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On symmetric realizations of the simplicial complex
of 3-crossing-free sets of diagonals of the octagon∗

Jürgen Bokowski‡ Vincent Pilaud§

Abstract

Motivated by the question of the polytopal realizability
of the simplicial complex Γn,k of (k + 1)-crossing-free
sets of diagonals of the convex n-gon, we study the first
open case, namely when n = 8 and k = 2. We give a
complete description of the space of symmetric realiza-
tions of Γ8,2, that is, of the polytopes P whose boundary
complex is isomorphic to Γ8,2, and such that the natural
action of the dihedral group on Γ8,2 defines an action
on P by isometry.

1 Introduction

Let k ≥ 1 and n ≥ 2k + 1 denote two integers. A set
of ` mutually crossing diagonals of the convex n-gon
is called an `-crossing (see Fig. 2). We consider the
abstract simplicial complex Γn,k of (k + 1)-crossing-free
sets of diagonals of the convex n-gon.
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Figure 1: The 3-dimensional associahedron (vertices are
labeled by triangulations of the hexagon) and its polar
(vertices are labeled by diagonals of the hexagon).

When k = 1, the complex Γn,1 is the simplicial
complex of non-crossing sets of diagonals, and has
one maximal face for each triangulation of the con-
vex n-gon. This simplicial complex is realized by the
(n− 3)-dimensional associahedron (more precisely, by
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Figure 2: A 3-crossing (left) and a 2-triangulation of the
octagon (right).

an n-fold cone over the polar of the associahedron). The
associahedron can be constructed in different ways (see
[10, 6, 11] and the references therein), and in particular,
in a very symmetric way, as the secondary polytope of
the convex regular n-gon (see [1] and Fig. 1).

The maximal faces of Γn,k are called k-triangulations
(see Fig. 2) and were recently studied in the literature
under various aspects [3, 12, 5, 8, 9, 13]. It turns out
that the complex Γn,k is a topological sphere [8, 4] (more
precisely, a kn-fold cone over a sphere). But it remains
an open question to know whether Γn,k is polytopal, that
is, whether it is the boundary complex of a polytope. So
far, we only know that it holds for k = 1 (associahedron)
and n ≤ 2k + 3 (cyclic polytopes).

Let Dn denote the dihedral group of isometries of the
convex regular n-gon. There is a natural action of Dn

on the complex Γn,k defined by ρE = {ρ(e) | e ∈ E}.
When k = 1, the associahedron obtained as the sec-
ondary polytope of the convex regular n-gon is sym-
metric under Dn, meaning that Dn acts on its vertices
by isometry. For general n and k, we are also interested
in realizing Γn,k as a polytope symmetric under Dn, not
only because of the nice aspect of the result, but also be-
cause it is actually much easier to restrict to symmetric
realizations.

In this paper, we only tackle the problem of the first
unknown case: when n = 8 and k = 2. We give a
complete description of the space of symmetric realiza-
tions of the simplicial complex Γ8,2. To obtain this de-
scription, we first realize Γ8,2 as a “symmetric oriented
matroid polytope”, and then as a “symmetric polytope
under the dihedral group”.
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2 Preliminaries

General properties of Γn,k. Let us remind some rele-
vant properties of the simplicial complex Γn,k:

1. Observe first that a diagonal uv can be involved
in a (k + 1)-crossing only if there remains at least
k vertices on each side, i.e., if v − u > k and
n − v + u > k. We call such a diagonal k-relevant
and denote Rn,k the set of all k-relevant diagonals
of the n-gon. Let ∆n,k be the simplicial complex
of (k + 1)-crossing-free subsets of Rn,k. The simpi-
cial complex Γn,k is just a kn-fold cone over the
complex ∆n,k, and we will only study the latter.

2. Any k-triangulation of the n-gon contains exactly
k(n − 2k − 1) k-relevant diagonals [3, 12, 5, 13].
Thus, ∆n,k is pure of dimension k(n− 2k− 1)− 1.

3. The simplicial complex ∆n,k is a vertex decompos-
able piece-wise linear sphere [8, 4].

Polytopes for small cases. Being a topological sphere
is a necessary, but not sufficient condition for being
polytopal and it remains open to know if ∆n,k can be re-
alized as the boundary complex of a simplicial polytope
of dimension k(n − 2k − 1). As mentioned previously,
when k = 1, it is known that ∆n,1 is the boundary com-
plex of the dual of the associahedron of dimension n−3.
Appart from this case, we only know that ∆n,k is poly-
topal in the following cases:

1. n = 2k + 1: the complete graph is the unique
k-triangulation of the convex (2k + 1)-gon.

2. n = 2k + 2: the k + 1 long diagonals are the
only k-relevant diagonals of the (2k + 2)-gon. Any
proper subset of R2k+2,k is (k+1)-crossing-free and
∆2k+2,k is the boundary complex of the k-simplex.

3. n = 2k + 3: the k-relevant diagonals of the
(2k + 3)-gon form a cycle of length 2k + 3 and k-
triangulations are precisely the sets of k pairs of
consecutive diagonals of this cycle. Thus, ∆2k+3,k

is the boundary complex of the cyclic polytope of
dimension 2k with 2k + 3 vertices.

Symmetric polytope. Let ∆ be an abstract sim-
plicial complex. We say that a polytope P ⊂ Rd

is a realization of ∆ when its boundary complex
∂(P ) = {proper faces of P} is isomorphic to ∆, i.e., if
there is a bijection φ : ∆ → ∂(P ) which respects in-
clusion. Assume now that a group G acts on ∆ by
G×∆ → ∆ : (g,E) 7→ gE. Then G also acts on ∂(P )
by G× ∂(P ) → ∂(P ) : (g, F ) 7→ gF = φ(gφ−1(F )). We
say that P is a symmetric realization (under G) if this
action is isometric, i.e., if for any g ∈ G, the application
∂(P ) → ∂(P ) : F 7→ gF is an isometry of P .

For example, the dual polytope of the
(n− 3)-dimensional associahedron obtained as the
secondary polytope of the convex regular n-gon (see [1]
and Fig. 1) is a symmetric realization of ∆n,1 under Dn.

Symmetric oriented matroid. Let P ⊂ Rd be a sym-
metric realization (under G) of ∆, and V denote its
vertex set. For any v ∈ V , we denote by ~v = (v, 1)
the vector of homogeneous coordinates of v. For any
v0, . . . , vd ∈ V , we denote by σ(v0, . . . , vd) the orien-
tation of the simplex spanned by v0, . . . , vd, i.e., the
sign (+1, −1, or 0) of the determinant of the matrix
(~vi)0≤i≤d. The application σ : V d+1 → {−1, 0, 1} is
called the oriented matroid associated to P and satis-
fies the following relations (see [2] for more details):

1. alternating relations: for any v0, . . . , vd ∈ V and
any permutation π of {0, . . . , d} of signature ε,

σ(vπ(0), . . . , vπ(d)) = εσ(v0, . . . , vd).

2. Grassmann-Plucker relations: for any v0, . . . , vd−2,
w1, w2, w3, w4 ∈ V , the set

{σ(v0, . . . , vd−2, w1, w2).σ(v0, . . . , vd−2, w3, w4),
− σ(v0, . . . , vd−2, w1, w3).σ(v0, . . . , vd−2, w2, w4),
σ(v0, . . . , vd−2, w1, w4).σ(v0, . . . , vd−2, w2, w3)}

either contains {−1, 1} or is contained in {0}.

3. necessary simplex orientations: for v0, . . . , vd ∈ V ,
if {v0, . . . , vd−2, vd−1} and {v0, . . . , vd−2, vd} are
facets of P , then for any w ∈ V r {v0, . . . , vd},

σ(v0, . . . , vd−2, vd−1, vd) = σ(v0, . . . , vd−2, vd−1, w)
= σ(v0, . . . , vd−2, w, vd).

4. symmetry : there exists a morphism τ : G → {±1}
such that for any v0, . . . , vd ∈ V , and any g ∈ G,

σ(gv0, . . . , gvd) = τ(g)σ(v0, . . . , vd).

Any application σ that associates to the vertices of
∆ a sign in {−1, 0, 1} and satisfies these four properties
will be called a symmetric oriented matroid realizing ∆.

3 Symmetric realizations of ∆8,2

In this section, we restrict our attention to the question
of the realization of the simplicial complex ∆8,2. The
polytope we want to construct would be a 6-dimensional
polytope, with f -vector (12, 66, 192, 306, 252, 84).

It is convenient to label the 2-relevant diagonals of the
octagon with letters: a = 14, b = 25, c = 36, d = 47,
e = 58, f = 16, g = 27, h = 38, I = 15, J = 26, K = 37,
and L = 48 (capital letters denote long diagonals).

In order to find a symmetric realization of ∆8,2, we
first enumerate all possible symmetric oriented matroids
realizing it, and then use this information to study the
symmetric polytopes realizing it.
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3.1 Symmetric oriented matroids

We are looking for an oriented matroid realizing ∆8,2,
that is, for an application σ : {a, . . . ,L}7 → {−1, 0, 1}
which satisfies the four properties mentioned before.

We enumerate all possibilities by computer (using the
functional language Haskell [7, 2]), starting from the
set of signs given by the necessary simplex orientations,
and “guessing new signs”. The method is to pick one
orbit whose sign remains unknown, and to try the three
possibilities −1, 0, and 1. Applying Grassmann-Plucker
relations, we may obtain:

1. either a contradiction, and we eliminate this choice
of sign for this orbit;

2. or a complete oriented matroid realizing ∆8,2;

3. or a certain number of additional signs, but not all,
and we have to iterate the guessing process until
being in situation (1) or (2).

Naturally, a good choice for the orbit we want to
guess should provide as much information as possible,
i.e., should be involved in many Grassmann-Plucker re-
lations for which only two signs remain unknown.

This computation provides the complete list of sym-
metric oriented matroids realizing our complex:

Proposition 1 There are exactly 15 symmetric ori-
ented matroids realizing ∆8,2.

To present them, we only give the sign of one rep-
resentant for each of the 62 orbits (under alternating
relations and symmetry). First, all 15 solutions have
the following 59 common signs:

σ(abcdefg) = 0 σ(abcdefI) = −1 σ(abcdefJ) = 1
σ(abcdefK) = −1 σ(abcdegI) = 1 σ(abcdegJ) = −1
σ(abcdeIK) = −1 σ(abcdeIL) = 1 σ(abcdeJK) = 1
σ(abcdfgI) = −1 σ(abcdfgJ) = 1 σ(abcdfgL) = 1
σ(abcdfIJ) = 1 σ(abcdfIK) = 1 σ(abcdfIL) = −1
σ(abcdfJK) = −1 σ(abcdfJL) = 1 σ(abcdfKL) = −1
σ(abcdIJK) = −1 σ(abcdIJL) = 1 σ(abcdIKL) = −1
σ(abcefgI) = 0 σ(abcefgK) = 0 σ(abcefIJ) = −1
σ(abcefIK) = 1 σ(abcefIL) = 1 σ(abcefJK) = −1
σ(abcefJL) = −1 σ(abcefKL) = 1 σ(abcegIJ) = 1
σ(abcegIK) = −1 σ(abcegIL) = −1 σ(abcegKL) = −1
σ(abceIJL) = −1 σ(abceIKL) = 1 σ(abceJKL) = −1
σ(abcfIJK) = −1 σ(abcfIKL) = −1 σ(abcIJKL) = 1
σ(abdegIJ) = 1 σ(abdegIK) = 1 σ(abdegIL) = 1
σ(abdegJK) = −1 σ(abdeIJK) = 1 σ(abdeIJL) = −1
σ(abdfIJL) = 1 σ(abdfIKL) = 1 σ(abdfJKL) = −1
σ(abdgIJK) = −1 σ(abdgIJL) = −1 σ(abdgJKL) = 1
σ(abdIJKL) = −1 σ(abefIJK) = −1 σ(abefIJL) = −1
σ(abefJKL) = 1 σ(abeIJKL) = 1 σ(acegIJK) = −1
σ(aceIJKL) = −1 σ(acfIJKL) = 1

The three remaining orbits are the orbits of abcdeIJ,
abceIJK and abdfIJK. The following table summarizes

the possible signs for these three orbits (only 15 of the
27 possibilities are admissible):

σ(abcdeIJ) σ(abceIJK) σ(abdfIJK)
σA −1 1 −1
σB −1 1 0
σC −1 1 1
σD 0 1 −1
σE 0 1 0
σF 0 1 1
σG 1 −1 −1
σH 1 −1 0
σI 1 −1 1
σJ 1 0 −1
σK 1 0 0
σL 1 0 1
σM 1 1 −1
σN 1 1 0
σO 1 1 1

3.2 Symmetric polytopes

We are now ready to study the symmetric polytopal re-
alizations of ∆8,2. Assume that a polytope P ⊂ R6 is a
polytope realizing ∆8,2 and symmetric under the action
of D8. Let a, . . . ,L denote its vertices (labeled by the
corresponding 2-relevant diagonals of the octagon), let
~a = (a, 1), . . . , ~L = (L, 1) be the corresponding vectors
of homogeneous coordinates, and let M denote the ma-
trix whose columns are ~a, . . . , ~L. From Subsection 3.1,
we know that the submatrix N = (~a, ~b,~c,~I,~J, ~K, ~L) is
invertible, and we denote M̃ = N−1M . This matrix
can be written:

M̃ =
[

I3 T 03×4

04×3 B I4

]
,

where T ∈ R3×5 and B ∈ R4×5 are unknown matrices.
The determinants of the submatrices of size 7 of M̃ are
symmetric under the action of the dihedral group. We
use these symmetries and the oriented matroid informa-
tions to determine the matrices T and B:

Lemma 2 The matrix T equals −1 1 +
√

2 −2−
√

2 2 +
√

2 −1−
√

2
−1−

√
2 2 + 2

√
2 −3− 2

√
2 2 + 2

√
2 −1−

√
2

−1−
√

2 2 +
√

2 −2−
√

2 1 +
√

2 −1


Lemma 3 There exists u ∈ (−1 − 2

√
2,−1 − 3

√
2/2)

such that B equals the matrix B(u) presented in Fig. 3.

These lemmas imply that only three of the 15 oriented
matroids realizing ∆8,2 are realizable by a polytope with
symmetric determinants: if −1 − 2

√
2 < u < −2 −

√
2

we obtain σG, if u = −2 −
√

2 we obtain σK , and if
−2−

√
2 < u < −1− 3

√
2/2 we obtain σO.
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B(u) =


1 +

√
2/2 u −(1 +

√
2)(1 + u) (1 +

√
2)(1 + u) + 1 −

√
2/2− u

−
√

2/2− u (1 +
√

2)(1 + u) + 1 −(1 +
√

2)(1 + u) u 1 +
√

2/2
1 +

√
2/2 −2− 2

√
2− u (1 +

√
2)(3 + u) + 2 −(1 +

√
2)(3 + u)− 1 2 + 3

√
2/2 + u

2 + 3
√

2/2 + u −(1 +
√

2)(3 + u)− 1 (1 +
√

2)(3 + u) + 2 −2− 2
√

2− u 1 +
√

2/2



Figure 3: The bottom matrix B(u).

In order to complete our understanding of the space of
symmetric realizations of ∆8,2, it only remains to study
the possible values of the matrix N . To determine N ,
we again use symmetry, but this time on the length of
the edges of P .

For example, we know that the vertices I, J, K, and L
span a 3-dimensional simplex with |IJ| = |JK| = |KL| =
|IL| and |IK| = |JL| (where |IJ| denotes the euclidean
distance from I to J). Thus, since neither an orthogonal
transformation, nor an homothecy destruct the symme-
try, we can assume that N is of the form:

1 1 1 1 1 1 1
x1 0 0 0 0 0 0
x2 y2 0 0 0 0 0
x3 y3 z3 0 0 0 0
x4 y4 z4 1 −1 1 −1
x5 y5 z5 v 0 −v 0
x6 y6 z6 0 v 0 −v


,

with x1 > 0, y2 > 0, z3 > 0, and v > 0.
Using the remaining equations given by the symme-

tries, we obtain the following constraints:

Lemma 4 The coefficients of the matrix N satisfy

x1 =

√
(2 +

√
2)(2y3 + z3

√
2)(y3 + z3)z3

y3 − z3
,

x2 =
y3(2 +

√
2)(y3 + z3)√

z2
3 − y2

3

, y2 =
√

z2
3 − y2

3 ,

x3 = −(2 +
√

2)(y3 + z3

√
2

2
), x4 = y4 = z4 = 0,

x5 = −x6 = y5 = y6 = −z5 = z6 = −1
2

√
2v(1+

√
2+u),

with −z3 < y3 < − z3√
2
.

Reciprocally, it is easy to check that under these con-
ditions, the convex hull of the column vectors of NM
is a symmetric realization of ∆8,2. Thus, we obtain our
main result:

Proposition 5 The space of symmetric realizations of
∆8,2 has dimension 4 (up to orthogonal tranformations
and homothecies of R6).

4 Conclusion

Motivated by the question of the realizability of ∆n,k,
we solved the first open case ∆8,2, and completely de-
scribed its space of symmetric realizations. Even if this
study can not be directly generalized to any n and k, we
consider that it provides new evidence and motivation
to the general investigation.
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[4] A. Dress, S. Grünewald, J. Jonsson, and V. Moulton.
The simplicial complex ∆n,k of k-compatible line ar-
rangements in the hyperbolic plane. In preparation,
2009.

[5] A. W. M. Dress, J. H. Koolen, and V. Moulton. On
line arrangements in the hyperbolic plane. European J.
Combin., 23(5):549–557, 2002.

[6] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevin-
sky. Discriminants, resultants, and multidimensional
determinants. Mathematics: Theory and Applications.
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