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Abstract. A graph associahedron is a simple polytope whose face lattice encodes the nested

structure of the connected subgraphs of a given graph. In this paper, we study certain graph

properties of the 1-skeleta of graph associahedra, such as their diameter and their Hamiltonic-
ity. Our results extend known results for the classical associahedra (path associahedra) and

permutahedra (complete graph associahedra). We also discuss partial extensions to the family

of nestohedra.
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1. Introduction

Associahedra are classical polytopes whose combinatorial structure was first investigated by
J. Stasheff [Sta63] and later geometrically realized by several methods [Lee89, GKZ08, Lod04,
HL07, PS12, CSZ15]. They appear in different contexts in mathematics, in particular in alge-
braic combinatorics (in homotopy theory [Sta63], for construction of Hopf algebras [LR98], in
cluster algebras [CFZ02, HLT11]) and discrete geometry (as instances of secondary or fiber poly-
topes [GKZ08, BFS90] or brick polytopes [PS12, PS15]). The combinatorial structure of the
n-dimensional associahedron encodes the dissections of a convex (n + 3)-gon: its vertices corre-
spond to the triangulations of the (n + 3)-gon, its edges correspond to flips between them, etc.
See Figure 1. Various combinatorial properties of these polytopes have been studied, in particular
in connection with the symmetric group and the permutahedron. The combinatorial structure
of the n-dimensional permutahedron encodes ordered partitions of [n + 1]: its vertices are the
permutations of [n+ 1], its edges correspond to transpositions of adjacent letters, etc.

In this paper, we are interested in graph properties, namely in the diameter and Hamiltonic-
ity, of the 1-skeleta of certain generalizations of the permutahedra and the associahedra. For the
n-dimensional permutahedron, the diameter of the transposition graph is the number

(
n+1

2

)
of inver-

sions of the longest permutation of [n+1]. Moreover, H. Steinhaus [Ste64], S. M. Johnson [Joh63],
and H. F. Trotter [Tro62] independently designed an algorithm to construct a Hamiltonian cycle of
this graph. For the associahedron, the diameter of the flip graph motivated intensive research and
relevant approaches, involving volumetric arguments in hyperbolic geometry [STT88] and com-
binatorial properties of Thompson’s groups [Deh10]. Recently, L. Pournin finally gave a purely
combinatorial proof that the diameter of the n-dimensional associahedron is precisely 2n − 4 as
soon as n ≥ 9 [Pou14]. On the other hand, J. Lucas [Luc87] proved that the flip graph is Hamil-
tonian. Later, F. Hurtado and M. Noy [HN99] obtained a simpler proof of this result, using a
hierarchy of triangulations which organizes all triangulations of convex polygons into an infinite
generating tree.

Generalizing the classical associahedron, M. Carr and S. Devadoss [CD06, Dev09] defined and
constructed graph associahedra. For a finite graph G, a G-associahedron Asso(G) is a simple convex
polytope whose combinatorial structure encodes the connected subgraphs of G and their nested
structure. To be more precise, the face lattice of the polar of a G-associahedron is isomorphic
to the nested complex on G, defined as the simplicial complex of all collections of tubes (vertex
subsets inducing connected subgraphs) of G which are pairwise either nested, or disjoint and non-
adjacent. See Figures 1 and 3 for 3-dimensional examples. The graph associahedra of certain
special families of graphs happen to coincide with well-known families of polytopes (see Figure 3):
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Figure 1. The 3-dimensional associahedron and the graph associahedron of the tripod.

classical associahedra are path associahedra, cyclohedra are cycle associahedra, and permutahedra
are complete graph associahedra. Graph associahedra have been geometrically realized in different
ways: by successive truncations of faces of the standard simplex [CD06], as Minkowski sums of
faces of the standard simplex [Pos09, FS05], or from their normal fans by exhibiting explicit
inequality descriptions [Zel06]. However, we do not consider these geometric realizations as we
focus on the combinatorial properties of the nested complex.

Given a finite simple graph G, we denote by F(G) the 1-skeleton of the graph associahe-
dron Asso(G). In other words, F(G) is the facet-ridge graph of the nested complex on G. Its
vertices are maximal tubings on G and its edges connect tubings which differ only by two tubes.
See Section 2 for precise definitions and examples. In this paper, we study graph properties
of F(G). In Section 3, we focus on the diameter δ(F(G)) of the flip graph F(G). We obtain the
following structural results.

Theorem 1. The diameter δ(F(G)) of the flip graph F(G) is non-decreasing: δ(F(G)) ≤ δ(F(G′))
for any two graphs G,G′ such that G ⊆ G′.

Related to this diameter, we investigate the non-leaving-face property: do all geodesics between
two vertices of a face F of Asso(G) stay in F? This property was proved for the classical asso-
ciahedron in [STT88] but the name was coined in [CP16]. Although not all faces of the graph
associahedron Asso(G) fulfill this property, we prove in the following statement that some of them
do.

Proposition 2. Any tubing on a geodesic between two tubings T and T′ in the flip graph F(G)
contains any common upper set to the inclusion posets of T and T′.

In fact, we extend Theorem 1 and Proposition 2 to all nestohedra [Pos09, FS05], see Section 3.
Finally, using Theorem 1 and Proposition 2, the lower bound on the diameter of the associahe-
dron [Pou14], the usual construction of graph associahedra [CD06, Pos09] and the diameter of
graphical zonotopes, we obtain the following inequalities on the diameter δ(F(G)) of F(G).

Theorem 3. For any connected graph G with n + 1 vertices and e edges, the diameter δ(F(G))
of the flip graph F(G) is bounded by

max(e, 2n− 18) ≤ δ(F(G)) ≤
(
n+ 1

2

)
.

In Section 4, we study the Hamiltonicity of F(G). Based on an inductive decomposition of
graph associahedra, we show the following statement.

Theorem 4. For any graph G with at least two edges, the flip graph F(G) is Hamiltonian.
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2. Preliminaries

2.1. Tubings, nested complex, and graph associahedron. Let V be an (n + 1)-elements
ground set, and let G be a simple graph on V with π0(G) connected components. We denote
by G[U ] the subgraph of G induced by a subset U of V.

A tube of G is a non-empty subset t of V that induces a connected subgraph of G. A tube
is proper if it does not induce a connected component of G. The set of all tubes of G is called
the graphical building set of G and denoted by B(G). We moreover denote by B(G)max the set of
inclusion maximal tubes of B(G), i.e. the vertex sets of connected components of G.

Two tubes t and t′ are compatible if they are

• nested, i.e. t ⊆ t′ or t′ ⊆ t, or
• disjoint and non-adjacent, i.e. t ∪ t′ is not a tube of G.

A tubing on G is a set of pairwise compatible tubes of G. A tubing is proper if it contains only
proper tubes and loaded if it contains B(G)max. Since inclusion maximal tubes are compatible
with all tubes, we can transform any tubing T into a proper tubing Tr B(G)max or into a loaded
tubing T ∪ B(G)max, and we switch along the paper to whichever version suits better the current
purpose. Observe by the way that maximal tubings are automatically loaded. Figure 2 illustrates
these notions on a graph with 9 vertices.
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Figure 2. A proper tube, a tubing, a maximal proper tubing, and a maximal
(loaded) tubing.

The nested complex on G is the simplicial complex N (G) of all proper tubings on G. This
complex is known to be the boundary complex of the graph associahedron Asso(G), which is an
(n+1−π0(G))-dimensional simple polytope. This polytope was first constructed in [CD06, Dev09]1

and later in the more general context of nestohedra in [Pos09, FS05, Zel06]. In this paper, we
do not need these geometric realizations since we only consider combinatorial properties of the
nested complex N (G). In fact, we focus on the flip graph F(G) whose vertices are maximal proper
tubings on G and whose edges connect adjacent maximal proper tubings, i.e. which only differ by
two tubes. We refer to Figure 4 for an example, and to Section 2.3 for a description of flips. To
avoid confusion, we always use the term edge for the edges of the graph G, and the term flip for
the edges of the flip graph F(G). To simplify the presentation, it is sometimes more convenient to
consider the loaded flip graph, obtained from F(G) by loading all its vertices with B(G)max, and
still denoted by F(G). Note that only proper tubes can be flipped in each maximal tubing on the
loaded flip graph.

Observe that if G is disconnected with connected components Gi, for i ∈ [π0(G)], then the nested
complex N (G) is the join of the nested complexes N (Gi), the graph associahedron Asso(G) is the
Cartesian product of the graph associahedra Asso(Gi), and the flip graph F(G) is the Cartesian

1The definition used in [CD06, Dev09] slightly differs from ours for disconnected graphs, but our results still
hold in their framework.
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product of the flip graphs F(Gi). In many places, this allows us to restrict our arguments to
connected graphs.

Example 5 (Classical polytopes). For certain families of graphs, the graph associahedra turn out
to coincide (combinatorially) with classical polytopes (see Figure 3):

(i) the path associahedron Asso(Pn+1) coincides with the n-dimensional associahedron,
(ii) the cycle associahedron Asso(On+1) coincides with the n-dimensional cyclohedron,
(iii) the complete graph associahedron Asso(Kn+1) coincides with the n-dimensional permutahe-

dron Perm(n) := conv {(σ(1), . . . , σ(n+ 1)) | σ ∈ Sn+1}.

Figure 3. The associahedron, the cyclohedron, and the permutahedron are
graph associahedra.

2.2. Spines. Spines provide convenient representations of the tubings on G. Given a tubing T
on G, the corresponding spine S is the Hasse diagram of the inclusion poset on T∪B(G)max, where
the node corresponding to a tube t ∈ T ∪ B(G)max is labeled by λ(t,T) := t r

⋃ {t′ ∈ T | t′ ( t}.
See Figure 4.

The compatibility condition on the tubes of T implies that the spine S is a rooted forest, where
roots correspond to elements of B(G)max. Spines are in fact called B(G)-forests in [Pos09]. The
labels of S define a partition of the vertex set of G. The tubes of T ∪ B(G)max are the descendants
sets desc(s,S) of the nodes s of the forest S, where desc(s,S) denotes the union of the labels of
the descendants of s in S, including s itself. The tubing T ∪ B(G)max is maximal if and only if all
labels are singletons, and we then identify nodes with their labels, see Figure 4.

Let T, T̄ be tubings on G with corresponding spines S, S̄. Then T̄ ⊆ T if and only if S̄ is obtained
from S by edge contractions. We say that S refines S̄, that S̄ coarsens S, and we write S̄ ≺ S.
Given any node s of S, we denote by Ss the subspine of S induced by all descendants of s in S,
including s itself.

2.3. Flips. As already mentioned, the nested complex N (G) is a simplicial sphere. It follows
that there is a natural flip operation on maximal proper tubings on G. Namely, for any maximal
proper tubing T on G and any tube t ∈ T, there exists a unique proper tube t′ /∈ T of G such
that T′ :=T4{t, t′} is again a proper tubing on G (where 4 denotes the symmetric difference
operator). We denote this flip by T↔ T′. This flip operation can be explicitly described both in
terms of tubings and spines as follows.

Consider a tube t in a maximal proper tubing T, with λ(t,T) = {v}. Let t̄ denote the smallest
element of T ∪ B(G)max strictly containing t, and denote its label by λ(̄t,T) = {v′}. Then the
unique tube t′ such that T′ :=T4{t, t′} is again a proper tubing on G is the connected component
of the induced subgraph G[̄tr {v}] containing v′. See Figure 4.

This description translates to spines as follows. The flip between the tubings T and T′ corre-
sponds to a rotation between the corresponding spines S and S′. This operation is local: it only
perturbs the nodes v and v′ and their children. More precisely, v is a child of v′ in S, and becomes
the parent of v′ in S′. Moreover, the children of v in S contained in t′ become children of v′ in S′.
All other nodes keep their parents. See Figure 4.
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Figure 4. The flip of a proper tube (shaded, red) in a maximal tubing seen both
on the tubings and on the corresponding spines.

3. Diameter

Let δ(F(G)) denote the diameter of the flip graph F(G). For example, for the complete
graph Kn+1, the diameter of the n-dimensional permutahedron is δ(F(Kn+1)) =

(
n+1

2

)
, while for

the path Pn+1, the diameter of the classical n-dimensional associahedron is δ(F(Pn+1)) = 2n− 4
for n > 9, by results of [STT88, Pou14]. We discuss in this section properties of the diame-
ter δ(F(G)) and of the geodesics in the flip graph F(G). The results of Section 3.1 are extended
to nestohedra in Section 3.2. We prefer to present the ideas first on graph associahedra as they
prepare the intuition for the more technical proofs on nestohedra.

3.1. Non-decreasing diameters. Our first goal is to show that δ(F(·)) is non-decreasing.

Theorem 6. δ(F(Ḡ)) ≤ δ(F(G)) for any two graphs G, Ḡ such that Ḡ ⊆ G.

Remark 7. We could prove this statement by a geometric argument, using the construction of
the graph associahedron of M. Carr and S. Devadoss [CD06]. Indeed, it follows from [CD06]
that the graph associahedron Asso(G) can be obtained from the graph associahedron Asso(Ḡ) by
successive face truncations. Geometrically, this operation replaces the truncated face F by its
Cartesian product with a simplex of codimension dim(F ) + 1. Therefore, a path in the graph
of Asso(G) naturally projects to a shorter path in the graph of Asso(Ḡ). Our proof is a purely
combinatorial translation of this geometric intuition. It has the advantage not to rely on the
results of [CD06] and to help formalizing the argument.

Observe first that deleting an isolated vertex in G does not change the nested complex N (G).
We can thus assume that the graphs G and Ḡ have the same vertex set and that Ḡ = G r {(u, v)}
is obtained by deleting a single edge (u, v) from G. We define below a map Ω from tubings on G
to tubings on Ḡ which induces a surjection from the flip graph F(G) onto the flip graph F(Ḡ).
For consistency, we use t and T for tubes and tubings of G and t̄ and T̄ for tubes and tubings of Ḡ.

Given a tube t of G (proper or not), define Ω(t) to be the coarsest partition of t into tubes of Ḡ.
In other words, Ω(t) = {t} if (u, v) is not an isthmus of G[t], and otherwise Ω(t) = {t̄u, t̄v} where t̄u
and t̄v are the vertex sets of the connected components of Ḡ[t] containing u and v respectively.
For a set of tubes T of G, define Ω(T) :=

⋃
t∈T Ω(t). See Figure 5 for an illustration.

Lemma 8. For any tubing T on G, the set Ω(T) is a tubing on Ḡ and |T| ≤ |Ω(T)|.
Proof. It is immediate to see that Ω sends tubings on G to tubings on Ḡ. We prove by induction
on |T| that |T| ≤ |Ω(T)|. Consider a non-empty tubing T, and let t be an inclusion maximal tube
of T. By induction hypothesis, |Tr {t}| ≤ |Ω(Tr {t})|. We now distinguish two cases:
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Figure 5. Two maximal tubings (left and middle) with the same image by the
map Ω (right). The middle tubing is the preimage of the rightmost tubing ob-
tained by the process decribed in the proof of Corollary 9 with u = 6 and v = 8.

(i) If (u, v) is an isthmus of G[t], then Ω(t) = {t̄u, t̄v} 6⊆ Ω(Tr {t}). Indeed, since t̄u and t̄v are
adjacent in G, two tubes of T whose images by Ω produce t̄u and t̄v must be nested. Therefore,
one of them contains both t̄u and t̄v, and thus equals t = t̄u ∪ t̄v by maximality of t in T.

(ii) If (u, v) is not an isthmus of G[t], then Ω(t) = {t} 6⊆ Ω(T r {t}). Indeed, if t′ ∈ T is such
that t ∈ Ω(t′), then t ⊆ t′ and thus t = t′ by maximality of t in T.

We conclude that |Ω(T)| ≥ |Ω(Tr {t})|+ 1 ≥ |Tr {t}|+ 1 = |T|. �

Corollary 9. The map Ω induces a graph surjection from the loaded flip graph F(G) onto the
loaded flip graph F(Ḡ), i.e. a surjective map from maximal tubings on G to maximal tubings on Ḡ
such that adjacent tubings on G are sent to identical or adjacent tubings on Ḡ.

Proof. Let T̄ be a tubing on Ḡ. If all tubes of T̄ containing u also contain v (or the opposite), then T̄
is a tubing on G and Ω(T̄) = T̄. Otherwise, let T̄u denote the set of tubes of T̄ containing u but
not v and t̄v denote the maximal tube containing v but not u. Then (T̄r T̄u)∪

{
t̄u ∪ t̄v

∣∣ t̄u ∈ T̄u

}
is a tubing on G whose image by Ω is T̄. See Figure 5 for an illustration. The map Ω is thus
surjective from tubings on G to tubings on Ḡ. Moreover, any preimage T◦ of a maximal tubing T̄
can be completed into a maximal tubing T with Ω(T) ⊇ Ω(T◦) = T̄, and thus satisfying Ω(T) = T̄
by maximality of T̄.

Remember that two distinct maximal tubings on G are adjacent if and only if they share
precisely |V| − 1 common tubes. Consider two adjacent maximal tubings T,T′ on G, so that
|T ∩ T′| = |V| − 1. Since Ω(T ∩ T′) ⊆ Ω(T) ∩ Ω(T′) and |Ω(T ∩ T′)| ≥ |T ∩ T′| by Lemma 8,
we have |Ω(T) ∩ Ω(T′)| ≥ |T ∩ T′| = |V| − 1. Therefore, the tubings Ω(T),Ω(T′) are adjacent
if |Ω(T) ∩ Ω(T′)| = |T ∩ T′| and identical if |Ω(T) ∩ Ω(T′)| > |T ∩ T′|. �

Remark 10. We can in fact precisely describe the preimage Ω−1(T̄) of a maximal tubing T̄
on Ḡ as follows. As in the previous proof, let T̄u denote the chain of tubes of T̄ containing u
but not v and similarly T̄v denote the chain of tubes of T̄ containing v but not u. Any linear
extension L of these two chains defines a preimage of T̄ where the tubes of T̄u ∪ T̄v are replaced
by the tubes

⋃ {t′ ∈ L | t′ ≤L t} for t ∈ L. In terms of spines, this translates to shuffling the two
chains corresponding to T̄u and T̄v. Details are left to the reader.

Proof of Theorem 6. Consider two maximal tubings T̄, T̄′ on Ḡ. Let T,T′ be maximal loaded tub-
ings on G such that Ω(T) = T̄ and Ω(T′) = T̄′ (surjectivity of Ω), and T = T0, . . . ,T` = T′ be a geo-
desic between them (` ≤ δ(F(G))). Deleting repetitions in the sequence T̄ = Ω(T0), . . . ,Ω(T`) = T̄′

yields a path from T̄ to T̄′ (Corollary 9) of length at most ` ≤ δ(F(G)). So δ(F(G)) ≥ δ(F(Ḡ)). �
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3.2. Extension to nestohedra. The results of the previous section can be extended to the nested
complex on an arbitrary building set. Although the proofs are more abstract and technical, the
ideas behind are essentially the same. We recall the definitions of building set and nested complex
needed here and refer to [CD06, Pos09, FS05, Zel06] for more details and motivation.

A building set on a ground set V is a collection B of non-empty subsets of V such that

(B1) if b, b′ ∈ B and b ∩ b′ 6= ∅, then b ∪ b′ ∈ B, and
(B2) B contains all singletons {v} for v ∈ V.

We denote by Bmax the set of inclusion maximal elements of B and call proper the elements
of Br Bmax. The building set is connected if Bmax = {V}. Graphical building sets are particular
examples, and connected graphical building sets correspond to connected graphs.

A B-nested set on B is a subset N of B such that

(N1) for any n, n′ ∈ N, either n ⊆ n′ or n′ ⊆ n or n ∩ n′ = ∅, and
(N2) for any k ≥ 2 pairwise disjoint sets n1, . . . , nk ∈ N, the union n1 ∪ · · · ∪ nk is not in B.

As before, a B-nested set N is proper if N ∩ Bmax = ∅ and loaded if Bmax ⊆ N. The B-nested
complex is the (|V| − |Bmax|)-dimensional simplicial complex N (B) of all proper nested sets on B.
As in the graphical case, the B-nested complex can be realized geometrically as the boundary
complex of the polar of the nestohedron Nest(B), constructed e.g. in [Pos09, FS05, Zel06]. We
denote by δ(F(B)) the diameter of the graph F(B) of Nest(B). As in the previous section, it is
more convenient to regard the vertices of F(B) as maximal loaded nested sets.

The spine of a nested set N is the Hasse diagram of the inclusion poset of N∪Bmax. Spines are
called B-forests in [Pos09]. The definitions and properties of Section 2.2 extend to general building
sets, see [Pos09] for details.

We shall now prove the following generalization of Theorem 6.

Theorem 11. δ(F(B̄)) ≤ δ(F(B)) for any two building sets B, B̄ on V such that B̄ ⊆ B.

The proof follows the same line as that of Theorem 6. We first define a map Ω which transforms
elements of B to subsets of B̄ as follows: for b ∈ B (proper or not), define Ω(b) as the coarsest
partition of b into elements of B̄. Observe that Ω(b) is well-defined since B̄ is a building set, and
that the elements of Ω(b) are precisely the inclusion maximal elements of B̄ contained in b. For a
nested set N on B, we define Ω(N) :=

⋃
n∈N Ω(n). The following statement is similar to Lemma 8.

Lemma 12. For any nested set N on B, the image Ω(N) is a nested set on B̄ and |N| ≤ |Ω(N)|.
Proof. Consider a nested set N on B. To prove that Ω(N) is a nested set on B̄, we start with
condition (N1). Let n̄, n̄′ ∈ Ω(N) and let n, n′ ∈ N such that n̄ ∈ Ω(n) and n̄′ ∈ Ω(n′). Since N is
nested, we can distinguish two cases:

• Assume that n and n′ are disjoint. Then n̄ ∩ n̄′ = ∅ since n̄ ⊆ n and n̄′ ⊆ n′.
• Assume that n and n′ are nested, e.g. n ⊆ n′. If n̄ ∩ n̄′ 6= ∅, then n̄ ∪ n̄′ is in B̄ and is a

subset of n′. By maximality of n̄′ in n′, we obtain n̄ ∪ n̄′ = n̄′, and thus n̄ ⊆ n̄′.

To prove Condition (N2), consider pairwise disjoint elements n̄1, . . . , n̄k ∈ Ω(N) and n1, . . . , nk ∈ N
such that n̄i ∈ Ω(ni). We assume by contradiction that n̄ := n̄1 ∪ · · · ∪ n̄k ∈ B̄ and we prove
that n := n1 ∪ · · · ∪ nk ∈ B. Indeed, n̄, n1, . . . , nk all belong to B and n̄ ∩ ni 6= ∅ (it contains n̄i)
so that n̄ ∪ n also belongs to B by multiple applications of Property (B1) of building sets. More-
over, n̄ ⊆ n so that n = n̄ ∪ n ∈ B. Finally, we conclude distinguishing two cases:

• If there is i ∈ [k] such that ni contains all nj , then ni contains all n̄j and thus n̄. This
contradicts the maximality of n̄i in ni since n̄i ( n̄ ∈ B̄.

• Otherwise, merging intersecting elements allows us to assume that n1, . . . , nk are pairwise
disjoint and n := n1 ∪ · · · ∪ nk ∈ B contradicts Condition (N2) for N.

This concludes the proof that Ω(N) is a nested set on B̄.
We now prove that |N| ≤ |Ω(N)| by induction on |N|. Consider a non-empty nested set N and

let n◦ be an inclusion maximal element of N. By induction hypothesis, |Nr{n◦}| ≤ |Ω(Nr{n◦})|.
Let Ω(n◦) = {n̄1, . . . , n̄k}. Consider n1, . . . , nk ∈ N such that n̄i ∈ Ω(ni), and let n := n1 ∪ · · · ∪ nk.
Since n◦, n1, . . . , nk all belong to B and n◦∩ni 6= ∅ (it contains n̄i), we have n◦∪n ∈ B by multiple
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applications of Property (B1) of building sets. Moreover, n◦ ⊆ n so that n = n◦ ∪ n ∈ B. It follows
by Condition (N2) on N that there is i ∈ [k] such that ni contains all nj , and thus n◦ ⊆ ni. We
obtain that n◦ = ni by maximality of n◦. We conclude that n◦ is the only element of N such
that n̄i ∈ Ω(n◦), so that |Ω(N)| ≥ |Ω(Nr {n◦})|+ 1 ≥ |Nr {n◦}|+ 1 = |N|. �

Corollary 13. The map Ω induces a graph surjection from the loaded flip graph F(B) onto the
loaded flip graph F(B̄), i.e. a surjective map from maximal nested sets on B to maximal nested
sets on B̄ such that adjacent nested sets on B are sent to identical or adjacent nested sets on B̄.

Proof. To prove the surjectivity, consider a nested set N̄ on B̄. The elements of N̄ all belong
to B and satisfy Condition (N1) for nested sets. It remains to transform the elements in N̄ which
violate Condition (N2). If there is no such violation, then N̄ is a nested set on B and Ω(N̄) = N̄.
Otherwise, consider pairwise disjoint elements n̄1, . . . , n̄k of N̄ such that n := n̄1 ∪ · · · ∪ n̄k is in B
and is maximal for this property. Consider the subset N̄′ :=

(
N̄r {n̄1}

)
∪ {n} of B. Observe that:

• N̄′ still satisfies Condition (N1). Indeed, if n̄ ∈ N̄ is such that n ∩ n̄ 6= ∅, then n̄ intersects
at least one element n̄i. Since N̄ is nested, n̄ ⊆ n̄i or n̄i ⊆ n̄. In the former case, n̄ ⊆ n and
we are done. In the latter case, n̄ and the elements n̄j disjoint from n̄ would contradict
the maximality of n.

• N̄′ still satisfies Ω(N̄′) = N̄. Indeed, n̄1 ∈ Ω(n) since Ω(n) = {n̄1, . . . , n̄k}. For the latter
equality, observe that {n̄1, . . . , n̄k} is a partition of n into elements of B̄ and that a coarser
partition would contradict Condition (N2) on N̄.

• n cannot be partitioned into two or more elements of N̄′. Such a partition would refine
the partition Ω(n), and would thus contradict again Condition (N2) on N̄. Therefore, N̄′

has strictly less violations of Condition (N2) than N̄.
• All violations of Condition (N2) in N̄′ only involve elements of B̄. Indeed, pairwise disjoint

elements n̄′1, . . . , n̄
′
` ∈ N̄′ disjoint from n and such that n∪ n̄′1∪· · ·∪ n̄′` ∈ B would contradict

the maximality of n.

These four points enable us to decrease the number of violations of Condition (N2) until we reach
a nested set N on B which still satisfies Ω(N) = N̄.

The second part of the proof is identical to that of Corollary 9. �

From Corollary 13, the proof of Theorem 11 is identical to that of Theorem 6.

3.3. Geodesic properties. In this section, we focus on properties of the geodesics in the graphs
of nestohedra. We consider three properties for a face F of a polytope P :

NLFP: F has the non-leaving-face property in P if F contains all geodesics connecting two
vertices of F in the graph of P .

SNLFP: F has the strong non-leaving-face property in P if any path connecting two ver-
tices v, w of F in the graph of P and leaving the face F has at least two more steps than
a geodesic between v and w.

EFP: F has the entering-face property in P if for any vertices u, v, w of P such that u /∈ F ,
v, w ∈ F , and u and v are neighbors in the graph of P , there exists a geodesic connecting u
and w whose first edge is the edge from u to v.

For a face F of a polytope P , we have efp ⇐⇒ snlfp =⇒ nlfp. However, the reverse of
the last implication is wrong: all faces of a simplex have the nlfp (all vertices are at distance 1),
but not the snlfp. Alternative counter-examples with no simplicial face already exist in dimen-
sion 3. Among classical polytopes the n-dimensional cube, permutahedron, associahedron, and
cyclohedron all satisfy the efp. The nlfp is further discussed in [CP16].

Contrarily to the classical associahedron, not all faces of a graph associahedron have the nlfp.
A counter-example is given by the star with n branches: Figure 6 shows a path of length 2n
between two maximal tubings T,T′, while the minimal face containing T and T′ is an (n − 1)-
dimensional permutahedron (see the face description in [CD06, Theorem 2.9]) and the graph
distance between T and T′ in this face is

(
n
2

)
. It turns out however that the following faces of the

graph associahedra, and more generally of nestohedra, always have the snlfp.
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Figure 6. A geodesic (of length 2n) between two maximal tubings of the star
that flips their common tube (the central vertex).

Lemma 14. We call upper ideal face of the nestohedron Nest(B) a face corresponding to a loaded
nested set N↑ that satisfies the following equivalent properties:

(i) any element of B not in N↑ but compatible with N↑ is contained in an inclusion minimal
element of N↑,

(ii) the set λ(n,N↑) := n r
⋃{

n′ ∈ N↑
∣∣ n′ ( n

}
is a singleton for any inclusion non-minimal

element n of N↑,
(iii) the forest obtained by deleting all leaves of the spine S↑ of N↑ forms an upper ideal of any

spine refining S↑.

Proof. We first prove that (i) =⇒ (ii). Assume that n ∈ N↑ is not inclusion minimal and
that λ(n,N↑) contains two distinct elements v, w ∈ V. One can then check that the maximal
element of B contained in n and containing v but not w is compatible with N↑, but not contained
in an inclusion minimal element of N↑. This proves that (i) =⇒ (ii).

Conversely, assume (ii) and consider b ∈ B not in N↑ but compatible with N↑. Since N↑ is loaded,
there exists n ∈ N↑ strictly containing b and minimal for this property. Since b is compatible
with N↑, we obtain that λ(n,N↑) contains at least one element from b and one from n r b, and
is thus not a singleton. It follows by (ii) that n is an inclusion minimal element of N↑, and it
contains b.

The equivalence (ii)⇐⇒ (iii) follows directly from the definition of the spines and their labelings,
and the fact that a non-singleton node in a spine can be split in a refining spine. �

Proposition 15. Any upper ideal face of the nestohedron Nest(B) satisfies snlfp.

Proof. Consider an upper ideal face F of Nest(B) corresponding to the loaded nested set N↑. We
consider the building set B̄ ⊆ B on V consisting of all elements of B (weakly) contained in an
inclusion minimal element of N↑ together with all singletons {v} for elements v ∈ V not contained
in any inclusion minimal element of N↑. The reader is invited to check that B̄ is indeed a building
set on V. It follows from Lemma 14 that

• λ(n,N↑) = n if n is an inclusion minimal element of N↑,
• λ(n,N↑) = {v} for some v not contained in any inclusion minimal element of N↑ otherwise,

and thus that the map λ(·,N↑) is a bijection from N↑ to B̄max.
Consider the surjection Ω from the maximal nested sets on B to the maximal nested sets on B̄

as defined in the previous section: Ω(N) =
⋃

n∈N Ω(n) where Ω(n) is the coarsest partition of n into

elements of B̄. Following [STT88, CP16], we consider the normalization Ω? on maximal nested
sets on B defined by Ω?(N) :=

(
Ω(N) r B̄max

)
∪ N↑. We claim that Ω?(N) is a maximal nested

set on B:

• it is nested since both Ω(N) r B̄max and N↑ are themselves nested, and all elements
of Ω(N) r B̄max are contained in a minimal element of N↑.
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• it is maximal since Ω(N) is maximal by Corollary 13 and |Ω?(N)| = |Ω(N)| because λ(·,N↑)
is a bijection from N↑ to B̄max, and B̄max ⊆ Ω(N) while

(
Ω(N) r B̄max

)
∩ N↑ = ∅.

It follows that the map Ω? combinatorially projects the nestohedron Nest(B) onto its face F .
Let N0, . . . ,N` be a path in the loaded flip graph F(B) whose endpoints N0,N` lie in the face F ,

but which leaves the face F . In other words, N↑ ⊆ N0,N` and there are 0 ≤ i < j ≤ ` such
that N↑ ⊆ Ni,Nj while N↑ 6⊆ Ni+1,Nj−1. We claim that

Ω?(N0) = N0, Ω?(N`) = N`, Ω?(Ni) = Ni = Ω?(Ni+1) and Ω?(Nj−1) = Nj = Ω?(Nj),

so that the path N0 = Ω?(N0), . . . ,Ω?(N`) = N` from N0 to N` in F has length at most `− 2 after
deletion of repetitions.

To prove our claim, consider a loaded nested set N on B containing a maximal proper nested
set N̄ on B̄. Then Ω(N) ⊇ Ω(N̄) = N̄ so that Ω(N) = N̄ ∪ B̄max by maximality of N̄. This
shows Ω?(N) = N̄ ∪ N↑. In particular, if N = N̄ ∪N↑, then Ω?(N) = N. Moreover, if N′ is adjacent
to N = N̄∪N↑ and does not contain N↑, then N′ contains N̄ and Ω?(N′) = N. This shows the claim
and concludes the proof. �

Proposition 15 specializes in particular to the non-leaving-face and entering face properties for
the upper set faces of graph associahedra.

Proposition 16. (i) If T and T′ are two maximal tubings on G, then any maximal tubing on
a geodesic between T and T′ in the flip graph F(G) contains any common upper set to the
inclusion posets of T and T′.

(ii) If T, T′ and T′′ are three maximal tubings on G such that Tr{t} = T′r{t′} and t′ belongs to
the maximal common upper set to the inclusion poset of T′ and T′′, then there is a geodesic
between T and T′′ starting by the flip from T to T′.

Proof. Using Proposition 15, it is enough to show that the maximal common upper set T↑ to
the inclusion posets of T and T′ defines an upper ideal face of Asso(G). For this, we use the
characterization (ii) of Lemma 14. Consider an inclusion non-minimal tube t of T↑. Let t′ be a
maximal tube of T↑ such that t′ ( t. Then t′ has a unique neighbor v in G[t] and all connected
components of G[tr {v}] are both in T and T′, thus in T↑. Thus λ(t,T↑) = {v}. �

Remark 17. For an arbitrary building set B, the maximal common upper set N↑ to the inclusion
poset of two maximal nested sets N,N′ is not always an upper ideal face of Nest(B). A minimal ex-
ample is the building set B =

{
{1}, {2}, {3}, {1, 2, 3}

}
and the nested sets N =

{
{1}, {2}, {1, 2, 3}

}
and N′ =

{
{2}, {3}, {1, 2, 3}

}
. Their maximal common upper set N↑ =

{
{2}, {1, 2, 3}

}
is not an

upper ideal face of Nest(B) since λ({1, 2, 3},N↑) = {1, 3} is not a singleton. Moreover, the face
corresponding to N↑ does not satisfy snlfp.

3.4. Diameter bounds. Using Theorem 6 and Proposition 16, the lower bound on the diameter
of the associahedron [Pou14], the classical construction of graph associahedra of [CD06, Pos09] and
the diameter of graphical zonotopes, we obtain the inequalities on the diameter δ(F(G)) of F(G).

Theorem 18. For any connected graph G with n+ 1 vertices and e edges, the diameter δ(F(G))
of the flip graph F(G) is bounded by

max(e, 2n− 18) ≤ δ(F(G)) ≤
(
n+ 1

2

)
.

Proof. For the upper bound, we use that the diameter is non-decreasing (Theorem 6) and that
the n-dimensional permutahedron has diameter

(
n+1

2

)
, the maximal number of inversions in a

permutation of Sn+1.
The lower bound consists in two parts. For the first part, we know that the normal fan of the

graph associahedron Asso(G) refines the normal fan of the graphical zonotope of G (see e.g. [Zie95,
Lect. 7] for a reference on zonotopes). Indeed, the graph associahedron of G can be constructed as a
Minkowski sum of the faces of the standard simplex corresponding to tubes of G ([CD06, Pos09])
while the graphical zonotope of G is the Minkowski sum of the faces of the standard simplex
corresponding only to edges of G. Since the diameter of the graphical zonotope of G is the
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Figure 7. Decompositions of trees with 3 or 4 leaves.

number e of edges of G, we obtain that the diameter δ(F(G)) is at least e. For the second part
of the lower bound, we use again Theorem 6 to restrict the argument to trees. Let T be a tree on
n+ 1 vertices. We first discard some basic cases:

(i) If T has precisely two leaves, then T is a path and the graph associahedron Asso(T) is the
classical n-dimensional associahedron, whose diameter is known to be larger than 2n− 4 by
L. Pournin’s result [Pou14].

(ii) If T has precisely 3 leaves, then it consists in 3 paths attached by a 3-valent node v, see
Figure 7 (left). Let w be a neighbor of v and P1,P2 denote the connected components of Trw.
Observe that P1 and P2 are both paths and denote by p1 + 1 and p2 + 1 their respective
lengths. Let T′1,T

′′
1 (resp. T′2,T

′′
2) be a diametral pair of maximal tubings on P1 (resp. on P2),

and consider the maximal tubings T′ = T′1 ∪ T′2 ∪ {P1,P2} and T′′ = T′′1 ∪ T′′2 ∪ {P1,P2} on
the tree T. Finally, denote by T the maximal tubing on T obtained by flipping P1 in T′.
Since {P1,P2} is a common upper set to the inclusion posets of T′ and T′′, Proposition 16 (ii)
ensures that there exists a geodesic from T to T′′ that starts by the flip from T to T′.
Moreover, Proposition 16 (i) ensures that the distance between T′ and T′′ is realized by
a path staying in the face of Asso(T) corresponding to {P1,P2}, which is the product of
a classical p1-dimensional associahedron by a classical p2-dimensional associahedron. We
conclude that

δ(F(T)) ≥ 1+δ(F(P1))+δ(F(P2)) ≥ 1+(2p1−4)+(2p2−4) = 2(p1 +p2 +2)−11 = 2n−11.

(iii) If T has precisely 4 leaves, it either contains a single 4-valent node v or precisely two 3-valent
nodes u, v, see Figure 7 (middle and right). Define w to be a neighbor of v, not located in the
path between u and v in the latter situation. Then w disconnects T into a path P on p+ 1
nodes and a tree Y with y + 1 nodes and precisely 3 leaves. A similar argument as in (ii)
shows that

δ(F(T)) ≥ 1 + δ(F(P)) + δ(F(Y)) ≥ 1 + (2p− 4) + (2y − 11) = 2(p+ y + 2)− 18 = 2n− 18.

We can now assume that the tree T has k ≥ 5 leaves l1, . . . , lk. Let V̄ = V r {l1, . . . , lk}
and T̄ = T[V̄] denote the tree obtained by deletion of the leaves of T. By induction hypothe-
sis, there exists two maximal tubings T̄ and T̄′ on T̄ at distance at least 2(n − k) − 18. De-
fine ti := V r {l1, . . . , li} for i ∈ [k], and t′j := V r {lj , . . . , lk} for j ∈ [k]. Consider the maximal

tubings T := T̄ ∪ {t1, . . . , tk} and T′ := T̄′ ∪ {t′1, . . . , t′k} on T. We claim that the distance between
these tubings is at least 2n− 18. To see it, consider the surjection Ω from the tubings on T onto
that of T̄ t {l1, . . . , lk} as defined in Section 3.1. It sends a path T = T0, . . . ,T` = T′ in the flip
graph F(T) to a path

T̄ ∪ {{l1}, . . . , {lk}} = Ω(T0), . . . ,Ω(T`) = T̄′ ∪ {{l1}, . . . , {lk}}
in the flip graph F(T̄ t {l1, . . . , lk}) with repeated entries. Since T̄ and T̄′ are at distance at
least 2(n− k)− 18 in the flip graph F(T̄), this path has at least 2(n− k)− 18 non-trivial steps,
so we must show that it has at least 2k repetitions. These repetitions appear whenever we flip a
tube ti or t′j . Indeed, we observe that the image Ω(t) of any tube t ∈ {ti | i ∈ [k]} ∪

{
t′j
∣∣ j ∈ [k]

}
is composed by V̄ together with single leaves of T. Since all these tubes are connected components
of T̄, we have Ω(Tr {t}) = Ω(T) for any maximal loaded tubing T containing t. To conclude, we
distinguish three cases:
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(i) If the tube tk = V̄ = t′1 is never flipped along the path T = T0, . . . ,T` = T′, then we need

at least
(
k
2

)
flips to transform {t1, . . . , tk} into {t′1, . . . , t′k}. This can be seen for example

from the description of the link of tk in N (T) in [CD06, Theorem 2.9]. Finally, we use

that
(
k
2

)
≥ 2k since k ≥ 5.

(ii) Otherwise, we need to flip all {t1, . . . , tk} and then back all {t′1, . . . , t′k}. If no flip of a tube ti
produces a tube t′j , we need at least 2k flips which produces repetitions in Ω(T0), . . . ,Ω(T`).

(iii) Finally, assume that we flip precisely once all {t1, . . . , tk} and then back all {t′1, . . . , t′k},
and that a tube ti is flipped into a tube t′j . According to the description of flips, we must
have i = k − 1 and j = 2. If p ∈ [`] denotes the position such that Tp r {tk−1} = Tp+1 r {t′2},
we moreover know that tk−1 ∈ Tq for q ≤ p, that t′2 ∈ Tq for q > p, and that V̄ ∈ Tp ∩ Tp+1.
Applying the non-leaving-face property either to the upper set {tk−1, tk} in Asso(G[tk−1]) or
to the upper set {t′1, t′2} in Asso(G[t′2]), we conclude that it would shorten the path T0, . . . ,T`

to avoid the flip of tk = V̄ = t′1, which brings us back to Situation (i). �

Remark 19. We note that although asymptotically optimal, our lower bound 2n−18 is certainly
not sharp. We expect the correct lower bound to be the bound 2n − 4 for the associahedron.
Better upper bound can also be worked out for certain families of graphs. For example, L. Pournin
investigates the cyclohedra, i.e. cycle associahedra. As far as trees are concerned, we understand
better stars and their subdivisions. The diameter δ(F(K1,n)) for the star K1,n is exactly 2n
(for n ≥ 5), see Figure 6. In fact, the diameter of the graph associahedron of any starlike tree
(subdivision of a star) on n+ 1 vertices is bounded by 2n. To see it, we observe that any tubing
is at distance at most n from the tubing T◦ consisting in all tubes adjacent to the central vertex.
Indeed, we can always flip a tube in a tubing distinct from T◦ to create a new tube adjacent to
the central vertex. This argument is not valid for non-starlike trees.

Remark 20. The lower bound in Theorem 18 shows that the diameter δ(F(G)) is at least the
number of edges of G. In view of Theorem 1, it is tempting to guess that the diameter δ(F(G))
is of the same order as the number of edges of G. Adapting arguments from Remark 19, we can
show that the diameter of any tree associahedron δ(F(T)) is of order at most n log n. In any case,
the following question remains open.

Question 21. Is there a family of trees Tn on n nodes such that δ(F(Tn)) is of order n log n? Even
more specifically, consider the family of trees illustrated in Figure 8: T1 = K1,3 (tripod) and Tk+1

is obtained by grafting two leaves to each leaf of Tk. What is the order of the diameter δ(F(Tk))?

T1 T2 T3 T4 T5

Figure 8. The family of trees Tk: the tree T1 is the tripod and Tk+1 is obtained
from Tk by connecting two new nodes to each leaf of Tk.

Remark 22. The upper bound δ(F(B)) ≤
(
n+1

2

)
holds for an arbitrary building set B by The-

orem 6 and the fact that the permutahedron is the nestohedron on the complete building set.
In contrast, the lower bound is not valid for arbitrary connected building sets. For example,
the nestohedron on the trivial connected building set

{
{1}, . . . , {n + 1}, {1, . . . , n + 1}

}
is the

n-dimensional simplex, whose diameter is 1.
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4. Hamiltonicity

In this section, we prove that the flip graph F(G) is Hamiltonian for any graph G with at least 2
edges. This extends the result of H. Steinhaus [Ste64], S. M. Johnson [Joh63], and H. F. Trot-
ter [Tro62] for the permutahedron, and of J. Lucas [Luc87] for the associahedron (see also [HN99]).
For all the proof, it is more convenient to work with spines than with tubings (remind Sections 2.2
and 2.3). We first sketch the strategy of our proof.

4.1. Strategy. For any vertex v of G, we denote by Fv(G) the graph of flips on all spines on G
where v is a root. We call fixed-root subgraphs of F(G) the subgraphs Fv(G) for v ∈ V. Note that
the fixed-root subgraph Fv(G) is isomorphic to the flip graph F(G[v̂]), where G[v̂] is the subgraph
of G induced by v̂ := V r {v}.

We now distinguish two extreme types of flips. Consider two maximal tubings T,T′ on G and
tubes t ∈ T and t′ ∈ T′ such that T̄ :=Tr{t} = T′r{t′}. Let S,S′ and S̄ denote the corresponding
spines and {v} = λ(t,T) and {v′} = λ(t′,T′). We say that the flip T̄ (or equivalently S̄) is

(i) a short flip if both t and t′ are singletons, that is, if {v, v′} is a leaf of S̄;
(ii) a long flip if t and t′ are maximal proper tubes in T and T′, that is, if {v, v′} is a root of S̄.

Note that in a short flip, the vertices v, v′ are necessarily adjacent in G. In the short flip S̄, we
call short leaf the leaf labeled by {v, v′} of S̄, short root the root of the tree of S̄ containing the
short leaf, and short child the child w of the short root on the path to the short leaf. If the short
leaf is already a child of the short root, then it coincides with the short child. Moreover, the short
root, short child and short leaf all coincide if they form an isolated edge of G. In the long flip S̄,
we call long root the root labeled by {v, v′}.

We define a bridge to be a square B in the flip graph F(G) formed by two short and two long
flips. We say that these two short (resp. long) flips are parallel, and we borrow the terms long
root and short leaf for the bridge B. Figure 9 illustrates the notions of bridge, long flips and short
flips.
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Figure 9. A bridge, with two long flips (red) and two short flips (blue).
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In terms of spines, a bridge can equivalently be defined as a spine B of G where all labels are
singletons, except the label {r, r′} of a root and the label {s, s′} of a leaf. We denote by B[r]
the short flip of B where r is a root, by B[s] the long flip of B where s is a leaf, and by B[rs]
the maximal spine on G refining both B[r] and B[s], i.e. where r is a root and s a leaf. The
flips B[r′] and B[s′] as well as the maximal spines B[r′s],B[rs′], and B[r′s′] are defined similarly.
These notations are summarized below

To obtain a Hamiltonian cycle H of the flip graph F(G), we proceed as follows. The idea is to
construct by induction a Hamiltonian cycle Hv̂ of each flip graph F(G[v̂]), which is isomorphic to a
Hamiltonian cycle Hv in each fixed-root subgraph Fv(G). We then select an ordering v1, . . . , vn+1

of V, such that two consecutive Hamiltonian cycles Hvi and Hvi+1
meet the parallel short flips of

a bridge Bi for all i ∈ [n]. The Hamiltonian cycle of F(G) is then obtained from the union of the
cycles Hv1 , . . . ,Hvn+1 by exchanging the short flips with the long flips of all bridges B1, . . . ,Bn,
as illustrated in Figure 10.

Hv̂2

F(G[v̂2])

f̊

Hv2f

Fv2(G)

B̊1[v1] B̊1[v2]Hv̂1 B̊2[v2]

F(G[v̂1])

Hv1

Fv1(G)

B1[v1] B1[v2]B1 B2[v2] B2

F(G[v̂n+1])

Hv̂n+1B̊n[vn+1]

Hvn+1

Fvn+1(G)

Bn[vn+1]Bn

↓o ↓o ↓o

f̊ ′

f ′

Figure 10. The strategy for the proof of the hamiltonicity of the flip graph F(G).
The circles above the short flips in the flip graphs F(G[v̂i]) on top indicate that
they are obtained by deleting the root vi in the corresponding short flip of the
fixed-root subgraph Fvi(G) on bottom. See also Theorem 23.

Of course, this description is a simplified and naive approach. The difficulty lies in that,
given the Hamiltonian cycles Hv of the fixed-root subgraphs Fv(G), the existence of a suitable
ordering v1, . . . , vn+1 of V and of the bridges B1, . . . ,Bn connecting the consecutive Hamiltonian
cycles Hvi and Hvi+1

is not guaranteed. To overpass this issue, we need to impose the presence
of two forced short flips in each Hamiltonian cycle Hv. We include this condition in the induction
hypothesis and prove the following sharper version of Theorem 4.

Theorem 23. For any graph G, any pair of short flips of F(G) with distinct short roots is
contained in a Hamiltonian cycle of the flip graph F(G).

Note that for any graph G with at least 2 edges, the flip graph F(G) always contains two short
flips with distinct short roots. Theorem 4 thus follows from the formulation of Theorem 23.

The issue in our inductive approach is that the fixed-root subgraphs of F(G) do not always
contain two edges, and therefore cannot be treated by Theorem 23. Indeed, it can happen that:
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• G[v̂] has a single edge and thus the fixed-root subgraph Fv(G) ∼ F(G[v̂]) is reduced to a
single (short) flip. This case can still be treated with the same strategy: we consider this
single flip Fv(G) as a degenerate Hamiltonian cycle and we can concatenate two bridges
containing this short flip.

• G[v̂] has no edge and thus the fixed-root subgraph Fv(G) ∼ F(G[v̂]) is a point. This is the
case when G is a star with central vertex v together with some isolated vertices. We need
to make a special and independent treatment for this particular case. See Section 4.4.

4.2. Disconnected graphs. We first show how to restrict the proof to connected graphs using
some basic results on products of cycles. We need the following lemmas.

Lemma 24. For any two cycles H,H′ and any two edges e, e′ of H×H′, there exists a Hamiltonian
cycle of H×H′ containing both e and e′.

Proof. The idea is illustrated in Figure 11. The precise proof is left to the reader. �

1a

2a3a

1b

2b3b

1c

2c3c

1a 2a

6a 5a
7a 4a
8a 3a

1b 2b

6b 5b

7b 4b

8b 3b

1c

2e

6e 5e

7e 4e

8c
3e

1d 2d

6d 5d

7d 4d

8d 3d

1e

2c

6c 5c

7c 4c

8e
3c

Figure 11. An idea for the proof of Lemma 24. Any pair of edges is contained in
a Hamiltonian cycle similar to those. The pictures represent Cartesian products
of the cycle H with the path obtained by deleting one edge in H′.

Lemma 25. For any cycle H, any isolated edge e◦ and any two edges e, e′ of H× e◦, there exists
a Hamiltonian cycle containing both e and e′, as soon as one of the following conditions hold:

(1) the edges e, e′ are not both of the form {v} × e◦ with v ∈ H;
(2) e = {v} × e◦ and e′ = {v′} × e◦ where {v, v′} is an edge of H;
(3) H has an even number of edges.

Proof. The idea is illustrated in Figure 12. The precise proof is left to the reader. �

Figure 12. An idea for the proof of Lemma 25. The right picture only works
for even cycles.

Corollary 26. If two graphs G,G′ both have the property that any pair of short flips of their flip
graph with distinct short roots is contained in a Hamiltonian cycle of their flip graph, then GtG′

fulfills the same property.

Proof. We have seen that the flip graph of the disjoint union of two graphs G1 and G2 is the
product of their flip graphs F(G1) and F(G2). The statement thus follows from the previous
lemmas. �
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4.3. Generic proof. We now present an inductive proof of Theorem 23. Corollary 26 allows us
to restrict to the case where G is connected. For technical reasons, the stars and the graphs with
at most 6 vertices will be treated separately. We thus assume here that G is not a star and has
at least 7 vertices, which ensures that any fixed root subgraph of the flip graph F(G) has at least
one short flip. Fix two short flips f , f ′ of F(G) with distinct short roots v1, vn+1 respectively.

We follow the strategy described in Section 4.1 and illustrated in Figure 10. To apply Theo-
rem 23 by induction on G[v̂i], the short flips Bi−1[vi] and Bi[vi] should have distinct short children.
This forbids certain positions for vi+1 in Bi−1[vi] illustrated in Figure 13, and motivates the fol-
lowing definition. We say that a vertex w and a short flip g with root v are in conflict if either of
the following happens:

(A) {w} is the short child of g and all other children of v in g are isolated in G[v̂];
(B) the graph G[v̂] has at least three edges, the graph G r {v, w} has exactly one edge which is

the short leaf of g;
(C) the graph G[v̂] has exactly two edges, the graph Gr {v, w} has exactly one edge which is the

short leaf of g, and w is a child of v.

It is immediate that a short flip is in conflict with at most one vertex. Observe also that if w is in
the short leaf of g, then w and g cannot be in conflict.

w

v v

w

v

w

v

w

(A) (B) (C)

Figure 13. Short flips in conflict with vertex w. The short leaf is shaded. The
second short flip of Case (B) is in conflict with w only if the connected component
of G[v̂] containing w is a star with central vertex w.

We now show how we order the vertices v1, . . . , vn+1 such that for each i ∈ [n] there exists a
bridge Bi connecting the fixed-root subgraphs Fvi(G) and Fvi+1

(G).

Lemma 27. There exists an ordering v1, . . . , vn+1 of the vertices of G (provided |V| ≥ 7) satisfying
the following properties:

• v2 and f are not in conflict, and vn and f ′ are not in conflict, and
• for any i ∈ [n], the graph G contains an edge disjoint from {vi, vi+1}.

Proof. Let a and a′ denote the vertices in conflict with f and f ′ if any. Let D denote the set of
totally disconnecting pairs of G, i.e. of pairs {x, y} such that G r {x, y} has no edge. We want
to show that there exists an ordering on the vertices of G in which neither {v1, a} nor {a′, vn+1},
nor any pair of D are consecutive. For this, we prove that if G has at least 5 vertices and is not a
star (i.e. all edges contain a central vertex), then |D| ≤ 2 and the pairs in D are not disjoint.

Suppose by contradiction that D contains two disjoint pairs {x1, y1} and {x2, y2}. Then any
edge of G intersects both pairs, so that x1, x2, y1, y2 are the only vertices in G (by connectivity),
contradicting that G has at least 5 vertices. Suppose now that D contains three pairwise distinct
pairs {x, y1}, {x, y2} and {x, y3}. Then any edge of G contains x since it cannot contain y1, y2

and y3 together. It follows that G is a star with central vertex x.
Since |D| ≤ 2, at most 4 pairs of vertices of G cannot be consecutive in our ordering. It is thus

clear that if there are enough other vertices, we can find a suitable ordering. In fact, it turns out
that it is already possible as soon as G has 7 vertices. It is easy to prove by a boring case analysis.
We just treat the worst case below.
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Assume that D = {{x, y}, {x, z}} where x, y, z /∈ {v1, vn+1} and that x is in conflict with both
short flips f and f ′. Since |V| ≥ 7, there exists two distinct vertices u, v /∈ {v1, vn+1, x, y, z} and
we set v2 = z, v3 = y, v4 = u, v5 = x, v6 = v and choose any ordering for the remaining vertices.
This order satisfies the requested conditions. �

Remark 28. In fact, using similar arguments, one can easily check that the result of Lemma 27
holds in the following situations:

• |V| = 6, and either |D| ≤ 1 or D = {{x, y}, {x, z}} where x is not in conflict with both f , f ′.
• |V| = 5, and eitherD = ∅ orD = {{x, y}} where neither x nor y is in conflict with both f , f ′.
• |V| = 5, and D = {{x, y}, {x, z}} and |{x, y, z} ∩ {v1, v5}| = 2.
• |V| = 5, and D = {{x, y}, {x, z}} and |{x, y, z} ∩ {v1, v5}| = 1 and neither of x, y, z is in

conflict with any of f and f ′.

Given such an ordering v1, . . . , vn+1, we choose bridges B1, . . . ,Bn connecting the fixed-root
subgraphs Fv1(G), . . . ,Fvn+1

(G). We start with the choice of B1.

Lemma 29. There exists a bridge B1 with root {v1, v2} such that

• if Fv1(G) is a square, the short flips f and B1[v1] are distinct,
• if Fv1(G) is not reduced to a single flip nor to a square, the short flips f and B1[v1] have

distinct short children,
• B1[v2] and v3 are not in conflict, and
• the singleton {v3} is a child of v2 in B1[v2] only if v3 is isolated in G r {v1, v2}.

Proof. The proof is an intricate case analysis. In each case, we will provide a suitable choice
for B1, but the verification that this bridge exists and satisfies the conditions of the statement is
immediate and left to the reader. We denote by κ the connected component of G[v̂1] containing v2.
The following cases cover all possibilities:

♠ κ = {v2}:
♥ Gr{v1, v2} has only one edge: the fixed root subgraph Fv1(G) is reduced to the short flip f

and the bridge obtained by contracting {v1, v2} in f suits for B1.
♥ Gr {v1, v2} has at least two edges: we choose for B1 any bridge with root {v1, v2} and with

a short child different from that of f .
♠ κ 6= {v2}, so that κ has at least one edge:
♥ G[v̂1]rκ has no edge: Condition (A) on f and v2 ensures that v2 is not the short child of f .

Since the short leaf of f has to be in κ, the short children of f and B1[v1] will automatically
be different.
♦ v3 /∈ κ: any bridge with root {v1, v2} suits for B1.
♦ v3 ∈ κ:
♣ v3 is isolated in κr {v2}: any bridge with root {v1, v2} suits for B1.
♣ v3 is not isolated in κr {v2}: we choose for B1 a bridge with root {v1, v2} and whose

short leaf contains v3.
♥ G[v̂1] r κ has precisely one edge e:
♦ e is not the short leaf of f : we choose for B1 any bridge with root {v1, v2}, short leaf e

and in which {v3} is a child of the root only if it is isolated in G r {v1, v2}.
♦ e is the short leaf of f :
♣ κ is a single edge: we choose for B1 the bridge obtained by contracting {v1, v2} in the

short flip opposite to f in the square Fv1(G) (which suits by Condition (C)).
♣ κ has at least two edges: Condition (B) ensures that κr {v2} has at least one edge.
◦ v3 /∈ κ: any bridge with root {v1, v2} and short leaf in κ suits for B1.
◦ v3 ∈ κ:
? v3 is isolated in κr {v2}: any bridge with root {v1, v2} and short leaf in κ suits.
? v3 is not isolated in κ r {v2}: we choose for B1 a bridge with root {v1, v2} and

whose short leaf contains v3.
♥ G[v̂1] r κ has at least two edges:
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♦ G[v̂1] r κ has only one non-trivial connected component: we choose for B1 a bridge with
root {v1, v2}, with short leaf containing the non-isolated child of v1 in f which is not in κ,
and in which {v3} is a child of the root only if it is either isolated in G r {v1, v2} or the
short child of B1[v1].

♦ G[v̂1] r κ has at least two non-trivial connected components: we choose for B1 a bridge
with root {v1, v2}, with short leaf in a connected component of G[v̂1] r κ not containing
the short leaf of f , and in which {v3} is a child of the root only if it is either isolated
in G r {v1, v2} or the short child of B1[v1]. �

The choice of Bn is similar to that of B1, replacing v1, v2, v3 and f by vn+1, vn, vn−1 and f ′

respectively. For choosing the other bridges B2, . . . ,Bn−1, we first observe the existence of certain
special vertices in G.

We say that a vertex distinct from v1 and vn+1 which disconnects at most one vertex is an
almost leaf of G. Observe that G contains at least one almost leaf: Consider a spanning tree T
of G. If T is a path from v1 to vn+1, the neighbor of v1 in T is an almost leaf of G. Otherwise,
any leaf of T distinct from v1 and vn+1 is an almost leaf of G.

Choose an almost leaf vi of G which disconnects no vertex if possible, and any almost leaf other-
wise. We sequentially construct the bridges B2, . . . ,Bi−1: once Bj is constructed, we choose Bj+1

using Lemma 29 where we replace v1, v2, v3 and f by vj+1, vj+2, vj+3 and Bj [vj+1]. Similarly,
we choose the bridges Bn−1, . . . ,Bi+1: once Bj+1 is constructed, we choose Bj using Lemma 29
where we replace v1, v2, v3 and f by vj+1, vj , vj−1 and Bj+1[vj+1]. Note that the conditions on B1

required in Lemma 29 ensure that the hypothesizes in Lemma 27 can be propagated.
It remains to properly choose the last bridge Bi. This is done by the following statement.

Lemma 30. Let g,h be two short flips on G with distinct roots v, w respectively. Assume that

(i) G r {v, w} has at least one edge;
(ii) g and w are not in conflict, and h and v are not in conflict;

(iii) {v} is a child of w in h only if v is isolated in G[ŵ];
(iv) v disconnects at most one vertex of G and this vertex is not w.

Then there exists a bridge B with root {v, w} such that g and B[v] are distinct if Fv[G] is not
reduced to a single flip and have distinct short children if Fv[G] is not a square, and similarly
for h and B[w].

Proof. Condition (iv) implies that {w} is the short child of B[v] for any bridge B with root {v, w}.
In contrast, Condition (iv) and Condition (A) for g and w ensure that {w} is not the short
child of g. Therefore, the conclusion of the lemma holds for g and B[v], for any bridge B with
root {v, w}. The difficulty is to choose B in order to satisfy the conclusion for h and B[w]. For
this, we distinguish various cases, in a similar manner as in Lemma 29. Again, we provide in each
case a suitable choice for B, but the verification that this bridge exists and satisfies the conditions
of the statement is immediate and left to the reader.

♠ G r {v, w} has exactly one edge e: this edge e has to be the short leaf of any bridge with
root {v, w}, thus Condition (A) for h and v ensures that e is isolated in G[ŵ].
♥ e is the short leaf of h: Condition (B) for h and v ensures that Fw(G) is either a single flip

or a square (because v disconnects at most one vertex from G).
♦ Fw(G) is a single flip: B is obtained by contracting {v, w} in h.
♦ Fw(G) is a square: Condition (C) for h and v ensures that v is not a child of w in h and

B is obtained by contracting {v, w} in the short flip opposite to h in the square Fw(G).
♥ e is not the short leaf of h: we choose for B any bridge with root {v, w} and short leaf e.

♠ G r {v, w} has at least two edges:
♥ the short leaf and the short child of h coincide: any bridge with root {v, w} and a short leaf

distinct from that of h suits for B.
♥ the short leaf and the short child of h are distinct: we choose for B a bridge with root {v, w}

whose short leaf contains the short child of h. �
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We have now chosen the order on the vertices v1, . . . , vn+1 and chosen for each i ∈ [n] a
bridge Bi connecting the fixed-root subgraphs Fvi(G) and Fvi+1(G). Our choice forces the short
flips Bi−1[vi] and Bi[vi] (as well as the short flips f and B1[v1] and the short flips Bn[vn+1] and f ′)
to be distinct if Fvi [G] is not reduced to a single flip and have distinct short children if Fvi [G] is
not a square. We then construct a Hamiltonian cycle Hi in each fixed-root subgraph Fvi(G) such
that H1 contains the short flips f and B1[v1], Hn+1 contains the short flips Bn[vn+1] and f ′, and
Hi contains the short flips Bi−1[vi] and Bi[vi] for all 2 ≤ i ≤ n. Note that

• when Fvi(G) is reduced to a single flip, we just set Hi = Fvi(G) and consider it as a
degenerate Hamiltonian cycle;

• when Fvi(G) is a square, it is already a cyle;
• otherwise, we apply Theorem 23 by induction to G[v̂i] and obtain the Hamiltonian cycleHi.

The theorem applies since the short flips Bi−1[vi] and Bi[vi] have distinct short children,
so that the corresponding short flips in F(G[v̂i]) have distinct short roots.

Finally, we obtain a Hamiltonian cycle of F(G) containing f and f ′ by gluing the cyclesH1, . . . ,Hn+1

together using the bridges B1, . . . ,Bn as explained in Section 4.1. This is possible since the short
flips Bi−1[vi] and Bi[vi] both belong to the Hamiltonian cycle Hi, and are distinct when Fvi(G) is
not reduced to a single flip. This concludes the proof for all generic cases. The remaining of the
paper deals with the special cases of stars and graphs with at most 6 vertices.

4.4. Stars. We now treat the particular case of stars. Consider a ground set V where a vertex ∗
is distinguished. The star on V is the tree XV where all vertices of V r {∗} are leaves connected
to ∗. The flip graph F(XV) has two kinds of fixed-root subgraphs:

• F∗(XV) is reduced to a single spine ~ with root ∗ and n leaves;
• for any other vertex v ∈ Vr{∗}, the fixed-root subgraph Fv(XV) is isomorphic to the flip

graph F(Xv̂) of the star Xv̂, where ∗ is still the distinguished vertex in v̂ = Vr{v}. For a

spine S ∈ Fv(XV), we denote by S̊ the unique subspine of S, and we write in column S =
v
S̊.

To find a Hamiltonian cycle passing through forced short flips and through the spine ~ we need
to refine again the induction hypothesis of Theorem 23 as follows.

Proposition 31. Assume that |V| ≥ 3, and fix two short flips f , f ′ of F(XV) with distinct
roots r 6= r′ and a long flip g of F(XV) with root {r′′, ∗}. Then the flip graph F(XV) has a
Hamiltonian cycle containing f , f ′,g.

Proof. The proof works by induction on |V|. If |V| = 3, then XV is a 3-path and its flip graph
is a pentagon. The case |V| = 4 is solved by Figure 14 up to relabeling of V. Namely, whatever
triple f , f ′,g is imposed, there is a permutation of the leaves of X{1,2,3,∗} which sends the Hamil-
tonian cycle of Figure 14 to a Hamiltonian cycle passing through f , f ′,g. Assume now that |V| ≥ 5.
We distinguish two cases.

1

∗

2 3

1

∗
2 3

∗
1 2 3

1

∗
2

3

1

∗
3

2

1

∗

3

2

1

∗
3

2

1

∗
3

2 1

∗
3

2

∗
3

1

2

∗

3

1

2

∗

3

1

2

∗

3

1

2∗

3

1

2

1

∗
2

3

∗

3

1

2

∗
3

1

2

∗

1

2
3

Figure 14. A Hamiltonian cycle in the flip graph F(X{1,2,3,∗}). Up to permuta-
tions of the leaves {1, 2, 3}, this cycle contains all possible triples f , f ′,g considered
in Proposition 31.
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Case 1: r′′ ∈ {r, r′}, say for instance r′′ = r. Let w′ denote the child of r′ in the short flip f ′.
Let v1, . . . , vn−2 be an arbitrary ordering of V r {∗, r, r′} such that v1 6= w′ (this is possible
since |V| ≥ 5), and B1, . . . ,Bn−2 any bridges such that the root of Bi is {vi−1, vi} (where we
set v0 = r′). We now choose inductively a Hamiltonian cycle Hv̂ in each flip graph F(Xv̂) for
all v ∈ V r {∗} as follows.

(i) In F(Xr̂), we choose a cycle Hr̂ containing the short flip f̊ and the long flip ~↔ r′
~ .

(ii) In F(Xr̂′), we choose a cycleHr̂′ containing the short flips f̊ ′ and B̊1[r′] and the long flip~↔ r
~.

(iii) In F(Xv̂i) for i ∈ [n− 3], we choose a cycle Hv̂i containing the short flips B̊i[vi] and B̊i+1[vi].

(iv) In F(Xv̂n−2
), we choose a cycle Hv̂n−2

containing the short flip B̊n−2[vn−2].

Note that these Hamiltonian cycles exist by induction hypothesis. Indeed, the short flips B̊i[vi]

and B̊i+1[vi] have distinct roots vi−1 and vi+1. The only delicate case is thus Point (ii): the

short flips f̊ ′ and B̊1[r′] have distinct roots since we forced v1 to be different from w′. Each
Hamiltonian cycle Hv̂ on F(Xv̂) induces a Hamiltonian cycle Hv on Fv(XV) (just add v at the
root in all spines). From these Hamiltonian cycles, we construct a Hamiltonian cycle for F(XV)

as illustrated in Figure 15. We join Hr with Hr′ by deleting the flips r
~↔

r
r′
~

and r′
~ ↔

r′
r
~

while

inserting the long flips r
~ ↔ ~ ↔ r′

~ and
r
r′
~
↔ r′

r
~

. Finally, we use the bridges B1, . . . ,Bn−2 to

connect the resulting cycle to the cycles Hv1 , . . . ,Hvn−2
by exchanging their short flips with their

long flips.
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Figure 15. Construction of a Hamiltonian cycle in F(XV) when r′′ = r.

Case 2: r′′ /∈ {r, r′}. Let v1, . . . , vn−3 be an arbitrary ordering of V r {∗, r, r′, r′′}, and B1, . . . ,Bn−3

any bridges such that the root of Bi is {vi−1, vi} (where we set v0 = r′′). We now choose inductively
a Hamiltonian cycle Hv̂ in each flip graph F(Xv̂) for all v ∈ V r {∗, r′} as follows.

(i) In F(Xr̂), we choose a cycle Hr̂ containing the short flip f̊ and the long flip ~↔ r′′
~ .

(ii) In F(Xr̂′′), we choose a cycle Hr̂′′ containing a short flip h̊ with root r′, the short flip B̊1[r′′]
and the long flip ~↔ r

~.

(iii) In F(Xv̂i) for i ∈ [n− 4], we choose a cycle Hv̂i containing the short flips B̊i[vi] and B̊i+1[vi].

(iv) In F(Xv̂n−3
), we choose a cycle Hv̂n−3

containing the short flip B̊n−3[vn−3] and a short flip k̊
with root r′.

Each Hamiltonian cycle Hv̂ on F(Xv̂) induces a Hamiltonian cycle Hv on Fv(XV) (just add v
at the root in all spines). From these Hamiltonian cycles, we construct the cycle illustrated in
Figure 16. We still have to enlarge this cycle to cover Fr′(XV). Let h′ and k′ denote the short

flips in Fr′(XV) parallel to the short flips h and k respectively. Since r′′ 6= vn−3, the root w′ of f̊ ′

cannot coincide with both. Assume for example that w′ 6= r′′. By induction, we can then find

a Hamiltonian cycle Hr̂′ of F(Xr̂′) containing both f̊ ′ and h̊′. This cycle induces a Hamiltonian
cycle Hr′ of Fr′(XV) passing through f ′ and h′. We can then connect this cycle to the cycle of
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Figure 16. Construction of a Hamiltonian cycle in F(XV) when r′′ /∈ {r, r′}.

Figure 16 by exchanging the parallel short flips h and h′ by the corresponding parallel long flips.
In the situation when w′ = r′′, we have w′ 6= vn−3 and we argue similarly by attaching Fr′(XV)
to k instead of h. �

4.5. Graph with at most 6 vertices. Again we will focus on connected graphs because of
Corollary 26. The analysis for graphs with at most 3 vertices is immediate. We now treat
separately the graphs with 4, 5 and 6 vertices, which are not stars (stars have been treated in the
previous section).

4.5.1. Graphs with 4 vertices. We consider all possible connected graphs on 4 vertices and exhibit
explicit Hamiltonian cycles of their flip graphs. To do so, we could draw a cycle of spines as
in Figure 14 (middle). Instead, we rather draw the Hamiltonian cycle on the flip graph F(G)
represented as the 1-skeleton of the graph associahedron Asso(G) as in Figure 14 (right). Let
us remind from [CD06] that the graph associahedron Asso(G) is obtained from the standard
simplex 4V := conv {ev | v ∈ V} (where (ev)v∈V denotes the canonical basis of RV) by successive
truncations of the faces 4Vrt = conv {ev | v ∈ V r t} for the tubes t of G, in decreasing order of
dimension. Each tube t of G corresponds to a facet Ft of Asso(G), and each maximal tubing T
corresponds to the vertex of Asso(G) which belongs to all facets Ft for t ∈ T. In Figure 17 (right),
we label the positions of the vertices of4V before the truncations. The fixed-root subgraphs appear
as the 1-skeleta of the four shaded faces of G, and the bridges are the five thin parallelograms (the
short flips correspond to their short sides, and the long flips correspond to their long sides).
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Figure 17. Correspondence between vertices of Asso(G) and spines on G.

Using these conventions, Figure 18 represents Hamiltonian cycles for the flip graphs on all
connected graphs on 4 vertices (the 4-star was already treated in Figure 14). The Hamiltonian
cycles, together with their orbits under the action of the isomorphism group of the corresponding
graph, prove the following statements, which imply Theorem 23 for all graphs on 4 vertices.



22 THIBAULT MANNEVILLE AND VINCENT PILAUD

1 1 1

1 1

2 2 2

2 2

3 3 3

3 3

4 4 4

4 4

1

2

1

2 4

3 1

2 4

3

1

2 4

3 1

2 4

3

3

4

Figure 18. Hamiltonian cycles showing Proposition 32. Each vertex of the graph
associahedra corresponds to a spine as explained in Figure 17.

Proposition 32. (a) For any graph G on at most 4 vertices, any pair of short flips (even with
the same root) is contained in a Hamiltonian cycle of F(G).

(b) For the stars on 3 and 4 vertices, each triple consisting of two short flips (even with the same
root) and one long flip as in Proposition 31 is contained in a Hamiltonian cycle of F(G).

(c) For the classical 3-dimensional (path) associahedron, there exists a Hamiltonian cycle contain-
ing simultaneously all short flips.

(d) For all connected graphs on 4 vertices, there exist a Hamiltonian cycle of F(G) containing
at least one short flip in each fixed-root subgraph. We can even preserve this property if we
impose the Hamiltonian cycle to pass through one distinguished short flip.

4.5.2. Graphs with 5 vertices. Graphs on 5 vertices are treated by a case analysis. As in the proof
of Lemma 27, we will denote by D the set of totally disconnecting pairs of G, i.e. pairs {x, y} of
vertices of G such that Gr {x, y} has no edge. Recall from the proof of Lemma 27 that D has at
most two elements and that they are not disjoint.

Consider now a graph G on 5 vertices. According to Remark 28, the proof of Section 4.3 applies
in various configurations. We treat here the remaining cases. As we observed in Proposition 32 (a)
that for any connected graph G on at most 4 vertices, any pair of short flips (even with the same
root) is contained in a Hamiltonian cycle of F(G), we can ignore Condition (A) in the definition of
conflict. We therefore say that a vertex w and a short flip g with root v are in conflict if Gr{v, w}
has a single edge which is the short leaf of g, and w is a child of v. With this definition, there is
only one bridge connecting Fv(G) and Fw(G), but we cannot use it if we want the short flip g to
belong to the Hamiltonian cycle. One can check that the conclusions of Lemmas 29 and 30 still
hold in this situation.
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We first suppose that D = {{x, y}} is a singleton and that either x or y is in conflict with
both f and f ′. Checking all connected graphs on five vertices, we see that this situation can only
happen for the following graphs:

G1 =
v w

u
x

y

G2 =
v w

u
x

y

G3 =
v w

u
x

y

G4 =
v w

u
x

y

.

For each one, we explain how to prove Theorem 23.

G = G1: The only possible conflicts are between x and a short flip with root v or w. Thus, up
to isomorphism of the graph, the only instance of Theorem 23 fitting to the configuration
we are looking at is given by

f =

v

x

yw u

and f ′ =

w

x

yv u

.

Observe that there exists bridges Bv,Bu,By with respective roots {w, v}, {w, u}, {w, y}
and a bridge B with root {u, x}. Notice that the fixed root subgraph Fw(G1) is iso-
morphic to the classical (path) associahedron so that Proposition 32 (c) ensures that
there exists a Hamiltonian cycle Hw of the flip graph Fw(G1) containing all the short
flips f ,Bv[w],Bu[w],By[w]. Moreover Proposition 32 (a) ensures that there exists a Hamil-
tonian cycle Hy (resp. Hx) of the flip graph Fy(G1) (resp. Fx(G1) ) containing the short
flip By[y] (resp. B[x]). Proposition 32 (a) again gives us a Hamiltonian cycle Hu (resp. Hv)
of the flip graph Fu(G1) (resp. Fv(G1)) containing the two short flips Bu[u] and B[u]
(resp. f ′ and Bv[v]). Note that the short flips of the bridges are all distinct since u, v
and w do no disconnect the graph. Gluing all the Hamiltonian cycles of the fixed root
subgraphs along the bridges as explained in Section 4.1 gives a Hamiltonian cycle of F(G1)
containing f and f ′.

G = G2: The only possible conflicts are between x and a short flip with root v or w. Thus, up
to isomorphism of the graph, the only instance of Theorem 23 fitting to the configuration
we are looking at is given by

f =

v

x

yw u

and f ′ =

w

x

yv u

.

Observe that there exists a bridge B with root {u, x}. Notice that the fixed root sub-
graph Fw(G1) is isomorphic to the graph associahedron of a connected graph on 4 ver-
tices so that Proposition 32 (d) ensures that there exists a Hamiltonian cycle Hw of the
flip graph Fw(G2) containing the short flip f and three short flips Bv[w],Bu[w],By[w]
of some bridges Bv,Bu,By whose respective roots are {w, v}, {w, u}, {w, y}. Moreover
Proposition 32 (a) ensures that there exists a Hamiltonian cycle Hy (resp. Hx) of the flip
graph Fy(G2) (resp. Fx(G2)) containing the short flip By[y] (resp. B[x]). Proposition 32 (a)
again gives us a Hamiltonian cycle Hu (resp. Hv) of the flip graph Fu(G2) (resp. Fv(G2))
containing the two short flips Bu[u] and B[u] (resp. f ′ and Bv[v]). Note that the short
flips of the bridges are all distinct since u, v and w do no disconnect the graph. Gluing
all the Hamiltonian cycles of the fixed root subgraphs along the bridges as explained in
Section 4.1 gives a Hamiltonian cycle of F(G2) containing f and f ′.

G = G3: The analysis is identical to the case G = G1.
G = G4: The analysis is identical to the case G = G2.
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We now suppose that G has 5 vertices and that D = {{x, y}, {x, z}}. Since all edges either
contain x or both y and z, G is one of the following graphs:

G5 =

vu
x
zy

G6 =

vu
x
zy

.

We note that in both of them, the only possible conflicts are between x and short flips with root
either u or v. Indeed, {x, u} and {x, v} are the only pairs of vertices disjoint from exactly one edge,
and the fixed-root subgraphs Fx(G5) and Fx(G6) are reduced to single flips. Using Remark 28,
we can restrict to the cases in which x /∈ {v1, v5}. Again we treat separately the two graphs:

G = G5: Notice that the fixed-root subgraphs Fy(G5) and Fz(G5) both are isomorphic to
the flip graph of a star on 4 vertices with central vertex x. So given a short flip h (resp. k)
with roots y (resp. z), Proposition 31 provides us with a Hamiltonian cycle Hy (resp. Hz)
of Fy(G5) (resp. Fz(G5)) containing h (resp. k) and the flip of Fy(G5) (resp. Fz(G5))
corresponding to the long flip of F(G5[ŷ]) (resp. F(G5[ŷ])) with root {x, z} (resp. {x, y}).
Then gluing together the cycles Hy and Hz and the fixed-root subgraph Fx(G5) as in Fig-
ure 19 gives a tool to deal with the remaining configurations, always with the strategy of
gluing Hamiltonian cycles of the fixed-root subgraphs along bridges.

Fy(G5) Fz(G5)

Hy Hz

Fx(G5)

kh

y

y

y

y

y

y

x

u v z

x x

x

xx

u u

u

uu v v

v

vv

z

z

z
z

z

Figure 19. How to glue together the flip graphs Fy(G5),Fx(G5) and Fz(G5).

G = G6: Observe that both fixed-root subgraphs Fu(G6) and Fv(G6) are isomorphic to the
classical (path) associahedron. Thus as soon as one of the short flips f and f ′ is not in
conflict with x, one can find an arrangement of the vertices in the same way as when we
treated the graph G2 and G4 (without the intermediary of the vertex u) which always
makes our strategy work. We thus only need to deal with the case where x is in conflict
with both f and f ′, which corresponds to a single instance of Theorem 23, checked by
hand in Figure 20.

4.5.3. Graphs with 6 vertices. To finish, we need to deal with the case where G has 6 vertices,
D = {{x, y}, {x, z}} and x is in conflict with both f and f ′. Again G can only be one of the two
following graphs:

G7 =

wvu
x
zy

G8 =

wvu
x
zy

.

The graph G7 is treated exactly as G5, using Remark 28 instead of Proposition 32 to restrict the
number of cases to analyze. In the case of G8, there is again a single difficult instance which can
be treated by hand (since the graph associahedron Asso(G8) has 236 vertices, we do not include
here the resulting picture).
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z
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Figure 20. The flip graph F(G6) represented as the 1-skeleton of the graph as-
sociahedron Asso(G6), visualized by its Schlegel diagram. The (blue) Hamiltonian
cycle passes through the only two short flips in conflict with x (in red).
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