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ABSTRACT. We study deformations of graphical zonotopes. Deformations of the classical permu-
tahedron (which is the graphical zonotope of the complete graph) have been intensively studied
in recent years under the name of generalized permutahedra. We provide an irredundant de-
scription of the deformation cone of the graphical zonotope associated to a graph G, consisting
of independent equations defining its linear span (in terms of non-cliques of G) and of the in-
equalities defining its facets (in terms of common neighbors of neighbors in G). In particular,
we deduce that the faces of the standard simplex corresponding to induced cliques in G form a
linear basis of the deformation cone, and that the deformation cone is simplicial if and only if
G is triangle-free.

INTRODUCTION

The graphical zonotope of a graph G is a convex polytope Zg whose geometry encodes several
combinatorial properties of G. For example, its vertices are in bijection with the acyclic orienta-
tions of G [Sta07, Prop. 2.5] and its volume is the number of spanning trees of G [Stal2, Ex. 4.64].
When G is the complete graph K,,, the graphical zonotope is a translation of the classical
n-dimensional permutahedron. This polytope, obtained as the convex hull of the n! permuta-
tions of the vector (1,2,...,n) € R™, was first introduced by Schoute in 1911 [Sch11], and has
become one of the most studied polytopes in geometric and algebraic combinatorics.

A deformed permutahedron (a.k.a. generalized permutahedron) is a polytope obtained from
the permutahedron by translating its facet-defining hyperplanes without passing through a vertex.
These polytopes were originally introduced by Edmonds in 1970 under the name of polymatroids
as a polyhedral generalization of matroids in the context of linear optimization [Edm70]. They
were rediscovered by Postnikov in 2009 [Pos09], who initiated the investigation of their rich combi-
natorial structure. They have since become a widely studied family of polytopes that appears nat-
urally in several areas of mathematics, such as algebraic combinatorics [AA17, ABD10, PRWO08],
optimization [Fuj05], game theory [DKO00], statistics [MPST09, MUWY18], and economic the-
ory [JKS21]. The set of deformed permutahedra can be parametrized by the cone of submodular
functions [Edm70, Pos09].

In general, a deformation of a polytope P can be equivalently described as (i) a polytope obtained
from P by moving the vertices so that the directions of all edges are preserved [Pos09, PRWO0S],
(ii) a polytope obtained from P by translating its facet-defining halfspaces without passing through
a vertex [Pos09, PRWOS], (iii) a polytope whose normal fan coarsens the normal fan of P [McM73],
(iv) a polytope whose support function is a convex piecewise linear continuous function supported
on the normal fan of P [CLS11, Sec. 6.1][DRS10, Sec. 9.5], or (v) a Minkowski summand of a
dilate of P [She63, Mey74]. The set of deformations of P always forms a polyhedral cone under
dilation and Minkowski addition, which is called the deformation cone of P [Pos09]. Its interior
is called the type cone of the normal fan of P [McM73], and contains those polytopes with the
same normal fan as P. When P has rational vertex coordinates, then the type cone is known
as the numerically effective cone and encodes the embeddings of the associated toric variety into
projective space [CLS11].

There exist several methods to parametrize and describe the deformation cone of a given poly-
tope (see e.g. [PRWO0S8, App. 15]), for example via the height deformation space and the wall-
crossing inequalities or via the edge deformation space and the polygonal face equalities. However,
these methods only provide redundant inequality descriptions of the deformation cone. Not even
the dimension of the deformation cone is easily deduced from these descriptions, as illustrated by
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the difficulty of describing which fans have a nonempty type cone (i.e. describing realizable fans
[DRS10, Chap. 9.5.3]), or a one dimensional type cone (i.e. describing Minkowski indecomposable
polytopes [Kal82, McM87, Mey74, PY16, She63]).

The search of irredundant facet descriptions of deformation cones of particular families of com-
binatorial polytopes has received considerable attention recently [ACEP20, BMDM™ 18, CDG*22,
CL20, PPPP19, APR21, PPP21]. One of the motivations sparking this interest arises from the
amplituhedron program to study scattering amplitudes in mathematical physics [AHT14]. As de-
scribed in [PPPP19, Sec. 1.4], the deformation cone provides canonical realizations of a polytope
(seen as a positive geometry [AHBL17]) in the positive region of the kinematic space, akin to those
of the associahedron in [AHBHY18].

The main result of this paper (Theorem 2.6) presents complete irredundant descriptions of
the deformation cones of graphical zonotopes. Note that, since graphical zonotopes are deformed
permutahedra, their type cones appear as particular faces of the submodular cone. Faces of the
submodular cone are far from being well understood. For example, determining its rays remains
an open problem since the 1970s, when it was first asked by Edmonds [Edm70].

It is worth noting that most of the existing approaches to compute deformation cones only focus
on simple polytopes with simplicial normal fans [CFZ02, PRWO08]. Nevertheless, most graphical
zonotopes are not simple. They are simple only for chordful graphs (those where every cycle
induces a clique), see [PRWO08, Prop. 5.2] and [Kim08, Rmk. 6.2]. In this paper, we thus use
an alternative approach to describe the deformation cone of a non-simple polytope based on a
simplicial refinement of its normal cone.

The paper is organized as follows. We first recall in Section 1 the necessary material concerning
polyhedral geometry (Section 1.1), deformation cones (Section 1.2), and graphical zonotopes (Sec-
tion 1.3). We then describe in Section 2 the deformation cone of any graphical zonotope, providing
first a possibly redundant description (Section 2.1), then irredundant descriptions of its linear span
(Section 2.2) and of its facet-defining inequalities (Section 2.3), and finally a characterization of
graphical zonotopes with simplicial type cones (Section 2.4).

1. PRELIMINARIES

1.1. Fans and polytopes. We mainly follow [Zie98] for the notation concerning polyhedral geome-
try, and we refer to it for more background and details.

A polytope P in R? is the convex hull of finitely many points. Its faces are the zero-sets of
non-negative affine functions on P. Its vertices, edges and facets are its faces of dimension 0,
dimension 1, and codimension 1, respectively. A d-dimensional polytope is called simple if every
vertex is incident to d facets.

Similarly, a polyhedral cone C in R? is the positive span of finitely many vectors, and its faces
are the zero-sets of non-negative linear functions on C. Its rays and facets are its faces of dimension
and codimension 1, respectively. Its lineality space is the inclusion-minimal face, which is always
the largest linear subspace contained in C. A cone is simplicial if its rays are linearly independent,
and pointed if its lineality is {0}. Note that every cone can be decomposed as the free sum of its
lineality with a pointed cone (obtained from any section transversal to the lineality).

A fan F in R? is a collection of cones closed under taking faces and such that the intersection
of any two cones is a common face of the two cones. Two cones of a fan are adjacent if they
share a facet. The fan F is complete if the union of its cones is R?, essential if all its cones are
pointed, and simplicial if all its cones are simplicial. We will say that F is supported on the set of
vectors S if every cone of F is the cone spanned by a subset of S. An essential fan is supported
by representatives of its rays, and this is the unique inclusion-minimal set with this property, up
to positive rescaling. For non-essential fans, however, non-canonical choices have to be made. We
say that F coarsens G and that G refines F if every cone of a fan F is a union of cones of a fan G.

The normal cone of a face F of a polytope P in R? is the polyhedral cone in the dual space (R%)*
(which we identify with R? via the standard inner product) consisting of the linear forms whose
maximal value on P is attained on all the points of F. The normal fan of P is the collection of all
the normal cones to its faces. It is always complete, and essential whenever P is full dimensional.
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The Minkowski sum of two polytopes P and Q is the polytope P+Q:= {p+ ¢q | p € P and q € Q}.
The normal fan of P+ Q is the common refinement of the normal fans of P and Q. We say that P
is a Minkowski summand of R if there is a polytope Q such that P+ Q = R, and a weak Minkowski
summand if there is a scalar A > 0 and a polytope Q such that P+ Q = AR. Equivalently, P
is a weak Minkowski summand of Q if and only if the normal fan of Q refines the normal fan
of P [She63, Thm. 4]. The polytope P C R? is called Minkowski indecomposable if all its weak
Minkowski summands are of the form AP + ¢ for some scalar A > 0 and vector t € R%.

A zonotope is a Minkowski sum of line segments, called its generators. Its normal fan is the fan
induced by the arrangement of hyperplanes orthogonal to these segments, see [Zie98, Sec. 7.3].

1.2. Deformation cones. The weak Minkowski summands of a polytope P C R? are also known
as deformations of P, as they can be always obtained from P by translations of its facet-defining
inequalities. It is sometimes convenient to consider the set of deformations of P embedded inside
the real vector space of virtual d-dimensional polytopes V¢ [PK92]. This is the set of formal
differences of polytopes P — Q under the equivalence relation (P; — Qi) = (P2 — Q2) whenever
P1 + P2 = Q1 + Q2. Endowed with Minkowski addition, it is the Grothendieck group of the
semigroup of polytopes, which are embedded into V¢ via the map P +— P — {0}. It extends to a
real vector space via dilation: for P —Q € V¥ and A € R, we set AP —Q):=AP —AQ when X\ > 0,
and A(P — Q):=((-A)Q) — ((=A)P) when A < 0. Here, AP:= {Ap | p € P} denotes the dilation
of P by A > 0. (Note in particular that —P does not represent the reflection of P, but its group
inverse.)

As we already mentioned, the set of deformations of a polytope P C R? forms a polyhedral cone
under dilation and Minkowski addition, called the deformation cone and denoted by DC(P):

DC(P):= {Q C R? | Q is a weak Minkowski summand of P} .

Note that DC(P) is a closed convex cone (dilations and Minkowski sums preserve weak Minkowski
summands) and contains a lineality subspace of dimension d (translations preserve weak Minkowski
summands). It is the set of all polytopes whose normal fan coarsens the normal fan F of P. Its
interior consists of all polytopes whose normal fan is F, and was called the type cone of F by
McMullen [McM73]. The faces of DC(P) are the deformation cones of the Minkowski summands
of P, and the face lattice is described by the inclusions DC(Q) C DC(R) whenever the normal
fan of Q coarsens the normal fan of R. Having into account the lineality, we will say that the
deformation cone is simplicial when its quotient modulo translations is simplicial. We will also
talk about the rays of DC(P), meaning the rays of its quotient modulo translations. They are
spanned by the indecomposable Minkowski summands of P of dimension at least 1 (note that
0-dimensional summands account for the space of translations).

There are several linearly isomorphic presentations of this cone. The first ones we are aware
of are due to McMullen [McM73] and Meyer [Mey74], even though a description was already
implicit in previous work of Shephard [She63]. In fact, the type cone can also be reinterpreted
as a chamber of regular triangulations of a vector configuration, as introduced in the theory of
secondary polytopes [GKZ08], see [DRS10, Sect. 9.5] for details. Other formulations can be found,
for example, in the appendix of [PRWO0S].

The following convenient formulation from [CFZ02, Lem. 2.1] shows that the deformation cone of
simple polytopes is isomorphic to a polyhedral cone, and provides an explicit inequality description,
usually called the wall-crossing inequalities.

Let P C R? be a polytope with normal fan F supported on the vector set S. Let G be the
N x d-matrix whose rows are the vectors in §. For any height vector h € RY, we define the
polytope Pp:= {z € R? | Gz < h} . It is not hard to see that any weak Minkowski summand of P
is of the form Py, for some h € RY.

Moreover, for deformations Pp, and Pps of P, we have Py, + Pp/ = Py and APp = Py, for
any A > 0. Hence, the deformation cone, which lies in the space of virtual polyhedra, is linearly
isomorphic to the cone

{heR"Y |P, eDC(P)}.
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Proposition 1.1 ([GKZ08, CFZ02]). Let P C R? be a simple polytope with simplicial normal fan F
supported on the rays S. Then the deformation cone DC(P) is the set of polytopes Py, for all h in
the cone of RS defined by the inequalities

Z arr(s)hs >0
sERUR/
for all adjacent mazimal cones RsoR and R>oR' of F with R~ {r} = R~ {r'}, where ar r/(s)
denote the coefficients in the unique linear dependence

Z apr(s)s=0

s€eRUR’
among the rays of RU R’ such that ar g (7) + ag.r (') = 2.

This characterization can be extended to general (not necessarily simple) polytopes. One
straightforward way to do so is via a simplicial refinement of the normal fan. If such a simplicial
refinement contains additional rays, then the type cone will be embedded in a higher dimensional
space, but projecting out these additional coordinates gives a linear isomorphism with the standard
presentation. See [PS19, Prop. 3] and [PPPP19, Prop. 1.7].

Proposition 1.2. Let P C R? be a polytope whose normal fan F is refined by the simplicial fan G
supported on the rays S. Then the deformation cone DC(P) is the set of polytopes Py, for all h in
the cone of RS defined by

e the equalities ) . p g @R, R (8) hs = 0 for any adjacent mazvimal cones R>oR and R>oR’'
of G belonging to the same maximal cone of F,
o the inequalities ) .. g p @R R/ (8) hs > 0 for any adjacent mazimal cones R>oR and R>o R
of G belonging to distinct mazximal cones of F,
where Y c pur @R,R/(8)8 = 0 is the unique linear dependence with ar r/ () + arr/(r') =2
amonyg the rays of two adjacent mazimal cones R>oR and R>oR' of G with R~ {r} = R~ {r'}.

1.3. Graphical zonotopes. Let G:=(V, E) be a graph with vertex set V and edge set E. The
graphical arrangement Ag is the arrangement of the hyperplanes {:c eRY ’ T, = :L'v} for all
edges {u,v} € E. It induces the graphical fan Fg whose cones are all the possible intersections of
one of the sets {w eRY ‘ xr, = :131,}7 {az eRY ’ T, > wv}, or {:B e RV ‘ x, < a:v} for each edge
{u,v} € E. The lineality of Fg is the subspace Kg of RV spanned by the characteristic vectors
of the connected components of G.

The graphical zonotope Zg is the Minkowski sum of the line segments [e,, e,] in RV for all
edges {u,v} € E. Here, (e,),cv denotes the canonical basis of RY. Note that Z lies in a subspace
orthogonal to Kg. The graphical fan Fg is the normal fan of the graphical zonotope Zg.

The following result is well-known. For example, it can be easily deduced from [Sta07, Prop. 2.5]
or [BLS'99] (for the latter, see that the graphical matroid from Sec. 1.1 is realized by the graphical
arrangement, and use the description of the cells of the arrangement in terms of covectors from
Sec. 1.2(c)).

An ordered partition (u,w) of G consists of a partition u of V' where each part induces a
connected subgraph of G, together with an acyclic orientation w of the quotient graph G/u. We
say that (u,w) refines (u',w’) if each part of u is contained in a part of x’ and the orientations
are compatible; that is, for all u,v € V if there is a directed path in w between the parts of
1 respectively containing u and v, then there is a directed path in w’ between the parts of p’
respectively containing u and v.

Proposition 1.3. The face lattice of Fg is antiisomorphic to the lattice of ordered partitions of G
ordered by refinement. FExplicitly, the antitsomorphism is given by the map that associates the
ordered partition (u,w) to the cone C, ., defined by the inequalities x,, < @, for all u,v € V such
that there is a directed path in w from the part containing u to the part containing v (in particular,
Ty = T, if u,v are in the same part of p).

IThe linear dependence is unique up to rescaling, and we fix this arbitrary positive rescaling for convenience in
the exposition.
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Some easy consequences of Proposition 1.3 are:

e The maximal cones of Fg are in bijection with the acyclic orientations of G. We denote
by C, the maximal cone of Fg associated to the acyclic orientation w.

e The minimal cones of F¢, that is the rays of F /K¢, are in bijection with the bicon-
nected subsets of G, i.e. non-empty subsets of V' spanning connected subgraphs whose
complements in their connected components are also non-empty and connected.

e The rays of F¢ /K¢ that belong to the maximal cone associated to an acyclic orientation
are the biconnected subsets which form an upper set of the acyclic orientation (hence, they
are in bijection with the minimal directed cuts of the acyclic orientation).

e Similarly, the rays of Fo /K¢ that belong to the cone associated to an ordered partition
(u,w) are the biconnected sets that contracted by p give rise to an upper set of w.

Note that the natural embedding of a graphical fan Fg is not essential, as it has a lineality
given by its connected components. This is why we cannot directly talk about the rays of the
fan in the enumeration above. The usual solution to avoid this is to consider the quotient by the
subspace Kg. However, this subspace depends on the graph, and with such a quotient we would
lose the capacity of uniformly treating all the graphs with a fixed vertex set. We will instead
work with the natural non-essential embedding, together with a collection of vectors supporting
simultaneously all graphical fans.

Example 1.4. When G is the complete graph K,,, the graphical zonotope is the permutahedron.
The graphical fan is the braid fan B,,, induced by the braid arrangement consisting of the hy-
perplanes {x € R" | x; = «;} for all 1 < ¢ < j < n. Its lineality is spanned by the all-ones
vector 1, :=(1,...,1). Since all the subsets of [n]:={1,2,...,n} are biconnected in K, the face
lattice of B,, is isomorphic to the lattice of ordered partitions of [n]. The rays of B,,/1,, correspond
to proper subsets of [n], and its maximal cells are in bijection with permutations of [n]. Each
maximal cell is the positive hull of the n — 1 rays corresponding to the proper upper sets of the
order given by the permutation. In particular, B, /1,, is a simplicial fan.

2. GRAPHICAL DEFORMATION CONES

Our main result is an irredundant facet description of the deformation cone of Zg for every
graph G:=(V,E). Our starting point is Proposition 2.4, which gives a (possibly redundant)
description derived from Proposition 1.2. It is strongly based on the fact that the braid fan
simultaneously refines all the graphical fans. Note however that the braid fan is not simplicial
(due to its lineality). The classical approach to overcome this issue is to quotient the braid fan
by its lineality space. However, we prefer to triangulate the braid fan, since it simplifies the
presentation of the proof.

2.1. A first polyhedral description. Associate to each subset S C V the vector
5= Ye Ye
veS vgS
This is essentially the characteristic vector of S, but it has the advantage that ¢,y = 1y and
Lty = —1y positively span the line 1R, which is the lineality Kg, of the braid fan.
Lemma 2.1. For any ordered partition (u,w) of a graph G:=(V, E), we have
Cuw =coneftg | S CV upper set of w}.

Here, we mean that S is an upper set of w when contracted by pu. Note that @ and V are
always upper sets, which is consistent with the fact that the lineality of Fg always contains the
line spanned by 1y.

We will work with a refined version By of the braid fan whose maximal cells are

C?:= cone{ts | S C V upper set of ¢} and CY:= cone{tg| @ # S C V upper set of o}

for every acyclic orientation of Ky, which we identify with a permutation o of V. An example is
depicted in Figure 1. The following two immediate statements are left to the reader.
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FIGURE 1. The fan 3\123 intersected with the unit sphere. (For brevity, here and in the labels we
write 123 to denote the set {1, 2,3}, and so on.) The braid fan Bya3 is the Cartesian product of a
regular hexagonal fan with a line. To obtain glgg, each maximal cell is divided into two simplicial
cells, one containing ¢tz and one containing ¢1s3.

Lemma 2.2. For any finite set V:

(i) The fan gy is an essential complete simplicial fan in RV supported on the 21V vectors vg
for SCV.

(ii) For any permutation o, the mazimal cones C2 and CY are adjacent, and the unique linear
relation supported on the rays of CZ UCY is 1y + 1y = 0.

(iii) The other pairs of adjacent mazximal cells are of the form CX and CX,, where X € {@,V}
and 0 = PuvS and o' = PvuS are permutations that differ in the inversion of two
consecutive elements. The two rays that are not shared by CX and Cf/ are tsugu}y and
Lsu{v}, and the unique linear relation supported on the rays of CX UCY is given by

Lsufu} T Lsufv} = ts + Lsufuw}-

Lemma 2.3. For any graph G:=(V, E):
(i) The fan gv is a simplicial refinement of the graphical fan Fq.
(ii) For an acyclic orientation w of G and S C V, we have vs € C,, if and only if S is an
upper set of w.
(iii) For an acyclic orientation o of Ky and X € {@,V} we have CX C C,, if and only if o is
a linear extension of w.

We are now ready to describe the deformation cone of the graphical zonotope Zg. For any
h € RQV, let Dy, be the deformed permutahedron given by

Dh::{:c eRY ’ Yz, ~ Y @, < hs for ausgv}.
veES vgS

Proposition 2.4. For any graph G:=(V, E), the deformation cone DC(Zs) of the graphical zono-
tope Zg is the set of polytopes Dy, for all h in the cone of R2" defined by the following (possibly
redundant) description:

e hy = —hy,

® hguruy + hsugey = hs + hsugu,ey for each {u,v} € (‘2/) N FE and S CV ~ {u,v}, and

® hguruy + hsugey > hs + hsuguvy for each {u,v} € E and S CV ~\ {u,v}.

Proof. Observe first that, as stated in Lemma 2.3, EV provides a simplicial refinement of Fg.
Following Proposition 1.2, we need to consider all pairs of adjacent maximal cones of g\/, and to
study which ones lie in the same cone of Fg.

Adjacent maximal cones of gv are described in Lemma 2.2, and the containement relations of
the cones of l?v in the cones of Fg are described in Lemma 2.3.
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For any o, the cones CZ and CY belong to the same cell of Fg. Hence, by Proposition 1.2, the
following equation holds in the deformation cone:

hg = —hv.

The remaining pairs of adjacent maximal cones of gv correspond to pairs of acyclic orientations
of Ky differing in a single edge; or equivalently, to pairs of permutations of V' of the form o = PuvS
and ¢’ = PvuS. The unique linear relation supported on the rays of CX U C%, for X € {@,V} is
then

Lsufu} T Lsufv} = ts + Lsufuw}-
We consider first the case when {u,v} ¢ E. Observe that both o and ¢’ induce the same acyclic

orientation of G, which we call w. We have then CX U CX, C C, by Lemma 2.3. Therefore, by
Proposition 1.2 and Lemma 2.2, we have

hsufuy + hsugey = hs + hsuguey

for any h in DC(Zg). Note that, for any {u,v} ¢ E and S C V ~ {u,v}, we can construct such
permutations o and ¢’. This gives the claimed description of the linear span of DC(Z¢).

In contrast, if {u,v} € F, then o and ¢’ induce different orientations of G, and hence they belong
to different adjacent cones of Fg by Lemma 2.3. Therefore, by Proposition 1.2 and Lemma 2.2,
we have

hsuguy + hsugwy = hs + hsufuw)
for any h in DC(Zg). As before, for any {u,v} € F and S C V ~\ {u,v}, we can construct such
permutations o and o’. This gives the claimed inequalities describing DC(Z¢). O

2.2. The linear span of graphical deformation cones. The description of the deformation cone of
Proposition 2.4 is highly redundant, both in the equations describing its linear span and in the
inequalities describing its facets. We will give a non-redundant description in Theorem 2.6. The
first step will be to give linearly independent equations describing the linear span. As a by-product,
we will obtain the dimension and a linear basis of the deformation cone DC(Z).

For a polytope P C R?, we define the space VID(P) C V¢ of virtual deformations of P as the
vector subspace of virtual polytopes generated by the deformations of P. Equivalently, VD(P) is
the linear span of the deformation cone DC(P). Every virtual polytope in VID(P) is of the form
Py — Py for deformations Pp, P, € DC(P). Note that the vector h — h’ uniquely describes the
equivalence class of this virtual polytope, and we will use the notation P,,_,- to denote it.

Denote by Ay := conv{e, | u € U} the face of the standard simplex Ay corresponding to a
subset U C V. These polytopes are particularly important deformed permutahedra as they form
a linear basis of the deformation space of the permutahedron [ABD10, Prop. 2.4]. Namely, any
(virtual) deformed permutahedron can be uniquely written as a signed Minkowski sum of dilates
of Ar. Our first result states that this linear basis is adapted to graphical zonotopes.

Theorem 2.5. For any graph G:=(V, E):

(i) The dimension of V(Zg) is the number of non-empty induced cliques in G (the vertices
of G count for the dimension as they correspond to the lineality space).
(ii) The faces Ak of the standard simplex Ay corresponding to the non-empty induced cliques K
of G form a linear basis of VD(Z¢).
(iti) VD(Zg) is the set of virtual polytopes Dy, for all h € R2" fulfilling the following linearly
independent equations:
e hy = —hy and
® hg quy + hsqvy = hs + hg quvy for each S C V with |S| > 2 not inducing a
clique of G and any {u,v} € (‘g) N E (here, we only choose one missing edge for each
subset S, for example, the lexicographically smallest).

Proof. Observe first that the faces Ak of the standard simplex Ay corresponding to the induced
cliques K of G are all in the deformation cone DC(Zs). Indeed, faces of the standard simplex A g
belong to the deformation cone of the complete graph Ky by [Pos09, Prop. 6.3]. The graphical
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zonotope Zg is a Minkowski summand of Zg for any subgraph G’ of G, and hence summands of
Zc are also summands of Zg.

Moreover, all faces Ay for @ # I C V are Minkowski independent by [ABD10, Prop. 2.4]. This
shows that the dimension of VID(Z) is at least the number of non-empty induced cliques of G.

Let (fx)xcv be the canonical basis of (RQV)*. The vectors

OS = fS - fS\{u} - -fS\{v} + fS\{u,v}7

for all subsets @ # S C V not inducing a clique of G and one selected missing edge {u,v} for
each S, are clearly linearly independent. Indeed, if the fy are ordered according to any linear
extension of the inclusion order on the indices X, and the o® are ordered analogously in terms
of the indices S, then the equations are already in echelon form, as fg is the greatest non-zero
coordinate of 0. Finally, the vector v € 2V with vx = |X| for X € 2V is orthogonal to any
o° with |S| > 2 but not to 0% := f + fy,, showing that the latter is linearly independent to the
former. This proves that the dimension of VID(Z¢) is at most the number of non-empty induced
cliques of G.

We conclude that {A K | @ # K C V inducing a clique of G} is a linear basis of the deforma-
tion cone, and that {oS | S =@ or S CV not inducing a clique of G} is a basis of its orthogonal
complement (we slightly abuse notation here as 0° was defined in (RQV)* instead of in (V4)*,
but note that each f can be considered as a linear functional in (V¢)* if seen as a support
function). O

Note that the dimension of the deformation space of graphical zonotopes has been independently
computed by Raman Sanyal and Josephine Yu (personnal communication), who computed the
space of Minkowski 1-weights of graphical zonotopes in the sense of McMullen [McM96]. Their
proof also uses the basis from Theorem 2.5 (ii), but with an alternative argument to show that
they are a generating family.

2.3. The facets of graphical deformation cones. To conclude, it remains to compute the facets of
the deformation cones, i.e. a non-redundant inequality description.
We define the neighborhood of a vertex v of a graph G:=(V, E) as N(v):= {u € V' | {u,v} € E}.

Theorem 2.6. For any graph G:=(V, E), the deformation cone DC(Z¢g) of the graphical zono-
tope Zg 1is the set of polytopes Dy, for all h in the cone of R2" defined by the following irredundant
facet description:

e hg =—hy,

® hg quy T hs (v} = hs + hs juuy for each @ # S CV and any {u,v} € (‘29) N E,

® hguruy +hsuguy = hs + hsuguey for each {u,v} € E and S € N(v) N N(v).

Note that this description is given as a face of the submodular cone, embedded into R2". One
gets easily an intrinsic presentation by restricting to the space spanned by the biconnected subsets
of V. However, that presentation loses its symmetry, and the explicit equations depend on the
biconnected sets of G.

Proof of Theorem 2.6. We know by Proposition 2.4 that DC(Zs) is the intersection of the cone

(1) hsutuy +hsugwy = hs + hsuguey
for {u,v} € E and S CV \ {u,v} with the linear space given by the equations hy = —hy and
(2) hsuuy + hsufey = hs + hsuguey

for {u,v} € (}) N Eand S CV ~ {u,v}.

We have already determined the equations describing the linear span in Theorem 2.5, so it only
remains to provide non-redundant inequalities describing the deformation cone.

We will prove first that the inequalities from (1) indexed by {u,v} € E and S C N(v) N N(v)
suffice to describe DC(Z¢). To this end, consider an inequality from (1) for which S € N(v)NN (v).
Without loss of generality, assume that there is some = € S such that {z,v} ¢ E. We will show
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that this inequality is induced (in the sense that the halfspaces they define coincide on the linear
span of DC(Z¢)) by the inequality
(3) hsUguy +hsugey = hst + hsuguwy
where S = S\ {z}. Our claim will then follow from this by induction on the elements of
S~ (N(v) N N(v)).

Indeed, if {z,v} ¢ E, we know by (2) that the following two equations hold in the linear span
of DC(Z¢) by considering the non-edge {z, v} with the subsets S” and S’ U {u}, respectively:

(4) hsuguy + hsioguwy = Rsioguy + Rsugueys
(5) hs + hgupy = hs' + hsugo,
where we used that (S' U {u})U{z} = SU{u} and (' U {u}) U{z,v} = SU{u,v} in the first
equation, and that S’ U {z} = S and S' U {z,v} = S U {v} in the second equation. To conclude,
note that (1) is precisely the linear combination (3) + (4) — (5).

We know therefore that the descriptions in Proposition 2.4 and Theorem 2.6 give rise to the

same cone. It remains to show that the latter is irredundant. That is, that each of the inequalities
gives rise to a unique facet of DC(Z¢).

Let (fx)xcv be the canonical basis of (sz)*' For w,v € V and S CV ~{u,v}, let

n(u,v,5) = Fsuquy + Fsupey — Fs — Fsugue-

Note that, if {u,v} ¢ E, then n(u,v,S) is orthogonal to DC(Z¢), whereas if {u,v} € E, then
n(u,v,S) is an inner normal vector to DC(Z¢).
Fix {u,v} € F and S C N(v) N N(v). To prove that the halfspace with normal n(u,v,S) is

not redundant, we will exhibit a vector w € R2" in the linear span of DC(Z) that belongs to the
interior of all the halfspaces describing DC(Z¢) except for this one. That is, we will construct a

vector w € R2” respecting the system:

(w]|n(u,v,5)) <0,

(w|n(u,v,X)) >0 for S# X C N(u)NN(v),

(w|n(a,b,X)) >0 for {a,b} € E~ {u,v} and X C N(a) N N(b), and
(w|n(a,b,X))=0 for{a,b}e(‘;)\EandXQV\{aJ)}.

(6)

Denote by T:= N(u) N N(v) ~ S. We will construct w as the sum w:=t° — t7 4 ¢ for some

vectors t%, t7, and ¢ € R2" defined below whose scalar products with n(a,b, X) for {a,b} € (‘2/)
and X CV ~ {a,b} fulfill:

(t° [ n(a,b, X)) (—t"|n(a,bX)) (c|n(abd X))
if {a,b} = {u,v} and X = S —|S] 0 IS|
if {a,b} = {u,v} and S # X C N(u) N N(v) —|SNnX]| TN X| |S]
if {a,b} € E~{u,v} and X C N(a) N N(b) > -1 >0 2
if {a,b} ¢ E 0 0 0

It immediately follows from this table that the vector w will fulfill the desired properties from (6).
For the second one, note that if S # X C S UT, then either |SN X| < |S| or [T NX]| > 0.

To define these vectors, first, for {x,y, z} € (‘g), let t7¥% € R2" be the vector such that Y =1
if {z,y,2} C X and t3Y* = 0 otherwise. Note that, for any a,b € (‘2/) and X C V ~{a,b}, we have

-1 if{z,y,2} = {a,b,t} for some t € X, and
0 otherwise .

(7) (t% [ n(a,b, X)) = {

We define

tS — Ztuvs and tT — Ztuvt.

seS teT
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It is straightforward to derive the identities in the table from (7). For the inequalities, notice that
if (+“** | n(a,b, X)) = —1 but {a,b} # {u,v}, then either {a,b} = {u,z} or {a,b} = {v,2}, and
in both cases (t**Y | n(a,b, X)) =0 for any y # x.

Now, for {z,y} € (4), let ¢*¥ € R2" be the vector such that ¢y =1if {z,y} N X| =1 (that

is, if {z,y} belongs to the cut defined by X), and ¢3 = 0 otherwise. Note that, for any a,b € (‘2/)
and X CV \ {a,b}, we have

2 if {a,b} = {x,y}, and
0  otherwise.

(8) <C””yn(a7b,X)>={

We set
o= @cuv + Z cab
3 .
{a,b}eE~{u,v}
The identities in the table are straightforward to derive from (8). 0

Corollary 2.7. For any graph G:=(V,E), the dimension of DC(Z¢g) is the number of induced
cligues in G, the dimension of the lineality space of DC(Z¢g) is |V|, and the number of facets
of DC(Z¢) is the number of triplets (u,v,S) with {u,v} € E and S C N(u) N N(v).

Example 2.8. For the complete graph Ky, the graphical zonotope Zg, is a permutahedron
and the deformation cone DC(Zk,, ) is the submodular cone given by the irredundant inequal-
ities hgugu) + hsuqwy = hs +hsuguwy for each {u,v} € V and S € V ~ {u,v}. (The usual
presentation imposes hgy = 0, but both presentations are clearly equivalent up to translation). It
has dimension 2!V — 1 and (“2/")2‘”*2 facets. The lineality is |V|-dimensional, given by the space
of translations in R!V!.

For instance, for the triangle K3, the graphical zonotope Zg, is the regular hexagon depicted
in the bottom left of Figure 2, which arises as the Minkowski sum of 3 coplanar vectors in R3.
Its deformation cone DC(Zg,) lives in the 8-dimensional space RQB], has dimension 7, a lineality
space of dimension 3, and 6 facets. It admits as irredundant description the equation hy = —his3
and the following 6 inequalities:

hi+hy > hg + ho hi+h3 > hg + hi3 hy +hz > hg + has
his +his > hy + hios his + haz > hy + hya3 hi3 4 hag > h3 + hqas.

After quotienting the lineality and intersecting with an affine hyperplane, we get the bipyramid
illustrated on Figure 2. Note that the four rays of DC(Zk,) (i.e. vertices of the bipyramid) of the
form Ak for an induced clique K of K3 provide a linear basis of DC(Zg,) (i.e. an affine basis of
the bipyramid). Nevertheless, the last ray can not be written as a positive Minkowski sum of A .

Example 2.9. For a triangle-free graph G:=(V, E), the deformation cone DC(Zs) has dimen-
sion |V|+ |E| and |E| facets. As before, the lineality is |V|-dimensional, given by the space of
translations in R!VI. Thus DC(Zg) is simplicial.

For instance, for the 4-cycle Cy, the graphical zonotope Z¢, is the 3-dimensional zonotope
depicted in the bottom right of Figure 3, which arises as the Minkowski sum of 4 vectors in
a hyperplane of R*. Its deformation cone DC(Z¢,) lives in the 16-dimensional space R2[4], has
dimension 8, a lineality space of dimension 4, and 4 facets. It admits as irredundant description
the following 8 equations and 4 inequalities:

hg = —hia34 his +hig = hi24 + hy hy +hy > his + hg

hy +hs =hi3+ hgy hi2 + hos = hi2s + ho ha +h3 > hoz + hy

hs +hy = hoy + hy has + h3y = ha3s + hs hs +hy > h3s + hg
hi23 + h134 = hi234 + hi3 his+h3y = hizs + hy hi +hy > hiy+ hg.

After quotienting the lineality and intersecting with an affine hyperplane, we get the 3-simplex
illustrated in Figure 3.
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Aqz + Aoz + Aqos

>

ASP

FIGURE 2. A 3-dimensional affine section of the deformation cone DC(Zg,) for the triangle Kj.
The deformations of Zg, corresponding to some of the points of DC(Z,) are depicted.

Asy

FIGURE 3. A 3-dimensional affine section of the deformation cone DC(Z¢,) for the 4-cycle Cy.
The deformations of Z¢, corresponding to some of the points of DC(Z¢,) are depicted.
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2.4. Simplicial graphical deformation cones. As an immediate corollary, we obtain a characteriza-
tion of those graphical zonotopes whose deformation cone is simplicial.

Corollary 2.10. The deformation cone DC(Z¢) is simplicial (modulo its lineality) if and only if G
is triangle-free.

Proof. If G is triangle-free, the deformation cone DC(Z¢) has dimension |V|+ |E|, lineality space
of dimension |V, and |E| facets, and hence it is simplicial. If G is not triangle-free, then we
claim that the number of induced cliques K of G with |K| > 2 is strictly less than the number
of triples (u,v,S) with {u,v} € E and S C N(u) N N(v). Indeed, each induced clique K of G
with |K| > 2 already produces (|12<|) triples of the form (u,v, K \ {u,v}) which satisfy {u,v} € E
and K ~\ {u,v} € N(u) N N(v) and are all distinct. Since (‘12(‘) > |K| as soon as |K| > 3, by
Corollary 2.7, this shows that the deformation cone DC(Z¢) is not simplicial. O

Corollary 2.11. If G is triangle-free, then every deformation of Zg is a zonotope, which is the
graphical zonotope of a subgraph of G up to rescaling of the generators.

Proof. For any induced clique K of G of size at least 2, Ak is a Minkowski indecomposable
(| K| — 1)-dimensional polytope in the deformation cone DC(Z¢) (see for example [Grii03, 15.1.3]
for a certificate of indecomposability). It spans therefore a ray of DC(Zg). When G is triangle-free,
the deformation cone modulo its lineality is of dimension |E|, and the polytopes A, for e € E
account for the |E| rays of the simplicial deformation cone DC(Zg).

Therefore, each polytope P € DC(Z¢g) can be uniquely expressed as a Minkowski sum

P=>) XA,

eclE
with nonnegative coefficients \.. Since each A, is a segment, P is a zonotope, normally equivalent
to the graphical zonotope of the subgraph G’ = (V, E’) with E' = {e € E | A, # 0}. O
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