
THE HOPF ALGEBRA OF INTEGER BINARY RELATIONS
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Abstract. We construct a Hopf algebra on integer binary relations that contains under the
same roof several well-known Hopf algebras related to the permutahedra and the associahedra:

the Malvenuto–Reutenauer algebra on permutations, the Loday–Ronco algebra on planar binary

trees, and the Chapoton algebras on ordered partitions and on Schröder trees. We also derive
from our construction new Hopf structures on intervals of the weak order on permutations and

of the Tamari order on binary trees.
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An integer binary relation is a binary relation on [n] := {1, . . . , n} for some n ∈ N. Integer posets
are integer binary relations that are moreover posets (i.e. reflexive, antisymmetric and transitive).
Many fundamental combinatorial objects (see Table 1 left) can be thought of as specific integer
posets. This observation was used in [CPP17] to reinterpret classical lattice structures (see Table 1
middle) as specializations (subposets or sublattices) of a lattice structure called the weak order
on posets. This interpretation enables to consider simultaneously all these specific integer posets
and motivated the emergence of permutrees [PP18], which are combinatorial objects interpolating
between permutations, binary trees, and Cambrian trees [CP17].

In this paper, we continue the exploration of the algebraic combinatorics of integer binary
relations and integer posets, focussing on Hopf structures. We construct a Hopf algebra on integer
binary relations where

(i) the product R · S of two relations R,S is the sum of all relations that contain R at the
beginning and S at the end as induced subrelations,

(ii) the coproduct 4(R) of a relation R is the sum of the tensor products of the subrelations
induced by R over all possible partitions [n] = A tB that correspond to a total cut of R.

We then reinterpret classical Hopf algebras [MR95, LR98, Cha00] (see Table 1 right) as specializa-
tions (quotients or subalgebras) of the integer poset algebra. Moreover, we obtain Hopf structures
on the intervals of the weak order and on the intervals of the Tamari lattice, that remained
undiscovered to the best of our knowledge.

VPi was partially supported by the French ANR grants SC3A (15 CE40 0004 01) and CAPPS (17 CE40 0018).
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combinatorial object lattice structure Hopf algebra
permutations weak order Malvenuto–Reutenauer algebra [MR95]
binary trees Tamari lattice Loday–Ronco algebra [LR98]

ordered partitions facial weak order [KLN+01, PR06, DHP18] Chapoton algebra on ordered partitions [Cha00]
Schröder trees facial Tamari order [PR06, DHP18] Chapoton algebra on Schröder trees [Cha00]

weak order intervals interval lattice of the weak order new, see Sections 3.3.2 and 3.4.1
Tamari order intervals interval lattice of the Tamari lattice [CP15] new, see Section 4.4

Table 1. Algebraic structures on classical combinatorial objects that can be
reinterpreted as integer binary relations. See also Figure 3 for the connections
between the Hopf algebras.

1. Integer binary relations

Our main object of focus are binary relations on integers. An integer (binary) relation of
size n is a binary relation on [n] := {1, . . . , n}, that is, a subset R of [n]2. As usual, we write
equivalently (u, v) ∈ R or uRv, and similarly, we write equivalently (u, v) 6∈ R or u6Rv. Throughout
the paper, all relations are implicitly assumed to be reflexive (x R x for all x ∈ [n]), although we
often forget to include the diagonal {(u, u) | u ∈ [n]} in our descriptions. We denote by Rn the
set of all (reflexive) binary relations on [n] and let R :=

⊔
n≥0Rn.

1.1. Weak order. A lattice structure called the weak order on integer binary relations has been
defined in [CPP17]. We recall its definition here as we will latter use this order to give a combi-
natorial description of the product.

Let In :=
{

(a, b) ∈ [n]2
∣∣ a ≤ b} and Dn :=

{
(b, a) ∈ [n]2

∣∣ a ≤ b}. Observe that In ∪ Dn = [n]2

while In∩Dn = {(a, a) | a ∈ [n]}. We say that the relation R ∈ Rn is increasing (resp. decreasing)
when R ⊆ In (resp. R ⊆ Dn). The increasing and decreasing subrelations of an integer relation R ∈
Rn are the relations defined by:

RInc := R ∩ In = {(a, b) ∈ R | a ≤ b} and RDec := R ∩Dn = {(b, a) ∈ R | a ≤ b} .
In our pictures, we always represent an integer relation R ∈ Rn as follows: we write the numbers
1, . . . , n from left to right and we draw the increasing relations of R above in blue and the decreasing
relations of R below in red. Although we only consider reflexive relations, we always omit the
relations (i, i) in the pictures (as well as in our explicit examples). See e.g. Figure 1.

Definition 1. The weak order on Rn is given by R 4 S if RInc ⊇ SInc and RDec ⊆ SDec.

Note that the weak order is obtained by combining the refinement lattice on increasing subre-
lations with the coarsening lattice on decreasing subrelations. It explains the following statement.

Proposition 2. The weak order (Rn,4) is a graded lattice whose meet and join are given by

R ∧R S = (RInc ∪ SInc) ∪ (RDec ∩ SDec) and R ∨R S = (RInc ∩ SInc) ∪ (RDec ∪ SDec).

1.2. Hopf algebra. We consider the vector space kR :=
⊕

n≥0 kRn indexed by all integer binary

relations of arbitrary size. We denote by (FRR)R∈R the standard basis of kR. In this section, we
define a product and coproduct that endow kR with a Hopf algebra structure.

We denote by RX :=
{

(i, j) ∈ [k]2
∣∣ xi R xk

}
the restriction of an integer relation R ∈ Rn to

a subset X = {x1, . . . , xk} ⊆ [n]. Intuitively, it is just the restriction of the relation R to the
subset X which is then standardized to obtain a proper integer binary relation.

1.2.1. Product. The product that we define on binary integer relation generalizes the shifted shuffle
of permutations: for R ∈ Rm and S ∈ Rn, deleting the first m values (resp. last n values) in any
relation of the shifted shuffle R �̄S yields the relation S (resp. R).

For m,n ∈ N, we denote by [n]
m

:= {m+1, . . . ,m+n} the interval [n] shifted by m. For m ∈ N
and S ∈ Rn, we denote by S

m
:= {(m+ i,m+ j) | (i, j) ∈ S} the shifted relation. We also simply

use [n] and S when m is clear from the context.
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Figure 1. Interval corresponding to a product of relations.

For R ∈ Rm and S ∈ Rn, we define R\S := R ∪ S ∪ ([m]× [n]) and R/S := R ∪ S ∪ ([n]× [m]).

Definition 3. For two relations R ∈ Rm and S ∈ Rn, define the shifted shuffle R �̄S as the set
of relations R t S t I tD for all possible I ⊆ [m]× [n] and D ⊆ [n]× [m].

Remark 4. Note that the shifted shuffle of R ∈ Rm and S ∈ Rn has cardinality |R �̄S| = 22mn.

Example 5. For instance,

FR
1 2
· FR

1
= FR

1 2 3
+ FR

1 2 3
+ FR

1 2 3
+ · · ·+ FR

1 2 3
.

where the sum ranges over all relations in the interval of Figure 1.

Proposition 6. For R ∈ Rm, S ∈ Rn and T ∈ Rm+n, we have

T ∈ R �̄S ⇐⇒ T[m] = R and T
[n]

= S ⇐⇒ R\S 4 T 4 R/S.

Proof. The first equivalence is immediate. Assume now that T = RtStItD for some I ⊆ [m]×[n]

and D ⊆ [n] × [m]. Then TInc = RInc ∪ S
Inc ∪ I ⊆ RInc ∪ S

Inc ∪ ([m] × [n]) = (R\S)Inc and

TDec = RDec∪S
Dec∪D ⊇ RDec∪S

Dec
= (R\S)Dec so that R\S 4 T. Similarly T 4 R/S. Conversely,

if R\S 4 T 4 R/S, then R = R\S[m] 4 T[m] 4 R/S[m] = R, thus T[m] = R. Similarly T
[n]

= S. �

Definition 7. The product of two integer relations R ∈ Rm and S ∈ Rn is

FRR · FRS :=
∑

T∈R �̄ S

FRT.

Proposition 8. The product · defines an associative graded algebra structure on kR.

Proof. For R ∈ Rm and S ∈ Rn, all relations in T �̄S belong to Rm+n by definition. More-
over, for R ∈ Rm,S ∈ Rn,T ∈ Ro, Proposition 6 ensures that the relations in (R �̄S) �̄T and
in R �̄ (S �̄T) are the relations U ∈ Rm+n+o such that U[m] = T, U

[n]
m = S and U

[o]
m+n = T. �
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By Proposition 6, we know that this product can be interpreted as a sum over an interval. We
now prove a property slightly more general.

Proposition 9. The product of two intervals is an interval: for R 4 R′ in Rm and S 4 S′ in Rn,( ∑
R4U4R′

FRU

)
·

( ∑
S4V4S′

FRV

)
=

( ∑
R\S4T4R′/S′

FRT

)
.

Proof. We have ( ∑
R4U4R′

FRU

)
·

( ∑
S4V4S′

FRV

)
=

∑
R4U4R′

S4V4S′

∑
T∈U �̄V

FRT.

First note that all coefficients are equal to 1. Indeed, any relation T of the sum belongs to exactly
one set U �̄V as U and V are uniquely defined by U = T[m] and V = T

[n]
. The only thing to

prove is then

{T ∈ R | R\S 4 T 4 R′/S′} =
⊔

R4U4R′

S4V4S′

{T ∈ R | U\V 4 T 4 U/V}

where the union on the right is disjoint. Let us call A the set on the left and B the set on the
right. It is clear that B ⊆ A. Indeed, for T ∈ B, we have U\V 4 T 4 U/V for some R 4 U 4 R′

and S 4 V 4 S′: this gives directly R\S 4 T 4 R′/S′. Conversely, let T ∈ R be such that
R\S 4 T 4 R′/S′. This means (R′/S′)Inc ⊆ TInc ⊆ (R\S)Inc and (R′/S′)Dec ⊇ TDec ⊇ (R\S)Dec.

This is still true if the relations are restricted to [m] (resp. [n]). For U := T[m] and V := T
[n]

, we

get that (R\S)[m] = R 4 U 4 R′ = (R′/S′)[m] and (R\S)
[n]

= S 4 V 4 S′ = (R′/S′)
[n]

. Now

T = U ∪V ∪ I with I ⊆ ([m]× [n]) ∪ ([n]× [m]) which means T ∈ U �̄V. �

1.2.2. Coproduct. We now define a coproduct on integer relations using total cuts.

Definition 10. A total cut (X,Y ) of a relation T ∈ Rp is a partition [p] = X tY such that xTy
and y 6T x for all x ∈ X and y ∈ Y . For two relations R ∈ Rm and S ∈ Rn, define the
convolution R?S as the set of relations T ∈ Rm+n which admit a total cut (X,Y ) such that TX = R
and TY = S.

Remark 11. Note that the convolution of R ∈ Rm and S ∈ Rn has cardinality |R ? S| =
(
m+n
m

)
.

Definition 12. The coproduct of an integer relation T ∈ R is

4(FRT) :=
∑

T∈R?S

FRR ⊗ FRS.

Example 13. For instance,

4
(
FR

1 2 3

)
= FR

1 2 3
⊗ FR∅ + FR

1
⊗ FR

1 2
+ FR

1 2
⊗ FR

1
+ FR∅ ⊗ FR

1 2 3

where the terms in the coproduct arise from the total cuts ({1, 2, 3},∅), ({1}, {2, 3}), ({1, 3}, {2}),
and (∅, {1, 2, 3}).

Proposition 14. The coproduct 4 defines a coassociative graded coalgebra structure on kR.

Proof. For R ∈ Rm and S ∈ Rn, all relations in T ? S belong to Rm+n by definition. Moreover,
for R ∈ Rm,S ∈ Rn,T ∈ Ro, the relations in (R ? S) ? T and in R ? (S ? T) are precisely the
relations U ∈ Rm+n+o such that there is a partition [m+ n+ o] = X t Y t Z such that

• {(x, y), (x, z), (y, z)} ⊆ U and {(y, x), (z, x), (z, y)} ∩U = ∅ for all x ∈ X, y ∈ Y , z ∈ Z,
• UX = T, UY = S and UZ = T. �
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1.2.3. Hopf algebra. We now combine the algebra and coalgebra structures on kR to a Hopf al-
gebra. Recall that a combinatorial Hopf algebra is a combinatorial vector space endowed with
an associative product · and a coassociative coproduct 4 which satisfy the compatibility re-
lation 4(FRR · FRS) = 4(FRR) · 4(FRS), where the last product is defined componentwise
by (a⊗ b) · (c⊗ d) = (a · c)⊗ (b · d).

Proposition 15. The product · of Definition 7 and the coproduct 4 of Definition 12 endow kR
with a Hopf algebra structure.

Example 16. Before giving the formal proof, let us illustrate on an example the compatibility
relation 4(FRR ·FRS) = 4(FRR) ·4(FRS). For that, let R and S both be the unique relation of
size 1. On the one hand, we have:

4
(
FR

1

)
· 4
(
FR

1

)
=
(
FR

1
⊗ FR∅ + FR∅ ⊗ FR

1

)
·
(
FR

1
⊗ FR∅ + FR∅ ⊗ FR

1

)
=
(
FR

1
· FR

1

)
⊗ FR∅ + 2

(
FR

1
⊗ FR

1

)
+ FR∅ ⊗

(
FR

1
· FR

1

)
,

with

FR
1
· FR

1
= FR

1 2
+ FR

1 2
+ FR

1 2
+ FR

1 2
.

On the other hand, we have:

4
(
FR

1
· FR

1

)
= 4

(
FR

1 2
+ FR

1 2
+ FR

1 2
+ FR

1 2

)
= 4

(
FR

1 2

)
+4

(
FR

1 2

)
+4

(
FR

1 2

)
+4

(
FR

1 2

)
=
(
FR

1 2
⊗ FR∅ + FR∅ ⊗ FR

1 2

)
+
(
FR

1 2
⊗ FR∅ + FR

1
⊗ FR

1
+ FR∅ ⊗ FR

1 2

)
+
(
FR

1 2
⊗ FR∅ + FR

1
⊗ FR

1
+ FR∅ ⊗ FR

1 2

)
+
(
FR

1 2
⊗ FR∅ + FR∅ ⊗ FR

1 2

)
=
(
FR

1 2
+ FR

1 2
+ FR

1 2
+ FR

1 2

)
⊗ FR∅ + 2

(
FR

1
⊗ FR

1

)
+ FR∅ ⊗

(
FR

1 2
+ FR

1 2
+ FR

1 2
+ FR

1 2

)
.

Therefore
4
(
FR

1
· FR

1

)
= 4

(
FR

1

)
· 4
(
FR

1

)
.

Proof of Proposition 15. We have

4(FRR) · 4(FRS) =
∑

FR
RXtSU

|X|tItD
⊗ FR

RY tSV
|Y |tI′tD′ = 4(FRR · FRS),

where the sum ranges over all total cuts (X,Y ) of R and (U, V ) of S and all relations

I ⊆ [|X|]× [|U |]
|X|
, D ⊆ [|U |]

|X|
× [|X|], I′ ⊆ [|Y |]× [|V |]

|Y |
and D′ ⊆ [|V |]

|Y |
× [|Y |].

The first equality directly follows from the definitions. For the second equality, observe that for
any T ∈ R �̄S, the total cuts of T are precisely of the form (X t Um, Y t V m) where (X,Y ) is a

total cut of R and (U, V ) is a total cut of S such that X × V m and Y ×Um are both subsets of T

while V
m ×X and U

m × Y are both subsets of the complement of T. �

1.2.4. Multiplicative bases. In this section, we describe multiplicative bases of kR and study the
indecomposable elements of R for these bases. For a relation R ∈ R, we define

ERR =
∑

R4R′

FRR′ and HRR =
∑

R′4R

FRR′ .

Example 17. For instance, ER 1 2 = FR
1 2

+ FR
1 2

and HR 1 2 = FR
1 2

+ FR
1 2

.

Proposition 18. The sets (ERR)R∈R and (HRR)R∈R form multiplicative bases of kR with

ERR · ERS = ERR\S and HRR ·HRS = HRR/S.

Proof. First note that the elements of (ERR)R∈R (resp. (HRR)R∈R) are linearly independent:
each element ERR contains a leading term FRR and so the transition matrix is triangular. The
product formula is a direct consequence of Proposition 9. �
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Example 19. For instance,

ER 1 2 · ER 1 =
(
FR

1 2
+ FR

1 2

)
· FR

1

= FR
1 2
· FR

1
+ FR

1 2
· FR

1

= FR
1 2 3

+ · · ·+ FR
1 2 3

+ FR
1 2 3

+ · · ·+ FR
1 2 3

= ER
1 2 3

.

Note that even though ER and HR have very simple definitions for the product, the definition
of the coproduct is now more complicated than on FR. In particular, we now have some coefficients
greater than 1 which appear as in the example below.

Example 20. For instance,

4
(
ER 1 2

)
= 4

(
FR

1 2
+ FR

1 2
+ FR

1 2
+ FR

1 2

)
= FR

1 2
⊗ FR∅ + FR

1
⊗ FR

1
+ FR∅ ⊗ FR

1 2
+ FR

1 2
⊗ FR∅ + FR∅ ⊗ FR

1 2

+ FR
1 2
⊗ FR∅ + FR∅ ⊗ FR

1 2
+ FR

1 2
⊗ FR∅ + FR

1
⊗ FR

1
+ FR∅ ⊗ FR

1 2

= ER 1 2 ⊗ ER∅ + 2 (ER 1 ⊗ ER 1) + ER∅ ⊗ ER 1 2.

Definition 21. We say that a relation T is under-indecomposable (resp. over-indecomposable)
if there is no R and S in R with |R| ≥ 1 and |S| ≥ 1 such that T = R\S (resp. T = R/S).

Proposition 22. The algebra kR is freely generated by the elements ERT where T is under-
indecomposable (resp. by the elements HRT where T is over-indecomposable).

We will prove this proposition only for ERT. Besides, we will work solely with the notion of
under-indecomposable which we will simply call indecomposable in the rest of paper when there is
no ambiguity. The proof of Proposition 22 relies on the results of [LR06] on the (co-)freeness of
(co-)associative algebras.

Definition 23 ([LR06, p. 7]). A unital infinitesimal bialgebra (H, ·,N) is a vector space H equipped
with a unital associative product · and a counital coassociative coproduct N which are related by
the unital infinitesimal relation:

(?) N(x · y) = (x⊗ 1) · N(y) + N(x) · (1⊗ y) + x⊗ y,
where the product · on H⊗H and the reduced coproduct N are given by

(x⊗ y) · (x′ ⊗ y′) = (x · x′)⊗ (y · y′), and N(x) :=N(x)− (x⊗ 1 + 1⊗ x).

Note that this is not the classical compatibility relation satisfied by the product · and the
coproduct 4 of a Hopf algebra. In particular, (R, ·,4) is not a unital inifinesimal bialgebra.
Nevertheless we will prove that for another coproduct N, then (R, ·,N) is a unital inifinesimal
bialgebra. We can then use the main result of [LR06].

Theorem 24 ([LR06, p. 2]). Any graded unital infinitesimal bialgebra is isomorphic to the non-
commutative polynomials algebra equipped with the deconcatenation coproduct.

The isomorphism is explicit. Each element x of H can be written uniquely as a product
x = x1 · x2 . . . · xk such that the elements xi are primitive, i.e. N(xi) = 0. In other words, the
algebra (H, ·) is freely generated by the primitive elements for the coproduct N. In our case, we
will exhibit a coproduct N such that (R, ·,N) satisfies (?) and, as a corollary of [LR06], we get
that (R, ·) is freely generated by the primitive elements of N.

Definition 25. A primitive cut is a total cut of the form ([i], [p] r [i]) for some 0 ≤ i ≤ p.

For example, the relation 1 2 3 admits a primitive cut at 2. Every relation T ∈ Rp admits at

least two primitive cuts (∅, [p]) and ([p],∅) which we call the trivial primitive cuts. Moreover,
T = R\S if and only if T admits a primitive cut at |R|. In particular, if T is indecomposable,
then T does not admit any non-trivial primitive cut. We define a coproduct N on the basis ER by

N(ERT) :=
∑

T=R\S

ERR ⊗ ERS.
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By definition, this is the dual of the product · on ER. This is also a sum over all primitive cuts
of the relation T and by extension, N(ERT) is a sum over all non-trivial primitive cuts of T.

Example 26. For instance

N
(
ER

1 2 3
)

= ER 1 ⊗ ER 1 2 + ER 1 2 ⊗ ER 1 and N
(
ER

1 2 3
)

= ER 1 ⊗ ER 1 2.

We have that ERT is primitive for N (i.e. N(ERT) = 0) if and only if T is indecomposable.
Now, Proposition 18 is a direct consequence of the following statement together with Theorem 24.

Proposition 27. (R, ·,N) is a unital infinitesimal bialgebra.

Proof. Let R ∈ Rm and S ∈ Rn with p = m+ n. We have on the one hand

A :=N
(
ERR · ERS

)
= N

(
ERR\S) =

∑
R′\S′=R\S

ERR′
⊗ ERS′

,

and on the other hand

B :=
(
ERR ⊗ ER∅

)
· N
(
ERS

)
+ N

(
ERR

)
·
(
ER∅ ⊗ ERS

)
+ ERR ⊗ ERS

=
∑

S=S1\S2

ERR\S1 ⊗ ERS2 +
∑

R=R1\R2

ERR1 ⊗ ERR2\S + ERR ⊗ ERS.

We want to prove that A = B. The sum A is over all non-trivial primitive cuts of R\S. The
relation R\S admits a primitive cut at m by definition which means that the term ERR ⊗ ERS

appears in the sum. Now, let 0 < k < m.

• If R\S admits a primitive cut at k′, this means in particular that R admits a primitive
cut at k. We have R = R1\R2 for some R1 ∈ Rk and R2 ∈ Rm−k. It is easy to check that
R\S restricted to {k + 1, . . . , p} is indeed equal to R2\S.

• Reciprocally, if R admits a primitive cut at k, i.e. R = R1\R2 with R1 ∈ Rk, we have all
(i, j) ∈ R\S and (j, i) /∈ R\S for i ≤ k and k < j ≤ m by definition of the primitive cut
and also for i ≤ k and m < j ≤ p by definition of R\S. This means that R\S admits a
primitive cut R′\S′ = R\S at k. The relation R′ is the restriction of R\S to [k] and it is
then equal to R1. The relations S′ is the restriction of R\S to {k + 1, . . . , p} and is equal
to R2\S.

We can use a similar argument for k > m and we then obtain that the primitive cuts of R\S
exactly correspond to the primitive cuts of S which proves the result. �

As an algebra, kR is then generated by indecomposable relations. It is well known that there
is a direct relation between the Hilbert series of an algebra and the generating series of its inde-
composable elements. Namely, if

F (x) :=
∑
n≥0

Rnx
n = 1 + x+ 4x2 + 64x3 + 4098x4 + . . .

is the Hilbert series of kR, where Rn = 2n(n−1) is the number of (reflexive) integer binary relations,
then it is related to the the generating series I(x) of indecomposable relations by

1

1− I(x)
= R(x).

In particular, the number of indecomposable relations In can be computed by an inclusion–
exclusion formula

In =
∑

n1+···+nk=n

(−1)k+1Rn1
. . . Rnk

which gives the coefficients of Table 2. There does not seem to be another, more direct, com-
binatorial enumeration. Nevertheless, indecomposable relations do have an interesting structural
property when looking at the weak order lattice.

Proposition 28. The set of indecomposable relations of size n forms an upper-ideal of the weak
order lattice on Rn (i.e. if R is indecomposable, then any S with R 4 S is also indecomposable).
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n 1 2 3 4 5
Rn 1 4 64 4096 1048576
In 1 3 57 3963 1040097

Table 2. Number of binary relations and indecomposable binary relations on [n].

Proof. Consider two binary relations R,S ∈ Rn such that R 4 S and S admits a primitive cut at
some k. For all i ≤ k < j, we have i S j and j 6S i since k is a primitive cut of S. Since R 4 S, we
have RInc ⊇ SInc and RDec ⊆ SDec, and thus i R j and j 6S i for all i ≤ k < j. This implies that R
also admits a primitive cut at k. �

Note however that the ideal of indecomposable relations might have multiple minimal elements.
For example for n = 2, there are 3 indecomposable relations (over 4 relations in total) and 2
minimal elements: 1 2 and 1 2 .

2. Integer posets

We now focus on integer posets, i.e. integer relations that are reflexive (x R x), transitive
(xR y R z ⇒ xR z) and antisymmetric (xR y ⇒ y 6R x). Let Pn be the set of all posets on [n] and
let P :=

⊔
n≥0Rn.

As we will only work with posets in the rest of the paper, we generally prefer to use notations
like C,J,a which speak for themselves, rather than our previous notations R,S for arbitrary
binary relations. It also allows us to write a B b for b C a, in particular when a < b.

We still denote by 4 the weak order given in Definition 1. The following statement is the
keystone of [CPP17].

Theorem 29 ([CPP17, Thm. 1]). The weak order on the integer posets of Pn is a lattice.

We now define a Hopf algebra on posets. We consider the vector space kP :=
⊕

n≥0 kPn indexed

by all integer posets of arbitrary size. We denote by (FPC)C∈P the standard basis of kP.

Proposition 30. For any R,S ∈ R,

(i) if the shifted shuffle R �̄S contains at least a poset, then R and S are both posets,
(ii) if R and S are both posets, then all relations in the convolution R ? S are posets.

Therefore, the vector subspace of kR generated by integer relations which are not posets is a Hopf
ideal of (kR, ·,4). The quotient of the integer relation algebra (kR, ·,4) by this ideal is thus a
Hopf algebra (kP, ·,4) on integer posets.

Proof. For (i), let R ∈ Rm and S ∈ Rn be such that the shifted shuffle R �̄S contains a poset T.
Then R = T[m] and S = T

[n]
are antisymmetric and transitive since T is.

For (ii), consider two posets R,S ∈ P and let T ∈ R ? S. Let (X,Y ) be the total cut of T such
that TX = R and TY = S. We prove that T is a poset:

Antisymmetry: Let u, v ∈ N. If u and v both belong to X (resp. to Y ), then u T v ⇒ v 6T u
since TX = R (resp. TY = S) is antisymmetric. Otherwise, u T v if and only if u ∈ X
and v ∈ Y , while v T u if and only if v ∈ X and u ∈ Y . Thus T is antisymmetric.

Transitivity: Let u, v, w ∈ N such that uTvTw. If u and w both belong to X (resp. to Y ),
then so does v and u T w since TX = R (resp. TY = S) is transitive. Otherwise, u ∈ X
and w ∈ Y (since T∩ (Y ×X) = ∅ and uT vTw), thus uTw (since X×Y ⊆ T). Thus T
is transitive. �

Remark 31. Although not needed for the Hopf algebra quotient, observe that the convolution
satisfies a property similar to Proposition 30 (i): if R,S ∈ R are such that the convolution R ? S
contains at least a poset, then R and S are both posets.

For any poset C, we denote by FPC the image of FRC through the trivial projection kR → kP.



THE HOPF ALGEBRA OF INTEGER BINARY RELATIONS 9

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

Figure 2. Interval corresponding to a product of posets. Its is obtained from
Figure 1 by deleting all binary relations which are not posets.

Example 32. In practice, for two posets C,J ∈ P, we compute the product FPC ·FPJ in kP by
deleting all non-poset summands in the product FRC · FRJ in kR:

FP
1 2
· FP

1
= FP

1 2 3
+ FP

1 2 3
+ FP

1 2 3
+ FP

1 2 3
+ FP

1 2 3
+ FP

1 2 3
.

The coproduct is even simpler: all relations that appear in the coproduct 4(FRC) of a poset C
are automatically posets by Remark 31:

4
(
FP

1 2 3

)
= FP

1 2 3
⊗ FP∅ + FP

1
⊗ FP

1 2
+ FP

1 2
⊗ FP

1
+ FP∅ ⊗ FP

1 2 3
.

Proposition 33. For C ∈ Pm and J ∈ Pn, the product FPC · FPJ is the sum of FPa, where a
runs over the interval between C\J and C/J in the weak order on Pm+n.

Proof. It is a direct consequence of Proposition 6 and the fact that for any two posets C,J ∈ P,
the relations C\J and C/J are both posets. �

Example 34. For instance, the product FP
1 2
· FP

1
corresponds to the interval of Figure 2

from FP
1 2 3

to FP
1 2 3

in the weak order on P3.

In a similar way, we directly obtain multiplicative bases EP and HP by taking the quotient of
the bases ER and HR respectively:

EPC =
∑
C4J

FPJ and HPC =
∑
J4C

FPJ.

Note that if R is a relation that is not a poset, then the quotient EPR of the element ERR is
not equal to 0: the leading term FRR is sent to 0 and so EPR can be expressed as a sum of
elements EPR′

where R′ is a poset with R′ ≺ R.
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Proposition 35. The sets (EPC)C∈P and (HPC)C∈P form multiplicative bases of kP with

EPC · EPJ = EPC\J and HPC ·HPJ = HPC/J.

Besides, as an algebra, kP is freely generated by the elements (EPC) where C is under-indecomposable
and, equivalently, by the elements (HPC) where C is over-indecomposable.

Proof. This derives directly from Proposition 18 and the fact that if C and J are posets, then C\J
and C/J are also posets. To prove that the algebra is freely generated by the indecomposable
elements, one can follow the proof of Proposition 22 as everything still holds when restricting to
posets. �

In the next two sections of the paper, we will use the Hopf algebra on integer posets constructed
in this section to reinterpret classical Hopf algebras on permutations [MR95] (see Sections 3.1, 3.3.1
and 3.4.2), ordered partitions [Cha00] (see Section 3.3.3), binary trees [LR98] (see Sections 4.1
and 4.4) and Schröder trees [Cha00] (see Section 4.4). Moreover, we obtain Hopf structures on the
intervals of the weak order (see Sections 3.3.2 and 3.4.1) and on the intervals of the Tamari lattice
(see Section 4.4), that remained undiscovered to the best of our knowledge. All these algebras and
their connections are summarized in Table 1 and Figure 3.

Permutations
kWOEP

Binary trees
kTOEP

Relations
kR

Posets
kP

Weak order
intervals
kWOIP

Tamari
intervals
kTOIP

Ordered
partitions
kWOFP

Schröder trees
kTOFP

(30)

(45)

(51)

(55)

(45)

(55)

(69)

(64)

(84)

(84)

(84)

Figure 3. A roadmap through the different Hopf algebras studied in this paper.
An arrow� indicates a quotient Hopf algebra, while an arrow ↪→ indicates a Hopf
subalgebra. The label on each arrow refers to the corresponding proposition.

3. Permutations, weak order intervals, and ordered partitions

We now consider our first three families of specific integer posets. These families respectively
correspond to the elements (WOEP), the intervals (WOIP) and the faces (WOFP) in the classi-
cal weak order on permutations. We construct Hopf algebras on WOEP, WOIP and WOFP as
quotients (Section 3.3) or subalgebras (Section 3.4) of the integer poset Hopf algebra (P, ·,4).
For the constructions as quotients, the important point is that all these families of posets are
defined by local conditions on their relations, and that a contradiction to these conditions can-
not be destroyed by the product or the coproduct. For the constructions as subalgebras, we use
surjections from posets to WOEP or WOIP whose fibers are stable by product and coproduct.
Using quotients or subalgebras, we construct Hopf algebras on WOEP (resp. WOFP) isomorphic
to the Malvenuto–Reutenauer Hopf algebra on permutations [MR95] (resp. to the Chapoton Hopf
algebra on surjections [Cha00]), and we obtain a Hopf algebra on intervals of the weak order that
was not constructed earlier to the best of our knowledge.
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3.1. Permutations and the Malvenuto–Reutenauer algebra. Recall that the classical weak
order on the permutations of Sn is defined by σ 4 τ if and only if inv(σ) ⊆ inv(τ), where
inv(σ) :=

{
(a, b) ∈ [n]2

∣∣ a ≤ b and σ−1(a) ≤ σ−1(b)
}

denotes the inversion set of σ. This order is
a lattice with minimal element [1, 2, . . . , n] and maximal element [n, . . . , 2, 1].

For two permutations σ ∈ Sm and τ ∈ Sn, the shifted shuffle σ �̄ τ (resp. the convolution σ?τ)
is the set of permutations of Sm+n whose first m values (resp. positions) are in the same relative
order as σ and whose last n values (resp. positions) are in the same relative order as τ . For
example,

12 �̄ 231 = {12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312},
and 12 ? 231 = {12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231}.

Recall that the Malvenuto–Reutenauer Hopf algebra [MR95] is the Hopf algebra on permutations
with product · and coproduct 4 defined by

Fσ · Fτ :=
∑

ρ∈σ �̄ τ

Fρ and 4(Fρ) :=
∑
ρ∈σ?τ

Fσ ⊗ Fτ .

Example 36. For example, we have

F12 · F1 = F123 + F132 + F312 and 4(F132) = F132 ⊗ F∅ + F1 ⊗ F21 + F12 ⊗ F1 + F∅ ⊗ F132.

Remark 37. For σ ∈ Sm and τ ∈ Sn, we have σ �̄ τ = [σ\τ, σ/τ ]. More generally, for any
permutations σ 4 σ′ ∈ Sm and τ 4 τ ′ ∈ Sn, we have( ∑

σ4λ4σ′

Fλ
)
·
( ∑
τ4µ4τ ′

Fµ
)

=
∑

σ\τ4ν4σ′/τ ′

Fν .

In other words, weak order intervals are stable by the product · on S. Note that there are not
stable by the coproduct 4.

3.2. Weak order element, interval and face posets. We now briefly recall how the elements,
the intervals and the faces of the classical weak order can be interpreted as specific interval posets
as developed in [CPP17].

3.2.1. Elements. We interpret each permutation σ ∈ Sn as the weak order element poset Cσ
defined by u Cσ v if σ−1(u) ≤ σ−1(v). In other words, the poset Cσ is the chain σ(1) Cσ . . . Cσ
σ(n). See Figure 4 for an example with σ = 2751346.

σ = 2751346 ←→ Cσ = 1 2 3 4 5 6 7

Figure 4. A Weak Order Element Poset (WOEP).

We define

WOEPn := {Cσ | σ ∈ Sn} and WOEP :=
⊔
n∈N

WOEPn.

These posets are clearly characterized as follows, which enables to recover the weak order on
permutations.

Lemma 38. A poset C is in WOEPn if and only if a C b or a B b for all a, b ∈ [n].

Proposition 39 ([CPP17, Prop. 23 & 24]). The map σ 7→ Cσ is a lattice isomorphism from the
weak order on permutations of Sn to the sublattice of the weak order on Pn induced by WOEPn.
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3.2.2. Intervals. We now present a similar interpretation of the intervals of the weak order.
For σ 4 σ′ ∈ Sn, we consider the weak order interval [σ, σ′] := {τ ∈ Sn | σ 4 τ 4 σ′}. The per-
mutations of the interval [σ, σ′] are precisely the linear extensions of the weak order interval poset
C[σ,σ′] :=

⋂
σ4τ4σ′ Cτ = Cσ ∩Cσ′ = CInc

σ′ ∪CDec
σ , see the example on Figure 5.

σ′ = 3421

3241

3214

3412

3142

13423124

σ = 1324

Cσ′= 1 2 3 4

Cσ= 1 2 3 4

C[σ,σ′]= CInc
σ′ ∪CDec

σ = 1 2 3 4

Figure 5. A Weak Order Interval Poset (WOIP).

We define

WOIPn :=
{
C[σ,σ′]

∣∣ σ 4 σ′ ∈ Sn

}
and WOIP :=

⊔
n∈N

WOIPn.

Weak order interval posets are precisely the integer posets which admit both a minimal and
a maximal linear extension. They were characterized by A. Bjorner and M. Wachs [BW91] as
follows.

Proposition 40 ([BW91, Thm. 6.8]). A poset C is in WOIPn if and only if a C c⇒ (a C b or b C c)
and a B c⇒ (a B b or b B c) for all 1 ≤ a < b < c ≤ n.

This condition clearly contains two separate conditions on the increasing subrelation and on the
decreasing subrelation of C, and it will be convenient to split these conditions. We thus consider
the set IWOIPn (resp. DWOIPn) of posets of Pn which admit a weak order maximal (resp. minimal)
linear extension. These posets are characterized as follows.

Proposition 41 ([CPP17, Prop. 32]). For a poset C ∈ Pn,

• C ∈ IWOIPn ⇐⇒ ∀ 1 ≤ a < b < c ≤ n, a C c⇒ a C b or b C c,
• C ∈ DWOIPn ⇐⇒ ∀ 1 ≤ a < b < c ≤ n, a B c⇒ a B b or b B c.

Moreover,

• if C ∈ IWOIPn, its maximal linear extension is Cmaxle :=C∪{(b, a) | a < b incomparable in C},
• if C ∈ DWOIPn, its minimal linear extension is Cminle :=C∪{(a, b) | a < b incomparable in C}.

See Figure 6 for an example.
Finally, the weak order on WOIPn corresponds to the Cartesian product lattice on the intervals,

described in the following statement.

Proposition 42 ([CPP17, Prop. 27 & Coro. 28]).

(i) If σ 4 σ′ and τ 4 τ ′ in Sn, then C[σ,σ′] 4 C[τ,τ ′] ⇐⇒ σ 4 τ and σ′ 4 τ ′.
(ii) The weak order on WOIPn is a lattice with meet C[σ,σ′] ∧WOIP C[τ,τ ′] = C[σ∧Sτ, σ′∧Sτ ′] and

join C[σ,σ′] ∨WOIP C[τ,τ ′] = C[σ∨Sτ, σ′∨Sτ ′]. However, the weak order on WOIPn is not a
sublattice of the weak order on Pn.
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C ∈ IWOIP ∈ DWOIP Cmaxle Cminle

1 2 3 4 yes no 1 2 3 4

1 2 3 4 no yes 1 2 3 4

1 2 3 4 yes yes 1 2 3 4 1 2 3 4

Figure 6. Examples of IWOIP and DWOIP with their maximum (resp. mini-
mum) linear extensions.

π = 125|37|46 ←→ Cπ = 1 2 3 4 5 6 7

Figure 7. A Weak Order Face Poset (WOFP).

3.2.3. Faces. Recall that the permutahedron Perm(n) := conv {(σ1, . . . , σn) | σ ∈ Sn} has vertices
in bijections with permutations of Sn and faces in bijections with ordered partitions of [n]. In
this paper, we see an ordered partition π of [n] as a weak order face poset Cπ defined by u Cπ v
if π−1(u) < π−1(v) (meaning the block of u is before the block of v in π). See Figure 7 for an
example with π = 125|37|46.

We define

WOFPn := {Cπ | π ordered partition of [n]} and WOFP :=
⊔
n∈N

WOFPn.

Again, the posets of WOFPn admit a simple local characterization and the weak order on WOFPn
corresponds to a relevant lattice on faces of the permutahedron previously considered in [KLN+01,
PR06, DHP18].

Proposition 43 ([CPP17, Prop. 30]). A poset C is in WOFPn if and only if C ∈WOIPn (Propo-
sition 40) and (a C b ⇐⇒ b B c) and (a B b ⇐⇒ b C c) for all a < b < c with a 6C c and a 6B c.

Proposition 44 ([CPP17, Sect. 2.1.3]).

(i) For any ordered partitions π, π′ of [n], we have Cπ 4 Cπ′ ⇐⇒ π 4 π′ in the facial weak
order of [KLN+01, PR06, DHP18].

(ii) The weak order on WOFPn is a lattice but not a sublattice of the weak order on Pn, nor
on WOIPn.

3.3. Quotient algebras. We now construct Hopf algebras on WOEP, WOIP and WOFP as quo-
tient algebras of the integer poset algebra. For all these constructions, the crucial point is that
all these families of posets are characterized by local conditions on their relations, and that a
contradiction to these conditions cannot be destroyed by the product or the coproduct on posets.
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3.3.1. Elements. We first interpret the Malvenuto–Reutenauer Hopf algebra as a quotient of the
integer poset Hopf algebra (kP, ·,4). For that, we use the characterization of Lemma 38.

Proposition 45. For any C,J ∈ P,

(i) if the shifted shuffle C �̄J contains a total order, then C and J are total orders,
(ii) if C and J are both total orders, then all relations in the convolution C ?J are total orders.

Therefore, the vector subspace of kP generated by integer posets that are not total is a Hopf ideal
of (kP, ·,4). The quotient of the integer poset Hopf algebra (kP, ·,4) by this ideal is thus a Hopf
algebra (kWOEPquo, ·,4) on total orders.

Proof. For (i), let C ∈ Pm and J ∈ Pn be such that the shifted shuffle C �̄J contains a total
order a. Then C = a[m] and J = a

[n]
are total orders.

For (ii), consider two total orders C,J ∈ WOEP and let a ∈ C ? J. Let (X,Y ) be the total
cut of a such that aX = C and aY = J. Let u, v ∈ N. If u and v both belong to X (resp. to Y ),
then u a v or v a u since aX = C (resp. aY = J) is total. Otherwise, u a v if and only if u ∈ X
and v ∈ Y , while v a u if and only if v ∈ X and u ∈ Y . Thus a is total. �

Remark 46. Although not needed for the Hopf algebra quotient, observe that the convolution
satisfies a property similar to Proposition 45 (i): if C,J ∈ P are such that the convolution C ?J
contains at least a total order, then C and J are both total orders.

For any weak order element poset C, we denote by FWEquo
C the image of FRC through the

trivial projection kR → kP.

Example 47. In practice, for any two total orders C,J ∈ WOEP, we compute the product
FWEquo

C ·FWEquo
J in kWOEPquo by deleting all summands not in WOEP in the product FRC ·FRJ

in kR:

FWEquo

1 2
· FWEquo

1
= FWEquo

1 2 3

+ FWEquo

1 2 3

+ FWEquo

1 2 3

.

The coproduct is even simpler: all relations that appear in the coproduct 4(FRC) of a total
order C ∈WOEP are automatically in WOEP by Remark 46:

4
(
FWEquo

1 2 3

)
= FWEquo

1 2 3

⊗ FWEquo
∅ + FWEquo

1
⊗ FWEquo

1 2
+ FWEquo

1 2
⊗ FWEquo

1
+ FWEquo

∅ ⊗ FWEquo

1 2 3

.

Proposition 48. The map Fσ 7→ FWEquo
Cσ defines a Hopf algebra isomorphism from the Malvenuto–

Reutenauer Hopf algebra on permutations [MR95] to the quotient Hopf algebra (kWOEPquo, ·,4).

Proof. We just need to show that for any two permutations σ ∈ Sm and τ ∈ Sn, we have

(Cσ �̄Cτ ) ∩WOEP = {Cρ | ρ ∈ σ �̄ τ} and Cσ ?Cτ = {Cρ | ρ ∈ σ ? τ} .
For the shuffle product, consider first an element of (Cσ �̄Cτ )∩WOEP. By definition, it is of the
form Cρ for some ρ ∈ Sm+n. Moreover, Cσ ⊂ Cρ so that the first m values of ρ are in the order
of σ and Cτ ⊂ Cρ so that the last n values of ρ are in the order of τ . Thus ρ ∈ σ �̄ τ . Conversely,
for ρ ∈ σ �̄ τ , we have

Cρ = Cσ∪Cτ∪
{

(i, j)
∣∣ i ∈ [m], j ∈ [n], ρ−1(i) < ρ−1(j)

}
∪
{

(j, i)
∣∣ i ∈ [m], j ∈ [n], ρ−1(i) > ρ−1(j)

}
.

Therefore, Cρ ∈ Cσ �̄Cτ . The proof for the convolution is similar and left to the reader. �

Example 49. Compare Examples 36 and 47.

In particular, Proposition 37 can be restated on WOEP as follow.

Proposition 50. For any C ∈WOEPm and J ∈WOEPn, the product FWEquo
C ·FWEquo

J is the sum
of FWEquo

a , where a runs over the interval between C\J and C/J in the weak order on WOEPm+n.

Proof. It is a direct consequence of Proposition 6 and the fact that for any two C,J ∈WOEP,
the relations C\J and C/J are both total orders. Indeed, for any two permutations σ and τ , we
have Cσ\Cτ =Cσ\τ and Cσ/Cτ =Cσ/τ . �
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3.3.2. Intervals. We now present a Hopf algebra structure on intervals of the weak order. Before
we start, let us make some observations:

• By Remark 37, the product · of the Malvenuto–Reutenauer algebra provides a natural
algebra structure on weak order intervals. However, this does not define a Hopf algebra
on weak order intervals as intervals are not stable by the coproduct 4 on S. Indeed, note
that 4(F1423 +F4123) contains F1⊗F123 and F1⊗F312 but not F1⊗F132 while 132 belongs
to the weak order interval [123, 312].

• To the best of our knowledge, the Hopf algebra presented below did not appear earlier in
the literature. In fact, we are not aware of any Hopf algebra on weak order intervals.

• The construction below relies on the local conditions characterizing WOIP in Proposi-
tion 40. As shown in Proposition 41, these conditions can be split to characterize sepa-
rately IWOIP and DWOIP. Therefore, we obtain similar Hopf algebra structures on IWOIP
and DWOIP, although we do not explicitly state all results for IWOIP and DWOIP.

Proposition 51. For any C,J ∈ P,

(i) if (C �̄J) ∩WOIP 6= ∅, then C ∈WOIP and J ∈WOIP,
(ii) if C ∈WOIP and J ∈WOIP, then (C ?J) ⊆WOIP.

Therefore, the vector subspace of kP generated by P r WOIP is a Hopf ideal of (kP, ·,4). The
quotient of the integer poset algebra (kP, ·,4) by this ideal is thus a Hopf algebra (kWOIPquo, ·,4)
on weak order intervals. A similar statement holds for IWOIP and DWOIP.

Proof. We make the proof for IWOIP, the proof for DWOIP is symmetric, and the result follows
for WOIP = IWOIP∩DWOIP. For (i), letC ∈ Pm andJ ∈ Pn be such that the shifted shuffleC �̄J
contains a poset a ∈ IWOIPm+n. Let 1 ≤ a < b < c ≤ m be such that a C c. Then a a c
(since a[m] = C), which ensures that a a b or b a c (since a ∈ IWOIPm+n), and we obtain
that a C b or b C c (again since a[m] = C). We conclude that C ∈ IWOIPm by the characterization
of Proposition 41, and we prove similarly that J ∈ IWOIPn.

For (ii), consider two weak order interval posets C,J ∈ IWOIP and let a ∈ C ? J. Let (X,Y )
be the total cut of a such that aX = C and aY = J. Consider a < b < c such that a a c. We
distinguish three situations according to the repartition of {a, b, c} in the partition X t Y :

• Assume first that {a, b, c} ⊆ X. Since aX = C is in IWOIP, we obtain that a a b or b a c.
The argument is identical if {a, b, c} ⊆ Y .

• Assume now that {a, c} ⊆ X and b ∈ Y . Then a a b since X × Y ⊆ a. The argument is
identical if {a, c} ∈ Y and b ∈ X.

• Finally, assume that {a, c} 6⊆ X and {a, c} 6⊆ Y . Then we have a ∈ X and c ∈ Y
(since a a c and (Y × X) ∩ a = ∅). Since X × Y ⊆ a, we obtain that a a b if b ∈ Y ,
while b a c if b ∈ X.

We therefore obtain that a a c ⇒ (a a b or b a c) and we conclude that a ∈ IWOIP by the
characterization of Proposition 41. �

Remark 52. Although not needed for the Hopf algebra quotient, observe that the convolution
satisfies a property similar to Proposition 51 (i): if C,J ∈ P are such that the convolution C ?J
contains at least one element in WOIP, then C and J are both in WOIP.

For any weak order interval poset C, we denote by FWIquoC the image of FRC through the trivial
projection kR → kP.

Example 53. In practice, for any two weak order interval posets C,J ∈ WOIP, we compute
the product FWIquoC · FWIquoJ in kWOIPquo by deleting all summands not in WOIP in the prod-
uct FRC · FRJ in kR:

FWIquo
1 2
· FWIquo

1
= FWIquo

1 2 3

+ FWIquo
1 2 3

+ FWIquo
1 2 3

+ FWIquo
1 2 3

+ FWIquo
1 2 3

.
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The coproduct is even simpler: all relations that appear in the coproduct 4(FRC) of an element
in WOIP are automatically in WOIP by Remark 52:

4
(
FWIquo

1 2 3

)
= FWIquo

1 2 3

⊗ FWIquo∅ + FWIquo
1 2
⊗ FWIquo

1
+ FWIquo∅ ⊗ FWIquo

1 2 3

.

Proposition 54. For any C ∈ WOIPm and J ∈ WOIPn, the product FWIquoC · FWIquoJ is the sum
of FWIquoa , where a runs over the interval between C\J and C/J in the weak order on WOIPm+n.

Proof. It is a direct consequence of Proposition 6 and the fact that for any two weak order interval
posets C,J ∈WOIP, the relations C\J and C/J are both weak order interval posets. Indeed, for
any σ 4 σ′ and τ 4 τ ′, we have C[σ,σ′]\C[τ,τ ′] =C[σ\τ,σ′\τ ′] and C[σ,σ′]/C[τ,τ ′] =C[σ/τ,σ′/τ ′]. �

3.3.3. Faces. We now construct a Hopf algebra on faces of the permutahedra as a Hopf subalgebra
of the poset Hopf algebra. We will see in Proposition 59 that the resulting Hopf algebra was already
considered by F. Chapoton in [Cha00].

Proposition 55. For any C,J ∈ P,

(i) if (C �̄J) ∩WOFP 6= ∅, then C ∈WOFP and J ∈WOFP,
(ii) if C ∈WOFP and J ∈WOFP, then (C ?J) ⊆WOFP.

Therefore, the vector subspace of kP generated by P rWOFP is a Hopf ideal of (kP, ·,4). The
quotient of the poset Hopf algebra (kP, ·,4) by this ideal is thus a Hopf algebra (kWOFPquo, ·,4)
on faces of the permutahedron.

Proof. For (i), let C ∈ Pm and J ∈ Pn be such that the shifted shuffle C �̄J contains a weak order
face poset a ∈ WOFPm+n. Since WOFP ⊂ WOIP, Proposition 51 (i) ensures that C ∈ WOIPm
and J ∈ WOIPn. Consider now 1 ≤ a < b < c ≤ m such that a 6C c and a 6B c. Then a 6a c
and a 6` c (since a[m] = C), which ensures that a a b ⇐⇒ b ` c and a ` b ⇐⇒ b a c
(since a ∈ WOFPm+n), and we obtain that a C b ⇐⇒ b B c and a B b ⇐⇒ b C c (again
since a[m] = C). We conclude that C ∈ WOFPm by the characterization of Proposition 43, and
we prove similarly that J ∈WOFPn.

For (ii), consider two weak order face posets C,J ∈ WOFP and let a ∈ C ? J. Since we
have WOFP ⊂WOIP, Proposiiton 51 (ii) ensures that a ∈WOIP. Let (X,Y ) be the total cut of a
such that aX = C and aY = J. Consider a < b < c such that a 6a c and a 6` c. Since X × Y ⊆ a,
we obtain that {a, c} ⊆ X or {a, c} ⊆ Y . Since aX = C and aY = J are in WOFP, we obtain
that a a b ⇐⇒ b ` c and a ` b ⇐⇒ b a c. We conclude that a ∈WOFP by the characterization
of Proposition 43. �

Remark 56. Although not needed for the Hopf algebra quotient, observe that the convolution
satisfies a property similar to Proposition 55 (i): if C,J ∈ P are such that the convolution C ?J
contains at least one element in WOFP, then C and J are both in WOFP.

For any weak order face poset C, we denote by FWFquo
C the image of FRC through the trivial

projection kR → kP.

Example 57. In practice, for two weak order face posets C,J ∈ WOFP, we compute the prod-
uct FWFquo

C ·FWFquo
J in kWOFPquo by deleting all summands not in WOFP in the product FRC·FRJ

in kR:

FWFquo

1 2
· FWFquo

1
= FWIquo

1 2 3

+ FWFquo

1 2 3

+ FWFquo

1 2 3

.

The coproduct is even simpler: all relations that appear in the coproduct 4(FRC) of an element
in WOFP are automatically in WOFP by Remark 56:

4
(
FWFquo

1 2 3

)
= FWFquo

1 2 3

⊗ FWFquo
∅ + FWFquo

1 2
⊗ FWFquo

1
+ FWFquo

∅ ⊗ FWFquo

1 2 3

.

It turns out that the resulting algebra was studied in [Cha00]. Consider an ordered partition π
of [m] into k parts, and an ordered partition ρ of [n] into ` parts. As for permutations (see
Section 3.1), the shifted shuffle π �̄ ρ (resp. the convolution π ? ρ) is the set of ordered partitions
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whose first k values (resp. first m positions) are in the same relative order as π and whose last `
values (resp. last n positions) are in the same relative order as ρ. Here, relative order means in
an earlier block, in the same block, or in a later block. Note that the shifted shuffle may merge
blocks of π with blocks of ρ: all ordered partitions in π �̄ ρ have at least min(k, `) blocks and at
most k + ` blocks. In contrast, the convolution just adds up the numbers of blocks. For example,

1|2 �̄ 2|31 = {1|2|4|53, 1|24|53, 1|4|2|53, 1|4|253, 1|4|53|2, 14|2|53, 14|253,

14|53|2, 4|1|2|53, 4|1|253, 4|1|53|2, 4|153|2, 4|53|1|2},

1|2 ? 2|31 = {1|2|4|53, 1|3|4|52, 1|4|3|52, 1|5|3|42, 2|3|4|51,

2|4|3|51, 2|5|3|41, 3|4|2|51, 3|5|2|41, 4|5|2|31}.

The Chapoton Hopf algebra [Cha00] is the Hopf algebra on ordered partitions with product · and
coproduct 4 defined by

Fσ · Fτ :=
∑

ρ∈σ �̄ τ

Fρ and 4(Fρ) :=
∑
ρ∈σ?τ

Fσ ⊗ Fτ .

We refer to [Cha00, CP17] for more details and just provide an example of product and coproduct
in this Hopf algebra.

Example 58. For example, we have

F12 · F1 = F12|3 + F123 + F3|12 and 4(F13|2) = F13|2 ⊗ F∅ + F12 ⊗ F1 + F∅ ⊗ F13|2.

Proposition 59. The map Fπ 7→ FWFquo
Cπ defines a Hopf algebra isomorphism from the Chapoton

Hopf algebra on ordered partitions [Cha00] to (kWOFPquo, ·,4).

Proof. The proof is similar to that of Proposition 48 and left to the reader. �

Example 60. Compare Examples 58 and 57.

Proposition 61. For any C ∈WOFPm and J ∈WOFPn, the product FWFquo
C ·FWFquo

J is the sum
of FWFquo

a , where a runs over the interval between C\J and C/J in the weak order on WOFPm+n.

Proof. It is a direct consequence of Proposition 6 and the fact that for any two weak order face
posets C,J ∈WOFP, the relations C\J and C/J are both weak order face posets. �

3.4. Subalgebras. We now construct Hopf algebras on WOEP and WOIP as subalgebras of the
integer poset algebra. For this, we use surjections from all posets to WOEP or WOIP whose fibers
are stable by product and coproduct. We consider the IWOIP increasing deletion, the DWOIP
decreasing deletion, and the WOIP deletion defined in [CPP17, Sect. 2.1.4] by

CIWOIPid = Cr
{

(a, c) | ∃ a < b1 < · · · < bk < c, a 6C b1 6C · · · 6C bk 6C c
}
,

CDWOIPdd = Cr
{

(c, a) | ∃ a < b1 < · · · < bk < c, a 6B b1 6B · · · 6B bk 6B c
}
,

CWOIPd =
(
CDWOIPdd

)IWOIPid
=
(
CIWOIPid

)DWOIPdd
.

These operations are illustrated on Figure 8.
It is proved in [CPP17, Sect. 2.1.4] that CIWOIPid ∈ IWOIP and CDWOIPdd ∈ DWOIP for

any C ∈ P. In fact, C 7→ CIWOIPid (resp. C 7→ CDWOIPdd) is a projection from P to IWOIP
(resp. DWOIP). Therefore, CWOIPd ∈ WOIP for any C ∈ P and C 7→ CWOIPd is a projection
from P to WOIP.

3.4.1. Intervals. Here, we use the fibers of the projections C 7→ CIWOIPid, C 7→ CDWOIPdd and
C 7→ CWOIPd to construct Hopf subalgebras of the poset Hopf algebra. For this, we need the
compatibility of these projections with the shuffle and the convolution on posets.

Lemma 62. For any C ∈ Pp and any 1 ≤ q ≤ r ≤ p, we have(
C[q,r]

)WOIPd
=
(
CWOIPd

)
[q,r]

.
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C = 1 2 3 4 5 6

CIWOIPid = 1 2 3 4 5 6

CWOIPd = 1 2 3 4 5 6

CDWOIPdd = 1 2 3 4 5 6

Figure 8. The IWOIP increasing deletion and the DWOIP decreasing deletion.

Therefore, for any J ∈WOIPm and J′ ∈WOIPn,{
C ∈ Pm+n | (C[m])

WOIPd = J and (C
[n]

)WOIPd = J′
}

=
⊔

≺∈J �̄J′

∩WOIP

{
C ∈ Pm+n

∣∣ CWOIPd= ≺
}
.

A similar statement holds for C 7→ CIWOIPid and for C 7→ CDWOIPdd.

Proof. We make the proof for IWOIP, the proof for DWOIP is symmetric, and the result follows
for WOIP = IWOIP ∩ DWOIP. The first statement immediately follows from the fact that the
condition to delete (a, c) in CIWOIPid only involves relations of C in the interval [a, c]. By Proposi-
tion 6, (J �̄J′) ∩ IWOIP is the set of ≺ ∈ IWOIPm+n such that ≺[m] = J and ≺

[n]
= J′, which

shows the second statement. �

Lemma 63. For any C ∈ Pp, the total cuts of C are precisely the total cuts of CWOIPd. Moreover,
if (X,Y ) is a total cut of C, then

(CWOIPd)X = (CX)WOIPd and (CWOIPd)Y = (CY )WOIPd.

Therefore, for any J ∈WOIPp with a total cut (X,Y ),{
C ∈ Pp

∣∣ CWOIPd = J
}

=

{
C ∈ Pp

∣∣∣∣ (CX)WOIPd = JX C ∩ (Y ×X) = ∅
(CY )WOIPd = JY and (X × Y ) ⊆ C

}
.

A similar statement holds for C 7→ CIWOIPid and for C 7→ CDWOIPdd.

Proof. We make the proof for IWOIP, the proof for DWOIP is symmetric, and the result follows
for WOIP = IWOIP∩DWOIP. Consider a partition [p] = X tY . Assume that (X,Y ) is a total cut
of C and consider x ∈ X and y ∈ Y . If y < x, then x CIWOIPid y since (x, y) ∈CDec= (CIWOIPid)Dec.
If x < y, then x CIWOIPid y since x C y and for any x = b0 < b1 < · · · < bk < bk+1 = y,
we have b` C b`+1, where ` is maximal such that b` ∈ X. Finally, y 6CIWOIPid x since y 6C x
and CIWOIPid ⊆ C. We conclude that (X,Y ) is a total cut of CIWOIPid. The reverse inclusion is
similar.

We now consider a total cut (X,Y ) of C and prove that (CIWOIPid)X = (CX)IWOIPid (the other
equality is similar). Observe first that ((CIWOIPid)X)Dec = ((CX)IWOIPid)Dec = CDec

X so we focus
on increasing relations. Let x1 < · · · < xm be the elements of X, and consider 1 ≤ i < j ≤ m.
If (i, j) ∈ (CIWOIPid)X , then xi C xj and there is no xi < b1 < · · · < bk < xj such that xi 6C b1 6C
· · · 6C bk 6C xj . In particular, there is no such b1, . . . , bk inX and we obtain that (i, j) ∈ (CX)IWOIPid.
Conversely, assume that (i, j) ∈ (CX)IWOIPid and consider xi = b0 < b1 < · · · < bk < bk+1 = xj .
We distinguish two cases:

• If b1 = xi1 , . . . , bk = xik all belong to X. Since (i, j) ∈ (CX)IWOIPid, there is ` such
that i` CX i`+1. This implies that b` C b`+1.

• Otherwise, consider the last ` such that b` ∈ X. Then b`+1 ∈ Y and we have b` C b`+1.
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In both cases, we have obtained that there is ` such that b` C b`+1. We therefore obtain
that (xi, xj) ∈CIWOIPid, so that (i, j) ∈ (CX)IWOIPid.

Finally, the last statement is just a reformulation of the former. �

For J ∈WOIP, consider the element

FWIsubJ :=
∑

FPC.

where the sum runs over all C ∈ P such that CWOIPd= J. We denote by kWOIPsub the linear
subspace of kP spanned by the elements FWIsubJ for J ∈ WOIP. We define similarly subspaces
spanned by the fibers of the IWOIP and the DWOIP deletions.

Proposition 64. The subspace kWOIPsub is stable by the product · and the coproduct 4 and thus
defines a Hopf subalgebra of (kP, ·,4). A similar statement holds for IWOIP and DWOIP.

Proof. The proof is a computation relying on Lemmas 62 and 63. We therefore make the proof
here for WOIP, the same proof works verbatim for IWOIP or DWOIP. We first show the stability
by product. For J ∈WOIPm and J′ ∈WOIPn, we have by Lemma 62

FWIsubJ · FWIsubJ′ =

( ∑
aWOIPd=J

FPa
)
·
( ∑
a′WOIPd=J′

FPa′
)

=
∑

aWOIPd=J
a′WOIPd=J′

FPa · FPa′

=
∑

aWOIPd=J
a′WOIPd=J′

∑
C∈Pm+n

C[m]=a
C

[n]
=a′

FPC =
∑

C∈Pm+n

(C[m])
WOIPd=J

(C
[n]

)WOIPd=J′

FPC =
∑

≺∈J �̄J′

∩WOIP

∑
CWOIPd=≺

FPC

=
∑

≺∈J �̄J′

∩WOIP

FWIsub≺ .

We now show the stability by coproduct. For J ∈WOIPp, we have by Lemma 63

4(FWIsubJ ) = 4
( ∑

CWOIPd=J

FPC

)
=

∑
CWOIPd=J

4(FPC) =
∑

CWOIPd=J

∑
(X,Y ) total

cut of C

FPCX ⊗ FPCY

=
∑

(X,Y ) total
cut of J

∑
CWOIPd=J

FPCX ⊗ FPCY =
∑

(X,Y ) total
cut of J

( ∑
aWOIPd=JX

FPa
)
⊗
( ∑
a′WOIPd=JY

FPa′
)

=
∑

(X,Y ) total
cut of J

FWIsubJX ⊗ FWIsubJY . �

Proposition 65. The map FWIquoJ 7→ FWIsubJ defines a Hopf algebra isomorphism from the

quotient Hopf algebra kWOIPquo to the Hopf subalgebra kWOIPsub. A similar statement holds
for IWOIP and DWOIP.

Proof. This is immediate since the formulas for the product and coproduct on the bases (FWIquoJ )

and (FWIsubJ ) coincide:

FWIJ · FWIJ′ =
∑

≺∈J �̄J′

∩WOIP

FWI≺ and 4(FWIJ) =
∑

(X,Y ) total
cut of J

FWIJX ⊗ FWIJY . �

3.4.2. Elements. We now construct a Hopf algebra on WOEP as a subalgebra of the integer poset
algebra. To this end, consider the two maps from P to WOEP defined by

CWOEPid := (CIWOIPid)maxle and CWOEPdd := (CDWOIPdd)minle.

We need to describe the fibers of these maps.
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Lemma 66. For C ∈ Pn and J ∈WOEPn, we have

• CWOEPid = J ⇐⇒ for all (a, c) ∈ (CrJ)Inc there exists a < b < c such that a I b I c,
• CWOEPdd = J ⇐⇒ for all (c, a) ∈ (CrJ)Dec there exists a < b < c such that a J b J c.

Proof. We only prove the first statement, the second is symmetric. Assume CWOEPid = J
and (a, c) ∈ (C r J)Inc. Since (a, c) is deleted in CWOEPid = (CIWOIPid)maxle, it is already deleted
in CIWOIPid. Therefore, there exists a < b1 < · · · < bk < c such that a 6C b1 6C · · · 6C bk 6C c. By
definition of J = (CIWOIPid)maxle, this implies that a I b1 I . . . I bk I c.

Conversely, assume that for all (a, c) ∈ (C r J)Inc there exists a < b < c such that a I b I c.
Assume by contradiction that CWOEPid 6= J. By definition of CWOEPid = (CIWOIPid)maxle, this
implies that there exists (a, c) ∈ (CIWOIPid r J)Inc. Choose such an (a, c) with c − a minimal.
Since (a, c) ∈ (CIWOIPid r J)Inc ⊆ (C r J)Inc, there exists a < b < c such that a I b I c.
Since a CIWOIPid c, we have a CIWOIPid b or b CIWOIPid c, thus either (a, b) or (b, c) belongs
to (CIWOIPid rJ)Inc contradicting the minimality of c− a. �

We now study the compatibility of the projections C 7→ CWOEPid and C 7→ CWOEPdd with poset
restrictions and cuts.

Lemma 67. For any C ∈ Pp and any 1 ≤ q ≤ r ≤ p, we have(
C[q,r]

)WOEPid
=
(
CWOEPid

)
[q,r]

and
(
C[q,r]

)WOEPdd
=
(
CWOEPdd

)
[q,r]

.

Proof. Same as Lemma 62 since the presence of (a, c) in both C 7→ CIWOIPid and C 7→ Cmaxle only
depends on the relations of C in the interval [a, c]. �

In contrast, Lemma 63 does not apply verbatim here since C has in general less total cuts
than CWOEPid and CWOEPdd. We adapt this lemma as follows.

Lemma 68. For any C ∈ Pp, all total cuts of C are total cuts of both CWOEPid and CWOEPdd.
Moreover, for any C ∈ Pp and J ∈WOEPp, and for any total cut (X,Y ) of both C and J,

• CWOEPid = J if and only if (CX)WOEPid = JX and (CY )WOEPid = JY ,
• CWOEPdd = J if and only if (CX)WOEPdd = JX and (CY )WOEPdd = JY ,

Proof. We only prove the statement for CWOEPid, the proof for CWOEPdd is symmetric. Consider a
total cut (X,Y ) of C and let x ∈ X and y ∈ Y . If x > y, then (x, y) ∈ CDec ⊆ CWOEPid. If x < y,
then for any x < b < y, we have either b ∈ X and thus b C y, or b ∈ Y and thus x C b. Therefore,
(x, y) ∈ CIWOIPid ⊆ CWOEPid. We conclude that (X,Y ) is also a total cut of CWOEPid.

Consider now C ∈ Pp and J ∈WOEPp, and a total cut (X,Y ) of both C and J. Assume first
that CWOEPid = J. Consider (a, c) ∈ (CX r JX)Inc. Since CWOEPid = J and (a, c) ∈ (C r J),
Lemma 66 ensures that there is a < b < c such that a I b I c. Since (X,Y ) is a cut of J, we
obtain that b ∈ X. Therefore, a IX b IX c. We conclude by Lemma 66 that (CX)WOEPid = JX .
The proof is identical for (CY )WOEPid = JY .

Conversely, assume that (CX)WOEPid = JX and (CY )WOEPid = JY . Consider (a, c) ∈ (CrJ)Inc.
Since (X,Y ) is a total cut of both C and J, we know that a and c either both belong to X or
both belong to Y , say for instance X. Since (CX)WOEPid = JX we now that there exists a < b < c
such that a IX b IX c. We conclude by Lemma 66 that CWOEPid = J. �

For J ∈WOEP, consider the elements

FWEsubi
J :=

∑
C∈P

CWOEPid=J

FPC and FWEsubd
J :=

∑
C∈P

CWOEPdd=J

FPC.

We denote by kWOEPsubi and kWOEPsubd the linear subspaces of kP spanned by the elements FWEsubi
J

and FWEsubd
J respectively for J ∈WOEP.

Proposition 69. The subspaces kWOEPsubi and kWOEPsubd are stable by the product · and the
coproduct 4 and thus defines Hopf subalgebras of (kP, ·,4).
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Proof. We only make the proof for kWOEPsubi, the statement for kWOEPsubd is symmetric. We
first show the stability by product. Using Lemma 67, and the exact same computation as in the
first part of the proof of Proposition 64, replacing WOIP by WOEP, we obtain that

FWEsubi
J · FWEsubi

J′ =
∑

≺∈J �̄J′

∩WOEP

FWEsubi
≺ .

We now show the stability by coproduct. For J ∈WOEPp, we have by Lemma 68

4(FWEsubi
J ) = 4

( ∑
CWOEPid=J

FPC

)
=

∑
CWOEPid=J

4(FPC) =
∑

CWOEPid=J

∑
(X,Y ) total

cut of C

FPCX ⊗ FPCY

=
∑

(X,Y ) total
cut of J

∑
CWOEPid=J
with total
cut (X,Y )

FPCX ⊗ FPCY =
∑

(X,Y ) total
cut of J

( ∑
aWOEPid=JX

FPa
)
⊗
( ∑
a′WOEPid=JY

FPa′
)

=
∑

(X,Y ) total
cut of J

FWEsubi
JX ⊗ FWEsubi

JY . �

Proposition 70. The map FWEquo
J 7→ FWEsubi

J (resp. FWEquo
J 7→ FWEsubd

J ) defines a Hopf al-

gebra isomorphism from the quotient Hopf algebra kWOEPquo to the Hopf subalgebra kWOEPsubi

(resp. kWOEPsubd). Therefore, kWOEPsubi and kWOEPsubi are isomorphic to the Malvenuto–
Reutenauer Hopf algebra on permutations [MR95].

Proof. This is immediate since the formulas for the product and coproduct on the bases (FWEquo
J ),

(FWEsubd
J ) and (FWEsubd

J ) coincide:

FWEJ · FWEJ′ =
∑

≺∈J �̄J′

∩WOEP

FWE≺ and 4(FWEJ) =
∑

(X,Y ) total
cut of J

FWEJX ⊗ FWEJY . �

4. Binary trees, Tamari intervals, and Schröder trees

We now consider three families of specific integer posets corresponding to the elements (TOEP),
the intervals (TOIP) and the faces (TOFP) in the Tamari order on binary trees. We construct
Hopf algebras on TOEP, TOIP and TOFP as subalgebras (Section 3.4) of the integer poset Hopf
algebra (P, ·,4), using surjections from posets to TOEP, TOIP of TOFP whose fibers are stable
by product and coproduct. We obtain Hopf algebras on TOEP (resp. TOFP) isomorphic to the
Loday–Ronco Hopf algebra on binary trees [LR98] (resp. to the Chapoton Hopf algebra on Schröder
trees [Cha00]), and we obtain a Hopf algebra on Tamari intervals that was not constructed earlier
to the best of our knowledge.

4.1. Binary trees and the Loday–Ronco algebra. We always label the vertices of a binary
tree T in inorder, meaning that each vertex is labeled after all vertices of its left child and before
all vertices of its right child. This labeling makes T a binary search tree, meaning that the label of
each vertex is larger than all labels in its left child and smaller than all labels in its right child. For
a permutation σ, we denote by bt(σ) the tree obtained by binary search tree insertion of σ: it is
obtained by inserting the entries of σ from right to left such that each intermediate step remains a
binary search tree. Said differently, bt(σ) is the unique binary search tree T such that if vertex i is
a descendant of vertex j in T, then i appears before j in σ. An example is illustrated in Figure 9.

Recall that the classical Tamari lattice is the lattice on binary trees whose cover relations are
the right rotations. It is also the lattice quotient of the weak order under the congruence relation
given by the fibers of the binary search tree insertion.
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Figure 9. Binary search tree insertion of the permutation σ = 2751346.

Finally, recall that the Loday–Ronco algebra [LR98] is the Hopf subalgebra of the Malvenuto–
Reutenauer algebra generated by the elements

FT :=
∑
σ∈S

bt(σ)=T

Fσ

for all binary trees T.

Example 71. For instance

F

1
2
· F

1
2
3

= F12 ·
(
F132 + F312

)
=

(
F12354 + F12534

+ F15234 + F51234

)
+


F13254 + F31254

+ F13524 + F31524

+ F15324 + F51324

+ F35124 + F53124

+


F13542 + F31542

+ F35142 + F53142

+ F15342 + F51342

+ F35412 + F53412


= F

1
2
3
4
5

+ F

1
2
3

4
5

+ F

1
2

3
4
5

and

4(F

1
2
3

) = 4
(
F132 + F312

)
= (F132 + F312)⊗ F∅ + (F12 + F21)⊗ F1 + F1 ⊗ (F12 + F21) + F∅ ⊗ (F132 + F312)

= F

1
2
3

⊗ F∅ + (F

1
2

+ F
1
2

)⊗ F
1

+ F
1
⊗ (F

1
2

+ F
1
2

) + F∅ ⊗ F

1
2
3

.

4.2. Tamari order element, interval and face posets. We now briefly recall how the elements,
the intervals and the faces of the Tamari lattice can be interpreted as specific interval posets as
developed in [CPP17].

4.2.1. Elements. We consider the tree T as the Tamari order element poset CT defined by i CT j
when i is a descendant of j in T. In other words, the Hasse diagram of CT is the tree T oriented
towards its root. An illustration is provided in Figure 10. Note that the increasing (resp. de-
creasing) subposet of CT is given by i CInc

T j (resp. i CDec
T j) if and only if i belongs to the left

(resp. right) subtree of j in T.
We define

TOEPn :=
{
CT | T ∈ Bn

}
and TOEP :=

⊔
n∈N

TOEPn.

The following statements provide a local characterization of the posets of TOEPn and describe
the weak order induced by TOEPn.

Proposition 72 ([CPP17, Prop. 39]). A poset C ∈ Pn is in TOEPn if and only if

• ∀ a < b < c, a C c⇒ b C c and a B c⇒ a B b,
• for all a < c incomparable in C, there exists a < b < c such that a C b B c.
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T =

7

6
4

1

2

3

5
←→ CT = 1 2 3 4 5 6 7

Figure 10. A Tamari Order Element Poset (TOEP).

Proposition 73 ([CPP17, Prop. 40 & 41]). The map T 7→ CT is a lattice isomorphism from the
Tamari lattice on binary trees of Bn to the sublattice of the weak order on Pn induced by TOEPn.

4.2.2. Intervals. We now present a similar interpretation of the intervals of the Tamari lattice.
For T 4 T′ ∈ Bn, we consider the Tamari order interval [T,T′] := {S ∈ Bn | T 4 S 4 T′}, and
interpret it as the Tamari order interval poset C[T,T′] :=

⋂
T4S4T′ CT = CT ∩CT′ = CInc

T′ ∩CDec
T .

This poset C[T,T′] was introduced in [CP15] with the motivation that its linear extensions are
precisely the linear extensions of all binary trees in the interval [T,T′]. See Figure 11.

41
2

3

4

1
2

3

4

1
2
3

4
1
2
3

4
1

2
3

CT′= 1 2 3 4

CT= 1 2 3 4

C[T,T′]= CInc
T′ ∪CDec

T = 1 2 3 4

Figure 11. A Tamari Order Interval Poset (TOIP).

We define

TOIPn :=
{
C[T,T′] | T,T′ ∈ Bn,T 4 T′

}
and TOIP :=

⊔
n∈N

TOIPn.

The following statements provide a local characterization of the posets of TOIPn and describe
the weak order induced by TOIPn.

Proposition 74 ([CP15, Thm. 2.8]). A poset C ∈ P(n) is in TOIP(n) if and only if a C c⇒ b C c
and a B c⇒ a B b for all 1 ≤ a < b < c ≤ n.

As in Section 3.2.2, note that this characterization clearly splits into a condition on the in-
creasing relations and a condition on the decreasing relations of C. This defines two super-
families ITOIPn and DTOIPn of TOIPn with TOIPn = ITOIPn ∩ DTOIPn.
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Proposition 75 ([CPP17, Prop. 40 & 41]).

(i) If S 4 S′ and T 4 T′ in Bn, then C[S,S′] 4 C[T,T′] ⇐⇒ S 4 T and S′ 4 T′.
(ii) The weak order on TOIPn is a lattice whose meet C[S,S′] ∧TOIP C[T,T′] = C[S∧BT,S′∧BT′]

and join C[S,S′] ∨TOIP C[T,T′] = C[S∨BT,S′∨BT′]. Moreover, the weak order on TOIPn is a
sublattice of the weak order on Pn.

4.2.3. Faces. Consider now a face of the associahedron, that is, a Schröder tree S (a rooted tree
where each internal node has at least two children). We label the angles between two consecutive
children in inorder, meaning that each angle is labeled after the angles in its left child and before
the angles in its right child. We associate to S the poset CS where i CS j if and only if the angle
labeled i belongs to the left or to the right child of the angle labeled j. See Figure 12.

S =
7

64

21
3

5

←→ CS = 1 2 3 4 5 6 7

Figure 12. A Tamari Order Face Poset (TOFP).

We define

TOFPn := {CS | S Schröder tree on [n]} and TOFP :=
⊔
n∈N

TOFPn.

The following statements provide a local characterization of the posets of TOFPn and describe
the weak order induced by TOFPn.

Proposition 76 ([CPP17, Prop. 65]). A poset C is in TOFPn if and only if C ∈ TOIPn and for
all a < c incomparable in C, either there exists a < b < c such that a 6B b 6C c, or for all a < b < c
we have a B b C c.

Proposition 77 ([CPP17, Sect. 2.2.3]).

(1) For any Schröder trees S,S′, we have CS 4 CS′ ⇐⇒ S 4 S′ in the facial weak order
on the associahedron Asso(n) studied in [PR06, DHP18]. This order is a quotient of the
facial weak order on the permutahedron by the fibers of the Schröder tree insertion st.

(2) The weak order on TOFPn is a lattice but not a sublatice of the weak order on Pn, nor
on WOIPn, nor on TOIPn.

To conclude, let us recall that there is a natural Schröder tree insertion map from ordered
partitions to Schröder trees, similar to the binary search tree insertion from permutations to
binary trees. The Schröder tree st(π) obtained from an ordered partition π is the unique Schröder
tree such that if i is a descendant of j (meaning that i appears in a vertex that is a descendant of
the vertex containing j), then i appears before j in π. See [Cha00, CP17, PP18] for details and
Figure 13 for an illustration.

7
64

21
3

5
7

64
3

64

Figure 13. Schröder tree insertion of the ordered partition π = 125|37|46.
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4.3. Quotient algebras. Contrarily to Section 3.3, a naive construction of quotient Hopf algebras
cannot directly work for TOEP, TOIP and TOFP. Although they clearly define quotient algebras,
they do not define quotient cogebras since the convolution does nos satisfy a property similar to (ii)
of Proposition 45: an element not in TOEP (resp. TOIP and TOFP) can appear in the convolution
product of two elements of TOEP (resp. TOIP and TOFP) as in the following example:

1 2 3 ∈ 1 ? 1 2

Indeed, see that the element on the left is neither a TOEP, TOIP nor a TOFP but it belongs to
the convolution of the two integer posets on the right, which are both TOEP, TOIP and TOFP.

4.4. Subalgebras. We now construct Hopf algebras on TOEP, TOIP and TOFP as subalgebras of
the Hopf algebras kWOEP, kWOIP and kWOFP respectively. For this, we need the TOIP deletion
defined in [CPP17, Sect. 2.2.4] by

CTOIPd :=Cr ({(a, c) | ∃ a < b < c, b 6C c} ∪ {(c, a) | ∃ a < b < c, a 6B b}).

This operation is illustrated on Figure 14.

C = 1 2 3 4 5 6 7 CTOIPd = 1 2 3 4 5 6 7

J = 1 2 3 4 5 6 7 JTOIPd = 1 2 3 4 5 6 7

Figure 14. The TOIP deletion.

This map projects WOEPn, WOIPn and WOFPn to TOEPn, TOIPn and TOFPn respectively. In
fact, it is a simple generalization of both the binary tree insertion and the Schröder tree insertion.

Proposition 78 ([CPP17, Prop. 48]). For any permutation σ, any weak order interval σ 4 σ′,
and any ordered partition π, we have

(Cσ)TOIPd = Cbt(σ), (C[σ,σ′])
TOIPd = C[bt(σ), bt(σ′)] and (Cπ)TOIPd = Cst(π),

where bt(σ) is the binary tree insertion of the permutation σ and st(π) is the Schröder tree insertion
of the ordered partition π.

Example 79. Compare Figures 4 and 10, Figures 5 and 11, and Figures 7 and 12.

We now use this map C 7→ CTOIPd, mimicking the construction of the Loday–Ronco algebra
on binary trees [LR98, HNT05] as a Hopf subalgebra of the Malvenuto–Reutenauer algebra on
permutations [MR95]. For J ∈ TOIP, consider the element

FTIJ :=
∑

FWIC
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where the sum runs over all C ∈ WOIP such that CTOIPd= J. We denote by kTOIP the linear
subspace of kP spanned by the elements FTIJ for J ∈ TOIP. Similarly, we define the linear
subspace kTOEP (resp. kTOFP) spanned by the elements

FTEJ :=
∑

FWEC (resp. FTEJ :=
∑

FWEC)

for all J ∈ TOEP (resp. TOFP) where the sum runs over all C ∈ WOEP (resp. WOFP) such
that CTOIPd = J.

Remark 80. Note that the fiber of a TOEP (resp. TOFP) under the map C 7→ CTOIPd is not

in WOEP (resp. WOFP) in general. For example, C[132,312]= 1 2 3 is not in WOEP, but

CTOIPd
[132,312] = ( 1 2 3 )TOIPd = 1 2 3 = C

1
2
3

is in TOEP. The element FTEJ (resp. FTFJ) is defined as the sum over the fiber of J in WOEP
(resp. in WOFP).

Example 81. Here is an example of computation of a product and a coproduct of elements FTEJ

computed in the algebra kWOEP. In the second line, for each element FWEC of the sum in kWOEP,
we have bolded the subrelation CTOIPd. Observe that the result can again be expressed in the
basis FTEJ as will be proven in Proposition 84.

FTE
1 2
· FTE

1 2 3
= FWE

1 2
·
(
FWE

1 2 3
+ FWE

1 2 3

)

=


FWE

1 2 3 4 5

+ FWE
1 2 3 4 5

+ FWE
1 2 3 4 5

+ FWE
1 2 3 4 5

+



FWE
1 2 3 4 5

+ FWE
1 2 3 4 5

+ FWE
1 2 3 4 5

+ FWE
1 2 3 4 5

+ FWE
1 2 3 4 5

+ FWE
1 2 3 4 5

+ FWE
1 2 3 4 5

+ FWE
1 2 3 4 5


+



FWE
1 2 3 4 5

+ FWE
1 2 3 4 5

+ FWE
1 2 3 4 5

+ FWE
1 2 3 4 5

+ FWE
1 2 3 4 5

+ FWE
1 2 3 4 5

+ FWE
1 2 3 4 5

+ FWE
1 2 3 4 5


= FTE

1 2 3 4 5

+ FTE
1 2 3 4 5

+ FTE
1 2 3 4 5

.

4
(
FTE

1 2 3

)
= 4

(
FWE

1 2 3
+ FWE

1 2 3

)
=
(
FWE

1 2 3
⊗ FWE∅ + FWE

1
⊗ FWE

1 2
+ FWE

1 2
⊗ FWE

1
+ FWE∅ ⊗ FWE

1 2 3

)
+
(
FWE

1 2 3
⊗ FWE∅ + FWE

1
⊗ FWE

1 2
+ FWE

1 2
⊗ FWE

1
+ FWE∅ ⊗ FWE

1 2 3

)
= FTE

1 2 3
⊗ FTE∅ + FTE

1
⊗
(
FTE

1 2
+ FTE

1 2

)
+
(
FTE

1 2
+ FTE

1 2

)
⊗ FTE

1
+ FTE∅ ⊗ FTE

1 2 3
.

Example 82. Here is an example of computation of a product and a coproduct of elements FTIJ
computed in the algebra kWOIP. In the second line, for each element FWIC of the sum in kWOIP,
we have bolded the subrelation CTOIPd. Observe that the result can again be expressed in the
basis FTIJ as will be proven in Proposition 84.
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FTI
1 2
· FTI

1 2 3
= FWI

1 2
·
(
FWI

1 2 3
+ FWI

1 2 3

)
=
(
FWI

1 2 3 4 5

+ · · ·+ FWI
1 2 3 4 5

+ · · ·+ FWI
1 2 3 4 5

)
+
(
FWI

1 2 3 4 5

+ · · ·+ FWI
1 2 3 4 5

+ · · ·+ FWI
1 2 3 4 5

)
+
(
FWI

1 2 3 4 5

+ · · ·+ FWI
1 2 3 4 5

+ · · ·+ FWI
1 2 3 4 5

)
+
(
FWI

1 2 3 4 5

+ · · ·+ FWI
1 2 3 4 5

+ · · ·+ FWI
1 2 3 4 5

)
= FTI

1 2 3 4 5

+ FTI
1 2 3 4 5

+ FTI
1 2 3 4 5

+ FTI
1 2 3 4 5

.

4
(
FTI

1 2 3

)
= 4

(
FWI

1 2 3
+ FWI

1 2 3

)
=
(
FWI

1 2 3
+ FWI

1 2 3

)
⊗ FWI∅ + FWI

1 2
⊗ FWI

1
+ FTI∅ ⊗

(
FWI 1 2 3 + FWI

1 2 3

)
= FTI

1 2 3
⊗ FTI∅ + FTI

1 2
⊗ FTI 1 + FTI∅ ⊗ FTI

1 2 3
.

Example 83. Here is an example of computation of a product and a coproduct of elements FTFJ

computed in the algebra kWOFP. In the second line, for each element FWFC of the sum in kWOFP,
we have bolded the subrelation CTOIPd. Observe that the result can again be expressed in the
basis FTFJ as will be proven in Proposition 84.

FTF
1 2 3
· FTF

1 2
= FWF

1 2 3
· FWF

1 2

= FWF
1 2 3 4 5

+ FWF
1 2 3 4 5

+
(
FWF

1 2 3 4 5

+ FWF
1 2 3 4 5

+ FWF
1 2 3 4 5

)
= FTF

1 2 3 4 5

+ FTF
1 2 3 4 5

+ FTF
1 2 3 4 5

.

4
(
FTF

1 2 3

)
= 4

(
FWF

1 2 3
+ FWF

1 2 3
+ FWF

1 2 3

)
=
(
FWF

1 2 3
⊗ FWF∅ + FWF

1
⊗ FWF

1 2
+ FWF

1 2
⊗ FWF

1
+ FWF∅ ⊗ FWF

1 2 3

)
+
(
FWF

1 2 3
⊗ FWF∅ + FWF

1 2
⊗ FWF

1
+ FWF∅ ⊗ FWF

1 2 3

)
+
(
FWF

1 2 3
⊗ FWF∅ + FWF

1
⊗ FWF

1 2
+ FWF

1 2
⊗ FWF

1
+ FWF∅ ⊗ FWF

1 2 3

)
= FTF

1 2 3
⊗ FTF∅ + FTF

1
⊗ FTF

1 2
+ FTF

1 2
⊗ FTF

1
+ FTF

1 2
⊗ FTF

1

+ FTF
1
⊗ FTF

1 2
+ FTF

1 2
⊗ FTF

1
+ FTF∅ ⊗ FTF

1 2 3
.

Proposition 84. The subspace kTOIP is stable by the product · and the coproduct 4 and thus
defines a Hopf subalgebra of (kWOIP, ·,4). A similar statement holds for TOEP and TOFP.

Proof. We start with the product. Consider J ∈ TOIPm and J′ ∈ TOIPn and define

• U as the set of WOIP’s of the form C tC′ t I tD for any C ∈ WOIPm with CTOIPd = J,
any C′ ∈WOIPn with C′TOIPd = J′, any I ⊆ [m]× [n] and any D ⊆ [n]× [m].

• V as the set of TOIP’s of the form J tJ′ t I tD for any I ⊆ [m]× [n] and D ⊆ [n]× [m].

Note that a ∈ U if and only if aTOIPd ∈ V . Since the product FTIJ · FTIJ′ contains exactly all
the posets of U , we conclude that a poset appears in FTIJ · FTIJ′ if and only if all posets in its
TOIP deletion fiber do. Therefore, the product FTIJ · FTIJ′ belongs to the subspace kTOIP.
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We now deal with the coproduct. Consider J ∈ TOIPp and a partition [p] = X t Y . Consider
the set UX,Y of WOIP’s of the form C ∪C′ ∪ (X × Y ) where C ⊆ X2 is such that (CX)TOIPd = JX
andC′ ⊆ Y 2 is such that (C′Y )TOIPd = JY . Note that either none or all a ∈ UX,Y satisfy aTOIPd = J.
Since the coproduct4(FTIJ) contains exactly all tensorsCX⊗C′Y such thatC ∪C′ ∪ (X × Y ) ∈ UX,Y
for all partitions [p] = X tY , we conclude that a tensor CX ⊗C′Y appears in 4(FTIJ) if and only
if all the tensors aX ⊗a′Y with aTOIPd = CTOIPd and a′TOIPd = C′TOIPd appear in 4(FTIJ) as well.
Therefore, the coproduct 4(FTIJ) belongs to the subspace kTOIP. �

Proposition 85. For C ∈ TOIPm and J ∈ TOIPn, the product FPC · FPJ is the sum of FPa,
where a runs over the interval between C\J and C/J in the weak order on TOIPm+n. A similar
statement holds for TOEP and TOFP.

Proof. It is a direct consequence of Proposition 6 and the fact that for any two Tamari order
element (resp. interval, resp. face) posets C,J ∈WOIP, the relations C\J and C/J are both
Tamari order element (resp. interval, resp. face) posets. �

To the best of our knowledge, Proposition 84 provides the first Hopf structure on intervals of
the Tamari lattice. Our next example illustrates the product and coproduct in this Hopf algebra
on Tamari intervals, recasting Example 82 in terms of Tamari intervals.

Example 86. For instance,

F 1 2 , 1
2

· F 1 2 3 , 2

1

3


= F 1 2

3
4
5
,

51
2
3
4



+ F 1 2
3
4
5
,

5
4

3
2

1


+ F 1 2 3

4
5 ,

5
4

3
2

1



+ F 1
2

3
4
5
,

5
4

3
2

1


and

4
(
F 1 2 3 , 2

1

3



)
= F 1 2 3 , 2

1

3


⊗ F∅ + F 1 2 ,

1
2


⊗ F[

1 , 1
] + F∅ ⊗ F 1 2 3 , 2

1

3


.

In contrast, for elements and faces, the Hopf structures of Proposition 84 already appear in
the literature. We have seen already in Section 4.1 that the Loday–Ronco Hopf algebra on bi-
nary trees is the Hopf subalgebra of the Malvenuto–Reutenauer Hopf algebra on permutations
generated by the sums over the fibers of the binary search tree insertion σ 7→ bt(σ). Similarly,
F. Chapoton defined in [Cha00] a Hopf algebra on Schröder trees obtained as a Hopf subalgebra of
his Hopf algebra on ordered partitions generated by the sums over the fibers of the Schröder tree
insertion π 7→ st(π). We refer to [Cha00] for more details and just provide an example of product
and coproduct in this Hopf algebra.

Example 87. For instance,

F
31

2

· F
21

= F2|13 · F12

= F2|13|45 + F2|1345 +
(
F2|45|13 + F245|13 + F45|2|13

)
= F

21

+ F

31
2

54

+ F
31

2
54
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and

4
(
F

31
2

)
= 4

(
F1|3|2 + F13|2 + F3|1|2 +

)
=
(
F1|3|2 ⊗ F∅ + F1 ⊗ F2|1 + F1|2 ⊗ F1 + F∅ ⊗ F1|3|2

)
+
(
F13|2 ⊗ F∅ + F12 ⊗ F1 + F∅ ⊗ F13|2

)
+
(
F3|1|2 ⊗ F∅ + F1 ⊗ F1|2 + F2|1 ⊗ F1 + F∅ ⊗ F3|1|2

)
= F

31
2
⊗ FTF∅ + F

1
⊗ F

2
1

+ F

1
2
⊗ F

1
+ F

21

⊗ F
1

+ F
1
⊗ F

1
2

+ F

2
1
⊗ F

1
+ FTF∅ ⊗ F

31
2
.

Proposition 88. • The map T 7→ CT is a Hopf algebra isomorphism from the Loday–Ronco
algebra on binary trees [LR98, HNT05] to (kTOEP, ·,4).

• The map S 7→ CS is a Hopf algebra isomorphism from the Chapoton algebra on Schröder
trees [Cha00] to (kTOFP, ·,4).

Proof. This immediately follow from Propositions 48, 59 and 78. �

Example 89. Compare Examples 71 and 81, and Examples 87 and 83.

Remark 90. To conclude, let us mention that similar ideas can be used to uniformly construct
Hopf algebra structures on permutrees, permutree intervals, and Schröder permutrees as defined
in [PP18]. Following [CP17, PP18], one first defines some decorated versions of the Hopf alge-
bras kWOEP, kWOIP and kWOFP, where each poset on [n] appears 4n times with all possible
different orientations. One then constructs Hopf algebras on kPEP, kPIP and kPFP using the
fibers of the surjective map (C,O) 7→ CPIPOOd defined in [CPP17]. See [PP18] for details.
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