y = Fiz - (Fis2 4 Fa12)
/\ 7/ \
AN A F13254 + F31254 Fi3542 + F31542
_ Fi2354 + Fi2534 + Fi3524 + F31524 + F35142 + Fs3142
+ Fis234 + Fs1234 + Fis324 + F51324 + Fis342 + Fs1342
+ Fas124 + 53104 + Fas412 + Fs3412
- IF 1 -|— F 1 -|— ]F |
4 4 2
/N N VN
/A A AN P N /4\r
/A MR A A
M
and
A(F 3 ) = A(Fiso + Fai2)
7/ \

VIV = (Fi3e + F312) @ Fg + (Fio +Fop) @F; + Fy @ (Fi2 +Fap) + Fg @ (Fi3z + F312)

- IFI ®Fg +(FI+FI)®FI+F|®(F|+F|)+ FQ@FI.
/2\ /2\ Il\ Il\ Il\ /2\ Il\ /2\

Il\ 13\ Il\ 12\ Il\ 12\ Il\ I3\

4.2. Tamari order element, interval and face posets. We now briefly recall how the elements,
the intervals and the faces of the Tamari lattice can be interpreted as specific interval posets as
developed in [CPP17].

4.2.1. Elements. We consider the tree T as the Tamari order element poset <7 defined by i < j
when ¢ is a descendant of j in T. In other words, the Hasse diagram of <t is the tree T oriented
towards its root. An illustration is provided in Figure 10. Note that the increasing (resp. de-
creasing) subposet of <I is given by i <! j (resp. i <2¢ j) if and only if i belongs to the left
(resp. right) subtree of j in T.

We define

TOEP,:={<r|T€B,} and TOEP:= |_| TOEP,,.
neN

The following statements provide a local characterization of the posets of TOEP,, and describe

the weak order induced by TOEP,,.

Proposition 72 ([CPP17, Prop. 39]). A poset < € P, is in TOEP,, if and only if

eVa<b<c,a<dc=bdcandar>c=alb,
e for all a < ¢ incomparable in <, there exists a < b < ¢ such that a <1 b > c.
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/7 N\
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FIGURE 10. A Tamari Order Element Poset (TOEP).

Proposition 73 ([CPP17, Prop. 40 & 41]). The map T — < is a lattice isomorphism from the
Tamari lattice on binary trees of B, to the sublattice of the weak order on P, induced by TOEP,,.

4.2.2. Intervals. We now present a similar interpretation of the intervals of the Tamari lattice.
For T x T/ € B,,, we consider the Tamari order interval [T,T']:={S€ B, | T xS < T'}, and
interpret it as the Tamari order interval posel <p 1/ := ﬂT<S<T’ <Qr =<t N<dpr = <1'T“/c N <1%e°.
This poset <t was introduced in [CP15] with the motivation that its linear extensions are
precisely the linear extensions of all binary trees in the interval [T, T']. See Figure 11.

3
/ _ _lnc Dec __
‘ /l\ /314\ <][T)T’]— QT/ U <]T =1 QK/S
4
ll\
2.
/ /3\ /
\ T N 7= 1 2 3 4
T= /1/\ >’\ —
FIGURE 11. A Tamari Order Interval Poset (TOIP).
We define
TOIP,, := {<1[T7T/] | T, T € B, T < T'} and TOIP := |_| TOIP,,.

neN

The following statements provide a local characterization of the posets of TOIP,, and describe
the weak order induced by TOIP,,.

Proposition 74 ([CP15, Thm. 2.8]). A poset < € P(n) is in TOIP(n) if and only ifa <c=b < ¢
anda>c=ab>bforalll <a<b<c<n.

As in Section 3.2.2, note that this characterization clearly splits into a condition on the in-
creasing relations and a condition on the decreasing relations of <. This defines two super-
families ITOIP,, and DTOIP,, of TOIP,, with TOIP,, = ITOIP,, " DTOIP,,.
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Proposition 75 ([CPP17, Prop. 40 & 41)).

(i) If S 8" and T x T" in B, then Qg57 < <] <= ST and 8" T'.

(ii) The weak order on TOIP, is a lattice whose meet < g1 Ator <r,1] = <SAmT,S'AwT’]
and join g5 Vtoip <1,17] = SvaT,s'veT]- Moreover, the weak order on TOIP, is a
sublattice of the weak order on Py,.

4.2.3. Faces. Consider now a face of the associahedron, that is, a Schroder tree S (a rooted tree
where each internal node has at least two children). We label the angles between two consecutive
children in inorder, meaning that each angle is labeled after the angles in its left child and before
the angles in its right child. We associate to S the poset <ig where i g j if and only if the angle
labeled i belongs to the left or to the right child of the angle labeled j. See Figure 12.

FIGURE 12. A Tamari Order Face Poset (TOFP).

We define

TOFP,,:= {<g | S Schréder tree on [n]} and TOFP := |_| TOFP,,.
neN

The following statements provide a local characterization of the posets of TOFP,, and describe
the weak order induced by TOFP,,.

Proposition 76 ([CPP17, Prop. 65]). A poset <1 is in TOFP,, if and only if < € TOIP,, and for
all a < ¢ incomparable in <, either there exists a < b < ¢ such that a ¥ b L ¢, or for alla < b < c
we have a > b < c.

Proposition 77 ([CPP17, Sect. 2.2.3]).

(1) For any Schroder trees S,S', we have <s < <gr <= S x S’ in the facial weak order
on the associahedron Asso(n) studied in [PR06, DHP18]. This order is a quotient of the
facial weak order on the permutahedron by the fibers of the Schrdader tree insertion st.

(2) The weak order on TOFP,, is a lattice but not a sublatice of the weak order on Py, nor
on WOIP,,, nor on TOIP,,.

To conclude, let us recall that there is a natural Schrioder tree insertion map from ordered
partitions to Schroder trees, similar to the binary search tree insertion from permutations to
binary trees. The Schroder tree st(7) obtained from an ordered partition 7 is the unique Schréder
tree such that if ¢ is a descendant of j (meaning that i appears in a vertex that is a descendant of
the vertex containing j), then i appears before j in w. See [Cha00, CP17, PP18] for details and
Figure 13 for an illustration.

112 )
FIGURE 13. Schroder tree insertion of the ordered partition m = 125|37]46.
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4.3. Quotient algebras. Contrarily to Section 3.3, a naive construction of quotient Hopf algebras
cannot directly work for TOEP, TOIP and TOFP. Although they clearly define quotient algebras,
they do not define quotient cogebras since the convolution does nos satisfy a property similar to (ii)
of Proposition 45: an element not in TOEP (resp. TOIP and TOFP) can appear in the convolution
product of two elements of TOEP (resp. TOIP and TOFP) as in the following example:

AN
123 €1 1 2

Indeed, see that the element on the left is neither a TOEP, TOIP nor a TOFP but it belongs to
the convolution of the two integer posets on the right, which are both TOEP, TOIP and TOFP.

4.4. Subalgebras. We now construct Hopf algebras on TOEP, TOIP and TOFP as subalgebras of
the Hopf algebras kWOEP, kWOIP and kWOFP respectively. For this, we need the TOIP deletion
defined in [CPP17, Sect. 2.2.4] by

QTP — g ({(a,¢) |Fa<b<e, bactU{(c,a) | Fa<b<e alb)).

1 2 3 4 5 6 7
— g g

This operation is illustrated on Figure 14.

=1 2 3 4 5 6 7 <

TOIPd __

/iii\ Y
T 2 3 4

TOIPd _ 5 6 7
W N/ N

FIGURE 14. The TOIP deletion.

This map projects WOEP,,, WOIP,, and WOFP,, to TOEP,,, TOIP,, and TOFP,, respectively. In
fact, it is a simple generalization of both the binary tree insertion and the Schroder tree insertion.

Proposition 78 ([CPP17, Prop. 48]). For any permutation o, any weak order interval o < o,
and any ordered partition m, we have

TOIPd _ TOIPd TOIPd

(<s) bt(o) (o,01) = <[bt(c), bt(c")] and  (<r) = <st(m)>

where bt(o) is the binary tree insertion of the permutation o and st(m) is the Schrioder tree insertion
of the ordered partition .

Example 79. Compare Figures 4 and 10, Figures 5 and 11, and Figures 7 and 12.

We now use this map < + <" mimicking the construction of the Loday-Ronco algebra

on binary trees [LR98, HNTO05] as a Hopf subalgebra of the Malvenuto—Reutenauer algebra on
permutations [MR95]. For « € TOIP, consider the element

FTlq:=Y FWIig
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where the sum runs over all < € WOIP such that <7°'"P4= 4. We denote by kTOIP the linear
subspace of kP spanned by the elements FTlq for €« € TOIP. Similarly, we define the linear
subspace KTOEP (resp. kTOFP) spanned by the elements

FTEq:= Y FWEg  (resp. FTEq:= » FWE,)

for all 4 € TOEP (resp. TOFP) where the sum runs over all < € WOEP (resp. WOFP) such
that <TOIPd = 4.

Remark 80. Note that the fiber of a TOEP (resp. TOFP) under the map < ~ <1T°"P4 is not
in WOEP (resp. WOFP) in general. For example, <I[132312)= 12 3 isnotin WOEP, but

TOIPd  _ [, TOIPd _ 7 _
nzz,z12 = (12 3) =123 =4,
7/ \

Il\ I3\

is in TOEP. The element FTE ¢ (resp. FTF ) is defined as the sum over the fiber of <4 in WOEP
(resp. in WOFP).

Example 81. Here is an example of computation of a product and a coproduct of elements FTE

computed in the algebra KWOEP. In the second line, for each element FWE . of the sum in kWOEP,

we have bolded the subrelation <1T0'Pd. Observe that the result can again be expressed in the

basis FTE ¢ as will be proven in Proposition 84.

FTE ~ FTE . =TFWE ~, (IFWE ~— +FWE . )
1 2 3 1 2&/3 12

3 3

FWE __ +FWE FWE FWE
.t _ +
1 2,-'3 4,-:) 1&?{’3 4,_'5 123 45 1&[) 3 45
FWE FWE FWE FWE FWE FWE
e | e e T T
1 2 3 45 1 2 3 45 1 2 3 45 1 2 3 45 1 2 3 45 1 2 3 45
~ (g N~ 4 A AL
+ +
+FWE___ +FWE +FWE___ +FWE +FWE___ +FWE
1 2 3 45 1 2 3 45 1 2 3 45 1 2 3 45 1 2 3 45 1 2 3 45
N Ao N NI e 174
+FWE__ +FWE +FWE  +FWE
1 2 3 45 1 2 3 45 1 2 3 45 1 2 3 45
" N 24 =
— FTE + FTE + FTE
P

12345 123405 123405

A (]FTEFZMS) —A (]FWEI?S + IE‘WEQJ)

— (FWE - @ FWE, +FWE, © FWE, , + FWE,~, © FWE, + FWE; © FWE -, )

1 2 3 123

+ (FWE . ©FWE, + FWE, © FWE -, + FWE, ,® FWE, + FWEy & FWE . )

——g ——

—FTE_ ®FTE, +FTE @ (FTE, , + FTE )

123 ~ -

+ (FTE, +FTE, ,) ® FTE, + FTE; @ FTE _ .
~ 12

3

Example 82. Here is an example of computation of a product and a coproduct of elements FTl ¢
computed in the algebra kWOIP. In the second line, for each element FWI of the sum in kWOIP,
we have bolded the subrelation </"O'Pd. Observe that the result can again be expressed in the
basis FTlq as will be proven in Proposition 84.
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FTI~ FTI  =FWl (FWI  +FWI )
1 2’\/3 1 2/\/3 IKEVIS
= (FEWL___ +--+FWI_ -+ +FWI ) (FWL_ + -+ FWI -+ + FWIE
123 45 123 45 12 3 45 123 45 12 3 45 1 2 3 45
~ ~ o ~ ~ -
FWI o FWI o FWI FWI o FWI o FWI
FEWL o FWL ek FWL ) (FWL e+ WL e FWE )
12345 12 3 45 12345 12345 12345 12345
~ - ~ - X ~> ~> 24
—FTI  +FTl  +FTl  +FTI
A —~ —~ —~
12345 12345 12345 12345
5 oo s Ty
A(FT ) =n(Fwi sFw )
1 2L13 1 2&/3 1\72}/3
— (FWI  +FWI ) @FWis +FWI, , @ FWI, + FTlp @ (FWI, , .+ FWI )
123 123 ~ 123

=TFTI QFTlyg +FTl, ,Q@FTIl, +FTlg @ FTI
1 3 1

2 3

2

Example 83. Here is an example of computation of a product and a coproduct of elements FTF
computed in the algebra kWOFP. In the second line, for each element FWF . of the sum in kWOFP,
we have bolded the subrelation <1T®'Pd. Observe that the result can again be expressed in the
basis FTF ¢ as will be proven in Proposition 84.

FTF _-FTF, =FWF _-FWF
123 I,L:Z 3

—FWF ___ +FWF _ + (IFWF _ HFWF S FWF )

4 5

,_A
o
w
-

12345 12345 2 3 45 12345
~ _

~ K > % N s

=FTF __ +FTF +FTF

12345 12345 123405

A(IFTFW ) - A(]FWFm + FWF _
1 2&/3 1 2&13 1 2

+FWF )
13 1&,2,%’3
— (FWF . ® FWF5 + FWF, @ FWF, , + FWF ~, @ FWF, + FWF5 @ FWF )
123 P

123

+ (FWF . ©FWF, + FWF, , @ FWF, + FWF; @ FWF )
123 123

+ (IFWF . ®FWFg + FWF, @ FWF -, + FWF, | @ FWF, + FWF g © FWF _ )
123 ~ 123

— g

=FTF . @FTFy +FTF, @ FTF,  +FTF ~ @ FTF, + FTF, @ FTF,
123 ~

+ FTF, @ FTF ~, + FTF, ,@ FTF, + FTF; @ FTF _ .
] 123

Proposition 84. The subspace kTOIP is stable by the product - and the coproduct N and thus
defines a Hopf subalgebra of (KWOIP, -, A). A similar statement holds for TOEP and TOFP.

Proof. We start with the product. Consider « € TOIP,,, and 4’ € TOIP,, and define

e U as the set of WOIP’s of the form <</ LUILD for any < € WOIP,,, with TOIPd — 4,
any <’ € WOIP,, with <'TOP¢ — «’, any I C [m] x [n] and any D C [n] x [m].

o V as the set of TOIP’s of the form « Ll «/UIUD for any I C [m] x [n] and D C [n] x [m].

Note that 4 € U if and only if 470" € V. Since the product FTlg - FTl¢ contains exactly all
the posets of U, we conclude that a poset appears in FTlq - FTlg if and only if all posets in its
TOIP deletion fiber do. Therefore, the product FTlg - FTlg belongs to the subspace kTOIP.
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We now deal with the coproduct. Consider € € TOIP, and a partition [p] = X UY. Consider
the set Uxy of WOIP’s of the form < U <t U (X x V) where <t C X? is such that (<dx)TOPd = <«
and <’ C Y2 is such that (<1}, )T%'"? = «4y. Note that either none or all 4 € Ux y satisfy 4T0'Pd = «.
Since the coproduct A(FTlg) contains exactly all tensors <x @<t} such that <U <’ U(X xY) € Ux y
for all partitions [p] = X UY", we conclude that a tensor <x ® <} appears in A(FTly) if and only
if all the tensors "4x ® 4, with HT0Pd = qTOIPd apq TOPd — TOPd 3phear in A(FTlg) as well.
Therefore, the coproduct A(FTlg) belongs to the subspace kTOIP. (]

Proposition 85. For < € TOIP,, and 4 € TOIP,,, the product FP, - FP ¢ is the sum of FP4,
where 4 runs over the interval between <\« and <1/« in the weak order on TOIP,, . A similar

statement holds for TOEP and TOFP.

Proof. Tt is a direct consequence of Proposition 6 and the fact that for any two Tamari order
element (resp. interval, resp. face) posets <1, 4 € WOIP, the relations <\« and <1/« are both
Tamari order element (resp. interval, resp. face) posets. O

To the best of our knowledge, Proposition 84 provides the first Hopf structure on intervals of
the Tamari lattice. Our next example illustrates the product and coproduct in this Hopf algebra
on Tamari intervals, recasting Example 82 in terms of Tamari intervals.

Example 86. For instance,

]:F é 1 F 1 *]:F 1 JFIF _Ii é
ava A 2N /NN
oo i 3 "\ AP 4 AP0 A
/A 3 2 /v N\ 2 ’
! a i 2 7 "
M M Il
+IF 1 +F 1
LA ) N
7~ \5 IEWEN { \4 RN
/7 \ I\ 4 ./ \ 4
MR "N PR g
I 2\
and
A(]F | ):IF | ®Fs+Fp 4 1®F[, 1 +F;QF |
3. I\ 3. I\ VATEY {/1\71\] 5 I\
2N 2N RAREE S LA
MR ) A ) MR 3

"\ "\ "\

In contrast, for elements and faces, the Hopf structures of Proposition 84 already appear in
the literature. We have seen already in Section 4.1 that the Loday—Ronco Hopf algebra on bi-
nary trees is the Hopf subalgebra of the Malvenuto—Reutenauer Hopf algebra on permutations
generated by the sums over the fibers of the binary search tree insertion o — bt(c). Similarly,
F. Chapoton defined in [Cha00] a Hopf algebra on Schréder trees obtained as a Hopf subalgebra of
his Hopf algebra on ordered partitions generated by the sums over the fibers of the Schroder tree
insertion 7 — st(m). We refer to [Cha00] for more details and just provide an example of product
and coproduct in this Hopf algebra.

Example 87. For instance,

IF F :F213'F12
f:ﬁ m
2!

= Fo13145 + Foj13a5 + (Fajas|is + Fausjis + Fasj2)13)

Z#R—HF +F
1 3 2
2
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and

A(]F ) = A(Fqj3p2 + Figj2 + Fsjrp2 + )
2

N B = (Fisie @ Fg +F1 @Fopy +Fyp @ F1 +Fo @ Fyj3)0)
+ (F13\2 QFy+Fa@F +Fg® ]F13|2)
+ (IF3|1|2 QFy +F1 @F 2 +Fy @F1 +Fo ® F3\1\2)

=F FTF F F F F F F
f{;?\@ o thg® WWW@%
2 1

1 3

+F, OF , +F, ®F, +FTF, @F , .
) f{% hﬁ?x A ;
1 2

1 3

Proposition 88. o The map T — <t is a Hopf algebra isomorphism from the Loday—Ronco
algebra on binary trees [LR9I8, HNTO05] to (kTOEP, -, A).
o The map S — g is a Hopf algebra isomorphism from the Chapoton algebra on Schréder
trees [Cha00] to (kKTOFP, -, A).

Proof. This immediately follow from Propositions 48, 59 and 78. O
Example 89. Compare Examples 71 and 81, and Examples 87 and 83.

Remark 90. To conclude, let us mention that similar ideas can be used to uniformly construct
Hopf algebra structures on permutrees, permutree intervals, and Schréder permutrees as defined
in [PP18]. Following [CP17, PP18], one first defines some decorated versions of the Hopf alge-
bras kWOEP, kWOIP and kWOFP, where each poset on [n] appears 4™ times with all possible
different orientations. One then constructs Hopf algebras on kPEP, kPIP and kPFP using the
fibers of the surjective map (<1, Q) + <P'Pe®d defined in [CPP17]. See [PP18] for details.
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