NON-KISSING COMPLEXES AND TAU-TILTING FOR GENTLE ALGEBRAS

YANN PALU, VINCENT PILAUD, AND PIERRE-GUY PLAMONDON

ABSTRACT. We interpret the support 7-tilting complex of any gentle bound quiver as the non-
kissing complex of walks on its blossoming quiver. Particularly relevant examples were previously
studied for quivers defined by a subset of the grid or by a dissection of a polygon. We then
focus on the case when the non-kissing complex is finite. We show that the graph of increasing
flips on its facets is the Hasse diagram of a congruence-uniform lattice. Finally, we study its
g-vector fan and prove that it is the normal fan of a non-kissing associahedron.
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INTRODUCTION

Non-kissing complex and support 7-tilting complex. The non-kissing complex is a sim-
plicial complex of pairwise non-kissing paths in a fixed shape of a grid. It was introduced by
T. K. Petersen, P. Pylyavskyy and D. Speyer in [PPS10] for a staircase shape, studied by F. San-
tos, C. Stump and V. Welker [SSW17] for rectangular shapes, and extended by T. McConville
in [McC17] for arbitrary shapes. This complex is known to be a simplicial sphere, and it was ac-
tually realized as a polytope using successive edge stellations and suspensions in [McC17, Sect. 4].
Moreover, the dual graph of the non-kissing complex has a natural orientation which equips its
facets with a lattice structure [McC17, Thm. 1.1, Sect. 5-8]. Further lattice theoretic and geomet-
ric aspects of this complex were recently developed by A. Garver and T. McConville in [GM17].

The interest for non-kissing complexes is motivated by relevant instances arising from particular
shapes. As already observed in [McC17, Sect. 10], when the shape is a ribbon, the non-kissing
complex is an associahedron (the simplicial complex of dissections of a polygon), and the non-
kissing lattice is a type A Cambrian lattice of N. Reading [Rea06]. In particular, the straight
ribbon corresponds to the Tamari lattice, an object at the heart of a deep research area [MHPS12].
When the shape is a rectangle (or even a staircase), the non-kissing complex was studied in [PPS10,
SSW17] as the Grassmann associahedron, in connection to non-crossing subsets of [n].

Other instances of such complexes arise naturally from the representation theory of associative
algebras. The notion of support 7-tilting module over an algebra was introduced by T. Adachi,
O. Iyama and I. Reiten in [AIR14], and has proved to be a successful generalization of tilting and
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cluster-tilting theory. Over a given algebra, indecomposable 7-rigid modules form a complex. For
an account of the various algebraic interpretations of this complex, we refer the reader to [BY13].
For example, in the case of the path algebra of a quiver which is a straight line, the support
7-tilting complex is, again, an associahedron.

The aim of this paper is twofold. On the one hand, we provide a realization of any non-kissing
complex as the support 7-tilting complex of a well-chosen associative algebra. The algebras that
occur are certain gentle algebras, a special case of the well-studied string algebras of M. C. R. Butler
and C. Ringel [BR87]. On the other hand, we extend the notion of non-kissing complex and
show that the support 7-tilting complex of any gentle algebra can be interpreted as an extended
non-kissing complex. More precisely, starting from any gentle bound quiver Q = (Q, 1), we
attach additional incoming and outgoing arrows, called blossoms, to make each initial vertex
4-valent. The resulting gentle bound quiver Q% = (Q%, I®) is called the blossoming quiver of Q
(see Section 2.1.1). We then define a combinatorial notion of compatibility on walks in Q®, called
the non-kissing relation (see Section 2.2). The motivating result of this paper is Theorem 2.44.

Theorem. For any gentle bound quiver Q = (Q,I), the non-kissing complex of walks in the
blossoming quiver Q¥ is isomorphic to the support T-tilting complex of the gentle algebra kQ/I.

In short, to any walk in Q% corresponds a representation of @, and this correspondence takes
non-kissing walks to 7-compatible representations. This connection between the combinatorially-
flavored non-kissing complex and the algebraically-flavoured support 7-tilting complex opens a
bridge to go back and forth between the two worlds. It allows us, for instance, to combinatorially
define mutation of support 7-tilting modules (see Section 2.2.3). This seems worthwhile, as the
mutation of support 7-tilting modules over an arbitrary algebra is generally difficult to carry
out explicitly. Table 1 provides a dictionary to translate between the algebraic notions on the
support 7-tilting complex of a gentle algebra and the combinatorial notions on the non-kissing
complex of its blossoming quiver.

The non-kissing lattice and the non-kissing associahedron. Besides this algebraic connec-
tion, we study the non-kissing complex on any gentle bound quiver with a triple perspective.

On the combinatorial side, we provide a purely combinatorial proof that the non-kissing complex
over a gentle bound quiver is a pseudomanifold. This involves in particular a precise description
of the flip inspired from [McC17, Sect. 3].

On the lattice-theoretical side, we consider the graph of increasing flips between non-kissing
facets. When the quiver is a directed path, this increasing flip graph is the Hasse diagram of
the classical Tamari lattice. In general, when @ is 7-tilting finite, the transitive closure of the
increasing flip graph is isomorphic to the lattice of torsion classes, and we therefore call it the
non-kissing lattice. Our main lattice-theoretic result is the following extension of a remarquable
result of T. McConville [McC17].

Theorem. For any gentle bound quiver Q whose non-kissing complex is finite, the non-kissing
lattice is congruence-uniform. In fact, the non-kissing lattice is both a lattice quotient and a
sublattice of a lattice of biclosed sets on strings in Q.

It is then natural to study the canonical join complex of the non-kissing lattice, which we call the
non-friendly complex following [GM17]. This complex corresponds to the classical non-crossing
partitions in Catalan combinatorics.

Finally, on the geometric side, we study realizations of non-kissing complexes as polyhedral fans
and polytopes. Geometric prototypes are given by the type A Cambrian fans of N. Reading and
D. Speyer [RS09] and their polytopal realization by C. Hohlweg and C. Lange [HLO7]. We define
g- and c-vectors for walks in the non-kissing complex of any gentle bound quiver and provide a
simple combinatorial proof of the following geometric statement.

Theorem. Consider a gentle bound quiver QQ whose non-kissing complex is finite. Then the
g-vectors of the walks in the blossoming quiver Q¥ support a complete simplicial fan which realizes
the non-kissing complex of Q. Moreover, this fan is the normal fan of a polytope, called the
non-kissing associahedron.
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String modules on @ Walks on Q% \ Reference ‘
almost positive strings (Def. 1.14) bending walks (Def. 2.7) Fig. 2.41 & 30
71 straight walks (Def. 2.7) Fig. 2.41 & 30
P(v) and P(v)[1] Upeak and Vdeep
A= kQ/I and A[l] Fpeak and Fdeep Lem. 2.40
(Exm. 2.14 and Def. 2.8)
72 countercurrent order <, —
T-compatibility (Def. 1.4) non-kissing (Def. 2.10) Thm. 2.44
support 7-tilting object (Def. 1.3) maximal non-kissing collection of walks Thm. 2.44
support 7-tilting complex K (Q) (Def. 1.8) | reduced non-kissing complex Cy(Q) (Def. 2.12) Thm. 2.44
(left) mutation of support (increasing) flip Thm. 2.44
T-tilting objects (Thm. 1.7 [AIR14]) (Prop. 2.31 and Def. 2.34 & 2.36) -
lattice of torsion classes non-kissing lattice £, (Q) (Thm. 3.1) Thm. 2.44
bricks distinguishable strings (Def. 2.28) Prop. 3.63
collections of pairwise Hom-orthogonal bricks non-friendly complex (Def. 3.81) Prop. 3.63
bijection between bijection between non-kissing walks .

. . . Conjectural
indecomposable 7-rigid representations that are not peak walks and (P 376
and bricks (Thm. 6.1 in [DLJ15]) distinguishable strings (Prop. 3.69) ¢t TIOP- 9

Bongartz cocompletion of a 7-rigid
indecomposable repre§entat101.n F= ﬂ.(iljbot(.U)Cl), whelTe ois a Rem. 3.55
N = M(p) whose associated brick distinguishable string
is M (o). Moreover o = dw(w(p), F)
Bongartz completion 1 (Zeop (o)) Rem. 3.55
g-vector or index of a module (Def. 1.41) g-vector of a walk (Def. 4.8) Rem. 4.10
dim Hom 4 (M (), 7M(0")) (Sec. 1.1.2) kissing number r(w(c),w(o”)) (Def. 4.23) Rem. 4.24

TABLE 1. Dictionary between algebraic notions on the support 7-tilting complex and combinato-
rial notions on the non-kissing complex.

The non-kissing complex provides an instrumental combinatorial model to understand the linear
dependences among g-vectors of adjacent g-vector cones, which leads to simple polytopal realiza-
tions. In fact, this understanding even extends to arbitrary 7-tilting finite algebras.

Grid and dissection bound quivers. Particular instances of gentle bound quivers enable us to
connect previous results and to answer open conjectures from previous works:

(i) Grid quivers: Our combinatorial and lattice-theoretic results are directly inspired from
that of [PPS10, SSW17, McC17, GM17] for quivers arising from the Z? grid. Our approach
provides an interpretation of the non-kissing complex of a grid in terms of 7-tilting theory
of gentle algebras and answers open questions of [GM17] concerning its geometry.
Dissection quivers: Each dissection of a polygon is classically associated with a gentle
quiver. Its non-kissing complex is isomorphic to the accordion complex of the dissection, de-
fined and developed in the works of Y. Baryshnikov [Bar01], F. Chapoton [Chal6], A. Garver
and T. McConville [GM16] and T. Manneville and V. Pilaud [MP17]. As far as we know,
this provides the first connection between non-kissing complexes and accordion complexes.
Path quivers: When the quiver is a path, the non-kissing complex is a simplicial associahe-
dron, the non-kissing lattice is a type A Cambrian lattice of N. Reading [Rea06] (including the
classical Tamari lattice), and the non-kissing associahedron is an associahedron of C. Hohlweg
and C. Lange [HLO7] (including the classical associahedron of J.-L. Loday [Lod04]).

(i)

(iii)

IThe straight walks should morally correspond to some projective-injective objects in an exact category. We
plan to further investigate the situation depicted in Figure 30.

2We do not know of an algebraic interpretation of the countercurrent order yet. We nonetheless included it in
the table above since we think it might be of interest to find one.
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Organization. The paper is organized as follows. Part 1 gathers the algebraic aspects of the
paper. In Section 1.1, we recall elements of the representation theory of bound quiver algebras
in general and of string algebras in particular. The definition and essential properties of support
7-tilting modules are given in Section 1.1.2. The combinatorics of strings and bands is also
introduced in Sections 1.1.4 and 1.1.5, and used in 1.2 to derive combinatorial descriptions of
g-vectors and T-compatibility for string modules.

Part 2 connects the support 7-tilting complex to the non-kissing complex. Sections 2.1 and 2.2
are devoted to our main definitions: those of the blossoming quiver of a gentle bound quiver, and
of its non-kissing complex. Theorem 2.44 linking the non-kissing complex to the support 7-tilting
complex is then proved in Section 2.3.

Part 3 is devoted to the non-kissing lattice. After a brief reminder on lattice congruences and
congruence-uniform lattices in Section 3.1.2, we define a closure operator on strings of ) and study
the lattice of biclosed sets in Section 3.2. We then introduce a lattice congruence on biclosed sets
in Section 3.3 and show that the non-kissing lattice is isomorphic to the lattice quotient of this
congruence in Section 3.4. Finally, we describe the join-irreducible elements and the canonical join
complex of the non-kissing lattice in Section 3.5.

We construct geometric realizations of the non-kissing complex in Part 4. After recalling clas-
sical definitions and characterizations of simplicial fans and polytopal realizations in Section 4.1,
we define the g- and c-vectors in Section 4.2.1, construct the g-vector fan in Section 4.2.2 and
the non-kissing associahedron in Section 4.2.3. Further geometric topics are discussed in Sec-
tions 4.2.4 and 4.2.5.

Connections to recent or ongoing projects. In an advanced stage of our project, we became
aware of recent projects of other research groups which partially intersect or complete our work:
(i) First and foremost, T. Briistle, G. Douville, K. Mousavand, H. Thomas and E. Yildirim
also observed independently in [BDM™17] that the support 7-tilting complex of a gentle
bound quiver is isomorphic to the non-kissing complex of its blossoming quiver (that they
call fringed quiver). Their work is more oriented on the algebraic aspects of this connection.
(ii) Our paper is largely inspired from the paper of T. McConville [McC17] and a preliminary
version of the recent preprint of A. Garver and T. McConville [GM17]. Although we fol-
low the same construction for the g-vector fan (but in the general context of gentle bound
quivers), our proof is independent and instrumental in the construction of the non-kissing
associahedron.
(iii) Recently, L. Demonet, O. Iyama, N. Reading, I. Reiten and H. Thomas proved that the
lattice of torsion classes of any 7-tilting finite algebra is congruence-uniform [DIRT17]. It
seems however that a general notion of biclosed sets still remains to be found.

We are grateful to all our colleagues for sharing their ideas with us at different preliminary stages.

Conventions. We conclude by outlining certain conventions that might be unusual for the reader.
We let [n]:={1,...,n}. If Q is a quiver and k is a field, we denote by kQ the path algebra of Q.
We try to denote vertices by u, v, w, arrows by «, 3,, strings by p, o, 7, and walks by w, A, u, v.
Arrows are composed from left to right: if e—%—e—’ e is a quiver, then o3 is a path while S« is
not. Modules over an algebra are assumed to be right modules. By these conventions, a module
over kQ is equivalent to a representation of ). Finally, we also stick to the following picture
conventions. The Hasse diagram of a poset is represented bottom-up and a 3-dimensional fan is
represented by the stereographic projection of its trace on the unit sphere. Many pictures are
difficult to visualize without colors; we refer the reader to the online version.
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Part 1. String modules

In this section, we first fix our notations (1.1.1) on quivers, path algebras, their representations,
and their support 7-tilting complexes (1.1.2). We then focus on string algebras (1.1.3 to 1.1.7):
following [BR87], we present a combinatorial description of the indecomposable representations
of a string algebra and of the Auslander-Reiten translation 7. We then provide a convenient
combinatorial description of the 7-compatibility between string modules (1.2).

1.1. RECOLLECTIONS ON STRING ALGEBRAS

1.1.1. Path algebras. We start by recalling standard notions on quivers, paths, and path al-
gebras. We refer to the textbooks of I. Assem, D. Simson and A. Skowronski. [ASS06] and
R. Schiffler [Sch14] for more details.

A quiver ) is an oriented graph, represented by a quadruple (Qo, @1, s,t) where Qg is the set
of vertices, ()1 is the set of arrows, and s,t : Q1 — Qo are the source map and the target map
respectively. Throughout, we always assume that @ is finite, that is, it has only finitely many
vertices and arrows. We usually denote the vertices of @) by u, v, w and the arrows of @Q by «, 3, .

A path in Q is a sequence m = «j...ap of Q1 such that t(ag) = s(ag1) for all k € [£ — 1]
(note that we compose arrows from left to right). The source (resp. target) of 7 is s(m):=s(a)
(resp. t(m):=t(cy)), and the length of 7 is ¢(7):=¢. Note that for each vertex v € Qq, we also
consider the path e, of length zero with source and target s(e,) = t(e,) = v.

Let k denote a field. The path algebra of @) is the k-algebra kQ generated by all paths in @), and
where the product of two paths is defined by p - ¢ = pg (concatenation) if s(p) =t(¢) and p-¢=0
if s(p) # t(q). Note that kQ is graded by kQ = @, ,kQ; where kQ, is the subvector space
generated by paths of length £. Observe also that kQ is finite dimensional if and only if Q is
acyclic (meaning that it has no oriented cycle).

The arrow ideal of kQ is the ideal R:= €,~ kQ¢ generated by the arrows of Q. A two-sided
ideal I of kQ is admissible if there exists m > 2 such that R™ C I C R? (the condition R™ C [
ensures that £Q/I is finite dimensional, and the condition I C R? ensures that Q can be recovered
form kQ/I). The pair Q:=(Q,I) is then called a bound quiver and the quotient kQ/I is a bound
quiver algebra and is finite dimensional.

Two quivers Q = (Qo, Q1,s,t) and Q' = (Qf, @1, ', ') are said to be isomorphic if there exists
¢ = (¢, p1) where ¢g : Qo — Q) and ¢; : Q1 — Q) are bijections such that s'(¢1(a)) = ¢o(s(x))
and t'(¢1(a)) = ¢o(t(e)) for all & € Q1. The bijection ¢ : Q1 — @) naturally extends to a
bijection on paths by ¢1(aq - ap) = ¢1(a1) - ¢d1(ap), and thus to a morphism ¢; : kQ — kQ’
of path algebras by linearity. We say that two bound quivers Q = (Q,I) and Q' = (Q',I’) are
isomorphic if there there is an isomorphism ¢ = (¢o, ¢1) between the quivers @ and @’ such
that ¢1(I) = TI'.

For a quiver Q = (Qo, Q1, s,t), define its reversed quiver by Q™ :=(Qo, @1,t, s). For a path =
on @, define its reversed path on Q™ by (o ---ay)™ = g - - - a1, and extend it by linearity to a
morphism kQ — kQ*" of path algebras. The reversed bound quiver of a bound quiver Q = (Q, I)
is the bound quiver Q™ := (Q™", I™®V).

1.1.2. Auslander-Reiten theory and 7-tilting theory. This short section is mainly meant to
fix notations and recall some definitions. The interested reader is referred to [ASS06, Sch14] for
detailed accounts of Auslander-Reiten theory, and to [ATR14] for 7-tilting theory.

Definition 1.1. Let k be a field. A representation of a bound quiver Q = (Q,I) is a pair
M = ((M’U)UGQO’ (Ma)aGQl)a where
e M, is a k-vector space for all v € Qg, and
® My : My — My(q) is a linear map for all a € Q1, such that My :=M,, 0---0M,, =0
for any path m =y ...ap in I.

We will always assume that representations are finite-dimensional, that is, that all the spaces M,
are finite-dimensional.
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A morphism of representations f : M — N from a representation M to a representation N is
a tuple f = (fv)veq,, Where
e f,: M, — N, is a linear map for all v € Qq, and
o for all a € Q1, the equality Ny o fs(a) = fi(a) © Ma holds.

Representations of a bound quiver @, together with morphisms of representations, form a cat-
egory rep Q. This category is equivalent to the category of finite-dimensional modules over the
algebra kQ/I. As consequences of this, rep @ is abelian, has enough projective and injective ob-
jects, and thus every object of rep () admits a projective and an injective resolution. Projective and
injective representations can be explicitly computed (see, for instance, [ASS06, Chapter I11.2]).
In particular, there is a canonical bijection v — P(v) from Qg to a set of representatives for the
isoclasses of indecomposable projective representations of Q. Another consequence is that any rep-
resentation can be written in a unique way as a direct sum of indecomposable representations, up to
isomorphism. In other words, the category rep @ satisfies the Azuyama — Krull - Remak — Schmidt
Theorem. In view of the above, we will often use the words “module” and “representation” to mean
the same thing.

An important operation on representations is the Auslander-Reiten translation (see [ASS06,
Chap. IV]). For an indecomposable representation M, let

e M
PM L PM M -0
be a minimal projective presentation. Applying the Nakayama functor v = DoHomyg/7(—, kQ/1I),

where D = Homy (—, k) is the standard vector space duality, one gets a morphism between injective
representations

MM o
vP" — vF".

Definition 1.2. (1) Using the above notation, the Auslander-Reiten translation M of M is
defined to be the kernel of v f.
(2) [AIR14] A representation M is 7-rigid if Homg (M, 7M) = 0.

It is convenient to introduce the following notation and terminology. If P is a projective
representation of @, then the associated shifted projective is the symbol P[1]. We treat P[1] as an
object, and allow ourselves to form direct sums of shifted projectives with other shifted projectives
and with ordinary representations of Q. By convention, the shifted projectives are 7-rigid.

Definition 1.3. With this notation, and following [AIR14], we say that M & PJ[1] is
(1) a 7-rigid representation if
e M is a representation of Q and P is a projective representation of Q,
e M is 7-rigid, and
e Homg(P, M) = 0.
(2) a support T-tilting representation if moreover the number of pairwise non-isomorphic in-
decomposable summands of M & P is the number of vertices of Q.

Note that A = kQ/I and A[1] are always support 7-tilting modules.

Definition 1.4. Two representations or shifted projectives M, N of Q are said to be T-compatible

precisely when M & N is a 7-rigid representation of Q.

Remark 1.5. In [ATR14], the notation (M, P) is used instead of M & P[1]. Our choice of notation

is motivated by the link between 7-rigid representations and so-called 2-terms silting complexes.

Remark 1.6. Let v € QQo, then Homg (P(v),M) = 0 if and only if M, = 0. More generally,

if v1,..., vy are vertices of Q, then Homg (6, P(v;), M) = 0 if and only if M, = 0 for all j € [r].
One of the most important results on support 7-tilting objects is the existence and uniqueness

of a mutation.

Theorem 1.7 ([AIR14]). Let N = D,c(,) Ni be a support T-tilting object, where each N is either
an indecomposable representation or a shifted indecomposable projective representation. Then for
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anyi € [n], there exists a unique indecomposable representation or shifted indecomposable projective
representation N| not isomorphic to N; and such that

(V)= N DN,
i
is a support T-tilting object (called mutation of N at Nj;).
Definition 1.8. Let Q = (Q,I) be a bound quiver and A = kQ/I be its bound algebra.

e The support 7-tilting complex K57"1(Q) is the simplicial complex whose vertices are the
isomorphism classes of indecomposable 7-rigid or shifted projective representations of A
and whose faces are the collections of representations { My, ..., My} such that M1 ®- - -® M,
is T-rigid.

e The support 7-tilting graph Ks™(Q)* is the dual graph of KC™-%!%(Q) with a vertex
for each isomorphism class of support 7-tilting modules over A and an edge between two
vertices T and U if and only if U is a mutation of T'.

Example 1.9. Two examples of support 7-tilting graphs and support 7-tilting complexes are
given in Figure 14.

1.1.3. String and gentle algebras. String algebras are a class of path algebras defined by
generators and particularly nice relations. The study of their representations goes back to [GP68],
see also [DF78] and [WW85]. We will follow the general framework established in [BR87].
Definition 1.10 ([BRS87]). A string bound quiver Q:= (Q,I) is a bound quiver such that

e cach vertex v € Yy has at most two incoming and two outgoing arrows,

e the ideal I is generated by paths,

e for any arrow § € QQ1, there is at most one arrow a € @)1 such that ¢(a) = s(8) and afs ¢ I,
e for any arrow 8 € @1, there is at most one arrow v € @1 such that ¢(3) = s(v) and 8y ¢ I.

The algebra kQ/I is called a string algebra.

Example 1.11. We have represented in Figure 1 four examples of string bound quivers. Through-
out the paper, we draw e-S.ex>" e to indicate that a3 € I.

Definition 1.12 ([BR87]). A gentle bound quiver Q :=(Q,I) is a string bound quiver such that

e [ is generated by paths of length exactly two,
e for any arrow 3 € Q1, there is at most one arrow a € Q1 such that t(«) = s(8) and a8 € I,
e for any arrow § € @1, there is at most one arrow v € Q1 such that ¢(5) = s(v) and 8y € I.

The algebra kQ/I is called a gentle algebra.
Example 1.13. In Example 1.11, only the first and last bound quivers are gentle.

String algebras enjoy a particularly nice representation theory: they are tame algebras (as
proved in [BR87]) and their indecomposable representations are completely classified. We will
make heavy use of this classification, which we recall in the next two sections.

e ., B. e . 50 N .
Q= >o< Q= (e 0= o(° ~ Q=0__9~—6
® T o ® ’

I = (af3,796) I = (af,~6, ad) I = (af,Bv,5°) I=(pv)

FIGURE 1. Four string bound quivers. The leftmost and rightmost are gentle bound quivers.
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1.1.4. Strings and bands. For any arrow « of any quiver Q, define a formal inverse o' with the
properties that s(a™!) = t(a), t(a™!) = s(a), @ ta = g4(q) and aa™! = £4(,), where &, is the path
of length zero starting and ending at the vertex v € Q. Furthermore, let (a=!)~! = a; thus (—)~*
is an involution on the set of arrows and formal inverses of arrows of (). We extend this involution
to the set of all paths involving arrows or their formal inverses by further setting (¢,)~! = ¢, for
all vertices v € Qq.

Definition 1.14. Let Q = (Q, ) be a string bound quiver.

(1) A string for @ is a word of the form p = aj'a5? - - - aj’, where

e a; €@ and g; € {—1, 1} for all i € [(],

o t(af) = s(agiy!) for all i € [ — 1],

e there is no path 7 € I such that m or 7~! appears as a factor of p, and

e p is reduced, in the sense that no factor aa™! or a~'a appears in p, for a € Q;.
The integer ¢ is called the length of the string p. Moreover, we still denote by s(p) :=s(af?)
and t(p) :=t(a;") the source and target of p. For each vertex v € Qo, there is also a string
of length zero, denoted by e,, that starts and ends at v. We denote by S(Q) the set
of strings on Q. We usually denote strings by p,o, 7. For reasons that will be explicit
later, we often implicitly identify the two inverse strings p and p~!. More formally, an
undirected string is a pair {p, p~'} and we let S¥(Q) = {{p,p~'} | p € S(Q)} denote the
collection of all undirected strings of Q.

(2) We call negative simple string a formal word of length zero of the form —v, where v is any
vertex of Qp. We denote by ST (Q):=S8*(Q)U{~v | v € Qo} the set of almost positive
unoriented strings. Note that €, and —v are different almost positive strings.

(3) A band for Q is a string @ of length at least one such that

o s(w) = t(w),
e all powers of w are strings, and
e w is not itself a power of a strictly smaller string.

Example 1.15. For the algebra
(v}

B
a+m° I = (55)
o

some almost positive strings are —u, —v, —w, —&, £y, €y, Ews €z, @T, B, ¥, 5, 48, By, ete.
The only bands are 8y 'a, afy ™!, v 'aB and their inverses.

Notation 1.16. The following notation, taken from [BR87], will be useful for dealing with strings.
For a given string p = af'a5? - - - a;*, we draw p as follows:

e draw all arrows aj, ..., ay from left to right;

e draw all arrows pointing downwards.
Moreover, the strings e, of length zero are depicted simply as v. Be aware that even if the string
is depicted linearly form left to right, it might have cycles since some substrings can be repeated
along the string.

Example 1.17. For the algebra defined in Example 1.15, the string p = v8 'a 'y ta~ 144 is
drawn as follows:
N
_ a2 8/° N}
NI
.

. .
Definition 1.18. A substring of a string p is a factor of p. Note that the position of the substring
in p is important and that a word can appear as distinct substrings of p in different positions.
Observe also that we allow substrings of length 0, which we will abusively call vertices of p.
If u,v are two vertices of p, we denote by plu,v] the substring of p between v and v. We also

p
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L] o, '/'\' X J ] ., X J
N A SN

NS \./ N\

FIGURE 2. Two top substrings (left) and two bottom substrings (right). Note that substrings of p
can be reduced to a vertex and can end at an endpoint of p.

abbreviate p[s(p),v] by p[-,v] and plu,t(p)] by p[u,-]. A substring of p is strict if it is distinct
from p itself. Finally, we denote by X(p) the set of all substrings of p.

E4 . A . .
; of astring o =aj' - a;’ of Q is said to be:

e on top of o (or a top substring of o) if o either ends or has an outgoing arrow at each

Definition 1.19. A substring p =o' -+«

endpoint of p, i.e.ifi=1ore;_1 =—1,and j =Ll orej;q =1.
e at the bottom of p (or a bottom substring of p) if o either ends or has an incoming arrow
at each endpoint of p, i.e.if i=1ore;_; =1,and j =L or g;41 = —1.

We denote by iop(p) and Liot(p) the sets of top and bottom substrings of p respectively. Note
that p is both in 3op(p) and in Xpes(p).

Example 1.20. Figure 2 represents examples of top and bottom substrings.

Definition 1.21. A peak (resp. deep) of a string p is a vertex v of p (substring of length 0) which
is on top (resp. at the bottom) of p. We call corners of p the peaks and the deeps of p. A corner is
strict if it is not an endpoint of p. In other words, v is a strict peak (resp. deep) if the two incident
arrows of p at v are both outgoing (resp. incoming).

Example 1.22. The string of Figure 2 has 4 peaks and 5 deeps (3 of which are strict).

Remark 1.23. Note that reversing the quiver preserves the set of strings and their substrings but
exchanges top with bottom: X(p™") = X (p*V) but Xpet(p™V) = Ziop(p) and Ziop (p7V) = Lot (p)-

1.1.5. String and band modules. Following [BR87], we now define A-modules corresponding
to the strings and bands of a string algebra A = kQ/I.

Definition 1.24 ([BR87]). Let p = aj'a5? - -- o}’ be a string for a string algebra A = kQ/I. The
string module M (p) is the A-module defined as a representation of @ as follows.
e Let vg = s(af'), and v, = t(ar) for each m € [£].
e For each vertex u € Qo, let M(p),, be the vector space with basis given by {2, | v, = u}.
e For each arrow 3 of @, the linear map M (p)s : M(p)sizy — M(p)y(p) is defined on the
basis of M(p)sg) by

Tm_1 if ap, =0 and g, = —1,
M(p)g(xm) = § Tmy1 if gy =F and epyq =1,
0 otherwise.

It follows from the definition that for any string p, the string modules M (p) and M(p~1!) are
isomorphic. This explains why we will often consider undirected strings.

Example 1.25. For the algebra given in Example 1.15, let p = y8~ta~1y3 ta~1v4. Then M(p)
is given by
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Notation 1.26. e For convenience, even though 0 is not a string by our definition, we will
define M (0) to be the zero module.
e For any vertex v € Qo, the projective P(v) is M (vpeak) Where vpeak is the maximal string
of Q with a single peak at v.
e We will also make use of the following convention: for any v € Qg, we let M (—v) be the
shifted projective P(v)[1].
Definition 1.27 ([BR87]). Let w = oj'a3*---«a;* be a band for a string algebra A = kQ/I.
Moreover, let A € k*, and let d € N5g. The band module M (w, A, d) is defined as follows.
e For each vertex v € o, the vector space M (w, A, d); is equal to k<.

e For each arrow v € @ different from ay, the linear map M (w, A, d), is the identity.
e The linear map M(w, A, d)q, is equal to Jy(A%), where

A0 - o0

1 A

JaN) =10 1
A0
o --- 0 1 A

is the d x d Jordan block of type A.

It follows from the definition that the band modules M (w, \,d) and M (w1, A7, d) are iso-
morphic. Moreover, if @ and @’ are two bands that are cyclically equivalent, in the sense that
one is obtained from the other by cyclically permuting the arrows that constitute it, then we also
have that M (w, \,d) and M (@', A\, d) are isomorphic.

Example 1.28. For the algebra defined in Example 1.15, let o = a8y~ !. Then @ is a band, and
the following are band modules

E_1 K 1d
M(w,\ 1) = 1+>}90—0 M(w, A\, 3) = Id+>1;a90—0
[ k3 {/\1 0 0}
1 A7t o
0 1 !

Theorem 1.29 ([BR&7, p.161]). Assume that k is algebraically closed and consider a string
algebra A. Then the string and band modules over A form a complete list of indecomposable
A-modules, up to isomorphism. Moreover,
o A string module is never isomorphic to a band module.
o Two string modules M (p) and M(p') are isomorphic if and only if p' = p**.
e Two band modules M (w, \,d) and M(w’, N, d") are isomorphic if and only if d = d’, and
— either w is cyclically equivalent to @', and A = X,
— orw ™t is cyclically equivalent to @', and A~" = N,

1.1.6. Auslander-Reiten translation of string modules. Our goal in this section is to de-
scribe the Auslander-Reiten translation in a string algebra. This description requires some addi-
tional definitions and notations.

Definition 1.30. We say that a string p

e starts (resp. ends) on a peak if there is no arrow « such that ap (resp. pa~1) is a string,
e starts (resp. ends) in a deep if there is no arrow « such that a=!p (resp. pa) is a string.

Remark 1.31. Definition 1.30 is best understood by drawing strings. Starting (or ending) on a
peak means that one cannot add an arrow at the start (or the end) of p such that the starting
point (or ending point) of the new string would be higher in the picture than that of p. The same
applies when replacing “on a peak” by “in a deep” and “higher” by “lower”.
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Example 1.32. The string in Example 1.17 starts and ends on a peak, and also ends in a deep.

Definition 1.33. (1) Let p be a string that does not start on a peak. Let a,aq,...,q, be

arrows such that pp:=a; % aflap starts in a deep. We say that j,p is obtained from p
by adding a hook at the start of p.

(2) Dually, let p be a string that does not end on a peak. Define pj, := (1(p)~!)~! to be the
string obtained by adding a hook at the end of p.

(3) Let p be a string that does not start in a deep. Let a,aq,...,a, be arrows such that
P =0y ---oqa 'p starts on a peak. We say that .p is obtained from p by adding a
cohook at the start of p.

(4) Dually, let p be a string that does not end in a deep. Define p.:= (.(p)~!)~! to be the
string obtained by adding a cohook at the end of p.

Remark 1.34. Note that in Definition 1.33:

(1) Unless p has length zero, the strings 1p, pn, «p and p., when they are defined, are uniquely
determined. If p has length zero, then one can exchange pp with p, and .p with p..

(2) In all 4 cases, it is possible that » = 0, meaning that the added hook (resp. cohook) is
restricted to a single incoming (resp. outgoing) arrow.

Remark 1.35. In pictures, hooks and cohooks always look like

ANV AN . e
S N NSNS
hooks cohooks

Example 1.36. In the quiver of Example 1.15, the string p = v~ 'a~'vSta~ 14§ of Exam-
ple 1.17 does not start on a deep, and we have

o .y.Q. ) .y.\’y.
=. X/ AN = NS AN
A S X

. ° . °
Still in the same quiver of Example 1.15, the string p = § does not start on a peak, and we have

_ A _.n//.\i.
p= \. hP = \{

p

Lemma 1.37 (and Definition). Let p be a string for a string bound quiver Q.

(1) If p starts on a peak and is not a path in Q, then there exists a unique string p' such that o'
does not start in a deep, and p = .p'. We say that p’ is obtained by removing a cohook at
the start of p and denote it by .-1p. If p is a path in Q, then we put .—1p = 0.

(2) Dually, if p ends on a peak and is not the inverse of a path in Q, then define the string
obtained by removing a cohook at the end of p as p.—1 = (.1 (p~1)) L.

(3) If p starts in a deep and is not the inverse of a path in Q, then there exists a unique
string p’ such that p' does not start on a peak, and p = ,p’. We say that p' is obtained by
removing a hook at the start of p and denote it by p—1p. If p is a the inverse of a path
in Q, then we put j-1p = 0.

(4) Dually, if p ends in a deep and is not a path in Q, then define the string obtained by
removing a hook at the end of p as pp-1:= (-1 (p~ 1))~ L.
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Example 1.38. For the algebra defined in Example 1.15, the string

[ ) .y.y.
p=ap"ta e e = BN ¥ X,
Xy

starts and ends on a peak, and also ends in a deep. Moreover, we have
RN

_ R .a//.\{. = e .a//.\{.ﬂ/. o N B/ d
ST AN N TN N

We now have all definitions to describe the Auslander-Reiten translate of a string module.

Theorem 1.39 ([BR87]). Consider a string algebra A = kQ/I. The Auslander-Reiten translation
transforms string modules to string modules: for a string p of Q, we have T(M(p)) = M (p'), where
the string p’ is obtained by following the table below.

p does not start in a deep | p starts in a deep
p does not end in a deep P = cpe P =n-1(pe)
p ends in a deep P = (cp)n1 P = n-1pp1

Dually, we have Tfl(M(p)) = M(p"), where p" is the string given in the table below.

p does not start on a peak | p starts on a peak
p does not end on a peak P = npn " = c—1(pn)
p ends on a peak P = (hp)e—r Pl = ipe

Finally, both the Auslander-Reiten translation T and its inverse 771 preserve the band modules:
for a band @ of Q, we have 7(M(w)) = M(w) = 7 (M(w)).

1.1.7. Morphisms between string modules. Morphisms between string modules can be read
directly from the combinatorics of strings. The following result is folklore in the theory.
Proposition 1.40. Let p and p’ be two strings for a string algebra A. Then the dimension of the
k-vector space Homy (M (p), M(p')) is equal to

= (# of substrings equal to & on top of p) - (# of substrings equal to & or €1 at the bottom of p').
£ string

1.2. g-VECTORS AND 7-COMPATIBILITY FOR STRING MODULES

1.2.1. g-vectors. The following definition takes its roots in the additive categorification of cluster
algebras, see [DKO08]; it also appears naturally in the theory of 7-tilting, see [AIR14, Sect. 5.1].

Definition 1.41. Let M be a representation of a bound quiver Q, and let
PM P = M—=0

be a minimal projective presentation of M. The g-vector of M is the element
g(M) = [Fy] - [P{]

of the Grothendieck group Ko(proj Q) of the additive category proj Q of projective representations
of Q. If P is a projective representation, then the g-vector of the shifted projective P[1] is

g(Pll])= —[P].

Remark 1.42. A more practical way to think of g-vectors is by noting that Ky(proj Q) is iso-
morphic to the free abelian group B, o, Z[P(v)] = Z%0. Thus, in the notation of Definition 1.41,
if we put P = @, P(0)®* and PM =@, ., P(v)®*, then

g(M) = (av - bU)UGQQ € ZQ0~
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Moreover, if P = P(v)®™ then g(P[1]) = (—ny)veq, -

vEQRo

An application of the combinatorics of strings allows us to compute the g-vector of any string
module.

Proposition 1.43. Let Q be a string bound quiver, and let p be a string for Q. Let A be the set
of wertices on top of p, and let P(A) = @, .4 P(v). Let B be the set of vertices at the bottom of
p which are not at the start or the end of p, and let P(B) = @, .5 P(v). Finally, let

0 if p starts and ends in a deep,
Ro P(t(a)) if p ends in a deep and a~'p is a string, with o € Q1,
N P(t(p)) if p starts in a deep and pf is a string, with 8 € Q1,

P(t(a)) ® P(t(B)) if a=tpB is a string, with a, B € Q1.
Then a minimal projective presentation of the string module M (p) has the form
R@® P(B) — P(A) — M(p) — 0.
Corollary 1.44. The g-vector of a string module M (p) is given by g(M) = a—b —r, where

o a=(ay,)veq,, where a, is the number of times the vertex v is found at the top of p;
o b = (by)veq,, where b, is the number of times the vertex v is found at the bottom of p,
but not at its start or end;

0 if p starts and ends in a deep,
R K1) if p ends in a deep and o 'p is a string, with o € Q1,
€ (p) if p starts in a deep and pB is a string, with 5 € Q1,

€ia) T s if a~1pp is a string, with o, B € Q1
where (e,)veq, is the standard basis of Z9°.

Definition 1.45. Let Q) be a string bound quiver.
(1) If p is a string for @, we define its g-vector as g(p) =g(M(p)).
(2) If —v is a negative simple string for Q, we define its g-vector as g(—v) :=g(P(v)[1]) = —e,.

1.2.2. 7-compatibility. Consider a string bound quiver Q = (Q, I) and its string algebra A = kQ/I.
We now provide a combinatorial criterion for r-compatibility of string modules over A.

Notation 1.46. In the diagrams of this section, we will make repeated use of the following
notation:

waves mean “any string” (possibly of length 0);

brackets () mean “either empty or of the form given inside the brackets”;

plain arrows have to be there;

straight lines stand for hooks or cohooks and might thus be of any length (possibly 0);
dotted arrows mean “there exists”.

Definition 1.47. Let p and p’ be two strings of Q. The string p is said to

(i) attract p’ (or (p’)~1) if the starting vertex v of p’ is not a deep and there exists an
arrow « € 1 from v to u such that
(a) a~!p is a string of Q and
(b) p ends in u or contains an arrow starting at u (see Figure 3);
(ii) dance with p’ (or (p’)~1) if there is some common substring £ on top of p and at the bottom
of p/ satisfying the swinging arms condition explained thereafter. In this definition only,
we call left and right arms of p (resp. p’) the (at most) two arrows in the string p (resp. p’)
incident with £. The swinging arms condition (as illustrated in Figure 5) is the following:
— if p’ has no left arm, then p has a left arm a and a~'p’ is a string of Q,
— if p’ has no right arm, then p has a right arm 8 and p’3 is a string of Q,
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S SR Y N

B SO B

FIGURE 5. The swinging arms condition, as in Definition 1.47 (ii).

Remark 1.48. If £ is not reduced to a vertex, then the conditions a~!p’ (resp. p’3) are strings

follows from the fact that a=1¢ (resp. £3) is a substring of p. If £ is reduced to a vertex, then this
condition is non-empty since it requires a5 ¢ I.

We extend the relation of dancing or attracting to the set S;_l(Q) =8FQ)U{~v|veEQo}
of almost positive strings as follows.

Definition 1.49. Let o be a string in S*(Q) and let v be a vertex of Q. We say that the negative
simple string —v dances with the string o if v is a vertex of o. On the other hand, no almost
positive string dances with the negative simple string —v.

Notation 1.50. In the proposition below, we will make use of the following convention. If P[1]
is a shifted projective, then

e Hom (M, 7P[1]) = 0 for any representation or shifted projective M,
e Homu(P[1],7M) = Homy (P, M) for any representation M.

These choices are motivated by the isomorphism
HOIHA(M, TN) = HOInKb(prOj A) (P]u, PN[l]),

where Pp; and Py are the minimal projective presentations of the representations M and N.
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Remark 1.51. While writing up a first version of the paper, we noticed that a result similar to
the following proposition can be found in [EJR16]. Since our notation and statement differ from
those of [EJR16], we nonetheless include a proof. We also note that, in the proof below, we work
directly with modules over A, while the proof in [EJR16] uses two-term complexes of projectives.

Proposition 1.52. Let p and p' be two almost positive strings for the string algebra A and
let M(p) and M(p') be the associated string modules. Then Homa (M (p), TM(p')) # 0 if and only
if p attracts p’ or dances with p'.

Proof. The case where p or p’ is a negative simple string directly follows from Definition 1.49 and
Notation 1.50. We therefore assume that p and p’ are positive strings. We let p” be the string
corresponding to 7M (p’) obtained from p’ by the rules of Theorem 1.39.

Assume first that p attracts p’ (Figure 6), and let « be as in Definition 1.47. Since p’ does not
start in a deep, p” starts at some substring o - - - o, where ;. - - - g a1 is the cohook at the start
of p’. Let 0 < k < r be maximal such that ay ---«; is a substring (possibly a vertex if k = 0)
of p ending in u, where w is as in Definition 1.47. By definition of a cohook, ay, - - - a; has to be on
top of p, and is at the bottom of p”. By Proposition 1.40, this implies the existence of a non-zero
morphism from M (p) to M (p") = 7M(p’).

FIGURE 6. If the string p attracts p’, then p” is of the form given above.

Assume now that p dances with p’, and let £ be as in Definition 1.47. We distinguish four cases:

(a) If p' = £ (see Figure 7). Then p’ does not start and does not end in a deep so that

P =, BAY - B Y, where - - aqa ! and BB - - BT are cohooks for p/. By

assumption, a~!p’S is a substring of p. Let 0 < ¢ < r and 0 < j < s be maximal such
that «; - - - aloflp'ﬁﬂfl e ﬁ;l is a substring of p. This substring is on top of p and at the
bottom of p”, which shows that Homa (M (p),7M(p’)) # 0 by Proposition 1.40.

FIGURE 7. The string p”, when p dances with p’ and p’ = £ as in case (a).

(b) If there are arrows «, 3 such that a&B~1 is a substring of p’ (see Figure 8). Then p” con-
tains (a)&(371) where the brackets have to be understood as follows: p” either contains £37!
or ends in £ and either contains «f or starts at £. In any case, £ is at the bottom of p”. Since £
is at the top of p by assumption, we have Homy (M (p), 7M(p')) # 0 by Proposition 1.40.

(c) If p' is of the form £3~ 1o (for some B € Q1 and some substring o) and satisfies the swinging
arms condition of Definition 1.47 (ii) (see Figure 9). Then the beginning of p” is c£(871),
where c is a cohook for p’. Note that the swinging arms condition ensures that the cohook c
ends in a~!. One concludes, similarly as in case (a), that there is some substring on top of p
which is at the bottom of p”, so that Homa (M (p), 7M(p')) # 0 by Proposition 1.40.

(d) If p is of the form oag, then (p’)~! is as in case (c), so that Homa (M (p), 7M(p’)) # 0.



NON-KISSING COMPLEXES AND TAU-TILTING FOR GENTLE ALGEBRAS 17

P o
FIGURE 9. When p dances with p’ and p’ = {8710 as in case (c).

This concludes the proof that Homyu (M (p), M (p')) # 0 when p attracts p’ or dances with p.

Conversely, assume that Homy (M(p), 7M(p')) # 0. Then there is some substring v on top
of p and at the bottom of p”. Let £ be the longest substring common to v and p’. We again
distinguish three cases:

(a) If £ is empty (see Figure 10). The substring v has to be contained in some cohook for p’.
We may assume that it is a left cohook. The string p” is of the form p” = .- a1(a”to)
where o, - - aja~! is a left cohook for p’. (We note that removing a right hook to p/ might
remove a~ ! from p”, which explains the brackets). In particular, p’ does not end in a deep.
Moreover, v does not intersect p’ so that it is of the form a; - - - aq, for some 0 < ¢ < r. Here,
we use the following convention: let v be the source of @ and u be its target; then i = 0 means

that v = u. Since p’ starts at v and v is on top of p, we deduce that p attracts p'.

N vepP v

FICURE 10. When Hom, (M (p), 7M(p')) # 0, case (a).

(b) If £ = v. By Lemma 1.53 below and the fact that £ is on top of p, we have that p dances
with p’.
(¢) Assume now that £ is a non-empty strict substring of v. Since £ is not all of v, at least one
cohook was added to p’ when forming p”. We distinguish two cases:
(c1) If v intersects exactly one cohook that was added to p’ (see Figure 11). By symmetry,
we may assume that it is a left cohook. In that case, p’ does not start in a deep and p”
is of the form p” = a,.---aya~ (B~ 1) for some substring o, some arrow 3 and some
cohook a; ---aya~'. Moreover, there is some 0 < i < r such that v = «; --- a1 €.
The proof of Lemma 1.53 shows that p’ is of the form 3~ '¢’. Since v is on top of p, we
have p = p1a~1€(Bp2) for some substrings p1, p2 and some arrow (3. This shows that p
dances with p’ (we note that the swinging arms condition is satisfied).
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[N

FIGURE 11. Case (cl): the string v intersects exactly one cohook.

(¢2) Assume that v intersects two cohooks that where added to p’ (see Figure 12). In that
case, p'" is of the form p” = . - - Y¢BBT L - B where - - -aga~ and BB - BT
are cohooks for £&. Then p’ = £ does not start nor end in a deep. Moreover, v is at the
bottom of p” so that it contains a~'¢B3. The string p also contains a~*¢3 and therefore
dances with £ = p'.

E=p
p// N ° ° IB
[ ¢ [ ] 8
[0
V4 N
p ° °
FIGURE 12. Case (c2): the string v intersects two cohooks. O

Lemma 1.53. Let p’ be a string for A and p” be the string obtained when computing TM(p') as
in Theorem 1.39. Assume that £ is a substring common to p’ and p”, and that £ is at the bottom
of p"'. Then p’ has a substring of the form afB~", for some arrows «, 3.

FIGURE 13. A substring £ at the bottom of p” which is also a substring of p.

Proof. Since & is at the bottom of p”, we have p” = (017)£(671oy), for some substrings oy, 0
and arrows 7,d. If the substring v (resp. 671) belongs to the string p”, then it already belongs
to the string p’. Indeed, adding a cohook to p’ cannot create vy nor §~! as in the string p”. If
does not appear in the string p”, then p” starts by £. Since £ also appears in p’, the string p’ is
of the form hfos for some substring o3 and some hook h. In particular, p’ contain a substring of
the form a&. In case 6—' does not appear in p”, a similar argument shows that some {37! is a
substring of p’. O
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Corollary 1.54. The support T-tilting complex of Q s isomorphic to the clique complex of the
graph whose vertices are the unoriented strings of Q and whose edges link two strings which do
not attract nor dance with each other.

Remark 1.55. The criterion of Proposition 1.52 for 7-compatibility between string modules can
be compared with a similar criterion obtained recently in [cPS17] for the existence of extensions
between two string modules. The similarity between the two criteria is explained by the Auslander—
Reiten formula asserting that Ext'(N, M) is a quotient of the space Hom(M,7N) (see [ASS06,
Theorem IV.2.13]).

Example 1.56. Two examples of support 7-tilting complexes of gentle algebras, illustrating
Corollary 1.54, are shown in Figure 14. The support 7-tilting complexes of the gentle algebras for
all connected gentle bound quivers with 2 vertices are illustrated on Figure 43.

F1GURE 14. The support 7-tilting complex ICST'““(Q) (left) and its dual graph (right). The
string module M(p) is represented by the string p of @ and the preprojective module P(v)[1] is
represented by a hollow vertex at v.
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Part 2. The non-kissing complex

This section focuses on the non-kissing complex of a gentle bound quiver, defined as the clique
complex of a non-kissing relation among walks in a blossoming version of the quiver (2.1). We
prove combinatorially that this complex is a pseudomanifold (2.2), introducing along the way the
definitions of distinguished walks, arrows and substrings (2.2.2) and the operation of flips (2.2.3)
that will be fundamental tools all throughout the paper. We then prove the motivating result of
this paper, namely that the support 7-tilting complex is isomorphic to the non-kissing complex
for any gentle bound quiver (2.3).

2.1. BLOSSOMING QUIVERS

2.1.1. Blossoming quiver of a gentle bound quiver. Let Q = (Q, I) be a gentle bound quiver.
Denote by indeg(v) := [t~ (v)| and outdeg(v) := |s~!(v)| the in- and out-degrees of a vertex v € Qg
and by deg(v) := indeg(v) + outdeg(v) its degree. We start by completing @ such that each vertex
gets four neighbors.

Definition 2.1. The blossoming quiver of a gentle bound quiver Q = (Q, 1) is the gentle bound
quiver Q% := (Q¥®, I'®) obtained by adding at each vertex v € Qq:

e 2 —indeg(v) incoming arrows and 2 — outdeg(v) outgoing arrows,

e relations such that vertex v fulfills the gentle bound quiver conditions of Definition 1.12.
Note that each vertex of Qg has precisely two incoming and two outgoing arrows in Q¥®. The
vertices of QF \. Qo are called blossom vertices, and the arrows Q¥ \ Q; are called blossom arrows.

Example 2.2. A gentle bound quiver Qeyxy, and its blossoming gentle bound quiver Q¥ are
represented in Figure 15.

SN s

FIGURE 15. A gentle bound quiver Qexn (left) and its blossoming gentle bound

quiver Q¥ (right). Blossom vertices are white and blossom edges are thin.

O

(0]

The following lemma is immediate and left to the reader. See Figure 15 for an example.

Lemma 2.3. The number of vertices and arrows of the blossoming quiver Q¥ are given by

Q5] = 1Qo| +2A =5|Q0| — 2Q1]  while  |QF| = |Q1] + 2A = 4]Qo| — Q1]

where
A:=2|Qo| — |@Q:1] = % Z (4 — deg(v)) = Z (2 — indeg(v)) = Z (2 — outdeg(v))
vEQo vEQo veQo

is the number of incoming (or equivalently outgoing) blossom arrows of Q.
Note that any arrow « € Q1 is incident with 6 other arrows of Q%l%. Therefore, any o € ()1 can

be continued to a string both at its source and target in two ways (switching or not origntation).
It follows that a string in Q¥ is maximal if and only if it joins two blossom vertices of Q¥.
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Definition 2.4. A walk of Q is a maximal string in Q¥ (thus joining two blossom vertices of Q®).
We denote by W(Q) the set of all walks on Q). Note that W(Q) is finite if and only if Q has a
relation in any non-kissing cycle As for strings, we often implicitly identify the two inverse walks w
and w™!, and we let WE(Q):= {{w,w '} | w € W(Q)} denote the set of undirected walks.

Example 2.5. Figure 19 shows many examples of walks on the gentle quiver Qexm of Figure 15.

Definition 2.6. We call substring of a walk w € W(Q) the strings of S(Q) which are factors of w.
We insist on the fact that we forbid the blossom endpoints of w to belong to a substring of w. We
denote by X(w) the set of substrings of w and by Yiop(w) and Epe(w) the sets of top and bottom
substrings of w respectively. We use the same notations for undirected walks (of course, substrings
of an undirected walk are undirected).

Definition 2.7. A walk w is straight if it has no corner (i.e. if w or w™l is a path in Q¥), and
bending otherwise Let Wt (Q) and Wiena(Q) denote the sets of straight and bending walks of ¢
and let W (Q) = = {{w, 0™} | w € We(Q) } and WE Q)= {{w,w™} | w € Whena(@Q) }

Definition 2.8. A peak walk (resp. deep walk) is a walk that switches orientation only once, at
a peak (resp. deep). For v € Qo, we denote by vpear the peak walk with peak at v and by vdeep
the deep walk with deep at v.

Remark 2.9. Observe that blossoming and reversing commute: (Qre")* = (Q*)rv. In particular,
the undirected walks in ) coincide with the undirected walks in Q*V. However, bottom and top
substrings are reversed: Yo (w™Y) = (Ztop(w))rev and Sop (W) = (Shot (W))’Fev

2.1.2. Dissection and grid bound quivers. Throughout the paper, we will illustrate our results
with two specific families of gentle bound quivers:

Dissection quivers. The following is motivated by the works of Y. Baryshnikov [Bar01], F. Chapo-
ton [Chal6], and A. Garver and T. McConville [GM16]. Consider a convex polygon P and a
dissection D of P, i.e. a collection of pairwise non-crossing internal diagonals of P. The dissection
bound quiver of D is the gentle bound quiver Q(D) with a vertex for each diagonal of D, with
an arrow connecting any two diagonals of D that are counterclockwise consecutive edges of a cell
of D, and with a relation between any two arrows connecting three counterclockwise consecu-
tive edges of a cell of D. Note that the blossoming quiver Q®(D) of Q(D) is obtained similarly
by considering as well the boundary edges of the polygon P (however, observe that a boundary
edge whose endpoints are both incident to a diagonal of D should be duplicated into two distinct
blossom vertices). See Figure 16 (left). Note that the walks of Q(D) correspond to the diagonals
joining two blossom vertices of Q¥ (D) and intersecting a connected set of diagonals of D. These
diagonals are called accordion diagonals of D in [MP17] (they correspond to accordions in D).

Grid quivers. The following is motivated by the works of T. K. Petersen, P. Pylyavskyy and
D. Speyer for staircase shapes [PPS10], of F. Santos, C. Stump and V. Welker on Grassmann

O

FIGURE 16. A dissection bound quiver Q(D) (left) and a grid bound quiver Q(L) (right), together
with their blossoming quivers.
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FIGURE 17. An oriented path Qpa is simultaneously a triangulation and a grid bound quiver (left).
A facet of the reduced non-kissing complex Cnx(@Qpa) can be seen equivalently as a triangulation
or as a collection of non-kissing south-east paths (right).

associahedra [SSW17], and of T. McConville [McC17] and A. Garver and T. McConville [GM17]
for arbitrary grid bound quivers. Consider a connected subset L of the integer grid Z2. The grid
bound quiver of L is the gentle bound quiver Q(L) obtained as the induced subgraph of the grid
where edges are oriented in the direction of the increasing coordinates (meaning north and east),
and with a relation for each length 2 path with a vertical and a horizontal steps. The blossoming
quiver Q¥(L) of Q(L) is obtained similarly by considering as well the neighbors of L (however,
observe that a vertex of the grid with two or more neighbors in L should be duplicated into two
or more distinct blossom vertices). See Figure 16 (right) for an illustration. Note that the walks
of Q(L) correspond to the maximal south-east lattice paths in Q¥(L).

Oriented paths. Some quivers are simultaneously dissection and grid bound quivers. This is in
particular the case of any oriented path, which is both the dissection bound quiver of an acyclic
triangulation (with no internal triangle) and the grid bound quiver of a ribbon of Z2. This is
illustrated in Figure 17 (left).

2.2. THE NON-KISSING COMPLEX

We now define and study first elementary properties of the non-kissing complex of a quiver. This
section is inspired from previous works on grid bound quivers [PPS10, SSW17, McC17, GM16].

2.2.1. The non-kissing complex. Let Q = (Q,I) be a gentle bound quiver and Q¥ = (Q%, I'¥)
denote its blossoming quiver. The following definition is schematically illustrated in Figure 18 (left).

Definition 2.10. Let w,w’ € W*(Q) be two undirected walks on Q. We say that w kisses w’
if Siop(w) N Epot(w’) # @, i.e. if there exist a common substring o € S*(Q) of w and w’ such
that the arrows of w incident to o are both outgoing while the arrows of w’ incident to o are both
incoming. We say that w and w’ are kissing if w kisses w’ or w’ kisses w (or both).

Note that we authorize the situation where o is reduced to a vertex v, meaning that v is a peak
of w and a deep of w’. Observe also that w can kiss w’ several times, that w and w’ can mutually
kiss, and that w can kiss itself. We denote by Wy (Q) the walks on @ which are not self-kissing
and by W3 (Q) = {{w,w™'} | w € Wyk(Q)} their undirected version.

FIGURE 18. A schematic representation of two kissing walks (left) and two crossing walks (right):
w kisses w’ (left) while p crosses v (right). For the crossing walks, we have u <, v while v < p.
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FIGURE 19. (Left) Three walks on the quiver Qeym of Figure 15: the dotted red and orange walks
are non-kissing, but both kiss the plain blue walk. (Right) A maximal collection Feyy, of pairwise
non-kissing walks on the quiver Qexy,: the thin light blue walks are straight, the others are bending.

Example 2.11. Figure 19 (left) provides examples of kissing and non-kissing walks.

Definition 2.12. The non-kissing complex of Q is the simplicial complex Kk (Q) whose faces are
the collections of pairwise non-kissing walks of Wli(Q) Note that self-kissing walks never appear

in K,k (Q) by definition. In contrast, no straight walk can kiss another walk by definition, so that

they appear in all facets of K,k (Q). We thus consider the reduced non-kissing complex Cp(Q) to

be the deletion of all straight walks from Ky (Q).

Example 2.13. Figure 19 (right) shows a facet Fuy, of the non-kissing complex Ky (Qexm) for
the quiver Qeym of Figure 15. The reduced non-kissing complexes of all connected gentle bound
quivers with 2 vertices are illustrated on Figure 43. The reduced non-kissing complexes of two
gentle bound quivers with 3 vertices are illustrated on Figure 20 (left).

Example 2.14. For any vertices v, w € Qq:

e the two peak walks Vpeak and wpeax are non-kissing,

o the two deep walks vgeep and wqeep are non-kissing,

o the peak walk vpeax kisses the deep walk wqeep if and only if there is an oriented path
from v to w in Q.

Therefore, the sets Fpeak := {Upeak | ¥ € Qo} and Fieep := {Vdeep | v € Qo} are both in Cri(Q). It
will follow from Corollary 2.27 that Fpeax and Fgeep are in fact both non-kissing facets of Cni(Q)
that we call the peak facet and the deep facet.

Example 2.15. The non-kissing complex of the dissection and grid bound quivers introduced in
Section 2.1.2 have been studied in details in the literature:

e For a dissection D, the non-kissing complex Cn(Q(D)) was studied by A. Garver and
T. McConville [GM16] and T. Manneville and V. Pilaud [MP17], motivated by preliminary
works of Y. Baryshnikov [Bar01] and F. Chapoton [Chal6] on quadrangulations. The faces
of Coik(Q(D)) correspond to sets of pairwise non-crossing accordion diagonals of D.

e For a subset L of the integer grid Z2, the non-kissing complex Cy(Q(L)) was studied by
T. K. Petersen, P. Pylyavskyy and D. Speyer for staircase shapes [PPS10], by F. Santos,
C. Stump and V. Welker on rectangular shapes [SSW17], and by T. McConville [McC17]
and A. Garver and T. McConville [GM17] on arbitrary grid bound quivers.

e The non-kissing complex of an oriented path is a simplicial associahedron. Figure 17 (right)
shows the correspondence between triangulations of an (n + 3)-gon and facets of the non-
kissing complex of an n-path. The simplicial associahedron was introduced in early works
of D. Tamari [Tamb51] and J. Stasheff [Sta63], in connection to associative schemes and
topological motivations.

Remark 2.16. For any gentle bound quivers Q, Q’, if Q' is isomorphic to either Q or Q*¢V, then

the non-kissing complexes K,x(Q) and K,k (Q') are isomorphic simplicial complexes.
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FIGURE 20. The reduced non-kissing complex Cyi(Q) (left) and the non-kissing oriented flip

graph Gni(Q) (right). The graph is oriented from bottom to top: the peak facet Fpeax appears at
the bottom while the deep facet Fycep appear on top.

2.2.2. Distinguished walks, arrows and substrings. Our next task is to show that the non-
kissing complex K (Q) is pure, i.e. that all maximal non-kissing facets of K1 (Q) have the same
number of walks. We follow the proof of [McC17, Thm 3.2 (1-2)], but we adapt the arguments to
cover our level of generality. We introduce along the way the convenient notions of distinguished

walks, arrows and substrings that will be used throughout the paper.

Definition 2.17. A marked walk w, is a walk w = o' - -- o} € W(Q) with a marked arrow a5".
Note that if w contains several occurrences of aii, only one occurrence is marked.

Definition 2.18. Consider an arrow o € QY and any two distinct non-kissing walks i, v, marked
at an occurrence of a*. Let ¢ denote their maximal common substring containing that occurrence
of a. Since uy # vy, their common substring o is strict, so that u, and v, split at least at one
endpoint of . We define the countercurrent order at « by pi, <q V5 when pu, enters and/or exits o
in the direction pointed by «, while v, enters and/or exits o in the direction opposite to «.
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Example 2.19. On the schematic illustration of Figure 18 (right), the walks p and v are non-
kissing and for the walks ., v, marked at v (resp. at 0), we have p, < vy (resp. v, <s fix).

Remark 2.20. Note that the countercurrent order <,

e is well-defined: if both endpoints of ¢ are in Qq, . (resp. v,) should enter and exit o in
the same direction since p, and v, are non-kissing;

e isindependent of the orientation of p, and v: py <o Vi < (u*)*1 <o Vs <= Uy <o (V4)™
we thus also consider < as a relation on undirected marked walks;

e depends on which occurrence of « is marked on p and v.

Lemma 2.21. For any face F of Knk(Q), the countercurrent order <, defines a total order on
the walks of F' marked at an occurrence of c.

Proof. We prove that <, is transitive. Let A, 14, Vs be three pairwise non-kissing walks marked
at an occurrence of « such that A\, <, px <o V. Let v be a vertex where A, and pu, split. Then
e cither v, contains v, then it must follow u, (otherwise v, < fi4), S0 that Ay <q Vs

e or v, does not contain v, then v, and p, split at a vertex w between o and v. Since py <4 Vs,
w1 (and thus A) leaves w with an arrow in the same direction as «, while v leaves w with

an arrow opposite to the direction of «, so that A\, <4 V.
Moreover, <, is antisymmetric by definition. Finally, any two distinct walks of F' marked at an
occurrence of a are comparable in <,. Therefore, the reflexive closure of <, defines a total order
on the walks of F' marked at an occurrence of a. O

Notation 2.22. In all pictures, we represent the walks passing through « in increasing order
of <, from the left side to the right side of a.. See for example Figure 19 (right).

Consider now an arrow a € Q¥ and a non-kissing face F' € K, (Q) containing the straight walk
passing through a. Let F, be the set of walks of F' containing «, marked at an occurrence of «.
Note that F, # @ since it contains at least the straight walk passing through «, marked at a.
Observe that this straight walk is always the minimal marked walk of F, for the order <., since
it always agrees with the direction of . On the other hand, we can consider the maximal marked
walk of F, for the order <,. Intuitively, it is the most countercurrent walk passing through o
with respect to the direction of «.

Definition 2.23. For an arrow o € Q¥ and a non-kissing face F' € K,(Q) containing the straight
walk passing through a, consider the marked walk w, := max~_ F,, and let w be the walk obtained
by forgetting the mark in w,. We say that w is the distinguished walk of F' at o and that « is a
distinguished arrow on w € F. We write

dw(a, F):= max~_ F, and da(w, F):={a cw|dw(a, F) =w}.
Example 2.24. Distinguished arrows and walks are illustrated on Figure 22 (left).

Example 2.25. For any v € @, the distinguished arrows of the peak walk vpcax in the peak
facet Fpeak are the two outgoing arrows at v, and the distinguished arrows of the deep walk vgeep
in the deep facet Fyeep are the two incoming arrows at v.

The following statement extends [McC17, Thm. 3.2].

Proposition 2.26. For any non-kissing facet F' € Kok (Q), each bending (resp. straight) walk of F
contains precisely 2 (resp. 1) distinguished arrows in F pointing in opposite directions (resp. in
the direction of the walk).

Proof. We first prove that each walk of F' contains at most one distinguished arrow in each
direction. Assume that a walk w has two distinguished arrows «, § pointing in the same direction.
Orient w in this same direction and assume without loss of generality that « appears before 5
along w. Let v be the incoming arrow at v:=s(f) such that v8 € I. Let v:=dw(v, F') denote
the distinguished walk of F' at 7y, considered oriented backward . We denote by ¢ the maximal
common substring of w and v (it can be reduced to €,). Note that ¢ cannot contain « since
otherwise we would have w <, v contradicting the assumption that w = dw(«, F'). Since w and v

1.

)
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FIGURE 21. A schematic illustration of the proof of Proposition 2.26: w cannot have two distin-
guished arrows a, § in the same direction (left), and for each arrow « on w, there is a distinguished
arrow on w in the direction of «v (right). See the proof of Proposition 2.26 for a detailed description.

are non-kissing, w (resp. v/) enters o with an incoming (resp. outgoing) arrow. Let p:=w[-,v] v[v, -]
be the walk connecting s(w) to t(v) via v, using the prefix of w ending at v followed by the suffix
of v starting at v. All these notations are illustrated in Figure 21 (left). We claim that u is
non-kissing with any walk of F', contradicting the maximality of F'.

Assume for the sake of contradiction that there is A € F' such that A and p are kissing. Let 7
be a maximal common substring of A and p where they kiss. Since A does not kiss w nor v (as
they all belong to F'), we obtain that 7 contains v and strictly contains 0. We now distinguish
two cases (see Figure 21 (left)):

(i) If X\ passes through 3, then it enters 7 with an outgoing arrow (since it kisses i), contradicting

the maximality of w in <g.
(ii) If X passes through ~, then it enters ¢ with an incoming arrow (since 7 strictly contains o),
contradicting the maximality of v in <.

We obtained a contradiction in all cases, which shows that u is non-kissing with any other walk of F'.

We now prove that for any arrow « on a walk w in a face F of Knx(Q), there is a distin-
guished arrow on w € F' in the direction of a. If w is not the distinguished walk of F' at «,
consider p:= miny_ {v € F, | w <, v}. Let o denote the maximal common substring of w and u
containing «. Since w and p are distinct, they split at an endpoint of o. At this endpoint, the
arrow 8 of w not in ¢ points in the same direction as « since w <, p. Let A be the distinguished
walk of F' at 8. If A # w, then X either kisses p or contradicts the minimality of p among the
walks {v € F, | w <4 v}. See Figure 21 (right) for an illustration. We conclude that A = w has a
distinguished arrow ( in the direction of «. O

Corollary 2.27. The non-kissing complex Knk(Q) is pure of dimension |Qo| + A = 3|Qo| — |Q1]-
The reduced non-kissing complex Cox(Q) is pure of dimension |Qol.

Proof. Let b (resp. s) be the number of bending (resp. straight) walks in a non-kissing facet F
of Kni(Q). Since each straight walk uses two blossom arrows of Q¥, we have s = A = 2|Qo| —|Q1].
From Proposition 2.26, we obtain by double counting that

2+5=|QF| =4/Qo| —[Qi,  thus  b=[|Qo| and  b+s=3[Qo[—[Qi O

Since each bending walk in a non-kissing facet of C,x (@) has two distinguished arrows, we can
consider the substring they surround.

Definition 2.28. The distinguished string ds(w, F) of a bending walk w in a non-kissing facet F’
of Knk(Q) is the substring of w located in between the two distinguished arrows of w € F. A
string o € S*(Q) is distinguishable if there exists a walk w in a non-kissing facet F e Ku(Q)

such that o = ds(w, F') is the distinguished string of w € F. We denote by Si.(Q) the set of
distinguishable strings of Q.

Example 2.29. For any v € Q1, we have ds(Vpeak, Fpeak) = d5(Vdeep, Fdeep) = €v-
Using material from Part 3, we will characterize distinguishable strings of @ in Section 3.5.1.

We close this section by a technical lemma about distinguished arrows, which will be helpful to
understand the different possible situations in Proposition 2.31.
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Fi1GURE 22. The flip of the orange walk w in the facet Fuyy, of Figure 19. The other two walks u, v
of Fexm involved in the flip are the yellow and green walks. The distinguished arrows on each walk
of Fuyxm are marked with triple arrows.

Lemma 2.30. Consider a bending walk w in a non-kissing facet F € Kk (Q).

(i) If a distinguished arrow o of w is a loop, then there is a string o such that w = cac™t. In
particular, w cannot be distinguished at two loops.
(ii) If the distinguished arrows «, 8 of w are not loops, then aff ¢ I and fa ¢ 1.

Proof. For (i), write w = poac— 17 for some strings p, o, 7 with ¢ maximal, and assume that p
and 7 are non-empty. Then the last arrow v of p points towards o (otherwise, by maximality
of o, the first arrow of 7 would point outwards ¢ so that w would be self-kissing). Let A be the
distinguished walk of F' at v and let £ be the substring of o contained in A. Since w is distinguished
at «, and since « is a loop, £ is a strict substring of . Since w and A are non-kissing, \ (resp. w)
leaves £ with an outgoing (resp. incoming) arrow. This implies that A <, w, a contradiction. This
shows that p = @ = 7 and w = cao L.

For (ii), assume for example that a8 € I and that w = paoTB~1o¢ for some strings p, o, 7, &
with o maximal (we leave it to the reader to check that the other cases are similar). Since w is not
self-kissing, the first arrow «y of £ points towards o. Let A be the distinguished walk of F' at v and
let ¢ be the substring of ¢ contained in A. Since w is distinguished at o and 3, 7 is a strict substring
of 0. Since w and A are non-kissing, A (resp. w) leaves ¢ with an outgoing (resp. incoming) arrow.
This implies that A <, w, a contradiction. This shows (ii). O

2.2.3. Flips. We now show that the non-kissing complex Cpi(Q) is thin, i.e. that any codimen-
sion 1 non-kissing face of Cyi(Q) is contained in exactly two non-kissing facets of Cni(Q). Here
again, it is more convenient to work with the unreduced non-kissing complex Ky (Q). We adapt
the proof of [McC17, Thm 3.2 (3)]. The following statement is schematized in Figure 23.

Proposition 2.31. Consider a non-kissing facet F € K (Q) and a bending walk w € F. Let o
and B be the distinguished arrows of w, and o be the distinguished substring of w, which splits w
into w = pat. Let o' and ' be the other two arrows of QF incident to the endpoints of ¢ and such
that o’ € I orad € I, and ' € I or 8" € I. Let p:=dw(a/, F~\{w}) and v:=dw(p’', F~{w})
be the distinguished walks of F ~ {w} at o' and B’ respectively. Then

(i) The walk p splits into p = p'or and the walk v splits into v = pot’.

(i) The walk W' :=p'o7’ is kissing w but no other walk of F. Moreover, w' is the only other

(undirected) walk besides w which is not kissing any other walk of F \ {w}.

Proof. Let v (resp. w) be the endpoint of ¢ incident to « and ' (resp. to 8 and ). The walk

splits into p'p’ where ¢(p’) = v and p’ finishes with the marked occurrence of o’ along p. Consider

the walk A:=p’o7. We claim that X is non-kissing with all walks of F. Indeed, assume that there

is a walk 6 € F kissing A, and let £ denote a maximal common substring of A and 6 where they

kiss. Since 6 does not kiss g nor w, the substring £ must contain v. We now distinguish two cases:

e If # contains «, then it enters £ with an outgoing arrow and thus leaves £ with an outgoing
arrow as well, thus contradicting the maximality of w for <,,.
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e If 0 contains o', then it enters o7 with an incoming arrow and thus leaves o7 with an
outgoing arrow (otherwise it would kiss w). Therefore, it enters and leaves £ with an
outgoing arrow, thus contradicting the maximality of u for <.

Since both cases raise a contradiction, we obtained that A is non-kissing with all walks of F.
Since F' is a maximal non-kissing set of walks, we obtain that A\ € F. Assume for contradiction
that A # p, and let € be the maximal common substring of x4 and w containing v. Since p and w
are non-kissing, and p enters £ with an incoming arrow, it leaves £ with an incoming arrow as well.
This implies that u <, A, contradicting the maximality of yu for <,. We conclude that \ = p,
so that the walk p splits into p’o7 and similarly the walk v splits into po7’. In particular, the
string o is common to w and p and v.

We now show that no walk of F' \ {w} can kiss w’. Let A be a walk of F kissing w’, and let £
denote a maximal common substring of A and w’ where they kiss. Since A € F, it does not kiss p
or v, which implies that £ contains o. Assume first that A enters o at v by the arrow /. Since A
and w are non-kissing, it forces \ to leave o, and thus &, at w by the arrow 5. For A and w’ to kiss,
A thus enters & with an arrow in the opposite direction of £, which contradicts the maximality
of p for <,/. By symmetry, we obtain that A contains the arrows a and 5. Now by maximality
of w for both orders <, and <g, the walks A and w of F' cannot split before o or after 3. We
conclude that A = w.

Finally, we prove that w’ is the only walk distinct from w which is non-kissing with any walk
of F~{w}. Let A be a walk such that G = F A {w, A} is non-kissing. Note that in the face F'\ {w},
the walk p is maximal for both <, and <g, while the walk v is maximal for both <, and <g.
Therefore, in the facet G, the walk A should have a distinguished arrow among {o’/, 5} and a
distinguished arrow among {a, 8'}. Since A cannot contain {«, o’} or {3, '}, this imposes that the
distinguished arrows of A are either {a, 8}, or {¢/, 8'}. Assume for example that A is distinguished
at {a,B}. If A # w, then A and w are kissing by Corollary 2.27. This is incompatible with the
maximality of A for both <, and <g. We conclude that A = w. We obtain similarly that if A is
distinguished at {«/, 8}, then A = ', O
Remark 2.32. For latter purposes, observe that one can update distinguished arrows when trans-
forming F to F:

e On w and w’, we always have

w=dw(a, F) =dw(g, F) and W' =dw(d, F') = dw(3’, F").
e On p and v, be aware that two different situations can happen:
— If @ = &' is a loop, then it follows from Lemma 2.30 that
p=v=dw(a,F \ {w}) =dw(f, F) =dw(8, F").
(The situation is symmetric when 8 = £’ is a loop).
— If neither o nor § are loops, then a, 8,a/, " are all distinct by Lemma 2.30 and
p=dw(a’, F) =dw(8, F') and v =dw(a, F’)=dw(3,F).
Note that it can still happen that ;= v or that p or v are straight walks.
e Finally, all the other distinguished arrows on the walks of F'N F” are preserved.

Corollary 2.33. The non-kissing compler Cox(Q) is a pseudomanifold without boundary.

Definition 2.34. The non-kissing facet F':=F A {w,w’} is obtained from F' by the flip of w. We
say that the flip is supported by the common substring o = ds(w, F') = ds(w’, F') of w and w'. The
facets ' and F' are adjacent facets. The (non-kissing) flip graph of @ is the dual graph G, (Q)

of Chk (@), whose vertices are the non-kissing facets of C,,x (@) and whose edges are pairs of adjacent
non-kissing facets.

Example 2.35. Figure 22 illustrates a flip in the non-kissing complex of the quiver of Figure 15.

Definition 2.36. If the common substring o of w and w’ is on top of w and at the bottom of w’,
then we say that the flip F' — F” is increasing and that the common substring o is an ascent of F'
and a descent of F’. We denote by asc(F) C S*(Q) and des(F) C S*(Q) the sets of ascents and
descents of F' respectively.
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FIGURE 23. A schematic representation of flips in the non-kissing complex (see Proposition 2.31).
The flip exchanges the walk w = po7 in the facet F' (left) with the walk w’ = p’o7’ in the facet F’
(middle), using the walks u = p'orT = dw(o/, F \ {w}) and v = por’ = dw(f', F \ {w}). The
walk w’ kisses w but no other walk of F' (right).

This provides a natural orientation of the non-kissing flip graph G, (Q). We still denote

by Gnk(Q) the oriented flip graph. The purpose of Part 3 is to show that the non-kissing ori-

ented flip graph is the Hasse diagram of a congruence-uniform lattice when Cp(Q) is finite.

Example 2.37. The non-kissing oriented flip graph is represented in Figure 43 for all connected
gentle bound quivers with 2 vertices and in Figure 20 (left) for two gentle bound quivers with 3
vertices. In all pictures, graphs are oriented bottom-up.

Example 2.38. Oriented flip graphs were studied carefully in [GM16, MP17, McC17] for the
dissection and grid bound quivers introduced in Section 2.1.2. Note that when the quiver is
an oriented path Qpa, a flip in a facet of the non-kissing complex Ian(Qpa) corresponds to the
classical flip of a diagonal in the corresponding triangulation (see Figure 17). Moreover, the flip
is increasing if and only if the slope of the diagonal increases along the flip.

Remark 2.39. Reversing all arrows reverses the orientation of the flips: Gui(Q™) = Gui(Q)™".

2.3. NON-KISSING COMPLEXES VERSUS SUPPORT T-TILTING COMPLEXES

In this section, we start the dictionary of Table 1 between algebraic notions on the support
T-tilting complex of a gentle algebra and the combinatorial notions on the non-kissing complex of
its blossoming quiver.

2.3.1. From walks to strings. Recall that Q = (Q,I) is a gentle bound quiver. Since Q is a
subquiver of Q®, we can identify a string o of Q with a string ¢® of Q¥ with endpoints in Qo.
The following lemma is immediate from the definition of a blossoming quiver.

Lemma 2.40. For a directed string o € S(Q), the string c{* does not start or end in a deep, so
that we can define a bending walk w(o) = (0®). € Wgtend(Q), Conwversely, for a directed bending
walk w € Wlind((?) not in the deep facet Faeep, the string .—1w.—1 has endpoints in Qo, so that it
is a string o(w) € S(Q). The induced maps

_ w _

Si (Q) \T Wt:)tend (Q) N Fdeep

are inverse bijections. Putting w(—v) = vdeep and 0(Vdeep) = —v, they extend to inverse bijections

+ (A Y oyt A

S51(Q) == MWiena(@Q)-

Example 2.41. Figure 24 illustrates the map ¢ = w™! for two quivers on 3 vertices.

Remark 2.42. In the case of gentle algebras arising from grids, the computation of the string
module M (o) is made easier by the fact that the indecomposable representations are determined
by their dimension vectors. This dimension vector is computed by counting the number of kissings
between w(c) and the deep walks. More precisely, for any string ¢ € S*(Q) and any vertex v € Qo,
the dimension of M (o), is the number of kisses between the deep walk vgeep and the walk w(o).

Lemma 2.43. Let 0 and o’ be two strings for the gentle bound quiver Q. Then o attracts o' or
dances with o' if and only if w(o) kisses w(o”’).
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FIGURE 24. The inverse bijections o and w for two specific quivers.

Proof. In this proof, we freely identify a string p for Q with the corresponding string p¥ for Q®.

Assume that o attracts o’. Then w(o”) is of the form o, - - - aya~'o’ BB - - - 1 for some r > 1,
5 >0 and cohooks a, ---aja~! and 55;1 .-+ 871, We note that the arrow « is in @Q; by Defini-
tion 1.47 and that all arrows in w(c’) belong to Q; except for the blossoming arrows «, and f;.
Since the arrow «,.- is blossoming, there is some substring «; --- a1, with 0 < ¢ < r, which is on
top of w(o) (see Figure 25). Here again, we use the convention that «; - a3 = t(a) = w if i = 0.
Moreover, «; - - - aq is at the bottom of w(o”), so that the walk w(o) kisses w(c’).

FIGURE 25. The walks w(o) and w(o’) when o attracts o’.

Assume that o dances with ¢’, and let £ be the substring on top of o and at the bottom of ¢”,
as in Definition 1.47 (ii). We distinguish three cases:

(a) If £ = o/, then 0 = 010 1¢Bo, for some substrings 01,09 and arrows «,3 € Q;. As a
consequence, w(o’) is of the form o, ---aja='e’'BB; " --- B for some r,5 > 1, and co-
hooks . ---aja~" and BB;*--- B where a,, 3, are blossoming. There exist 0 < i < r
and 0 < j < s such that «;--- a0 BB ﬁ;l is a substring on top of w(o) (see Fig-
ure 27). Since it is at the bottom of w(o’), the walk w(c) kisses w(o’).

(b) If o’ is of the form o} aéB~tah, then w(o’) contains afB~! as a substring. Moreover, & being on
top of o, w(o) contains some substring of the form y~1£§. This shows that w(o) kisses w(o”).

(c) If o’ = o} a for some substring o} and some arrow a, then o is of the form o = (o177 1)¢B0,
where a3 is a string for Q. Tt follows that w(o) kisses w(o’) along some substring 48, - - - B;l
(see Figure 29), where 83, " - ﬁ;l .-~ 871 is a cohook for o® and j > 0.

We now assume that w(o) kisses w(o’). Let £ be a substring which is strictly on top of w(o)
and strictly at the bottom of w(o’). Note that this implies that £ is also on top of o (but not
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necessarily strictly on top). It is possible to show that o attracts or dances with ¢’ by using the
same method as in the proof of Proposition 1.52. However, we choose an alternative proof, showing
instead that Homy (M (o), 7M(o’)) # 0, which implies the result by Proposition 1.52. Write
w(o) =ap--- oqcfla'ﬁﬂfl -+ 371 where 7,5 > 0, and where if 7 > 1, o, is a blossoming arrow
and a1, -+ ,a._1,a € 1 while if r = 0 « is a blossoming arrow; and similarly for ﬁﬁfl R
Assume first that r and s are positive. Then 7M (0”) is given by the string 0" = a1 ---ana~ o’ BB -+ B
Thus, ¢ is at the bottom of o” and Homu (M (o), 7M(c")) # 0.
Assume that exactly one of r, s equals 0. By symmetry, we may assume that » = 0, which is
equivalent to ¢’ starting in a deep. Since £ is strictly at the bottom of oflo'ﬁﬂfl S BTY it s
also strictly at the bottom of ¢/887 " --- 87! (see Figure 26). This implies that ¢ is at the bottom

S

of -1 (0’88 -+ B11), so that Homy (M (o), 7M(0")) # 0.

w(o’)

’\MAN\’Y
beginning of &
[ ]

Be

B

FIGURE 26. The walk w(o’) when » =0 and s > 0. The arrow v “protects” ¢ from being deleted
when removing a left hook for o’.

Finally, assume that r = 0 and s = 0. In that case, £ is strictly at the bottom of ¢’. It is thus
at the bottom of ;-1(c¢”),-1 and this gives a non-zero morphism in Homu (M(0),7M(c")). O

We conclude this section with the observation which motivated this paper.

Theorem 2.44. For any gentle quiver Q = (Q,I), the maps

851(Q) == W@

nduce

e isomorphisms of simplicial complexes between the support T-tilting complex K™ *(Q) and
the non-kissing complex an(Q),

e isomorphisms of oriented graphs between the graph of left mutations in K*7%(Q) and the
graph of increasing flips in Cpi(Q).

Proof. The theorem is a direct consequence of Lemma 2.43, except for the fact that increasing
flips correspond to left mutations. We use the notation of Proposition 2.31 and Figure 23: let
F and F’ be two adjacent facets such that the flip of F' to F’ is increasing, let w and w’ are
the walks such that F \ {w} = F' <~ {w'}, let {a, 5} = da(w,F) and {&/,5'} = da(w', F'),
let & = ds(w, F) = ds(w’, F'), and let p = dw(a/, F) = dw(5, F’) and v = dw(f’, F) = dw(a, F”).
We consider the four associated strings o(w), o(w’), o(n) and o(v). Note that p could be a straight
walk, in which case we let o(u) be @ so that M(co(p)) = 0, and similarly for v. Since the
statement is trivially satisfied when w’ is a deep walk, we may assume that it is not the case.
We claim that the representation M (o(w’)) is a quotient of M (o (u)) & M (o(v)), which implies
the statement by [AIR14, Def—Prop. 2.28]. First note that the distinguished string £ is also a
substring of w (use a and ). We distinguish five cases, depending on which of the distinguished
arrows o’ and 3’ belongs to some cohook in w’. Assuming first that o/, 8’ both belong to o(w’),
then there is a short exact sequence 0 — M (o(w)) = M (o(n)) & M(o(v)) — M(o(w')) — 0.
Assume next that o belongs to some (left) cohook for w’, but that 5’ belongs to o(w’). This
implies that v is not a straight walk and that o(w’) is a substring on top of o(v), thus giving a
sujection M (o(v)) — M(o(w’)). The symmetric case gives a surjection M (o (p)) — M (o(w')).
Assume that the distinguished arrows o', 3’ both belong to the same cohook. By symmetry, we
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FIGURE 27. The walks w(o) and w(o’) when o dances with o’: case (a).

FIGURE 28. The walks w(o) and w(o’) when o dances with ¢’: case (b).

FIGURE 29. The walks w(o) and w(o’) when o dances with o’: case (c).
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may assume that it is a left cohook. In that case again, v is not a straight walk and o(w’) is a
substring on top of o(v). Finally, assuming that o’ belongs to some left cohook, while 3’ belongs
to some right cohook for w’, the string o(w’) is easily seen to be on top of both strings o(u)
and o(v). O

Remark 2.45. (1) Considering walks on the blossoming gentle bound quiver allows to obtain
a short exact sequence in rep Q¥ associated with each left mutation:

0— M(w)— M(p)® M) — MW) — 0,

in the notations of Proposition 2.31 and Figure 23. We note that these extensions have a
flavour very similar to the results of I. Canakg and S. Schroll in [¢S17]. In their paper,
the middle term of an extension is obtained by resolving a crossing, while here, a kissing
is resolved into a crossing.

(2) One can check that, in all five cases of the proof above, the morphism M (o(w)) —
M(o(p)) ® M(o(v)) is a left-T approximation with cokernel M (o(w’)), where T is the
direct sum of all M (c())) for A € F . {w} not a straight walk nor a deep walk. However,
this approximation is not injective in general.

Example 2.46. The map o of Figure 2.41 sends the support 7-tilting complexes of Figure 14 (left)
to the non-kissing complexes of Figure 20 (left).

2.3.2. From walks to AR-quivers. In this section, we remark that, by using walks on Q¥,
it is possible to define combinatorially some translation quiver. We show that this translation
quiver contains enough information to recover the components of the Auslander—Reiten quiver
of @ containing the string modules. Two examples in the representation-finite case are given in
Figure 30.

Proposition 2.47. Let 0 € S(Q) be a string for Q and let 0’ = .o if ¢ does not start in a
deep or ¢ = jp-10 if o starts in a deep. Then the walk w(o) starts in a deep and we have
w(o’) = ¢(,-1w(9))-

Proof. We first note that any walk in Q¥ starts either with a blossoming arrow or with the inverse
of a blossoming arrow. As a consequence, any walk in Q¥ starts in a deep.

We first assume that o does not start in a deep, so that ¢/ = .o. Then w(o) is of the
form o a, - a1a”lov where r > —1, aT-~-a1a_1_is a left cohook for o in Q, o | is a
blossoming arrow, and v is a right cohook for o in Q®. Moreover, 0/ = a,---aja”'o and

n-1w(o) = a,.---aja~tov = o’v. The result follows.

We now assume that o starts in a deep, so that o/ = j,-10. Write 0 = po’ where p is a hook
in Q. Then we have w(o) = (a®)~!uo’v for some cohook v in Q¥ and some blossoming arrow a®
and j,-1w(c) = ¢’v. This implies that w(o’) = C(h,lw(o)). O

Remark 2.48. Assume that Q is representation-finite. It follows from Proposition 2.47 and from
its dual that the Auslander-Reiten quiver of @ can be computed by using walks in Q¥ instead of
strings in Q. The computation is made slightly easier by the fact that irreducible arrows always
correspond to the same elementary move on the walks (replacing a cohook by a hook); while
for strings two different elementary moves appear (adding a hook or removing a cohook). Two
examples of computations are shown in Figure 30. We note that one can slightly extend the AR-
quiver by including straight walks and deep walks. The translation quiver thus obtained resemble
the AR-quiver of an exact category whose projective-injectives are the straight walks, whose non-
injective projectives are the peak walks (corresponding to the projective representations of Q)
and whose non-projective injectives are the deep walks (corresponding to the shifted projective
representations of Q). The category obtained by killing the projective-injectives seems to be
related to two-term silting complexes since its indecomposable objects are the indecomposable
representations of ) and the shifts of the indecomposable projective representations of (. This
remark might deserve further investigation. We also note that, if @ is of type A,,, the translation
quiver described above is not the AR-quiver of the corresponding cluster category: the arrows
from shifted projectives to modules do not appear in this translation quiver.
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Part 3. The non-kissing lattice

This section focuses on lattice theoretic properties of non-kissing complexes. Referring to 3.1
for proper definitions of the lattice theoretic concepts involved, let us immediately state the main
result of this section.

Theorem 3.1. If Q is a gentle bound quiver whose non-kissing complex Cui(Q) is finite, then the

non-kissing oriented flip graph Gk (Q) is the Hasse diagram of a congruence-uniform lattice.

Example 3.2. Theorem 3.1 is already known for the dissection and grid bound quivers:

e For a dissection, it is shown in [GM16].

e For a subset of Z?, it is the central result of [McC17].

e For oriented paths, the non-kissing lattice is the (type A) Cambrian lattice of N. Read-
ing [Rea06]. This contains in particular the classical Tamari lattice for a directed path.

In fact, our proof of Theorem 3.1 is an adaptation of the proof developed by T. McConville
in [McC17]. Namely, we define a closure operator on subsets of strings whose biclosed sets have
a lattice structure (3.2), define a natural lattice congruence on biclosed sets (3.3), and show that
the Hasse diagram of the lattice quotient is isomorphic to the non-kissing oriented flip graph (3.4).

Finally (3.5), we study the join-irreducible elements of £,1(Q) and the canonical join complex
of L£,.(Q) which we call the non-friendly complex as in [GM17].

This section follows the same strategy as that of [McC17, GM17] and many arguments are just
translated to our context. The reader will certainly appreciate that the definitions on arbitrary
gentle bound quivers become somewhat uniform and do not depend on vertical and horizontal
edges as in [McC17]. However, there are two difficulties which make the proofs sometimes more
technical: on the one hand, strings on arbitrary gentle bound quivers are not naturally oriented
and can self-intersect which sometimes creates difficulties; on the other hand, only distinguishable
strings correspond to join-irreducible elements in £, (Q).

In all this section, we assume that Cp(Q) is finite, so that @ has finitely many strings and

walks. Equivalently, there is a relation of I in any non-kissing cycle of @ (oriented or not).

3.1. SOME ALGEBRAIC NOTIONS ON LATTICES

3.1.1. Canonical join- and meet-representations. Consider a finite lattice (L, <, A, V) with
minimal element 0 and maximal element 1. Denote by x < y the cover relations in L, i.e. v <y
such that there is no z € L with < z < y.

Definition 3.3. An element z € L is join-irreducible (resp. meet-irreducible) if z # 0 (resp. = # 1)
and x = yVz (resp. ¢ = yAz) implies x = y or = z. In other words, x covers a unique element x,
(resp. is covered by a unique element z*). We denote by JI(L) and MI(L) the subposets induced
by join and meet irreducible elements of L.

Join- and meet-irreducible elements are building blocks for join- and meet-representations.

Definition 3.4. A join-representation of x € L is a subset J C L such that x = \/J. Such
a representation is irredundant if x # \/J' for a strict subset J' C J. The irredundant join-
representations of an element & € L are ordered by containement of the lower ideals of their
elements, i.e. J < J' if and only if for any y € J there exists ¢y € J’ such that y < ¢ in L.
The canonical join-representation of x is the minimal irredundant join-representation of x for this
order when it exists. The canonical meet-representation is defined dually.

Note that the canonical join-representation does not always exists. However, when it exists, its
elements are necessarily join-irreducible. The existence of canonical join- and meet-representations
are guarantied by the following condition [FN95, Thm. 2.24].

Definition 3.5. A lattice is semi-distributive if
xVz=yVz=2aVz=(xAy)Vz and xANz=yhNz=axANz=(xVy Az

for any z,y, z € L, or equivalently if any element admits canonical join- and meet-representations.
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The following characterization of the canonical join- and meet-representations in a semidistribu-
tive lattice was recently established by E. Barnard [Bar16].

Proposition 3.6 ([Barl6, Lem. 3.3]). Consider a semi-distributive lattice (L,<,V,A). Then

(i) For any cover relation x <y in L, there exists a unique join-irreducible ji(z <y) € JI(L) such
that x Vji(z <y) =y and x AN ji(z <y) = ji(z < y)x.
(i) The canonical join-representation of y € L is given by

y=\ iz <y).
zeL
<Yy

A dual statement also holds for canonical meet-representations.

Finally, as they are closed by subsets, canonical join- and meet-representations naturally define
simplicial complexes.

Definition 3.7. The canonical join complex of L is the simplicial complex on join-irreducible
elements of L whose faces are the canonical join-representations of the elements of L. The canonical
meet complex is defined dually.

Recall that a simplicial complex is flag when its minimal non-faces are edges, i.e. when it is the
clique complex of its graph. The following statement was proved by E. Barnard [Bar16].

Theorem 3.8 ([Barl6, Thm. 1.1]). The canonical join complex of a semi-distributive lattice is flag.

3.1.2. Lattice congruences. We now remind the reader with the definition of lattice congruences
and refer to [Rea04, Rea06] for further details.

Definition 3.9. An order congruence is an equivalence relation = on a poset P such that:

(i) Every equivalence class under = is an interval of P.

(ii) The projection m| : P — P (resp. 7! : P — P), which maps an element of P to the minimal

(resp. maximal) element of its equivalence class, is order preserving.
The quotient P/= is a poset on the equivalence classes of =, where the order relation is defined
by X <Y in P/= iff there exists representatives x € X and y € Y such that x < y in P. The
quotient P/= is isomorphic to the subposet of P induced by 7 (P) (or equivalently by 7' (P)).
If moreover P is a finite lattice, then = is automatically a lattice congruence, meaning that it is

compatible with meets and joins: for any z = z’ and y = 3/, we have zAy = 2/ Ay’ and zVy = 2'Vy/'.
The poset quotient P/= then inherits a lattice structure where the meet X AY (resp. the join XVY')
of two congruence classes X and Y is the congruence classe of z Ay (resp. of z V y) for arbitrary
representatives z € X and y € Y.

Example 3.10. A lattice congruence is illustrated on Figure 33 (left).

Remark 3.11. For a lattice congruence = on a lattice L, the subposet of L induced by = (L) is
automatically a join-sublattice of L, meaning that for any x,y € L, we have 7 (z) V 7 (y) € 7 (L)
However, (L) can fail to be a sublattice of L, since it might happen that 7 (z) A7 (y) ¢ 7 (L)
The dual remark holds for 7T(L).

Note that for any order congruence = the projection maps 7| and 7' satisfy 7| (z) <z < 7' (x),
atont =ntom, =7" and momr) =7 on’ =, and 7" and 7| are order preserving. The fol-
lowing lemma shows the reciprocal statement. It is proved for example in [DHP18, Lem. 4.2].
Lemma 3.12. If two maps nt : P — P and m, : P — P satisfy

(i) m(z) <x < xl(z) for any element x € P,
(ii) ftort =alom =t and myomy =7 o’ =7,
(i4i) 7' and ™ are order preserving,
then the fibers of ' and 7| coincide and the relation = on P defined by

r=y < 7l(@)=7'(y) <= m(x) =7 (y)

is an order congruence on P with projection maps 7' and .
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Definition 3.13. Given two lattice congruences =1, =5 on a poset P, we say that =; refines =,
(or that =5 coarsens =1) when x =; y implies © =5 y. The set of order congruences Cong(P) on P
is partially ordered by refinement. The minimal element of Cong(P) is the complete congruence
(x =y for all ,y € P) while the maximal element of Cong(P) is the empty congruence (x # y for
all z £y € P).

3.1.3. Congruence-uniform lattices. A lattice L is distributive when (zVy)Az = (xA2)V(yAz)
for any z,y,z € L (which implies as well the dual equality (x Ay) Vz = (zV2) A (yV 2)).
Birkhoff’s representation theorem for distributive lattices affirms that any distributive lattice can
be represented as the lattice of order ideals of its subposet JI(L) of join-irreducible elements.

This result plays a particularly relevant role with respect to lattice congruences. Namely, the
refinement poset Cong(L) of lattice congruences on L is known to be a distributive lattice, which
is thus represented by the lattice of order ideals of JI(Cong(L)). For any cover relation x < y
in L, there exists a finest lattice congruence con(z,y) which identifies  and y. The congru-
ence con(z,y) is join-irreducible in Cong(L). In fact, all join-irreducible elements in Cong(L)
are actually of the form con(z,,z) for some join irreducible z € JI(L). In other words, the
map z — con(z,, ) defines a surjection from the join-irreducibles of JI(L) to that of JI(Cong(L)).
Dually, the map = — con(z,z*) defines a surjection from the meet-irreducibles of MI(L) to that
of MI(Cong(L)). In this section, we will be mainly interested in the following family of lattices, for
which the join- and meet-irreducibles of Cong(L) are understood directly from those of L.

Definition 3.14. A lattice L is congruence-uniform if the maps
J(ir) — JI(Cong(L)) and MI(L) — MI(Cong(L))
x>  con(zy,x) x —  con(z,z*)
are bijections.

Remark 3.15. For finite lattices, it is known that
e Congruence-uniformity implies semi-distributivity.
e Congruence-uniformity and semi-distributivity are preserved by lattice quotients: if = is a
lattice congruence on a congruence-uniform (resp. semi-distributive) lattice L, then L/=
is also congruence-uniform (resp. semi-distributive).

3.1.4. Closure operators and biclosed sets. We now consider closure operators and the cor-
responding closed sets. In all this section, the ground set S is assumed to be finite.

Definition 3.16. A closure operator on a finite set S is a map S — S° on subsets of S such that
@cl =g, S C Scl (Scl)cl Scl and SCT— Scl C Tcl

for any S,7 C S. A subset S C S is closed if S°' = S, coclosed if S \. S is closed, and biclosed if
it is both closed and coclosed. We denote by Bic(S) the inclusion poset of biclosed subsets of S.
Finally, we denote by S :=8 \ (S \ S)° the coclosure of S C S.

Note that Bic(S) always has minimal element @ and maximal element S. We omit to mention
the closure operator in the notation Bic(S) since it will be fixed once and for all. The following
result developed in [McC17, Sect. 5] gives a very convenient criterion to show that the inclusion
poset of biclosed sets of S is a congruence-uniform lattice.

Theorem 3.17 ([McC17, Thm. 5.5]). If (S, <) is a poset with a closure operator S +— S such that

(i) for all S,T € Bic(S) with S C T, there exists T € T . S such that S U {7} € Bic(S),

(i) RU((SUT) ~ R)Cl € Bic(S) for R,S,T € Bic(S) with RC SNT, and
(i) if p,o, 7 € S with p € {o,7}' \ {0, 7}, then 0 < p and T < p,
then the inclusion poset Bic(S) of biclosed sets of S is a congruence-uniform lattice.

Remark 3.18. Condition (ii) of Theorem 3.17 applied to R = & implies that

Si,...,S. €Bic(Q) = (Us) € Bic(Q).

i€[l]
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In particular the meet and join of biclosed sets Sy, ..., S, € Bic(Q) are given by

Vsi=(Us)  aa  Asi=s~(Us~s) =(Ns)"
i€f] i€f]

i€[{] i€[(] i€ [{]

Unfortunately, the criterion Theorem 3.17 does not apply directly when singletons are not
closed. The issue comes from the following observation.

Lemma 3.19. For any closure operator S +— S on a ground set S, any biclosed set S € Bic(S)
and any 0 € S, we have 0 € S <= {0} C S < {o}'NS+# 0.

Proof. Since S is closed, we have 0 € S = {0} C S = {0}/ NS # @. Since S is coclosed, we
can apply the same argument to the complement of S, and we obtain o ¢ S = {o}'NS =2. O

In particular, the previous lemma implies that if {o}<! # {0}, then Bic(S) cannot satisfy
Condition (i) of Theorem 3.17.

The following statement is an adaptation of Theorem 3.17 to the case when singletons are not
closed.

Theorem 3.20 (Adapted from [McC17, Thm. 5.2 & Thm. 5.5]). If (S, <) is a poset with a closure
operator S — S such that

(i) for each cover relation S C T in Bic(S), there is a unique 7 € (T'\S) such that SU {7} =T,
(ii) RU((SUT)~ R)" €Bic(S) for R,S,T € Bic(S) with RC SNT, and

(iii) if p,o, 7 € S with p € {o, 7} {0,7}, then o < p and T < p,

then the inclusion poset Bic(S) of biclosed sets of S is a congruence-uniform lattice.

Proof. We follow the proofs of [McC17, Thm. 5.2 & Thm. 5.5]. Let R, S, T, U be biclosed. Assume
that S and T are distinct and both cover R, so that R=SAT. Letc € SN\ Rand 7 € T\ R be
such that S = RU{o} and T = RU {7}°". The conclusion of the theorem follows from the two
points below:

(1) ESAU =T AU, then (SVT)AU = RAU,

(2) If V is biclosed and such that S <V < SV T, then SVT =V U {r}c.

Point (1) shows that Bic(S) is a semi-distributive lattice, while point (2) shows that it admits a
CN-labelling, and is thus a congruence-uniform lattice (see [Rea03, Thm. 4]).
In order to prove point (1), we will make use of the following;:
(0) SVT =RU{o, 1}
We now prove the three points above:

(1) We have RU ({o}? U {7}V = RU {0, 7}°". Condition (ii) thus shows that RU {o,7}¢!
is biclosed. It follows that SV T = RU {o, 7}°.

(2) Welet SAU equal TAU. Assume RAU < (SVT)AU and let p € (SVT) \ R satisty
(RAU)YU{p}! < (SVT)AU in Bic(S). Assume that p € {o}°". Then, p € S. Since
p €U, we have p € SAU = RAU, which is absurd. We thus have p ¢ {o}!. Since S is
coclosed, we have {p}! C S\ S. In particular, o ¢ {p}°'. Similarly 7 ¢ {p}°. We deduce
that {o} U {7} C S~ ((RAU)U{p}). This is absurd because the latter set is closed
and p lies in ({o}' U {7}))! by (0).

(3) Let V be biclosed such that S < V < SV T. There is a unique p such that V U {p}' = SV T.
Then 7 ¢ V (otherwise V would contain o and 7 and thus SV T). We thus have 7 € {p}<,
and {7} C {p}<. Assume that p ¢ {7}, Then p is not in R U {7} which is co-
closed. It follows that {p}* € & \ (RU{7}') which is absurd. We have thus proven
that V U {p}' = VU {7}, so that p = 7. O

3.2. BICLOSED SETS OF STRINGS

Following [McC17, Sect. 6], we now define a closure operator on the set S*(Q) of undirected
strings of Q). First, for two oriented strings o,7 € S(Q), we define

ocot:={oar | o€ @y and car € S(Q)} .
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[ ] ./ Q-.//. | .-0/. O-O//

FIGURE 31. Four sets of strings on the gentle bound quiver Qeym of Figure 15 (left). The first is
neither closed not coclosed, the second is closed but not coclosed, the third is coclosed but not
closed, and the fourth is biclosed.

This extends to sets 5,7 C S(Q) by SoT=U,cq,er
strings 0,7 € S*(Q), we can consider o o 7 as the set of strings of S*(Q) obtained by joining
an endpoint of ¢ to an endpoint of 7 with any arrow a € @};. Note that ¢ o 7 is not necessary
a singleton: it may contain up to 4 strings and can also be empty (e.g. when no arrow joins an
endpoint of o to an endpoint of 7). For a set S of undirected strings of S*(Q), we then define

Sel= U 010---00y.

(eEN
O1,...,00E€S

As there is no ambiguity, we abbreviate the notation Bic(ST(Q)) by Bic(Q).

o o 7. In particular, for two undirected

Example 3.21. Figure 31 illustrates the notion of closed, coclosed and biclosed sets of strings.

Example 3.22. Figure 33 (left) illustrates the inclusion poset of biclosed sets Bic(Q) for a specific
gentle bound quiver. All posets are represented from bottom to top, with their minimal elements
at the bottom and their maximal elements on top.

Example 3.23. When Q is an oriented path with vertices linearly labeled by [n], a string is
determined by its endpoint labels ¢ < j and can thus be represented by the pair (¢, 4+ 1). This
maps biclosed sets of strings to inversion sets of permutations of &,, 4.

Remark 3.24. With the natural identification between undirected strings of a bound quiver Q
and its reversed bound quiver Q™", a subset S is closed (resp. coclosed, resp. biclosed) in ST(Q)
if and only if it is closed (resp. coclosed, resp. biclosed) in S*(Q™V).

To get used to the definition and to provide more examples of biclosed sets, let us immediately
state the following lemma which will be used repeatedly. Recall from Definition 1.19 that a sub-
string o of a string 7 is a top (resp. bottom) substring of 7 if 7 either ends or has an outgoing
(resp. incoming) arrow at each endpoint of o. The set of top (resp. bottom) substrings of ¢ is de-
noted Yiop(0) (resp. Lpot(0)). Note that 7 is simultaneously a top and a bottom substring of itself.

Lemma 3.25. For any string o € S(Q), the closures Lot (o) and Siop (o) of the set of bottom
and top substrings of o are both biclosed. Therefore,

( U zbot(gi)yl and ( M Zeor (O_i)d)Cocl
]

i€le] i€le
are both biclosed for any o1, ...,00 € ST(Q).

Proof. The set Y1,0(0)! is closed by definition. To prove that it is coclosed, consider 7 € Xy,0¢ ().
There are substrings 71, ..., 7¢—1 € Zpot(0), arrows aq, . .., ap—1 € @ and signs ey, ..., e € {—1,1}
such that 7 = T1ai' 2052 - - - o' 7. Assume that 7 = 7/3°7” for some strings 7/, 7" € S(Q), an
arrow 3 € Q1, and a sign €. If 5 is one of the arrows ag*, then both 7/ and 7 are in Spoq(0)<l
We can therefore assume that there exists k& € [¢] such that §° appears inside the string 7.
Write 7, = 7;,8°7. We distinguish two cases:
e If ¢ = —1, then 7y, is a bottom substring of 7, which is a bottom substring of o, so
that 7, € Ypo(0) and thus 77 = 707’ ...aik__llT,’c € Ypot ().
o Similarly, if ¢ = 1, then 7/ is a bottom substring of 7, which is a bottom substring of o,
so that 7{/ € Spet(0) and thus 77 = 7/ai* ..., ' 70 € Shot (o)L
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We conclude that Yo (o)< is coclosed, and thus biclosed. By Remark 3.18, (Uie[é] Shot (UZ-))Cl is

also biclosed for any o1, ...,0, € S¥(Q). The proof is similar for Si,,(c)! or follows by duality
from Remarks 2.9 and 3.24. O

The next result is the keystone of this section.

Theorem 3.26. For any gentle bound quiver Q with finitely many strings, the inclusion poset of

biclosed sets Bic(Q) is a congruence-uniform lattice.

Proof. The proof is inspired from that of [McC17, Thm. 6.5]. The main difficulty is that Bic(Q)
does not satisfies Condition (i) of Theorem 3.17 when @ has a loop. For example, for the quiver Q
with a single vertex v, a loop a, and the relation o = 0, the biclosed sets of strings are precisely @
and {e,,a}. We therefore need the adapted criterion of Theorem 3.20. For a string o € S*(Q),
the closure {o}°' can be of two types:

e if there is a loop a € Q; such that ca € ST(Q), then {0} = {0,000},
e otherwise, {o}! = {o}.

In particular, for any two strings o, 7, the equality {o}! = {7}°! implies ¢ = 7. We note that
S*(Q) is partially ordered by: ¢ <1 7 if and only if ¢ is a substring of 7.

(i) Consider a cover relation S C T in Bic(Q). If 7 is a minimal length string in 7'\ S, then
for any 0,0’ € S*(Q) with 7 € 0 00/, either ¢ € S or ¢/ € S. Consider now a maximal length
string 7 in T'~. S such that for any 0,0’ € ST(Q) with 7 € ¢ 0 ¢/, either 0 € S or 0/ € S. We
claim that S U {r}! € Bic(Q). Observe first that S U {7} is coclosed by the property defining 7.
Assume by means of contradiction that S U {7} is not closed. Since S and {7} are both closed,
it implies that there exists o € S such that o o7 € S. Consider a string o € S of minimal length
such that co7 Z S. Let p € (0 o7)~\ S. Since SU{7} C T and T is closed, we have p € T. By
maximality of 7, we thus obtain that there exist o/, 7 € ST(Q) \ S such that p € ¢’ o 7. Up to
exchanging ¢’ and 7/, we have o C ¢’ and 7 D 7/ or vice versa. We distinguish these two cases:

e Either there exists a string ¢ such that ¢’ € 0o and 7 € o 7. By definition of 7, we
obtain that ¢ € S. Since o0,¢ € S while ¢’ ¢ S, this contradicts the closedness of S.

e Or there exists a string ¢ such that o € ¢’ o and 7/ € ( o7. We have ¢ ¢ S (other-
wise 7, € S and 7’ ¢ S would contradict the closedness of S). We obtain a string ¢ € S
with ( o7 € S and shorter than o, thus contradicting the minimality of o.

Since we reach a contradiction in both cases, we conclude that SU{7}¢ is biclosed. Finally, since T'
covers S in Bic(Q), we obtain that SU{r}! = T'. The uniqueness is immediate since {7} = TS
determines 7 as observed above. This concludes the proof of (i).

(ii) We proceed by induction on |S*(Q) \ R|. The property clearly holds if R = S = T = S(Q).
Consider thus R, S,T € Bic(Q) such that the property holds for any R’ 2 R. The result is
immediate when S C T (and similarly when S D T) since RU ((SUT) ~ R)*! = T € Bic(Q)
in this case. Assume thus that S\ T # @ and T\ S # @. By (i), since R C S and R C T,
there exist 0 € S~ R and 7 € T \ R such that RU {o}! and RU {7} are biclosed. We claim
that X := RU {0, 7} is biclosed:

closed: Since RU{c}°! and RU{7}! are closed, we have po¢ C R for any p € Rand ¢ € {o,7}.
An immediate induction thus shows that po (3 0---0¢; C R for any (1,...,( € {o,7}.
Therefore, Ro ¢ C R for any ¢ € {0, 7}°.. This implies that X is closed.

coclosed: Assume by means of contradiction that X is not coclosed. Then there ex-
ists o/, 7 € ST(Q) ~ X such that X N (¢/ o 7') # @. Since RU {0} and R U {7}
are coclosed, we can assume that (o o7) N (0’ o 7') # @. Therefore, up to exchanging o’
and 7/, we have either ¢ C ¢’ and 7 D 7/, or 0 D ¢’ and 7 C 7/. Say for example that
the former holds. Then there exists § € S*(Q) such that ¢’ € 006 and 7 € § o 7. This
implies that § ¢ R (because R U {o}% is closed) and that § € R (because R U {7} is
coclosed and 6 C 1), a contradiction.
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7'r,l,(Sexm) Sexm 7TT(‘S’exm)

FIGURE 32. A biclosed set of strings Sexm € Bic(Qexm) (middle) and its images 7| (Sexm) (left)
and 7 (Sexm) (right) by the down and up projections of Definition 3.27. For space reasons,
7T (Sexm) is only represented partially: the remaining strings are obtained by adding independently
the two dotted arrows to all strings containing their left endpoint.

We will now use the biclosed set X = RU {0, T}Cl to prove that the property holds for T'. We first
apply our induction hypothesis to R = RU {o}, S’ = S and T’ = X. We obtain that

(RU{o}) U ((SUX)~ (RU{a})”
is biclosed. However, we have
SUX C(RU{e}U((SUX)~ (RU{o})" C (SUX)
Since (S U X) is the smallest closed set containing S U X, we obtain that
(RU{eH U ((SUX)~ (RU{a})" = (SUX)™.
Applying the induction hypothesis to R’ = RU {7}, S’ = X and T’ = T, we obtain similarly that
(RU{THU((XUT)~ (RU{r})" = (X UT)".
Applying our induction hypothesis to R’ = X, S’ = (SUX) and T’ = (X UT)°!, we obtain that
U(((SUuX)?U(XUT)?) ~ X))

is biclosed. Since (((SUX)“U(XUT)) \X)Cl contains SUT and is closed, it also contains (SUT).
Moreover,

U(((SUX)?UXUT)) X)X U(((SUTUX)~R)” \ x)°
CRU(((SUTUX) \R)C1 R)?
=RU((SUTUX) \R)
—RU((SUT)~ R)"
C (Sum.
Therefore, all these sets coincide and RU ((SUT) \ R) 4 s biclosed, concluding the proof of (ii).
(iii) Consider 0,7 € ST(Q). Any string p € {0, 7} \ {0, 7} is obtained by concatenations of
copies of o and 7 with arrows of Q7. We thus immediately obtain that ¢ and 7 are substrings
of p. O
3.3. LATTICE CONGRUENCE ON BICLOSED SETS

We now define a lattice congruence on biclosed sets of strings. Our definition is borrowed
from [McC17, Sect. 7].

Definition 3.27. For a biclosed set S € Bic(Q), define
m(8)= {0 €SF(Q) | Sbot(0) €S}  and  71(9)= {0 € SF(Q) | Siop(0) NS # 2} .
Example 3.28. The down and up projections 7 and 7rT are illustrated on Figure 32.

Following Remarks 2.9, 2.16, and 3.24, we start with a simple observation.
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Lemma 3.29. For any biclosed set S € Bic(Q),
SEQ) \71(9) = 7 (SF(@Q™) N S).

Proof. On the one hand, S*(Q) ~ 77(S) is the set of strings of S*(Q) with no top substrings
contained in S, 4.e. whose top substrings are all in S*(Q)~.S. On the other hand, 7 (ST(Q™") \. S)
is the set of strings of S*(Q™") whose bottom substrings are all in S*(Q™") \. S. Since reversing
all arrows preserves the strings but exchanges top with bottom substrings, we conclude that the
two sets coincide. O

Lemma 3.30. For any biclosed set S € Bic(Q), the sets 7 (S) and 7' (S) are biclosed.

Proof. Let p,0,7 € ST(Q) such that p € oo7. Assume first that o,7 € 7| (S). Consider a bottom
substring p’ of p. We distinguish two cases:

e If p/ is a substring of o or 7, then it is a bottom substring and thus belongs to S.
e Otherwise, p’ € o’ o7’ for some substrings o’ of o and 7" of 7. These substrings are again
bottom substrings so that ¢’ € S and 7’ € S, which implies that p’ € S since S is closed.

In both cases, we showed that any bottom substring p’ of p belongs to S, so that p € 7 (S) and
thus 7 (5) is closed.

Assume now that p € 7 (S5). Since p € o o7, either o or 7 is a bottom substring of p, say o
without loss of generality. Any bottom substring of o is then a bottom substring of p and thus
belongs to S since p € 7 (S). We conclude that o € 7 (S) which proves that 7 (S) is coclosed.

We thus proved that 7 (S) is biclosed. The proof is similar for 77(S) or follows by duality from
Remarks 2.9 and 3.24 and Lemma 3.29. 0

Proposition 3.31. The two maps 7 : Bic(Q) — Bic(Q) and «' : Bic(Q) — Bic(Q) satisfy
(i) m (S) € S C al(S) for any element S € Bic(Q),

(ii) T omy =7 onl =7 and 7t ot =7l o) = 7T,
(iii) 7, and 7' are order preserving.
Therefore, the fibers of m' and | coincide and the relation = on Bic(Q) defined by

S=T < 7,(5) =7 (T) <= «'(S)=7(T)

is an order congruence on Bic(Q).

Proof. For (i), we just observe that any string 7 is a top and a bottom substring of itself.

For (iii), it follows from the definition that S C T implies 7 (S) C 7| (T) and «'(S) C ' (T).

For (ii), we already obtain from (i) and (iii) that 7| (7| (S)) C 7 (S) and 7 (77(S)) D 7, (S).
We then observe that if p,o,7 € ST(Q) are such that p is a bottom substring of ¢ and o is a
bottom substring of 7, then p is a bottom substring of 7. This shows that m (7 (S)) 2 7 (S5).
Finally, we prove that 7 (77(S)) C 7(S). By means of contradiction, assume that there ex-
ists 7 € m (77(S)) \ 7 (S). Since T ¢ 7 (S), there exists a bottom substring o of 7 which is not
in S. We can assume that o is an inclusion minimal such substring of 7. Since 7 € 7| (71(5)), we
have o € ©1(S), so that there exists a top substring p of o which belongs to S. The substring p
decomposes ¢ into o = ¢’ 0 po g’ where ¢’ and ¢” are bottom substrings of o, and thus of 7. By
minimality of o, we have ¢’ € S and ¢” € S. Since S is closed, we obtain that o € ¢’ opod” C S,
a contradiction. We therefore proved that 7| o) = 7 o ! = 7. Using the symmetry presented
in Lemma 3.29, this implies as well that 77 o7 = 7T o) = #T. O

Example 3.32. Figure 33 (left) illustrates this lattice congruence on Bic(Q) for a specific gentle
bound quiver. Congruence classes are represented by blue rectangles.

To conclude this section, we show that the examples of biclosed sets S seen in Lemma 3.25 are
fixed by 7 (resp. 71). In other words, they correspond to certain bottom (resp. top) elements of the
congruence classes of =. We will see in Section 3.4 that all bottom (resp. top) elements of =-classes
are in fact of this form, and in Section 3.5 that one can in fact restrict to distinguishable strings.
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FIGURE 33. The inclusion lattice of biclosed sets Bic(Q)) with congruence classes of = in blue

(left), and the corresponding lattice of increasing flips on facets of K, (Q) (right).

Lemma 3.33. For any string o € ST(Q), the biclosed set Yo (0)! is fived by 7 while Yyop ()<
is fized by w'. Therefore,

Wi(( U Ebot(ai))d> = ( U Ebot(ai))d and ’7TT<( n Etop(o—i)cl)md> — ( ﬂ Etop(ai)CI)COCl
]

i€[{] i€[{] i€[(] i€l
for any o1, ...,00 € ST(Q).

Proof. Let T € Spot(0) and p € Bpet(7). By definition, there exist strings 71,...,7 € Spot(0),
arrows aq,...,op—1 € @ and signs e1,...,60-1 € {—1,1} such that 7 = naf ...042"_‘117'@.
Since p € Ypot(7), there exist indices 1 <4 < j < £ and substrings 7/ € Yot (7;) and Tj/- € Zhot(75)
such that p = 7/a5 741 . .. Tj_loz;’:f 7;. We thus obtain p € Yot () s0 that Xpet(T) € Lot (o)
This shows that ¥p,0(0)°! C Wi(zéot((?')d) and thus the equality by Proposition 3.31 (i).

Consider now o1, ...,0, € ST(Q). We have
m( \V Ebot(gi)d> = \/ 7 (Ebot(0)) =\ Zhot(03),
1€{) 1€[{] i€ [(]
so that

Wi(( U Ebot(ai)>d> = ( U Ebot(ai)>d'

i€le) i€[(]

The proof is similar for S, (o) or follows by duality from Remark 2.9 and Lemma 3.29. (]

3.4. BICLOSED SETS OF STRINGS VERSUS NON-KISSING FACETS

The goal of this section is to show that the non-kissing oriented flip graph Gy, (Q) is isomorphic

to the Hasse diagram of the lattice quotient of the lattice of biclosed sets Bic(Q) by the lattice
congruence =. For this, we first need to define inverse bijections between congruence classes of

biclosed sets of Bic(Q) and non-kissing facets of Ky (Q).
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3.4.1. From biclosed sets of strings to non-kissing facets. We first define a map 7 from
biclosed sets in Bic(Q) to subsets of walks of W*(Q). Although slightly more technical to cover
the general situation of gentle bound quivers, our definition is directly inspired by [McC17, Sect. 8].

Definition 3.34. For S € Bic(Q) and a € QF, let w(a, S)==a", - --a’7' -a-aj' - -ai" be the
directed walk containing a defined by

e ¢; = —1if the string af' - -- ;7' belongs to S, and ¢; = 1 otherwise, for all i € [r], and
e c_; = 1if the string " --- 23" belongs to S, and &; = —1 otherwise, for all i € [(].

Remark 3.35. Observe that w(a, S) is well-defined and unique for any S € Bic(Q) and a € Q1.
Indeed, one can start from the string a and let it grow in both directions according to the local
rules of Definition 3.34 until it reaches some blossom vertices of Q®. Note that £ = 0 (resp. r = 0)
when « is an incoming (resp. outgoing) blossom arrow. Note also that for ¢ = 1, we consider

of'...a;7 to be t(a) and similarly o= .. a7 to be s(a).

Example 3.36. The map w is illustrated on Figure 34.
Lemma 3.37. As directed walks, w(a, S) # w(B,S) for a # 5 € QF.

Proof. Assume that o # 8 € QT are such that w:=w(a,S) = w(3,S5). We can assume without
loss of generality that « appears before 8 along w. Let o denote the substring of w between «
and 5. We obtain that o € S since « is incoming at s(o), and that o ¢ S since § is outgoing
at t(o), a contradiction. O

Recall from Definition 2.6 that a string o € S(Q) is a top substring (resp. bottom substring)
of a walk w € W(Q) if the arrows of w \ ¢ incident to the endpoints of o are both outgoing
(resp. incoming).

Lemma 3.38. For any S € Bic(Q) and a € Q1, all bottom (resp. top) substrings of w(c, S) belong
to S (resp. to the complement of S).

Proof. Write w(a,, S) = o -+ aZj'aaf' - - ot and consider a substring o = af’ - - ajj (1 < j).
Assume for instance that o is a bottom substring of w(a, S), i.e. that e,_1 = 1 while ;41 = —1.
We distinguished three cases:
o If j <0, then af*---a”7' € S (since g, = 1) while a7’ ---a”" ¢ S (since ;41 = —1).
e Ifi<0<j,thenai---a”}' €5 (since g;_1 = 1) and af’ ~-~oz§j € S (since €41 = —1).
e If 0 < i, then af'---a;";’ ¢ S (since g,_1 = 1) while aj* ~~~a§j € S (since gj41 = —1).

In all cases, we obtain that o = o’ - - - a;j must belong to S since S is biclosed. The case of top
substrings is symmetric, or can be deduced from the case of bottom substrings by Lemma 3.29. O

Corollary 3.39. For any o, B € QF, the walks w(a, S) and w(B,S) (or its inverse) are non-
kissing. In particular, w(a, S) is not self-kissing.

Proof. Assume that w(a, S) kisses w(3,S) along o, which is thus a maximal substring of w(«, S)
and w(f,S) (or its inverse). By Lemma 3.38, we have o ¢ S since o is a top substring of w(a, S),
while o € S since o is a bottom substring of w(j,S), a contradiction. O

Corollary 3.40. The set {w(, S) | a € QF} contains 2|Qo| — |Q1| straight walks and |Qo| pairs
of inverse directed walks.

Proof. Denote by s the number of straight walks, by B the number of pairs of inverse bending
walks and by b the remaining bending walks in the set {w(a, S) | a € Q%}. Since this set con-
tains |QF| = 4|Qo| — |Q1] distinct directed walks by Lemma 3.37, we have s+2B+b = 4|Qo| — |Q1|
and s < 2|Qo| — |Q1]. Moreover, since all these walks are not self-kissing and pairwise non-
kissing by Corollary 3.39, we obtain that B + b < |Qo|. Therefore, Corollary 2.27 ensures that
B=(s4+2B+b)— (s+ B+b) > |Qo|.- We conclude that B = |Qo| and thus s = 2|Qo|—|Q1]. T

In other words, beside the straight walks, we can group the walks of {w(a, ) | € Q¥} into
pairs of inverse walks. This leads to the definition of the following map.
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Sexm 17(Sexm) C(N(Sexm)) = 7TJ,(Sexm)

FIGURE 34. The maps 1 of Definition 3.41 from biclosed sets to non-kissing facets (left) and ¢ of
Definition 3.47 from non-kissing facets to biclosed sets (right).

Definition 3.41. We denote by 7 : Bic(Q) — 2WF(Q) the map defined by
0(S) = {wl(@.8) |a € Q) (o s) -

where the quotient means that we consider the walks of 7(.S) as undirected.

Example 3.42. Observe that 7(@) = Fyeep and that n(Si(Q)) = Fpeak-

Example 3.43. The map 7 is illustrated on Figure 34 (left) for the gentle bound quiver Quxm of
Figure 15 (left).

Example 3.44. Figure 33 shows the complete map from the biclosed sets of Bic(Q) to the non-

kissing facets of K,k (Q) for a specific gentle bound quiver.

The following result recasts Corollaries 3.39 and 3.40 in terms of the map 7 of Definition 3.41.

Proposition 3.45. For any S € Bic(Q), the collection of undirected walks n(S) is a non-kissing

facet of Kux(Q).
We now identify the relation between an arrow a € QF and the walk w(a, S) in the facet 7(S).

Lemma 3.46. For any S € Bic(Q) and o € QF, the walk w(a, S) is the distinguished walk of the
non-kissing facet n(S) at a:
w(a, §) = dw(a, n(S5)).

Proof. Let a # B € QY and assume that a belongs to w(B,5). If a and 3 are opposite
along w (3, S), then w(/3, S) is not straight, thus there exists 8’ € Q¥ such that w(s,S) = w(B’,9) !
by Corollary 3.40. We can thus assume that « and § are both in the same direction as w(f3,5).
Assume also for instance that « appears before 3 along w(f3,5), and let p denote the substring
of w(B, S) between a and . By definition of w(f, S), we have p € S which implies that 8 ¢ w(a, S).
Decompose p into p = gy°7 for some strings 0,7 € ST(Q), arrow v € @, and sign ¢ € {—1,1}
such that w(a, S) contains o but not ov¢. If e = —1, then o ¢ S and 7 ¢ S, while p € S which
contradicts that S is coclosed. We conclude that € = 1 so that w(3,5) <, w(a,S). The other
situation (« appears after 8 along w(f3,5)) is symmetric. O

3.4.2. From non-kissing facets to biclosed sets of strings. We now define a map { from

non-kissing facets of Ky (Q) to sets of strings. It is again similar to [McC17, Sect. 8].

Definition 3.47. Recall from Definition 2.6 that Xpot (w) denotes the set of bottom substrings of
a walk w € WH(Q) (i.e. substrings o € ST(Q) of w such that the arrows of w \ ¢ incident to the

endpoints of o are both incoming). For a non-kissing facet F' € I, (Q), define
cl
¢F)=( U Zoarl))
weF

Example 3.48. The map ( is illustrated on Figure 34 (right) for the gentle bound quiver Qeym
of Figure 15 (left).

Proposition 3.49. For any non-kissing facet F € K (Q), the set of strings ((F) is biclosed.
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Proof. Observe first that for a walk w € W*(Q), either w is a peak walk and it has no bottom
substring, or we have Ypo(w)? = Spe(0)®! where o is the inclusion maximal bottom substring
of w. It follows that Yot (w)Cl is biclosed by Lemma 3.25. Therefore, according to Remark 3.18,

C(F) = ( U Ebot(w))d = ( U Ebot(w)d)d € Bic(Q). O
weF weF

Observe moreover that 7| (((F)) = ((F) for any non-kissing facet F' € Kyuk(Q) by Lemma 3.33.

3.4.3. Projection map. We have defined in the previous sections two functions

L\ ’an(Q)
¢

Bic(Q)

between biclosed sets of strings of Q and non-kissing facets of Ian(Q). We now show that n is
surjective and that ¢ provides a section of 7.

Proposition 3.50. For any non-kissing facet F € Ky (Q), we have n(((F)) =F.

Proof. Fix a € QF and let w:=dw(a, F) (resp. ' :=dw(a,n(¢(F)))) denote the distinguished
walk of F' (resp. n(¢(F))) at a. Assume for the sake of contradiction that w # w’. Orient w and w’
in the same direction as o and assume for example that w and w’ split after « (if not, they split
before o and the argument is symmetric). Let o be the maximal common substring of w and w’
after @. Recall from Lemma 3.46 that ' = w(«, ((F)) is the walk constructed by the procedure
described in Definition 3.34 starting from « in ((F'). We distinguish two cases:
e Assume first that w~ o has an incoming arrow at ¢(¢). Then o is a bottom substring of w,
thus belongs to ((F). This would imply that w’ \ ¢ also has an incoming arrow at (o),
thus contradicting the maximality of o (even in the case that o is a vertex).
e Assume now that w \ ¢ has an outgoing arrow at t(o). Since w and w’ split at t(o),
this forces w’ \ ¢ to have an incoming arrow at t(o). Therefore, ¢ € {(F). Thus, there

exist bottom substrings o1,...,0, of walks wy,...,wy of F, arrows ai,...,ap—1 € Q1,
and signs €1,...,e0-1 € {—1,1} such that o = oy ~~a7_’1104. Note that w; = w and
thus €1 = —1, as otherwise, we would have w <, wi, contradicting the definition of w.

Let k € [¢] be minimal such that o1a5'...a;* 7 o) is not a bottom substring of w (note
that, by assumption, ¢ itself is not a bottom substring of w, so that k is well defined). We
thus have e;_; = —1 while ¢ = 1. This implies that w \ o3 has two outgoing arrows at
the endpoints of oy, while wg \ o has two incoming arrows at the endpoints of . This
implies that w and wy are kissing, contradicting the assumption that they both belong to

the non-kissing facet F' of Ky (Q).

As we obtain a contradiction in both cases, we conclude that w = «’, i.e. dw(a, F) = dw(a, n(¢(F))).
Since this holds for any arrow a € QY and any walk has at least one distinguished arrow, we con-
clude that F = n({(F)). O

Proposition 3.51. For any biclosed set of strings S € Bic(Q), we have {(n(S)) = m,(5).

Proof. Let S € Bic(Q) be a biclosed set of strings. We first prove that m (S) € ¢((n(S)) by
induction on the length of the strings in 7| (S). For this, consider a string o € 7 (S) (by definition,
all bottom substrings of o belong to S). Orient o in an arbitrary direction, and let o € QY be
the incoming arrow at s(a) such that ao € S(Q¥®). Let w:=w(a,S) = dw(a,n(S)) be the walk
of n(S) defined form « (see Definition 3.34), and let 7 be the maximal common substring of ¢
and w. We distinguish two cases:

e If 0 = 7, then w \ o has an incoming arrow at t(c) (by Definition 3.34). Therefore,
7 € Bhot(w) S ¢(0(5)).

e Otherwise, we write 0 = 787", If ¢ = —1, 7 is a bottom substring of o, and thus belong
to 9, so that Definition 3.34 forces w to use S~! as well, contradicting the maximality
of 7. Therefore, o = 747'. It follows that the walk w has an incoming arrow at t(7), so
that 7 € Zpot(w) C ((n(S)). Moreover, 7’ is a bottom substring of o, so that 7" € 7 (5),
which in turns implies by induction hypothesis that " € {(n(S)). Since 7,7" € {(n(S))
and ((n(S)) is closed, we conclude that o € ((n(9)).
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Conversely, we now prove the reverse inclusion ¢(n(S)) C 7, (S). We showed in Lemma 3.33
that ¢(n(S)) =, (¢(n(S))). Moreover, as observed in Lemma 3.38, Syt (w) C S for any w € 7(9),
so that ¢(n(S)) € S. Since  is order-preserving, we obtain ¢(n(S)) = m,(¢(n(S))) € 7, (S). O

Example 3.52. The maps 7 and ( are illustrated on Figure 34 (right). Compare {(1(Sexm)) on
Figure 34 (right) with the down projection 7| (Sexm) on Figure 32 (left).

Corollary 3.53. n(R) = n(S) <= 7 (R) = m(5) for any biclosed sets R,S. In other words,
the fibers of n are precisely the equivalence classes of the lattice congruence of Proposition 3.31.

Proof. If n(R) = n(S), then by Proposition 3.51, we have 7 (R) = ((n(R)) = ((n(S)) = 7 (S
Reciprocally, if 7 (R) = 7 (S), then by Propositions 3.50 and 3.51, we have n(R) =noon(R)
n(ry(R)) = n(my(S)) =no on(S) =n(S).

Corollary 3.54. For any non-kissing facet F € Ku(Q), the fiber n=1(F) is the interval of Bic(Q)
cl cocl
nU(F) = [( U Ebot(w)) ( U ztop(w)cl) }
weF weF

Remark 3.55. We note that Corollary 3.54 gives a combinatorial description of Bongartz (co)com-
pletions. This allows to reduce the algebraic computations on representations of ¢ to much easier
computations involving walks on Q¥.

~—

o

3.4.4. Oriented graph isomorphisms. To conclude our interpretation of the non-kissing ori-
ented flip graph Gnx(Q) in terms of lattice quotients of biclosed sets, we still need to show
that Gni(Q) is the Hasse diagram of Bic(Q))/=. This is the purpose of the next statement similar

to [McC17, Claim 8.10].

Proposition 3.56. For any non-kissing facet F' € Cpx(Q) and o € ((F"), there exists an increas-
ing flip F — F' supported by o if and only if ((F') ~ {o} is biclosed.

Proof. Throughout the proof, we denote S:=((F’)~ {c} and S’":=((F’). Consider an increasing
flip F — F' with F\{w} = F/'~{w'} and 0 = ds(w, F') = ds(w’, F’). We prove that S is biclosed:
closed: Otherwise, there exist bottom substrings o1, ...,0, of walks wi,...,wp of F', ar-
TOWS aq,..., -1 € Q1 and signs €1,...,60-1 € {—1,1} such that o = oy ...azz_‘llog.
Assume that there is k € [¢—1] such that €, = 1 and choose k minimal with that property.
Then wy # W’ and w has two outgoing arrows while wy has two incoming arrows at the
endpoints of oy, so that oy € Lyop(w) N Lot (wrk), contradicting the non-kissingness of F.
We obtain a similar contradiction assuming that there is k € [¢ —1] such that e, = —1 and
choosing k maximal with that property. This forces £ = 1, so that ¢ € S, a contradiction.
coclosed: Otherwise, by coclosedness of S’, we can assume that there is a string 7 € S(Q) \ .5/,
an arrow o € @1 and a sign € € {—1,1} such that ca®r € S’ (the case Tafo € 5’ is
symmetric). Thus, there exist bottom substrings o1, ..., 0, of walks wy,...,w, of F', ar-
rows a7, . ..,0p—1 € Q1 and signs ey, ..., g1 € {—1,1} such that ca®1 = o107* ... azé_’llag.
Since 7 ¢ S’, there is k € [¢] such that o® belongs to o3 and we write o, = o,a%0).
Since {w,ws,...,w} are non-kissing, we obtain that €1,...,e,_1 = —1, which in turn im-
plies that e = 1 (otherwise w would kiss wy). Since € = 1, we have 0 € Xp0t(0%) C Epot (w)-
We thus obtain that 7 = o/aj” ... a?jll o, € S, a contradiction.

Conversely, consider a string o € S":=((F") such that S:=((F’)\ {0} is biclosed, and consider
the facet F':=n(S). Let «, 8 (resp. o/, 5') denote the two outgoing (resp. incoming) arrows at the
endpoints of o such that a~'of € S(Q¥) (resp. o/cB ' € S(Q¥)). Since S and S’ only differ
by o, the facets F = n(S) and F' = n(S’) = n(S U {c}) can a priori differ by 4 directed walks
by definition of the map 7: namely, the walks w(q, S), w(a/,S), w(B,S) and w(f’,S) of F may or
may not be in F’ and conversely the walks w(a, S"), w(a/, S"), w(B,S") and w(F’,S’) of F' may or
may not be in F. We claim that

o w(,S") =w(p,S")tis a bending walk w’ of F' \\ F,
o w(d,S)=w(B,S) and w(F',S) = w(a, S").
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This claim implies (by Corollary 2.27) that w’ is the single undirected walk of F’ \ F, and its
distinguished arrows are o/ and 3’ (by Lemma 3.46). Therefore the non-kissing facets F and F’
are adjacent and the flip F' — F” is increasing and supported by o.

To conclude, we just need to prove our claim. Since o € S’ and S = S’ \ {0} is coclosed,
there is a walk w’ € F’ such that o € ¥pot(w’). Assume that o’ is distinct from \:=dw(o/, F).
Note that w’ and A share the arrow o/, and thus its target vertex u:=t(a’). Let v denote the last
common vertex of w’ and X after o, and let 7:=w'[u,v] = A[u, v] denote their common substring
between these two vertices. Since \:=dw(c/, F’), we know that w’ (resp. \) leaves 7 with an
outgoing (resp. incoming) arrow at v. In particular, o # 7 and 7 € Bpe(A) N {o} € S. We
distinguish two cases:

o D 7 Since W’ leaves 7 with an outgoing arrow at v, we have o0 \ 7 € Lot (w') N {0} C S.
Therefore, we have 0 € 7o (0~ 7) and o ¢ S while 7 € S and o~ 7 € S. This contradicts
the assumption that S is closed.

o C 7: Since 0 ¢ S while 7 € S and S is coclosed, we have 7\ o € S. Therefore there
exist bottom substrings o1,...,0, of walks wy,...,w; of F', arrows aq,...,ap_1 € Q1
and signs e1,...,e0-1 € {—1,1} such that 7 \ 0 = 015" ... a," ' 0. Define e, = 1 and
let k& € [¢] be minimal such that e, = 1. Since 7 \ ¢ is a top substring of ', this implies
that wy, kisses w’. This contradicts the fact that F’ is a non-kissing facet.

Since both cases are impossible, we conclude that w’ = dw(o/, F') = w(a/, ") (by Lemma 3.46).
By symmetry, we obtain that w’ = w(a’/,5’) = w(f’,5’). Finally, this implies that all bottom
(resp. top) subsegments of o are contained in S’ (resp. in the complement of S”). We conclude by
Definition 3.34 that w(c/,S) = w(5,5’) and w(F’, S) = w(a, ). O

To conclude, we need a statement from [Rea05] which characterizes the cover relations in a
lattice congruence.

Proposition 3.57 ([Rea05, Prop. 2.2]). Consider a lattice congruence = on a lattice L and two
congruence classes X,Y € L/=. Then X covers Y in L/= if and only if the minimal element
of X covers some element of Y in L.

This concludes our proof of Theorem 3.1, that we can now restate more precisely as follows.

Corollary 3.58. If Q is a gentle bound quiver whose non-kissing complex Cuk(Q) is finite, then

the non-kissing oriented flip graph Gui(Q) is the Hasse diagram of the lattice quotient Bic(Q)/=
of the congruence-uniform lattice of biclosed sets of strings by the lattice congruence =.

Proof. Proposition 3.31 affirms that the maps 7; and 7' of Definition 3.27 define a lattice con-

gruence =. Corollary 3.53 ensures that the congruence classes of = are the fibers of 7. Finally,
Propositions 3.56 and 3.57 ensure that the cover relations of Bic(())/= are precisely the increasing
flips of Gk (Q). O

Example 3.59. Corollary 3.58 is illustrated on Figure 33, which shows a specific lattice quotient
and the corresponding increasing flip graph.

Definition 3.60. We call non-kissing lattice and denote by L (Q) the transitive closure of the
non-kissing oriented flip graph G, (Q).

3.4.5. Sublattice. As observed in Remark 3.11, the subposet of Bic(Q) induced by 7 (Bic(Q)) is
a join-sublattice of Bic(Q) but could fail to be a sublattice. It turns out that there is sufficiently
symmetry in the construction to ensures that it is indeed a sublattice. A similar result was stated
for grid bound quivers in [GM17, Lem. 4.5] and for dissection bound quivers in [GM16, Thm. 4.11].
See Figure 35 for an illustration.

Proposition 3.61. The non-kissing lattice L, «(Q) is isomorphic to the sublattice of Bic(Q) in-
duced by m(Blc( )) (or dually by WT(BIC Q) ) More precisely,

(@)
(i) C(FAF') = ((F)AC(F') and ((FVF') = ((F)VC(F") for any non-kissing facets F, F' € Ku(Q),
(it) n(SAS") =n(S)An(S’) and n(SVS") = n(S)Vn(S') for any biclosed sets S, S" € m| (Bic(Q)).
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FIGURE 35. The inclusion lattice of biclosed sets Bic(Q) with congruence classes of = in blue

(left), the sublattice of Bic(Q) induced by m (Bic(Q)) (middle left) and by 7' (Bic(Q)) (middle
right), and the corresponding lattice of increasing flips on facets of K (Q) (right).

Proof. This follows from the reversing operation discussed in Remarks 2.39, 3.24 and Lemma 3.29.

Indeed, consider R, S € Bic(Q). By Lemma 3.29, we have
T (R) Amy(S) = (SH(Q) N7 (ST(Q™) N R)) A (SH(Q) \ 7 (SH(Q™) N 5))
=SHQ) N (7" (SH@Q) N R) V (1 (SF(Q™) N )
=SH(Q) 7 (T) = m (ST(Q™) N\ T)
for some T € Bic(Q™") = Bic(Q). Therefore, | (R) A m(S) € 7, (Bic(Q)). O
Example 3.62. Figure 35 illustrates Proposition 3.61 for a specific gentle bound quiver.

3.5. CANONICAL JOIN-REPRESENTATIONS IN L;x(()) AND THE NON-FRIENDLY COMPLEX

As we have established that the non-kissing lattice L£,x(Q) is congruence-uniform, and thus
semi-distributive, it is natural to study its canonical join complex. Our first step is a bijective

understanding of the join-irreducible elements of L1x(Q). They correspond to the distinguishable
strings of @, for which we first need an explicit characterization.

3.5.1. Distinguishable strings. Recall Definition 2.28 for distinguishable chords. We now have
all tools to describe the distinguishable strings in a gentle bound quiver Q. Our goal in this section
is to prove the following statement.

Proposition 3.63. A string o € ST(Q) is distinguishable if and only if Lot (o) N Siop(0) = {0}

Proof. Assume first that o is distinguishable and consider 7 € Xpo(0) N Eiop(0). Let Thot
(resp. Tiop) denote the bottom (resp. top) copy of 7 seen as a substring of o. If 7 # o, then
Thot and Tiop are distinct as substrings of o but coincide as strings of Q. We distinguish two cases:
o If s(Thot) = s(o) and t(7op) = t(0), then the two endpoints of o coincide (otherwise,
Kk (Q) would not be finite) so that o is not distinguishable (otherwise, the same arrow
would be distinguished twice along a path).
o Otherwise, we can assume for example that 7y, does not share an endpoint with o. Then
for any walk w such that o € Zpot(w), we have 7 € Epor(w) N Liop(w) so that w is
self-kissing. It follows that o is not distinguishable.

We conclude that if ¢ is distinguishable, then ¥y,0¢(0) N iop(0) = {o}. The converse statement
will follow from the next two lemmas. O

Remark 3.64. It follows from Propositions 3.63 and 1.40 that a string o is distinguishable if and
only if Homu (M(c), M(c)) = k. Modules M such that Hom4 (M, M) = k are called bricks.
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Lemma 3.65. For any 0,7 € ST(Q), any string in Yuot(0) N Siop(T) has at least one substring
in Lot (0) N Eop (7). In particular, we have

hot(o) N EtOP(U) = {U} = Ypot (U)Cl N EtOP(O) = {U}
and Thot(0) NBiop(T7) =@ = Zpot (0)'n Siop(T) = @.

Proof. Let p € Lot (0) N Siop(T). As p € Spot(0)°, there exists substrings p1, ..., pr € Zpot (),

arrows ag, ..., ap—1 € Q1 and signs e1,...,e¢-1 € {—1,1} such that p = p1af' .. .aze_’llpg. Assume
that there exists k € [¢ — 1] such that e, = 1 and choose k minimal for this property (the proof
is similar if there exists k € [¢ — 1] such that g, = —1). If £ > 1, then ;1 = —1 while g, = 1

so that py € 3iop(7). If k =1, then p; starts at the endpoint of p and finishes with an outgoing
arrow, so that p; is a top substring of p which is a top substring of 7, and thus p; € Ziep(7). In
both cases, we found a substring of p in Xy (0) N Ziop (7). O

Lemma 3.66. Let 0 € S*(Q) be such that Syot(0)NSiop(0) = {o}. Let o, B’ be the two incoming
arrows at the endpoint of o such that o/o8'~" € S(Q®). Then the oriented walks w(c/, Spot (o))
and w(ﬁ’,Ebot(a)Cl) both contain o and are reverse to each other. Therefore the corresponding
unoriented walk of n(Ebot (O’)Cl) has distinguished string o.

Proof. Denote for short S:= Yy (0)® and F:=n(S) the corresponding non-kissing facet. Note
that F' is well-defined since S is biclosed by Lemma 3.25.

We first prove that w(a/, S) and w(f’, S) both contain o/c3'~!. For this, write ¢ = aj'...aj"
for some arrows aq,...,qp € Q1 and signs e1,...,&, € {—1,1}. Define 0, :=aj" ... a5 for i € [¢].
We prove by induction that w(a/, S) contains ;. Indeed, the base case (i = 0) is clear, so assume
that it holds for i € [¢ — 1]. We have two situations:

o Ifg;11 = —1, then o; € Ee(0) C S so that w(a/, S) contains a;_ll and thus o;41.
o If g,41 = 1, then 0; € Eop(0). Since SN Eyop(0) = {o} by Lemma 3.65, we obtain
that o; ¢ S so that w(c’, S) contains a1 and thus o;4.

Finally, since o € S, we obtain that w(a/,S) contains o’c3'~!. By symmetry, we thus obtained
that w(a/, S) and w(f’,S) both contain o’opB'~L.

To conclude, assume that w(a/,S) and w(f’,S) are not reverse to each other, and let 7 be a
maximal common substring of them containing o/c'~1. Write 7 = 7/a/08'~'7" and assume for
example that ¢(7”) is not a blossom. Since 7/ € § <= 0B~ 17" € S, the two walks w(c/, 9)
and w(f’, S) should have the same behavior at t(7”), contradicting the maximality of 7. O

In fact, Lemma 3.66 even provides a bijection from distinguishable strings to walks which are not
self-kissing and not in the peak facet. We will prove that this map is bijective in Proposition 3.69.
Before that, we need the following statement.

Lemma 3.67. For any bending walk w € Wﬁ((@) which is not self-kissing and not in the peak facet,
the unique inclusion minimal string in {0 € Ypot(w) ‘ Yot (w) = Zbot(cr)d} 18 distinguishable.

Proof. Let X := {U € Yot (w) ’ Yot (W) = Ebot(a)‘ﬂ}. Since w is not in the peak facet, it has at
least one bottom substring. It follows that X is non-empty since it contains the inclusion maximal
bottom substring of w. Consider now any inclusion minimal string ¢ in X (there could be several).

Assume that o is not distinguishable. By Lemma 3.66, there exists 7 € Xpot(0) N Eiop (o)
distinct from o. Since o is a bottom substring of a non-self-kissing walk w, the substring 7 must
be a prefix or a suffix of o, say for example a prefix. We write 0 = 7ap for an arrow o € @1, a
sign ¢ € {—1,1} and a substring p of 0. If ¢ = —1, then 7 would be a top and a bottom substring
of w, a contradiction. Therefore ¢ = 1 so that we have 7 € Spot(p) and thus o € Zpei(p),
hence Ypot(0) = Zhot (0)! = Zpot (), which would contradict the minimality of .

Finally, observe that o is the unique descent of n(Ebot (O')Cl) = n(Ebot (o.))d) as will be estab-
lished in Lemma 3.74. O

We gather the constructions of Lemmas 3.66 and 3.67 in the following definition.
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FIGURE 36. The bijections oyop = wt_oi) (top) and ope; = wy, (bottom) for two specific quivers.

Definition 3.68. For a distinguishable string o € Si_(Q), we denote by wpei(o) € W (Q)
the undirected walk constructed in Lemma 3.66, meaning that wpet(o) = {w(/,S),w(s’,S)}
where S = Yp,0¢(0)! and o/, 8’ are such that o/o'~! € S(Q¥).

Conversely, for a non-self-kissing walk w € W (Q) not in the peak facet, we denote by opeq(w)
the inclusion minimal string in {U € Yot (w) | Yhot (@) = Tpot (a)d}.

Propositign 3.69. The maps wpor and Obot aTe inverse bijections between the distinguishable
strings of Q and the bending walks of WE(Q) not in the peak facet Fpeax.

Proof. The maps wpot and opet are well-defined by Lemmas 3.66 and 3.67. To see that they are

inverse bijections, observe that for any o € deist (@), we have

1 1 c
Z’bot (abot (wbot (U)))C = Ebot (Wbot (0))C = Zbot (0) 1~
Indeed, the first equality follows from the definition of oy, while the second one is derived

from o € Yot (wbot(a)) and wpot(0) € n(Ebot (0)01). Therefore, we obtain that opt (wbot (O‘)) =0
is the unique descent of

n(Ebot (Ubot (wbot (U)))Cl) = n(zbot (U)Cl)
as will be established in Lemma 3.74. O

Remark 3.70. One can define dually the maps otop and wyop, which provide inverse bijections
between distinguishable strings of  and the bending walks of W*(Q) not in the deep facet Faeep-
We will use both opot and oop in Section 4.2.5.

Example 3.71. Figure 36 illustrates the maps oyop = wt_oij and opor = wb_olt for two quivers on 3
vertices.

Remark 3.72. Assume that all strings of Q are distinguishable, as happens for instance in grid
and dissection quivers. Then wpei(0) (resp. wiop (o)) is obtained by adding a hook (resp. a cohook)
at each endpoint of o while ope(w) (resp. oyop(w)) is obtained by deleting a hook (resp. a cohook)
at each blossom of w. With the notations of Section 1.1.6,

Whot () = pon and Wiop(0) = cO¢.

In other words, when all strings of Q) are distinguishable, the bijections whot and ope; where already
considered in Lemma 2.40. As illustrated in Figure 36 (right), the bijections of Lemma 2.40 and
Definition 3.68 no longer coincide in general when not all strings are distinguishable.

3.5.2. Join-irreducibles in £, (Q). In order to describe the canonical join-representations in

the next section, we now completely describe the join-irreducible elements in £,x(Q). We first

consider the following join-irreducible elements of Bic(Q).

Lemma 3.73. For any distinguishable string o € ST(Q), the biclosed set Yot (o) is join-

irreducible in Bic(Q).

Proof. We have seen in Lemma 3.25 that Xyt (U)Cl is biclosed. Assume that Ebot(o)d = SVvT for
some S, T € Bic(Q). Recall from Remark 3.18 that SV T = (SUT).

Assume first that o ¢ S UT. Since 0 € Ypot(0) € Spet(0)! = SV T = (SUT), there exists
strings o1,...,00 € Ypot(0) N {0}, arrows aq,...,a,_1 € Q and signs e1,...,60-1 € {—1,1}
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such that o = o ...a;fi‘ll o¢. Assume that there exists & € [¢ — 1] such that ¢ = 1 and
choose k maximal for this property. Then 041 € Zpot(0)! N iop(0) = {0} by Proposition 3.63
and Lemma 3.65. We obtain a similar contradiction if there exists k € [¢ — 1] such that e, = —1.
We thus obtain that ¢ € SUT and we can thus assume by symmetry that o € S.

Assume now that there exists 7 € Yyt (o) \S. Since 7 # o, we can write either 0 = o’arB 10"
oro =787 t¢" or 0 = o’ar for some arrows a, 3 € Q1 and strings 0/, 0" € Xyop(0). Assume for ex-
ample the first situation, the other two are similar. Since o is distinguishable and ¢’, 0" € Xyop(0),
Lemma 3.65 ensures that ¢’ and ¢ do not belong to ¥y,0¢(c)" and thus to S. We thus obtain
that o € 0’ o 70 ¢” with o € S while ¢/, 7,0 ¢ S which contradicts the coclosedness of S.

We conclude that Yy,,¢(c) € S. Since S is closed, we thus obtain that S = Yy (), which
proves that Yt (0)® is join-irreducible. O

Recall the notion of descent from Definition 2.36.

Lemma 3.74. Any distinguishable string o € S(ist(()) is the unique descent of the non-kissing

facet T](Zbot (0)01). In other words, n(Zbot(a)Cl) is join-irreducible in the non-kissing lattice L (Q).

Proof. Assume that n(Zbot(J)Cl) = F V G for some non-kissing facets F,G € K. (Q). By
Lemma 3.33 and Propositions 3.51 and 3.61, we have

Zhot (0) = 7y (Shot(0)) = C(1(Ewot(0))) = C(F vV G) = ((F) v ¢(G).

Since Ypot (o) is join-irreducible in Bic(Q) by Lemma 3.73, we can assume that Xp,0t (o) = ¢(F)
so that 1(Zpot (o)) = n(¢(F)) = F by Proposition 3.50. Thus, 7(Zpet(0)®) € JI(Luk(Q))- O

This motivates the definition of the following map ji : S(ﬁst(Q) — JI(Lwk(Q)).

Definition 3.75. For a distinguishable string o € S, (Q), we define the non-kissing facet

ji(o) =1 (Zpot(0)?) € J(Luk(Q)).

Proposition 3.76. The map ji : o — ji(o) defines a bijection between the distinguishable strings
of Sjst(Q) and the join-irreducible elements of the non-kissing lattice Ly (Q).

Proof. To see that ji is injective, observe that o is the unique descent of ji(o) since ji(o) is join-
irreducible. To see that ji is surjective, consider a join-irreducible F' in £,x(Q). By Proposi-
tions 3.50 and 3.61, we have

F=n(¢(F) =n( \/ Zoo@)?) = \/ 1(Shorw)).

weF weF

Since F' is join-irreducible, we obtain that there exists w € F such that F = n(Zbot(w)Cl). By
Lemma 3.67, there exists a distinguishable string ¢ = opo(w) such that Spe(w)® = Spe (o)l
We conclude that F' = n(Ebot(a)Cl) so that ji is surjective. O

Example 3.77. On Figure 33, observe that the bottom elements in the congruence classes corre-
sponding to join-irreducible facets of Lx(Q) are precisely the sets of bottom substrings of the 5
strings of Q.

3.5.3. Canonical join-representations in £,(Q). Extending similar results on grid bound
quivers [GM17] and on dissection bound quivers [GM16], we now consider canonical join-represen-

tations in L£,x(Q). To apply Proposition 3.6, we first need to understand the join-irreducible
corresponding to each cover relation that appears in Proposition 3.6 (i).
Lemma 3.78. Let ' — F’ be an increasing flip in Gu(Q) supported by o. Then

FVijio)=F  and  F Aji(o) = ji(o).,

where ji(0)« denotes the only non-kissing facet covered by the join-irreducible facet ji(o).
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FIGURE 37. The non-friendly complex Cp¢(Q) for two specific quivers.

Proof. Applying Proposition 3.56 to the increasing flip F' — F’ supported by o, we have
C(i(0)) = Dhor(@)? CC(F)  and  C(F) = C(F') ~ {or}.

We thus obtain that ji(o) < F’ so that F # F Vji(o) < F'. Since F covers F' in L, (Q), we
obtain the first equality F'V ji(o) = F’. Moreover, since ((Jl( )) € ¢(F') and ((F) = ((F') ~ {o},

C(F) A ¢(ii(0) = (C(EF) ~{o}) n¢(ii(o) = ¢(ji(0) N {o} = ¢(ji(0))-
where the last equality follows from Proposition 3.56 for the increasing flip ji(o), — ji(o) supported
by o. Therefore, we obtain from Propositions 3.50 and 3.61 that

jio)s = n(C(0)s) = n(C(F) AC(ji(0)) = n(C(F) An(C(iie)) = F Aji(o). O

Together with Proposition 3.6, this statement immediately implies the following description of
the join-representation of any facet in L (@Q).

Corollary 3.79. The canonical join-representation of a non-kissing facet F € Ky (Q) is

F=\/ i)
o€des(F)
Remark 3.80. Dually7 the map o — mi(0) =1 (S¢op(0)®) defines a bijection between the distin-

guishable strings of Sdlbt (@) and the meet-irreducible elements of the non-kissing lattice £.1(Q),
and the canonical meet-representation of any non-kissing facet F' € Ky (Q) is F = /\Jeasc( ) Mi(o).

3.5.4. The non-friendly complex. To conclude, we want to understand the canonical join com-
plex of the non-kissing lattice £, (Q). In view of Corollary 3.79, this amounts to understanding
which sets of strings are descent sets of non-kissing facets of K (Q). We start with a seemingly
unrelated definition extending that of [GM17, Sect. 3.4].

Definition 3.81. Two strings 0,7 € S*(Q) are non-friendly if
Etop(a) M Zbot (7') =g = Zbot (0’) N Etop(T)-
The non-friendly compIeX_Cnf(Q) is the simplicial complex of pairwise non-friendly subsets of

distinguishable strings of Q.

Example 3.82. The non-friendly complexes of two gentle bound quivers with 3 vertices are
illustrated on Figure 37.

Example 3.83. When Q_is a path on n vertices, oriented from left to right, then the non-friendly
subsets of strings of S*(Q) are in bijection with non-crossing partitions of [n + 1]. The bijection
is illustrated in Figure 38.
Theorem 3.84. The following assertions are equivalent for a subset ¥ of dlSt(Q)'

(i) X is pairwise non-friendly. -

(ii) ji(X) = {ji(o) | o € X} is the canonical join-representation of an element in Ly (Q).

(i1i) ¥ is the descent set of a non-kissing facet F' € Kok (Q).
Thus, the canonical join complex of Ln(Q) is isomorphic to the non-friendly complex Cpnt(Q).
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FiGUure 38. The bijection between pairwise non-friendly set of strings of an oriented path on n
vertices and non-crossing partitions of [n + 1].

Proof. We first prove (i) <= (ii), following exactly the same lines as the proof of [GM17, Thm. 4.9].
Since both the non-friendly complex Cu¢(Q) and the canonical join complex of £, (Q) are flag
simplicial complexes, we just need to check the property for |X| € {1,2}. The case |X| = 1 is
Proposition 3.76. Consider now the situation ¥ = {o,7}. Since ji(c) = n(Zpot(c)?) and 7 is a
surjective lattice homomorphism, ji(¢) V ji(7) is a canonical join representation in L (Q) if and
only if Zpot(0) V Bpot(T) is a canonical join-representation in Bic(Q). We thus just need to prove
that the latter is equivalent to o and 7 being non-friendly.

Assume first that o and 7 are friendly and let for example p € Yiop(0) N Lpot(7). Then o
decomposes into 0 = o’a~1pBa”’, or o = pBo”, or 0 = o’a"p for some o, 0" € Vpot(0). Assume
for example the first situation, the other two are similar. Since p € Yot (7) and o/, 0" € Tpoi(0),
we have

Shot (0) S Shot (1), Shot ()% € Dhot () and  Sper(0”)! € Tpor(0) .
Therefore
S0t (0)V Zpot (1) € (Zbot (07) V Shot (0) V ot (07)%) V St (1)
= Zhot(07) V Sot (07) V Spor (1)
C Bhot(0) V Spot (1)
We thus obtain that
Sbot (0) V Shot (1) = Lot (0') V St (07) V Dot (7).

Since Yot (07)! € Xpot(0) and Lpot(0”)! € Bpot (o), we have obtained a smaller join-represen-
tation of Ypet (0)VE L0 (7). Therefore, Lp,ot(07)V Epot (7)°! is not its canonical join-representation.

Conversely, assume that Xt (U)Cl V Ybot (7’)‘“’1 is not its canonical join-representation, and
let R C S(ﬁst (o) be such that

Yot (0)V Dot (1) = \/ Yot ()
pPER

is the canonical join representation of Yyt () V Spet (7). Assume that there is no p € R such
that o € Spet(p). Since 0 € Lot (0)V Spot (7)), we know that there exist strings py, ..., pe € R,
substrings &1 € Zpot(p1), - .-, & € Thot(pe), arrows aq, ...,y € Q1 andsignsey,...,eo—1 € {—1,1}
such that o = £af'...a,"'¢. Assume that there is k € [¢ — 1] such that ey = 1 and con-
sider the prefix £:=¢&af! ... ;"' & of o (the proof for the other case is symmetric considering
a suffix). Since & € pot(0) V ot (7)), there exist strings (1,...,¢m € Tpot(0) U Spot(7),
arrows B1,...,Bm_1 € Q; and signs d1,...,0,_1 € {—1,1} such that &€ = (5% ... ifb":f m-
Since e = 1, we have (, ¢ Ypot(0) so that (,, € Zpot(7). Let n € [m] be minimal such
that ¢:= (B9 ... B Cm € St (7). We distinguish two cases:

o If n =1, then ¢ € Xy,p(0) since g = 1.

e If n > 1, then (,—1 ¢ Zpot(7) (by minimality of n), so that (,—1 € Ype(0), and we

get 6,1 = —1. Since e, = 1, we thus obtain that ¢ € X, (0).

In both cases, we conclude that ( € Yop(0) N Shot (7)<, so that o and 7 are friendly along ¢ by
Lemma 3.65. This concludes the proof of (i) <= (ii). Finally, the equivalence (ii) <= (iii) is
proved by Corollary 3.79. O
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Part 4. The non-kissing associahedron

In this section, we provide geometric realizations of the non-kissing complex Cy(Q) when it is
finite. Inspired by similar constructions of [MP17] for dissection bound quivers and [GM16] for grid

bound quivers, we first construct a complete simplicial fan F8(Q) realizing Cpi(Q) (4.2.2). We then

prove that F8(Q) is the normal fan of a polytope Asso(Q) (4.2.3) and that the graph of this poly-

tope oriented in a suitable direction is the Hasse diagram of the non-kissing lattice L, (Q) (4.2.4).
We then discuss the existence of a zonotope Zono(Q) which could play the same role for Asso(Q)
as the classical permutahedron plays for the classical associahedron (4.2.5). Finally, we discuss

certain transformations of the quiver @) that correspond to natural projections of Asso () (4.2.6).

4.1. RECOLLECTIONS ON POLYHEDRAL GEOMETRY

We briefly recall basic definitions and properties of polyhedral fans and polytopes, and refer
to [Zie98] for a classical textbook on this topic.

Definition 4.1. A polyhedral cone is a subset of R™ defined equivalently as the positive span of
finitely many vectors or as the intersection of finitely many closed linear halfspaces. Throughout
the paper, we write R>oR for the positive span of a set R of vectors of R™. The faces of a
cone C are the intersections of C' with the supporting hyperplanes of C'. The 1-dimensional
(resp. codimension 1) faces of C' are called rays (resp. facets) of C. A cone is simplicial if it is
generated by a set of independent vectors.

Definition 4.2. A polyhedral fan is a collection F of polyhedral cones such that

e if C € F and F is a face of C, then F' € F,
e the intersection of any two cones of F is a face of both.

A fan is simplicial if all its cones are, and complete if the union of its cones covers the ambient
space R™.

The following statement characterizes complete simplicial fans. A formal proof can be found
e.g. in [DRS10, Coro. 4.5.20].

Proposition 4.3. Consider a pseudomanifold A on a finite vertex set V. and a set of vectors
(r(v))uev of R". For A € A, define the cone r(A):={r(v) ’ v € A}. Then the collection of
cones {Rzor(A) | ANIS A} forms a complete simplicial fan if and only if
(1) there exists a facet N of A such that v(A) is a basis of R™ and such that the open
cones Rsor(A) and Rsor(A') are disjoint for any facet N of A distinct from /\;
(2) for two adjacent facets NN, N of A with AN {v} = A"~ {v'}, there is a linear dependence

ar(v)+a' r(v) + Z Bwr(w) =0
weANA’
on r(AUA') where the coefficients o and o have the same sign. (When these conditions
hold, these coefficients do not vanish and the linear dependence is unique up to rescaling.)

Definition 4.4. A polytope is a subset P of R™ defined equivalently as the convex hull of finitely
many points or as a bounded intersection of finitely many closed affine halfspaces. The faces of P
are the intersections of P with its supporting hyperplanes. The dimension 0 (resp. dimension 1,
resp. codimension 1) faces of P are called vertices (resp. edges, resp. facets) of P.

Definition 4.5. The (outer) normal cone of a face F' of P is the cone generated by the outer
normal vectors of the facets of P containing F. The (outer) normal fan of P is the collection of
the (outer) normal cones of all its faces. We say that a complete polyhedral fan in R™ is polytopal
when it is the normal fan of a polytope of R™.

The following statement provides a characterization of polytopality of complete simplicial fans.
It is a reformulation of regularity of triangulations of vector configurations, introduced in the theory
of secondary polytopes [GKZ08], see also [DRS10]. We present here a convenient formulation
from [CFZ02, Lem. 2.1].
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Proposition 4.6. Consider a pseudomanifold A with vertex set V' and a set of vectors (r(v))vev
of R™ such that F:= {Rzor(A) | JANIS A} is a complete simplicial fan in R™. Then the following
are equivalent:

(1) F is the normal fan of a simple polytope in R™;
(2) There exists a map h : V. — Ry such that for any two adjacent facets N, of A
with A~ {v} = AN~ {v'}, we have

ah(w)+a h@)+ Y Buh 0,
weANA'

where

ar(v) + o' v Z Buwr(w) =

weANA'
is the unique (up to rescaling) linear dependence with v, &’ > 0 between the rays of r(A U A).
Under these conditions, F is the normal fan of the polytope defined by

{xeR"| (r(v)|x) < h(v) forallve V}.

2. NON-KISSING GEOMETRY

4.2.1. g-vectors and c-vectors. Let (e,),cq, be the standard basis of R?0. We first define an
analog of the characteristic vector for multisets.

Definition 4.7. For a multiset V :={vy,...,v,,} of vertices of Qp, we denote by my € R? the
multiplicity vector of V' defined by

mV::Zem Z|{z€ 1| vi =v}]e,.
i€[m] vEQo
For a string o € S¥(Q), we define m, :=my (,) where V(o) is the multiset of vertices of o.

We now define two families of vectors that will play a crucial role in the geometric construction.

Definition 4.8. For a walk w € W2 (Q), we denote by peaks(w) (resp. by deeps(w)) the multiset
of vertices of Qg corresponding to the peaks (resp. deeps) of w. The g-vector of a walk w is the
vector g(w) € R?0 defined by

g(o.}) ‘= Mpeaks(w) — Mdeeps(w) -
For a set Q of walks, we let g(2):= {g(w) | w € Q}. Observe that g(w) = 0 for a straight walk w.
Example 4.9. The g-vector of the plain blue walk on Figure 19 (left) is (0,—1,0,0,1,0) (see

Figure 15 for the labeling order of the vertices of the quiver Qexm). See Figure 39 for more
examples of g-vectors.

Remark 4.10. One easily checks that if o is a string for a gentle bound quiver Q, and w(o) the
associated walk in the blossoming bound quiver Q¥ as in Lemma 2.40, then g(o) = g(w(o)).

Definition 4.11. Consider a bending walk w in a non-kissing facet F' € Cyi(Q). Recall from
Proposition 2.26 that the walk w carries two distinguished arrows da(w, F') surrounding its distin-
guished string ds(w, F) (see Figure 39). Define

(@, F) 1 if ds(w, F') is a top substring of w (i.e. the arrows da(w, F') point outside),
w =
—1 if ds(w, F) is a bottom substring of w (i.e. if the arrows da(w, F') point inside).
The c-vector of a walk w of F' is the vector c(w € F) € R?° defined by
C(w € F) 125(&)7 F) Mys(w,F)-

We let c(F):
and C(Q) =

= {c(w € F) |w € F} be the set of c-vectors of a non-kissing facet F' € Cnx(Q),
Ug c(F) be the set of all c-vectors of all non-kissing facets F € an(Q)
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\'I [ ] [ ] L) [ ] [ ] [ ] [ ] [ ]
1,0 00 0 0 -1 1,0 0 0 0 0 -1

210 0 0 0 -1 O 20 01 0 -1 O

310 1. 0 1 0 O 310 1. 0 0 0 O

410 0 0 -1 0 O 410 1 1 -1 0 O

510 0 1 1 1 O 5{0 01 0 0 O

J 6\1 0 0 0 O O 6\1 0 0 0O 0 O

Fexm i g(chm) C(chm)

FiGURE 39. The g- and c-matrices of the facet Foyy. Their columns correspond to the g- and
c-vectors of the different walks of Feyn. See Figure 15 for the labeling order of the vertices of the
quiver Qexm- Note that g(Fexm) - ¢(Fexm)? = 1.

Example 4.12. In the facet Feyp, of Figure 19 (right), the c-vector of the blue walk is (0, —1, 0,0, 0, 0)
while the c-vector of the yellow path is (0,1,0,1,1,0) (see Figure 15 for the labeling order of the
vertices of the quiver Qexm and Figure 39 (left) to see the distinguished arrows in the facet Foxpm ).
See Figure 39 for more examples of c-vectors.

Example 4.13. The g- and c-vectors of the peak and deep facets Flcak and Fyeep are given by
g(vpcak) = €y, g(vdccp) = —€y, C(vpcak S chak) = €y, and C(Udccp S chcp) = —€y.

Remark 4.14. The definitions of g- and c-vectors immediately imply the sign-coherence property:

for any non-kissing facet F' € Cpi(Q),

e for any w € F, all coordinates of the c-vector c(w € F') have the same sign,
e for v € Qo, the vth coordinates of all g-vectors g(w) for w € F have the same sign
(otherwise, the corresponding walks would kiss at v).

In particular, a c-vector is called positive when all its coordinates are non-negative and negative
when all its coordinates are non-positive.

Remark 4.15. There is a subtle relation between c-vectors and strings. Indeed, c-vectors are
multiplicity vectors of the vertex multisets of some strings of @, but

e not all strings are distinguishable (see Definition 2.28 and Proposition 3.63), and
e distinct distinguishable strings may have identical vertex multisets.

The g- and c-vectors have been designed so that the following statement holds, as illustrated
in Figure 39.

Proposition 4.16. For any non-kissing facet F € Cni(Q), the set of g-vectors g(F) and the set
of c-vectors ¢(F') form dual bases.

Proof. Consider two walks p,v € F. By definition, the g-vector g(u) counts the corners of w,
while the c-vector ¢(v € F) counts, up to a sign, the vertices on the distinguished string ds(v, F').
To compute the scalar product (g(u) | c(v € F') ), we thus need to understand which corners of p
lie on the distinguished string ds(v, F').

Assume first that g = v. If the distinguished arrows da(w, F') point outside, then c(u € F) is
positive and there is one more peak than deeps on the distinguished string ds(u, F'). Otherwise,
c(u € F) is negative and there is one more deep than peaks on the distinguished string ds(u, F').
In both cases, we obtain (g(u) | c(p € F)) = 1.

Assume now that p # v. Consider a maximal common substring ¢ in the intersection of p
with v. Since they have opposite directions, the distinguished arrows of v cannot both belong
to o. Therefore, the distinguished string ds(v, F') covers either the whole string o, or nothing, or
an initial or final substring of o. Moreover, the arrows of p incident to but not in ds(v, F) have
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the same direction along u. Therefore, the distinguished string ds(v, F') contains as many peaks
as deeps of p in . We thus showed that o does not contributes to (g(u) | c(v € F')). Summing
the contribution of all common substrings of p and v, we obtain that (g(u)|c(r € F)) =0
when p # v. We conclude that g(F) and c(F') are dual bases. O

4.2.2. The g-vector fan. We now restrict our attention to a gentle bound quiver Q with a finite
non-kissing complex Cp1.(Q). We present a fan realization of C,(Q) inspired by similar statements
of T. Manneville and V. Pilaud in [MP17] for dissection bound quivers and by A. Garver and T. Mc-
Conville in [GM17] for grid bound quivers. As illustrated in Figure 43, this construction actually
provides fan realizations of all non-kissing complexes (finite or not). Our elementary argument

proves the finite case, the general case can be proven using [DKO08, DIJ15] (see Remark 4.22).

Theorem 4.17. For a gentle bound quiver Q with finite non-kissing complex Cui(Q), the collection
of cones

FE(Q) = {Rzog(F) ‘ F non-kissing face oank(Q)}
forms a complete simplicial fan, that we call the g-vector fan of Q.

Proof. We use the characterization of complete simplicial fans of Proposition 4.3. By Remark 4.14,
the cone Rs>og(Fpeax) is the only cone of F&(Q) intersecting the interior of the positive or-
thant (Rso)@. Consider now two adjacent non-kissing facets F, F’ € Cu(Q). Let w € F
and w’ € F’ be such that F \ {w} = F' ~ {w'}, and let u and v be the two other walks involved
in the flip as defined in Proposition 2.31 (see Figure 23). Note that a vertex v € Qo is a peak of
none of (resp. one of, resp. both) the walks w, w’ if and only if it is a peak of none of (resp. one of,

resp. both) the walks p,v. The same holds for deeps. We thus have the linear dependence
g(w) +gWw') =g(u) +8)

among the g-vectors involved in the flip. Note that this equality holds even when p and v coincide,

or when p or v are straight walks (in which case their g-vector vanishes). This shows that F&(Q)

satisfies the two conditions of Proposition 4.3, and thus shows that F&(Q)) is a fan. g

Remark 4.18. The linear dependence g(w) + g(w’) = g(p) + g(v) relating the g-vectors of
two adjacent non-kissing facets F, F’ € Cy(Q) shows that det (g(F)) = — det (g(F”)). Since the
initial cone R>og(Fpeak) is generated by the coordinate vectors (see Example 4.13), we obtain
that det (g(F)) = +1 for all non-kissing facets F' € Cpk(Q), so that the g-vector fan F&(Q)

is smooth.

Remark 4.19. Call c-vector fan the fan F¢(Q) defined by the arrangement of the hyperplanes
orthogonal to the c-vectors of C(Q). Be aware that contrarily to the g-vector fan whose rays
are the g-vectors, the c-vectors are not the rays but the normal vectors of the hyperplanes of the

c-vector fan. By Proposition 4.16, any non-maximal cone of F8((Q) is supported by an hyperplane

orthogonal to a c-vector of C(Q). The g-vector fan F&(Q)) thus coarsens the c-vector fan F¢(Q).

Example 4.20. To illustrate Theorem 4.17 and Remark 4.19, we have represented in Figure 40
the c-vector fan F¢(Q) and the g-vector fan F8(Q) for two specific gentle bound quivers. We use
the classical projection to represent 3-dimensional fans: the fan is intersected with the unit sphere
and stereographically projected to the plane from the pole in direction (1,1,1). More generally,

Figure 44 gathers the c-vector fan F¢(Q)) and the g-vector fan F&((Q) for all possible connected
simple gentle bound quivers with 3 vertices such that the non-kissing complex Cp(Q) is finite
(i.e. where there is a relation in any cycle, oriented or not). See also Figure 43 for the g-vector

fans of all connected gentle bound quivers on 2 vertices.

Example 4.21. For the dissection and grid bound quivers introduced in Section 2.1.2, the g-vector
fans already appeared in earlier works:
e For a dissection D, the g-vector fan F&(Q(D)) was constructed in [MP17].
e For a connected subset L of Z2, the g-vector fan F&(Q(L)) was constructed in [GM17].
We note however that our proof, quite different from that of [GM17], will be decisive to
obtain polytopal realizations in the next section.
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e

FIGURE 40. Stereographic projections of the c-vector fans F¢(Q) (red, left) and the g-vector
fans F8(Q) (blue, middle) for two specific quivers. The 3-dimensional fan is intersected with the
unit sphere and stereographically projected to the plane from the pole in direction (1,1,1). Note

that the g-vector fan is supported by the c-vector fan (right).

e For oriented paths, g-vector fans are known as type A Cambrian fans, constructed by
N. Reading and D. Speyer [RS09] in connection with type A cluster algebras [FZ02, FZ03].

Note that the topmost quiver of Figure 40 is both a dissection and a grid bound quiver, so that
its g-vector fan was constructed independently in [MP17] and [GM17].

Remark 4.22. Theorem 4.17 extends to any finite-dimensional algebra A. More precisely:

e As pointed out to us by L. Demonet, a similar linear dependence holds for a mutation in
the support 7-tilting complex of any finite-dimensional algebra A. Indeed, the g-vector of
a 7-rigid pair can be identified with the class of the corresponding 2-term complex in the
Grothendieck group of the bounded homotopy category of finitely generated projective
modules over A. The existence of an exchange triangle X — P, Y: = X' — X[1]
(see [AI12]) immediately gives the equality [X] + [X'] = > i [Yi] in the Grothendieck
group, yielding the claimed linear dependence among g-vectors.

e By Proposition 4.3, this suffices to prove Theorem 4.17 for any finite-dimensional algebra A
with finite support 7-tilting complex.

e This simple argument fails when the support 7-tilting complex is infinite. However, the
set F8(Q) is still a simplicial fan (not necessarily complete). This can be proven using the
(much harder) result [DK08, DIJ15] that 7-rigid objects are determined by their g-vectors.

4.2.3. The non-kissing associahedron. We still consider a gentle bound quiver @ with finite

non-kissing complex Cpi(Q)). We now construct a polytopal realization of the g-vector fan F&(Q).

Definition 4.23. For two walks w,w’ € Wi(@), denote by x(w,w’) the number of kisses of w
to w’. Note that kisses are counted with multiplicities if w or w’ pass twice through the same

substring. The kissing number of w and w’ is KN(w,w') :=k(w,w’) + £(w',w). Since Cyk(Q) is

finite, we can define the kissing number of a walk w on @ as

KN(w) = ZKN(w,w/),
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where the sum runs over all walks w’ of Wnk(Q).

checks using Proposition 1.40 that when IC,

Remark 4.24. Let w : S§ Q) — WZE_ (Q) be the bijection of Lemma 2.40. Then one easily
(Q) is finite, we have for any o € S> Q)
)T

KN (w(o ZdlmHomA (M(0),7M(p)) 4+ dimHom, (M (p), 7M(0)),

where the sum runs over all other strings p of S;_l(Q).

Lemma 4.25. For any adjacent non-kissing facets F,F' € Cn(Q), the values of the kissing
number KN on the walks w,w’, u, v defined in Proposition 2.31 (see Figure 23) satisfy the inequality
KN(w) + KN(w') > KN(u) + KN(v).

Proof. Observe in Figure 23 (right) that for any walk A, a kiss of A with one of (resp. both) the
walks £ and v is as well a kiss with one of (resp. both) the walks w and «’. In other words,
KN(\, w) + KN(A\, w') > KN(A, pt) + KN(A, ). Moreover, the walks w and w’ kiss each other but do
not kiss 4 and v. We conclude that KN(w) + KN(w') > KN(u) + KN(v) + 2. O

Definition 4.26. Let Q be a gentle bound quiver with finite non-kissing complex Cpi(Q). Define
(i) for each non-kissing facet F € an(Q) a point

ZKN cweF),

weF
(ii) for each walk w € Wﬁi(@) a halfspace
HS (w —{XGRQU |(g(w)\x)§KN(w)}.

Theorem 4.27. For a gentle bound quiver Q with finite non-kissing complex Cux(Q), the g-vector
fan F&(Q) is the normal fan of the Q-associahedron Asso(Q) defined equivalently as

(i) the convex hull of the points p(F) for all non-kissing facets F' € Coi(Q), or
(ii) the intersection of the halfspaces H=(w) for all walks w € W (Q).

Proof. Consider two adjacent non-kissing facets F, F” and define the walks w,w’, u, v as in Propo-
sition 2.31 (see Figure 23). We have seen in the proof of Theorem 4.17 that the linear dependence
between the g-vectors of FUF” is g(w)+g(w') = g(u) +g(v). Moreover, according to Lemma 4.25,
the kissing number satisfies KN(w) + KN(w’) > KN(u) + KN(v). Applying the characterization of
Proposition 4.6, we thus immediately obtain that the g-vector fan F8(Q) is the normal fan of the
polytope defined as the intersection of the halfspaces H=(w) for all walks w on Q.

Finally, to show the vertex description, we just need to observe that, for any non-kissing
facet F' € Cuix(Q), the point p(F) is the intersection of the hyperplanes H=(w) for all w € F.
Indeed, since g(F) and C(F) form dual bases by Proposition 4.16, we have for any w € F":

(g(w) =Y KN(p) (gw) | c(n € F)) = KN(t) dump = KN(w). O

peF peF

Example 4.28. To illustrate Theorem 4.27, we have represented in Figure 41 (middle) the associ-
ahedron Asso(Q) for two specific gentle bound quivers. More generally, Figure 45 (middle) gathers
the associahedron Asso(Q) for all possible connected simple gentle bound quivers with 3 vertices
such that the non-kissing complex Cpi(Q) is finite (i.e. where there is a relation in any cycle,
oriented or not). Their normal fans are represented in Figure 44 (middle). See also Figure 43 for

the associahedra of all connected gentle bound quivers on 2 vertices.

Example 4.29. The dissection and grid bound quivers introduced in Section 2.1.2 give particularly
relevant examples:
e For a dissection D, the Q(D)-associahedron of the dissection bound quiver Q(D) was
previously constructed in [MP17] as a projection of a well-chosen associahedron. For
example, the top line of Figure 41 already appeared in [MP17].
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FIGURE 41. The zonotope Zono(Q) (red, left) and the associahedron Asso(Q) (blue, middle) for
two specific quivers. Observe that the facet defining inequalities of Asso(Q)) are not necessarily

facet defining inequalities of Zono(Q) (right).

e In contrast, the non-kissing associahedron was not known for a grid bound quiver. Our
construction thus answers a question of A. Garver and T. McConville [GM17] concerning
the polytopality of the g-vector fan F&8(Q(L)) for a subset L of Z2. Note that alternative
polytopal realizations for the grid-associahedra were constructed in [SSW17] using the
dual of a nice triangulation of an order polytope and in [McC17, Sect. 4] by a sequence of
suspensions and edge subdivisions.

e For oriented paths, the non-kissing associahedra are classical associahedra, constructed by
J.-L. Loday [Lod04] and C. Hohlweg and C. Lange [HLO7] and revisited in [HLT11, Stel3,
PS12, LP13, HPS17] (among others).

Remark 4.30. As in Remark 4.22, Theorem 4.27 in fact holds over any 7-tilting finite algebra A.
The kissing number has to be replaced by the dimension of some Hom-space, as in Remark 4.24.
More precisely, consider the functions

KNg(X) =) dimHom (X,Y[1])  and  kN.(X) =) dimHom (Y, X[1]),
Y Y

where the sums run over all indecomposable 2-term presilting complexes. An exchange triangle
X = @iy Yi = X' — X[1] (see [AI12]) then gives rise to
e alinear dependence [X]+ [X'] =3, ;[Vi] in the Grothendieck group (see Remark 4.22),
e an inequality of the form KN(X) 4+ KN(X') > 3, KN(Y;) for KN € {KNg, KN, }.
The proof is then similar to that of Theorem 4.27 and leads to the same results using either KNy,

KN, or more symmetrically their sum KNy + KN,.. Compare to Remark 4.24.

4.2.4. Non-kissing associahedron and lattice. The following observation is an immediate con-
sequence of the fact that the normal fan of the Q-associahedron Asso(Q) is the g-vector fan F&(Q).

Lemma 4.31. Consider two adjacent non-kissing facets F,F' and let w,w’,u and v denote

the walks involved in the flip as defined in Proposition 2.31 (see Figure 23). Then the differ-

ence p(F') — p(F) is a strictly negative multiple of c(w € F) = —c(w’ € F'). More precisely,
p(F') — p(F) = (KN(p) + KN(v) — KN(w) — KN(w')) c(w € F).

Proof. One can translate Remark 2.32 in terms of c-vectors as follows:
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e For w and ', we have c(w € F) = —c(w’' € F’).

e For p and v, two different situations can happen:
— If 4 = v, then it is a bending walk and ¢(p € F') = c(u € F) 4+ 2¢c(w € F).
— Otherwise, whenever p and v are bending walks, we have

c(ueF)=clueF)+cweF) and c(veF)=cveF)+c(weF).
e Finally, c(A € F) =c(\ € F’) for all walks A € (FNF') ~ {u, v}

The formula thus immediately follows from the definition of p(F'). Finally, Lemma 4.25 asserts
that KN(w) + KN(w') > KN(u) + KN(v), which shows that p(F’) — p(F) is a strictly negative mul-
tiple of c(w € F) = —c(w' € F'). O

Proposition 4.32. When oriented in the linear direction —1 := (-1,...,-1) € R the graph of
the Q-associahedron Asso(Q) is (isomorphic to) the increasing flip graph Gnk(Q).

Proof. For any two adjacent non-kissing facets F, F’ with F\ {w} = F’'~ {w’}, the scalar product
(=1 p(F') = p(F)) = (KN(1) + KN(v) — KN(w) — KN(w)) (~1 | e(w € F))

has the same sign as c(w € F). However, the flip F — F’ is increasing if and only if the
c-vector c(w € F') is positive. This concludes the proof. O

4.2.5. Zonotope. We have seen in Remark 4.19 that the c-vector fan F¢(Q) coarsens the g-vector
fan F8(Q). The goal of this short section is to discuss the possibility to visualize this property at
the level of polytopes. The prototypes are the associahedra of C. Hohlweg and C. Lange which
can be obtained by deleting inequalities in the facet description of the permtahedron [HLO7]. We
are interested in a similar behavior for arbitrary gentle bound quivers.

We still consider only gentle bound quivers @ with finite non-kissing complexes Cpi(Q). In

particular, there are only finitely many strings, so that the following Minkowski sum is well-defined.

Definition 4.33. The Q-zonotope is the Minkowski sum
Zono(Q) = Z [-m,,m,] = Z | {o € Si.(Q) lc=+m,}|c

0eSE (Q) ceC(Q)
where ST, (Q) still denotes the set of distinguishable strings of Q (see Definition 2.28), m, is the
multiplicity vector of the multiset of vertices of o, and C(Q) is the set of all c-vectors.

Example 4.34. Figure 41 (left) illustrates the zonotope Zono(Q) for two specific gentle bound

quivers. More generally, Figure 45 (top) gathers the zonotopes Zono(Q) for all possible connected

simple gentle bound quivers with 3 vertices such that the non-kissing complex Cp(Q) is finite.
Their normal fans are represented in Figure 44 (top). See also Figure 43 for the zonotopes of all
connected gentle bound quivers on 2 vertices.

Remark 4.35. Since C(Q) = {+m, |0 € Sjtist(Q)}, the normal fan of the zonotope Zono(Q)

is by construction the c-vector fan F°(Q). In particular, the graph of Zono(Q), oriented in the

direction —11 is the poset of regions of the c-vector fan F¢(Q) from the positive orthant as defined

by A. Bjorner, P. Edelman and G. Ziegler in [BEZ90]. In particular, when F¢(Q) is simplicial,

the oriented graph of Zono(Q) is the Hasse diagram of a lattice. However, the c-vector fan is not
simplicial in general, as illustrated by Figures 41 and 45. In fact, the oriented graph of Zono(Q)
is not always the Hasse diagram of a lattice, as observed in [McC17, Rem. 6.2] (the first counter-
example is given by a square quiver). The lattice of biclosed sets Bic(Q) was designed in [McC17]

to play the role of this missing lattice structure on Zono(Q).

Example 4.36. When Q is a type A quiver, the Q-zonotope Zono(Q) is the Minkowski sum of all
characteristic vectors of intervals (i.e. all type A,, roots), thus yielding the classical permutahedron.
In this situation, the Q-associahedron Asso(Q) is thus obtained by deleting inequalities in the facet
description of the Q-zonotope Zono(Q). See [Lod04, HLO7, LP13] for details.

Example 4.37. For a dissection quiver Q = Q(D), T. Manneville and V. Pilaud proved in [MP17]
that the Q-associahedron Asso(Q) is obtained by deleting inequalities in the facet description of
the Q-zonotope Zono(Q).
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Figures 41, 43 and 45 already illustrate that this property might fail for arbitrary gentle bound
quivers. It would be interesting to characterize those quivers for which it holds.

Question 4.38. For which gentle bound quivers Q are all inequalities of the Q-associahedron Asso(Q)
also inequalities of the Q-zonotope Zono(Q)?

Although we cannot provide a general answer to this question, we want to exhibit a sufficient
(but certainly not necessary) condition for this property. We need the following definition.

Definition 4.39. We say that two walks w,w’ of Q are mutually kissing if w kisses w’ and w’
kisses w, that is, k(w,w’) kK(w',w) > 0.

Proposition 4.40. If Q is a gentle bound quiver with a finite non-kissing complex and no two
mutually kissing walks, then all facet inequalities of the Q-associahedron Asso(Q) are also facet
inequalities of the Q-zonotope Zono(Q). In other words, the Q-associahedron Asso(Q) is obtained
by deleting inequalities in the facet description of the Q-zonotope Zono(Q).

Proof. Consider a bending walk w € Wlind(Q) and the corresponding facet inequality of Asso(Q)
given by (g(w) | x) < KN(w). We want to show that (g(w) | x) < KN(w) is also a facet inequality

of Zono(Q). For this, we associate to each bending walk w’ a negative c-vector ¢~ (w’) and a
positive c-vector ¢T(w’) defined by

T B N B T e
0 otherwise 0 otherwise
where opot(w') and ogop(w’) are the distinguishable strings defined in Definition 3.68 and Re-
mark 3.70. By Proposition 3.69, the -zonotope Zono(Q)) can be rewritten as the Minkowski sum
of these c-vectors:

Zono(Q) = Z [-m,,m,| = Z ([0,¢™ (W] + [0, ¢ (W)]).

7€855..(Q) W EWE,4(Q)

Therefore, the facet inequality of Zono(Q) corresponding to the normal vector g(w) is given by

(gw)x)< > max((gw)|e (&)).0) +max((gw) | c"(w)),0)

weWwE Q)

Consider now a bending walk ' € Wit 1(Q). We want to understand when (g(w) | ¢t (w')) >0
(the case (g(w) | ¢~ (w')) > 0 is similar). If (g(w) | ¢™(w’)) > 0, then the walks w and w’ share
common vertices. Let 7 be a maximal common substring of w and w’. If w enters and leaves 7 in the
same direction, then it has as many peaks as deeps along 7, so that (g(w) | m, ) = 0. In contrast,
if w enters and leaves 7 with two outgoing (resp. incoming) arrows, then w has one more peak
than deep (resp. one more deep than peak) along 7, so that (g(w) | m, ) =1 (resp. —1). Observe
now that if 7 is not included in ¢ := oyop(w’), then w must enter and leave the substring 7\ ¢ with
incoming arrows so that (g(w) | m,., ) = 0. We conclude that 7 contributes 0 (resp. 1, resp. —1)
to (g(w) | ¢ (w) ) when w and w’ are crossing (resp. when w kisses w’, resp. when w’ kisses w) at 7.
Since w and w’ are not mutually kissing, all maximal common substrings of w and w’ contribute
with the same sign. Therefore, we have max({g(w) | cT(w)),0) = x(w,w’). We obtain similarly
that max({g(w) | ¢~ (w)),0) = k(w', w), so that

max(< g(w) ‘ c (W) > ,0) + max(< g(w) ‘ ct(w) > ,0) = k(w,w') + k(w', w) = KN(w,w")

and therefore the maximum of (g(w) | x) over Zono(Q) is given by

Z KN(w,w') = KN(w). O

w’ EV\}‘L:)‘:end (Q)
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4.2.6. Coordinate sections and projections. We conclude the paper with a natural operation
on quivers that illustrates a recent result of [PPS17]. Intuitively, we blind a strict subset of the
vertices of a gentle bound quiver, meaning that we forbid peaks and deeps at these blinded vertices.
More formally, this corresponds to the following operation.

Definition 4.41. Consider a gentle bound quiver Q@ = (Q,I) and a vertex v € Qg. Denote
by K, := {aB | a, B € Q1 with t(a) = s(B)} the set of paths of length 2 with middle vertex v and
let I,:= K, NI and J,:=K, \ I. We denote by Qq,p = (Qqup>Iq.p) the bound quiver where

(Qqup)o = Qo ~ {v}, (Qeup)r ={a € Q1 ]s(a) #v#t(a)} Uy,
Igp={oel~1,|s(0)#v#t(o)}U{aBy|af el and fye J, or af € J, and fyel}.
We say that leb is obtained by blinding v in Q. Finally, for a subset V = {vy,..., v/} of Qq, we

let Qqvp = ((Qquid)€wad -+ awed-

Remark 4.42. The reader is invited to check that

the blinded quiver Qg is still a gentle bound quiver.

e blinding commutes with blossoming: (Qq,p)® = (Q%)qu)-
e blinding commutes with reversing: (Qq.p)*" = (Q"")qu)-
e (Qqv) is independent of the ordering of V.

Proposition 4.43. Consider a gentle bound quiver Q, a subset V C Qq, and the quiver inl' Then
(i) The path algebra Aqyy of the blinded quiver Q‘V. is the subalgebra of the path algebra A
of Q given by Aqyp = (1 —cv)-A-(1 —cv), where ey == ) .y €y-

(ii) The non-kissing complez K (Qqyp) is isomorphic to the subcomplex of the non-kissing com-
plex K (Q) induced by walks with no corner at a vertez of V. -
(iii) The g-vector fan F&(Qqyy) is the section {C € F&(Q) | C €V} of the g-vector fan F&(Q)

by the coordinate plane V*:= {x € R0 ‘ (ey|x)=0 forallveV}.

(iv) When K (Q) is finite, the normal fan of the projection of the non-kissing associahedron Asso(Q)
to the coordinate plane V=* is the g-vector fan F&(Qqyp)-

Proof. For (i), observe that the paths in Q.V. correspond to the paths in @ that do not start or
end at a vertex of V' (the correspondence consists in grouping blocks of consecutive letters af for
which t(a) = s(8) € V).

For (ii), we just need to observe that a walk w of @ with no corner at a vertex of V' corresponds
to a walk wgqyp of Q.V. (the correspondence consists again in grouping blocks of consecutive
letters a8 for which t(a) = s(8) € V). This correspondence clearly sends non-kissing walks to
non-kissing walks, and thus induces an isomorphism between the subcomplex of the non-kissing
complex K, (Q) induced by walks with no corner at a vertex of V' and the non-kissing com-
pleX Kllk(Q|V')'

Moreover, this correspondence sends peaks (resp. deeps) of w to peaks (resp. deeps) of wqyp-
Since the v-th coordinate of the g-vector of a walk w is the number of peaks minus the number of
deeps of w at v, we obtain that

gw)e vt and Ty (g(w)) = glwqyy)
for a walk of ) with no corner at a vertex of V, where my denotes the coordinate projection on
the hyperplane V+. This shows (iii).
Finally, (iv) immediately follows from (iii) since the normal fan of a projection of a polytope P
on a subspace V is the section of the normal fan of P by the subspace V [Zie98, Lemma 7.11]. O

Example 4.44. To illustrate Proposition 4.43, we have represented in Figure 42 all possible coor-

dinate projections of the non-kissing associahedra Asso(Q)) for two specific gentle bound quivers.

Example 4.45. Consider a triangulation 7" of a convex polygon and a dissection D whose edges
are included in T. Then the dissection bound quiver Q(D) coincides with the blinded bound
quiver Q(T).V. where V' are the vertices of Q(T') corresponding to the diagonals of 7" not in D.
In particular, the g-vector fan of any dissection bound quiver Q(D) is a section of the g-vector fan
of a type A quiver, and is realized by a projection of the associahedron of [HPS17]. See [PPS17].
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FIGURE 42. All possible coordinate projections of the non-kissing associahedra Asso(Q) for two
specific gentle bound quivers.
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