
ASSOCIAHEDRA VIA SPINES
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Abstract. An associahedron is a polytope whose vertices correspond to triangulations of a

convex polygon and whose edges correspond to flips between them. Using labeled polygons,

C. Hohlweg and C. Lange constructed various realizations of the associahedron with relevant
properties related to the symmetric group and the classical permutahedron. We introduce the

spine of a triangulation as its dual tree together with a labeling and an orientation. This

notion extends the classical understanding of the associahedron via binary trees, introduces a
new perspective on C. Hohlweg and C. Lange’s construction closer to J.-L. Loday’s original

approach, and sheds light upon the combinatorial and geometric properties of the resulting

realizations of the associahedron. It also leads to noteworthy proofs which shorten and simplify
previous approaches.

keywords. Associahedra, polytopal realizations, generalized permutahedra.

Associahedra were originally defined as combinatorial objects by J. Stasheff in [Sta63], and later
realized as convex polytopes through several different geometric constructions [Lee89, GKZ08,
BFS90, Lod04, HL07, PS12, CSZ15], reflecting deep connections to a great variety of mathemat-
ical disciplines. They belong to the world of Catalan combinatorics, which can be described by
several different equivalent models, all counted by the Catalan number Cn+1 = 1

n+2

(
2n+2
n+1

)
, such

as parenthesizings of a non-associative product, Dyck paths, binary trees, triangulations, non-
crossing partitions, etc [Sta99, Exercice 6.19]. Among the plethora of different approaches, the
following description suits best our purposes. An n-dimensional associahedron is a simple polytope
such that the inclusion poset of its non-empty faces is isomorphic to the reverse inclusion poset
of the dissections of a convex (n+ 3)-gon P (i.e. the crossing-free sets of internal diagonals of P).
See Figure 1 for 3-dimensional examples. For our purposes, it is important to keep in mind that
the vertices of the associahedron correspond to the triangulations of P, its edges correspond to
the flips between these triangulations, and its facets correspond to the internal diagonals of P.
Moreover a vertex belongs to a facet if and only if the corresponding triangulation contains the
corresponding internal diagonal.
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Figure 1. Two polytopal realizations of the 3-dimensional associahedron with
vertices labeled by triangulations of convex hexagons described in [HL07].
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S. Shnider and S. Sternberg [SS93] (see also [Sta97b, Appendix B]) found an elegant construction
of associahedra, and J.-L. Loday [Lod04] gave an explicit combinatorial formula for their vertex co-
ordinates in terms of binary trees. Generalizing this construction, C. Hohlweg and C. Lange [HL07]
found various realizations of associahedra that are parametrized by certain labelings of the convex
polygon P. Their associahedra have various remarkable combinatorial properties. First, they have
particularly simple vertex and facet descriptions: their integer vertex coordinates can be expressed
by simple formulas on the corresponding triangulations of the polygon, and their normal vectors
are given by the characteristic vectors of sets naturally associated to the internal diagonals of the
polygon. Second, they are deeply connected to the symmetric group, the braid arrangement, and
the classical permutahedron. To illustrate these connections, let us just observe here that

(i) these associahedra are obtained from the permutahedron by gliding some facets to infinity,
(ii) the normal fans of these associahedra coarsen that of the permutahedron (braid arrangement),
(iii) the vertex barycenters of these associahedra all coincide with that of the permutahedron.

More details on these connections are discussed below, see also [Hoh] for a recent survey.
In this paper, we focus on spines of triangulations, i.e. on their oriented and labeled dual trees.

These spines allow a new perspective on the realizations constructed by C. Hohlweg and C. Lange
and refine the classical description of associahedra in terms of binary trees. We believe that this
approach has several advantages. First, it extends the original presentation of J.-L. Loday [Lod04]
and avoids the detour via triangulations needed in [HL07]. Second, spines naturally encode the
normal fan of these associahedra and therefore shed light upon the above-mentioned connection
between the permutahedron and the associahedra. Third, this approach leads to short and unified
proofs of certain results on these associahedra: in particular, we obtain noteworthy proofs that
these polytopes indeed realize the associahedron (Theorem 7), of simple formulas for the dila-
tion factors in certain Minkowski decompositions of these associahedra (Theorem 28), and that
their barycenter coincide with that of the permutahedron (Theorem 29). Finally, our interpre-
tation in terms of spines opens the door to further extensions of this construction to signed tree
associahedra [Pil13] and signed nestohedra [ČLP15].

The paper is organized in six sections. In Section 1, we describe the polytopes of [HL07] in
terms of spines and provide a complete, independent and short proof that they indeed realize the
associahedron. The next four sections explore further properties of these associahedra from the
perspective of spines. Throughout these sections, we only include detailed proofs for which spines
provide new insights, in order to keep the paper short and focussed on spines. In Section 2, we study
dissections, refinements and flips, and discuss some properties of the slope increasing flip lattice.
Section 3 explores the connection between these associahedra and the classical permutahedron, in
particular the relations between their normal fans. In Section 4, we decompose these associahedra
as Minkowski sums and differences of dilated faces of the standard simplex. We discuss further
topics in Section 5, where we present in particular a concise proof that the vertex barycenters of
the associahedra and permutahedron coincide. Finally, in Section 6, we relate spines to various
topics from the literature, including detailed references to existing works, and we discuss further
possible applications of the notion of spines.

This paper is dedicated to two fiftieth birthdays. First, to that of Günter M. Ziegler to acknowl-
edge his deep influence on the theory of polytopes. Second, to the discovery of the associahedron
by J. Stasheff [Sta63] which still motivates nowadays an active research area.

1. Spines and associahedra

1.1. Triangulations and their spines. Let P ⊂ R2 be a convex (n+3)-gon with no two vertices
on the same vertical line. We denote by 0,1, . . . ,n + 2 the vertices of P ordered by increasing
x-coordinate. We call up vertices and down vertices the intermediate vertices 1, . . . ,n + 1 on
the upper and lower hull of P respectively. Similarly, we call up labels U ⊆ [n + 1] and down
labels D ⊆ [n + 1] the label sets of all up and down vertices respectively. Note that the leftmost
and rightmost vertices 0 and n + 2 are neither up nor down vertices and, consequently, 0 and
n+ 2 are neither up nor down labels.
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Figure 2. Two triangulations T ex and T̃ ex of the polygon Pex and their spines.

Let δ be a diagonal of P (internal or not). We denote by A(δ) the set of labels j ∈ [n+ 1] of
the vertices j which lie above the line supporting δ where we include the endpoints of δ if they are
down, and exclude them if they are up. Similarly, we denote by B(δ) the set of labels j ∈ [n+ 1]
of the vertices j which lie below the line supporting δ where we include the endpoints of δ if they
are up, and exclude them if they are down. Note that A(δ) and B(δ) partition [n + 1], and that
we never include the labels 0 and n + 2 in A(δ) or B(δ). We set a(δ) := |A(δ)| and b(δ) := |B(δ)|.
See Example 1 and Figure 2.

Let T be a triangulation of P. The spine of T is its oriented and labeled dual tree T ∗, with

• an internal node j∗ for each triangle ijk of T where i < j < k,
• an arc δ∗ for each internal diagonal δ of T , oriented from the triangle below δ to the

triangle above δ, and
• an outgoing (resp. incoming) blossom δ∗ for each top (resp. bottom) boundary edge δ of P.

The up nodes and down nodes are the internal nodes of T ∗ labeled by up and down labels re-
spectively. Observe that an up node has indegree one and outdegree two, while a down node has
indegree two and outdegree one. See Example 1 and Figure 2.

Example 1. To illustrate these definitions, consider the decagon Pex with U ex = {2, 3, 5, 7} and
Dex = {1, 4, 6, 8} represented in Figure 2. We have e.g. A(27) = {3, 5} and B(28) = {1, 2, 4, 6}.
Two triangulations T ex (left) and T̃ ex (right) of Pex and their spines are represented. Throughout
the paper, the vertices of the polygon are represented with dots •, while the up and down nodes
of the spines are respectively represented with up and down triangles N and H.

Example 2 (Loday’s associahedron). Let PLod denote the (n+ 3)-gon for which ULod = ∅ and
DLod = [n+ 1]. The spine T ∗ of a triangulation T of PLod is a binary tree. It is rooted by its
only outgoing blossom, and oriented towards the root. Its internal nodes are labeled by inorder
search labeling [CLRS09, p. 287], see Figure 3 (right). It can therefore be seen as a binary search
tree with label set [n + 1]. Note that it is usual to either delete the blossoms as in [BW97] or to
complete them to leaves/root as in [Lod04].

The following two immediate observations will be used later. Their proofs are left to the reader.

Lemma 3. If δ is a diagonal of a triangulation T of P, then the set A(δ) (resp. B(δ)) labels the
nodes of the connected component in T ∗ r δ∗ of the target (resp. source) of δ∗. We refer to this
connected component as the subtree of T ∗ above δ (resp. below δ).
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Lemma 4. For any diagonal δ of P (internal or not), and any label j ∈ [n+ 1],

• if j ∈ D ∩ A(δ), then [j] ⊂ A(δ) or [j, n+ 1] ⊂ A(δ),
• if j ∈ U ∩ B(δ), then [j] ⊂ B(δ) or [j, n+ 1] ⊂ B(δ).

Although we will not use it in this paper, let us observe that the spines of the triangulations
of P can be directly characterized as follows. This characterization relates our work to the recent
preprint of K. Igusa and J. Ostroff [IO13] who study these oriented and labeled trees in the
perspective of cluster algebras and quiver representation theory.

Proposition 5. A directed tree T ∗ with blossoms and whose internal nodes are bijectively labeled
by [n+ 1] is the spine of a triangulation of P if and only if for all j ∈ [n+ 1]:

• If j ∈ U , then the node j∗ of T ∗ labeled by j has indegree one and outdegree two, and all
labels in the left outgoing subtree of T ∗ at j∗ are smaller than j, while all labels in the right
outgoing subtree of T ∗ at j∗ are larger than j.

• If j ∈ D, then the node j∗ of T ∗ labeled by j has indegree two and outdegree one, and all
labels in the left incoming subtree of T ∗ at j∗ are smaller than j, while all labels in the
right incoming subtree of T ∗ at j∗ are larger than j.

Note that we can reconstruct the labeling of a spine T ∗ from its unlabeled plane structure
together with the sets D and U as follows. We consider the permutation σ of [n + 1] formed by
all labels of D in increasing order followed by all labels of U in decreasing order. We traverse
around the spine T ∗ in counter-clockwise direction starting at the unique outgoing blossom that
is followed by an incoming blossom. Whenever we encounter two incoming or two outgoing arcs
at a node of T ∗, we label this node by the next label of σ.

Example 1 (continued). This procedure is illustrated in Figure 3 (left) for the up and down
label sets U ex = {2, 3, 5, 7} and Dex = {1, 4, 6, 8}. We traverse the tree counter-clockwise starting
from the outgoing blossom marked by #. While traversing, we label each interior node where
the direction of two consecutive edges changes by the next letter of σex = [1, 4, 6, 8, 7, 5, 3, 2]. The

resulting labeled oriented tree with blossoms is the spine (T̃ ex)
∗
.

Example 2 (Loday’s associahedron, continued). For the polygon PLod where ULod = ∅ and
DLod = [n + 1], we have σLod = [1, 2, . . . , n + 1], so that the procedure specializes to the inorder
search labeling of binary trees [CLRS09, p. 287], which was used by J.-L. Loday in [Lod04]. This
is illustrated in Figure 3 (right).
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Figure 3. Traverse in counter-clockwise direction around the unlabeled tree of
spine T̃ ex starting at blossom # to reconstruct the inner node labels (left). The
procedure specializes to inorder search labeling of binary trees (right).
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1.2. Associahedra. The aim of this section is to state Theorem 7 which provides particular
realizations Asso(P) of n-dimensional associahedra that are embedded in Rn+1 and parametrized
by an (n + 3)-gon P. More precisely, the realization Asso(P) does not depend on the geometry
of P but solely on the partition of [n+ 1] into up and down vertices of P.

We first introduce points associated to triangulations of P which are used in Theorem 7 to
describe the vertices of Asso(P). Consider a triangulation T of P with spine T ∗. Let Π be the set
of all undirected maximal paths in T ∗, that is, undirected paths connecting two blossoms of T ∗.
Note that a path π ∈ Π is not directed although each edge of π is oriented (as an arc of the
spine T ∗). For any j ∈ [n+ 1], we denote by R(j) the set of paths of Π whose edge orientation is
reversed at node j∗. In other words, if j is a down (resp. up) label, then R(j) is the set of paths
of Π which use the two incoming (resp. outgoing) arcs of j∗. It follows that |R(j)| is the product
of the number of blossoms in the two incoming (resp. outgoing) subtrees of j∗ in T ∗. Associate to
the triangulation T of P the point x(T ) ∈ Rn+1 with coordinates

xj(T ) :=

{
|R(j)| if j ∈ D,
n+ 2− |R(j)| if j ∈ U.

Theorem 7 claims that the points x(T ) associated to the triangulations T of P are precisely the
vertices of an associahedron Asso(P).

We now describe hyperplanes and half-spaces associated to internal diagonals of P which are
used in Theorem 7 to describe the inequalities of Asso(P). The interesting feature of the realiza-
tion Asso(P) is that its facet defining inequalities are also facet defining inequalities of the classical
permutahedron. Remember that the n-dimensional permutahedron Perm(n) is defined either as
the convex hull of all permutations of [n + 1] (seen as vectors in Rn+1), or as the intersection of
the hyperplane H :=H=([n+ 1]) with the half-spaces H≥(J) for ∅ 6= J ( [n+ 1], where

H=(J) :=

{
x ∈ Rn+1

∣∣∣∣ ∑
j∈J

xj =

(
|J |+ 1

2

)}
and H≥(J) :=

{
x ∈ Rn+1

∣∣∣∣ ∑
j∈J

xj ≥
(
|J |+ 1

2

)}
.

To each internal diagonal or upper boundary edge δ of the polygon P, we associate the hyperplane
H=(δ) :=H=(B(δ)) and the half-space H≥(δ) :=H≥(B(δ)). Theorem 7 claims that the inequali-
ties H≥(δ) associated to internal diagonals δ of P are precisely the facet-defining inequalities for
the associahedron Asso(P).

Example 1 (continued). The points associated to the triangulations T ex and T̃ ex of Figure 2

are x(T ex) = (7, 8,−6, 1, 7, 10, 8, 1) and x(T̃ ex) = (7, 8, 0, 1, 7, 4, 8, 1). The half-spaces H≥(28)
and H≥(39) are defined by the inequalities x1+x2+x4+x6 ≥ 10 and x1+x2+x3+x4+x6+x8 ≥ 21,

respectively. Note that x(T ex) and x(T̃ ex) both belong to H, H=(39) and H≥(28).

Example 2 (Loday’s associahedron, continued). For any triangulation TLod of PLod, the ith

coordinate of x(TLod) is the product of the number of leaves in the two children of the ith node of
the dual binary tree of TLod for the inorder search labeling (see Figure 3 (right)). For i < j, the

half-space H≥(ij) corresponding to a diagonal ij is given by the inequality
∑j−1
k=i+1 xk ≥

(
j−i
2

)
.

See [Lod04].

The following statements are the essence of the construction of [HL07]. Their proofs in terms
of spines are deferred to Section 1.3.

Proposition 6 ([HL07, Prop. 2.10]). Let δ be an internal diagonal or an upper boundary edge
of P, and let T be a triangulation of P.

(i) The point x(T ) is contained in the half-space H≥(δ).
(ii) The point x(T ) lies on the hyperplane H=(δ) if and only if δ belongs to T .

Theorem 7 ([HL07, Thms 1.1 and 2.12]). The following equivalent descriptions define an asso-
ciahedron Asso(P):

(i) the convex hull of the points x(T ) for all triangulations T of P,
(ii) the intersection of the hyperplane H with the half-spaces H≥(δ) for all diagonals δ of P.
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1.3. Proof of Proposition 6 and Theorem 7. The proof of Proposition 6 relies on a double
counting argument. For a path π ∈ Π, we denote by R(π) the set of labels j in [n + 1] such that
the edge orientation of π is reversed at node j∗. In other words, j ∈ R(π) if and only if π ∈ R(j).
We partition R(π) into the up labels U(π) :=R(π) ∩ U and the down labels D(π) :=R(π) ∩D. By
definition, π contains two outgoing arcs at the nodes labeled by U(π), two incoming arcs at the
nodes labeled by D(π), and one incoming and one outgoing arc at all its other nodes. Therefore,
the nodes labeled by U(π) and D(π) alternate along π. Moreover, if we traverse along the path π
from one endpoint s∗ to the other t∗, the first (resp. last) node where the orientation reverses is
labeled by U(π) if the blossom s∗ (resp. t∗) is outgoing and by D(π) if the blossom s∗ (resp. t∗)
is incoming.

Using that π ∈ R(j) is equivalent to j ∈ R(π) = U(π) t D(π), we obtain by double counting∑
j∈B(δ)

xj(T ) =
∑

d∈B(δ)∩D

∣∣R(d)
∣∣ +

∑
u∈B(δ)∩U

(
n+ 2−

∣∣R(u)
∣∣)

= u(δ)(n+ 2) +
∑
π∈Π

(∣∣B(δ) ∩ D(π)
∣∣− ∣∣B(δ) ∩ U(π)

∣∣),
where u(δ) := |B(δ)∩U |. The main idea of our approach is to show that each path π ∈ Π contributes
to this sum at least as much as its minimal contribution µ(π) defined as

• µ(π) = 1 if π connects two incoming blossoms below δ,
• µ(π) = −1 if π connects two outgoing blossoms below δ, or an outgoing blossom below δ

with any blossom above δ,
• µ(π) = 0 otherwise.

Summing the minimal contributions of all paths of Π, we obtain that∑
j∈B(δ)

xj(T ) ≥ u(δ)(n+ 2) +

(
b(δ)− u(δ) + 1

2

)
−
(
u(δ)

2

)
− u(δ)

(
n+ 2− b(δ)

)
=

(
b(δ) + 1

2

)
,

since the spine T ∗ has precisely u(δ) outgoing blossoms below δ, b(δ) − u(δ) + 1 incoming blos-
soms below δ, and n + 2 − b(δ) blossoms above δ. It follows that x(T ) is always contained
in H≥(δ). Moreover, x(T ) lies on H=(δ) if and only if the contribution of each path π ∈ Π to the
sum

∑
j∈B(δ) xj(T ) precisely coincides with the minimal contribution µ(π) of π.

The remaining of the proof discusses the contribution of each path to the sum
∑
j∈B(δ) xj(T ),

depending on whether δ belongs to T or not. Consider first the situation when δ is a diagonal
of T . By Lemma 3, B(δ) labels the subtree of the spine T ∗ below δ. Thus, a maximal path π ∈ Π
connecting two blossoms below δ (resp. above δ) completely remains below δ (resp. above δ), while a
maximal path π ∈ Π connecting a blossom below δ to a blossom above δ stays below δ until it leaves
definitively B(δ) through the outgoing arc δ∗. Since the nodes labeled by D(π) and U(π) form an
alternating sequence along π which starts and finishes with U(π) or D(π) depending on whether the
endpoints of π are incoming or outgoing blossoms, the contribution

∣∣B(δ) ∩ D(π)
∣∣− ∣∣B(δ) ∩ U(π)

∣∣
of π to the sum

∑
j∈B(δ) xj(T ) is precisely its minimal contribution µ(π). Therefore, if δ is a

diagonal of T then x(T ) belongs to the hyperplane H=(δ), and thus to the half-space H≥(δ).
Consider now the situation when δ is not a diagonal of T . Fix a path π ∈ Π and the sequence S

of the labels in R(π) ∩ B(δ) along π, which contribute to the sum
∑
j∈B(δ) xj(T ). Note that:

(i) π always contributes at least −1. Indeed, the sequence S cannot have two consecutive up
labels, since the labels in D(π) and U(π) are alternating along π, and since a down label
between two labels below δ is also below δ by Lemma 4.

(ii) π contributes at least 1 if its two endpoints are incoming blossoms below δ, and at least 0 if
one of them is. Indeed, if an endpoint of π is an incoming blossom below δ, and if the first
orientation switch d ∈ D(π) along π is above δ, then the rest of the path π also lies above δ
by Lemma 4.

(iii) π contributes at least 0 if its two endpoints are above δ. Indeed, if some u ∈ U(π) lies
below δ, then one of the endpoints of π has to be below δ by Lemma 4.

Hence, the contribution of each path π ∈ Π to the sum
∑
j∈B(δ) xj(T ) is at least its minimal

contribution µ(π). As mentioned earlier, it follows that x(T ) belongs to the half-space H≥(δ) and
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it remains to prove that x(T ) does not belong to H=(δ) if δ is not a diagonal of T . It now suffices
to find one path π ∈ Π whose contribution strictly exceeds its minimal contribution µ(π). For

this, consider any diagonal δ̃ in T which crosses the diagonal δ. Such a diagonal exists since we
are in the case where δ is not a diagonal of T . We claim that the contribution of any path π from
a blossom s∗ above δ but below δ̃ to a blossom t∗ below δ but above δ̃ strictly exceeds its minimal
contribution µ(π). Since t∗ is below δ and s∗ is above δ, we know that µ(π) only depends on t∗:
µ(π) = 0 if t∗ is incoming and µ(π) = −1 if t∗ is outgoing. Using the observations (i) to (iii)
above, it suffices to show that:

(i) If there is at least one label p ∈ B(δ) such that the edge orientation of π is reversed at node p∗,
then the first such label while traversing from s∗ to t∗ along π must be a down label. Then
the contribution of π exceeds µ(π) at least by this down label.

(ii) Otherwise, the blossom t∗ must be outgoing, and π contributes 0 instead of µ(π) = −1.

To prove (i), suppose that there is a label p ∈ U∩B(δ) such that π has two outgoing arcs at node p∗.

This implies that the arc δ̃∗ must appear between s∗ and p∗ along π, and is thus directed towards
the node p∗. Therefore, the edge orientation of π must reverse between δ̃∗ and p∗. This happens
at a node q∗ for some q ∈ D(π). The label q must be below δ, otherwise Lemma 4 would imply that

either δ̃ or p is above δ. In particular, p is not the first label below δ where the edge orientation
of π is reversed and, as a consequence, the contribution of π to the sum exceeds µ(π) by at least

one. To prove (ii), assume that t∗ is incoming. Since the arc δ̃∗ is directed towards t∗, the edge

orientation of π must reverse at a node p∗ for some p ∈ D(π). Since δ crosses δ̃ and t∗ is below δ,
vertex p is below δ which contradicts B(δ)∩R(π) = ∅. This concludes the proof of Proposition 6.

We now prove Theorem 7. Consider the convex hull conv{x(T )} of the points x(T ), for all
triangulations T of P. For any internal diagonal δ of P, the hyperplane H=(δ) supports a priori
a face of conv{x(T )}. For a triangulation T of P containing the diagonal δ, consider the trian-
gulations T1, . . . , Tn−1 of P obtained by flipping each internal diagonal δ1, . . . , δn−1 of T distinct
from δ. The point x(Ti) is contained in all H=(δj) for j 6= i but not in H=(δi). Therefore, the
points x(T ),x(T1), . . . ,x(Tn−1) are affine independent, and they are all contained in the hyper-
plane H=(δ). The face supported by H=(δ) is thus a facet of conv{x(T )}. As each point x(T )
is the intersection of at least n facets, it follows that x(T ) is in fact a vertex of conv{x(T )}. The
reverse inclusion poset of crossing-free sets of internal diagonals of P thus injects in the inclusion
poset of non-empty faces of conv{x(T )}, since the vertex-facets incidences are respected. Since
both are face posets of n-dimensional polytopes, they must be isomorphic. As a consequence,
conv{x(T )} is indeed an associahedron and its facet supporting hyperplanes are precisely the hy-
perplanes H=(δ), for all internal diagonals δ of P. As stated in Theorem 7, we therefore obtain
an associahedron described by

Asso(P) := conv {x(T ) | T triangulation of P} = H ∩
⋂

δ internal
diagonal of P

H≥(δ).

Remark 8. Alternatively, we could prove Theorem 7 using Theorem 4.1 in [HLT11] as follows.
First, we construct the normal fan of the associahedron Asso(P) using Section 3.1. The conditions
to apply Theorem 4.1 in [HLT11] are then guaranteed by Lemma 13 and Proposition 6 (ii) (the
easier part of this proposition). In order to keep the presentation self-contained, we decided to
provide direct proofs of Proposition 6 and Theorem 7.

2. Spines and flips

In this section, we describe the behavior of spines when we perform flips in triangulations of P.
For this, we first define spines of dissections of P and their behavior under refinement. This leads
to the crucial Lemma 13 which is implicitly used for various further results. The section ends
with a discussion of relevant properties of the slope increasing flip lattice which is induced by a
natural direction of flips. We emphasize that most statements are either immediate results or
direct reformulations of results in [HL07] using the language of spines, and omit their proofs for
this reason. Nevertheless, we reprove Lemma 13 to illustrate how spines simplify the arguments.
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2.1. Dissections and their spines. We first extend the definition of spines to dissections of P,
i.e. crossing-free sets of internal diagonals of P which decompose P into polygonal cells. Through-
out this section, we call intermediate vertices of a cell all its vertices except its leftmost and
rightmost ones. The spine of a dissection W of P is its oriented and labeled dual tree W ∗ with

• an internal node C∗ for each cell C of W , labeled by all the intermediate vertices of C,
• an arc δ∗ for each internal diagonal δ of T oriented from the cell below δ to the cell above δ,
• an outgoing (resp. incoming) blossom δ∗ for each top (resp. bottom) boundary edge δ of P.

Observe that the outdegree (resp. indegree) of a node C∗ is precisely the number of edges of the
upper (resp. lower) convex hull of C.

Example 1 (continued). Figure 4 represents two dissections W ex (left) and W̃ ex (right). The
nodes of the spine corresponding to cells with more than 3 vertices are represented with squares �.
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Figure 4. Two dissections W ex and W̃ ex of the polygon Pex and their spines.

Example 2 (Loday’s associahedron, continued). The spine of any dissection of PLod is a tree
naturally rooted by its only outgoing blossom, oriented towards its root, and where each node has
at least 2 children. These trees are known as Schröder trees, see e.g. [Sta97a].

Let us mention that it is possible to characterize spines of dissections of P in a similar way as
we did for spines of triangulations of P in Proposition 5. This extends the definition of [IO13].

Proposition 9. A directed tree W ∗ with blossoms and whose internal nodes are labeled by subsets
of [n+ 1] is the spine of a dissection of P if and only if

(i) the labels of the nodes of W ∗ form a partition of [n+ 1], and
(ii) at a node of W ∗ labeled by X ⊆ [n+ 1], the source sets of the different incoming arcs belong

to distinct intervals of [n + 1] r (X ∩ D), while the sink sets of the different outgoing arcs
belong to distinct intervals of [n+ 1] r (X ∩ U).

To conclude on spines of dissections, we indicate how to completely reconstruct the spine of
a dissection W from the collection of sets B(δ), for the diagonals δ ∈ W . We call directed line
graph of a spine W ∗ the directed graph whose nodes correspond to the arcs of W ∗ (including
its blossoms), and with an arc between the nodes corresponding of δ∗ and δ′∗ if the target of δ∗

coincides with the source of δ′∗. Although interesting to motivate the introduction of spines, the
following statement is not used later and its proof is left to the reader.
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Proposition 10. The directed line graph of the spine W ∗ of a dissection W of P is the graph
whose nodes correspond to the diagonals δ ∈W (including the boundary diagonals of P) and with
an arc from δ to δ′ if and only if B(δ) ⊂ B(δ′) and there is no diagaonal δ′′ ∈W such that

B(δ) ⊂ A(δ′′) ⊂ B(δ′) or B(δ) ⊂ B(δ′′) ⊂ B(δ′).

As a consequece, it is possible to reconstruct the unlabeled spine W ∗ if B(δ) is known for each
diagonal δ ∈W . Moreover, the label set of a node C∗ of W ∗ is given by⋂

δout

B(δout) r
⋃
δin

B(δin),

where the intersection runs over the diagonals δout corresponding to the outgoing arcs of W ∗ at C∗

and the union runs over the diagonals δin corresponding to the incoming arcs of W ∗ at C∗.

Example 2 (Loday’s associahedron, continued). If W is a dissection of Loday’s polygon PLod,
then the spine W ∗ is isomorphic to the Hasse diagram of the poset formed by all diagonals
of W , ordered by inclusion of the sets B(δ). However, this coincidence only happens for Loday’s
polygon PLod (and for its reflection with respect to the horizontal axis): in general, the spine
differs from its directed line graph.

2.2. Refinements and flips. For two dissections W, W̃ of P, the cells of W̃ are unions of cells

of W if and only if W ⊇ W̃ as sets of diagonals. We say that W refines W̃ , and that W̃ coarsens W .
The following statement is a direct consequence of the definitions, and is illustrated in Figure 4.

Lemma 11. Consider two dissections W and W̃ of P with W ⊇ W̃ . Then the spines W ∗ and W̃ ∗

can be constructed from each other as follows.

(i) Contracting the arcs
{
δ∗
∣∣ δ ∈W r W̃

}
in the spine W ∗ yields the spine W̃ ∗.

(ii) Replacing each node C∗ of W̃ ∗ by the spine of the dissection induced by W on the corre-

sponding cell C of W̃ yields W ∗.

Each dissection W of P corresponds to a face f(W ) of the associahedron Asso(P), and the inclu-
sion poset of non-empty faces of the associahedron Asso(P) is (isomorphic to) the refinement poset
of dissections of P. The next lemma gives the vertex and inequality descriptions of the face f(W ).

Lemma 12 ([HL07, Cor. 2.11]). For any dissection W of P, the corresponding face f(W ) of the
associahedron Asso(P) is given by

f(W ) = conv

{
x(T )

∣∣∣∣ T triangulation of P
that refines W

}
= H ∩

⋂
δ∈W

H=(δ) ∩
⋂
δ`W

H≥(δ),

where we write δ ` W to denote an internal diagonal δ of P compatible with but not in W ,
i.e. which does not cross or coincide with any diagonal of W . In the inequality description, each
internal diagonal δ `W corresponds to a facet of f(W ).

Flips in triangulations are a key ingredient in the original proof of Proposition 6 and Theorem 7
in [HL07]. Similarly, the evolution of spines while performing a flip will play an essential role in
the remainder of this paper. The following statement extends [HL07, Lem. 2.6] by relating flip
directions explicitly to the oriented edges of a spine. As a consequence, every edge of the 1-skeleton
of Asso(P) gets a canonical orientation which will be used in Section 2.3.

Lemma 13 ([HL07, Lem. 2.6]). Let T and T̃ be two triangulations of P related by a flip, let δ ∈ T
and δ̃ ∈ T̃ be the two diagonals of P such that T r δ = T̃ r δ̃, and let i < j ∈ [n+ 1] label the two

intermediate vertices of the quadrilateral with diagonals δ and δ̃. If δ∗ is directed from i∗ to j∗,

then δ̃∗ is directed from j∗ to i∗, and the difference x(T̃ )− x(T ) is a positive multiple of ei − ej.

Proof. Lemma 11 ensures that the endpoints of δ∗ and δ̃∗ are necessarily i∗ and j∗. To see that δ∗

and δ̃∗ have opposite orientations, it is enough to consider the case when P is a square, again by
Lemma 11. In this case, the property follows from a straightforward case analysis on the possible
positions (up or down) of the vertices i and j. The four different cases are illustrated in Figure 5.
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Figure 5. The four possible configurations of a square. Triangulations in the
same column relate by a flip.

Finally, in these four cases, we have x(T̃ ) − x(T ) = α(ei − ej), where α is the product of the
numbers of leaves in the subtrees of the spine T ∗ labeled by L and R in Figure 5. �

Example 2 (Loday’s associahedron, continued). In Loday’s polygon PLod, we have seen that
maximal spines are binary trees. The flip operation translates to the classical rotation operation
on binary trees [CLRS09, Section 3.2]. Rotations were popularized when D. Sleator, R. Tarjan and
W. Thurston proved the diameter of the n-dimensional associahedron to be 2n− 4 for sufficiently
large n [STT88]. L. Pournin recently proved that this bound holds as soon as n ≥ 9 [Pou14].

2.3. Slope increasing flips. By construction, the 1-skeleton of the associahedron Asso(P) corre-
sponds to the flip graph on the triangulations of P. In this section, we discuss relevant properties
of this 1-skeleton oriented along the direction U := (n, n − 2, . . . ,−n + 2,−n) ∈ Rn+1. The sig-
nificance of this direction, in connection with the permutahedron and the weak order, will be
discussed in Section 3. For now, it is enough to observe that this orientation corresponds to slope
increasing flips, as stated in the following lemma.

Lemma 14. Let T and T̃ be two triangulations of P related by a flip, let δ ∈ T and δ̃ ∈ T̃ be the

two diagonals of P such that T r δ = T̃ r δ̃, and let i < j ∈ [n + 1] label the two intermediate

vertices of the quadrilateral with diagonals δ and δ̃. Then the following assertions are equivalent.

(i) The vector x(T̃ )− x(T ) is in the direction of U, that is, 〈U |x(T̃ )− x(T ) 〉 > 0.

(ii) The arc δ∗ of T ∗ is directed from i∗ to j∗, and the arc δ̃∗ of T̃ ∗ is directed from j∗ to i∗.

(iii) The slope of δ is smaller than the slope of δ̃.

If these conditions are satisfied, we say that the flip from T to T̃ is slope increasing. For
example, all flips of Figure 5, oriented from the upper triangulation to the lower one, are slope
increasing flips. We consider the directed graph of slope increasing flips G(P), with one node for
each triangulation of P, and one arc between two triangulations related by a slope increasing flip.
Lemma 14 can be reformulated as follows.

Corollary 15 ([Rea06, Thm. 6.2]). The graph G(P) of slope increasing flips on the triangula-
tions of P is (isomorphic to) the 1-skeleton of the associahedron Asso(P) oriented by the linear
functional x 7→ 〈U |x 〉.
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Figure 6. The source T (Pex) and the sink T (Pex) of the slope increasing flip graph G(Pex).

The oriented graph G(P) is clearly acyclic, and its transitive closure is known to be a lattice. It
is an example of a Cambrian lattice of type A [Rea06], see Section 6. The minimal and maximal
elements of this lattice can be easily described as follows. The corresponding triangulations,
deprived of the lattice of slope increasing flips, appear already in [HL07, Lem. 2.2 and Cor. 2.3].

Proposition 16. The slope increasing flip graph G(P) has a unique source T (P) := {δP1 , . . . , δ
P
n }

and a unique sink T (P) := {δP1 , . . . , δ
P

n }, where the endpoints of the diagonal δPi are labeled by

max
(
{0} ∪ (U ∩ [i])

)
and min

(
(D r [i]) ∪ {n+ 2}

)
,

while the endpoints of the diagonal δ
P

i are labeled by

min
(
(U r [n+ 1− i]) ∪ {n+ 2}

)
and max

(
{0} ∪ (D ∩ [n+ 1− i])

)
.

The associated vertices of Asso(P) are x(T (P)) = (1, 2, . . . , n+1) and x(T (P)) = (n+1, n, . . . , 1).

The spines T (P)
∗

and T (P)
∗

are directed and label-monotone paths with blossoms. Moreover, the

collections of sets B(δPi ) = [i], for i ∈ [n], and B(δ
P

i ) = [n + 2 − i, n + 1], for i ∈ [n], ordered by
inclusion are both linear orders.

Example 1 (continued). In Figure 2, the flip from the triangulation T ex (left) to the triangula-

tion T̃ ex (right) is increasing. Figure 6 represents the source T (Pex) and the sink T (Pex) of the
slope increasing flip graph G(Pex) for the polygon Pex of Example 1.

Example 2 (Loday’s associahedron, continued). For Loday’s polygon PLod, the transitive closure
of the graph of slope increasing flips is the famous Tamari lattice [MHPS12].

Using the characterization of T (P) and T (P) given in Proposition 16, we can describe the meet
and join of any two triangulations of P in the slope increasing flip lattice.

Proposition 17. Let T and T̃ be any two triangulations of P, and let W :=T ∩ T̃ denote their

common coarsening. Then the meet T ∧ T̃ of T and T̃ in the slope increasing flip lattice is

• the union of W with the minimal triangulations T (C) of all the cells C of W ,

• the triangulation T ∧ T̃ such that x(T ∧ T̃ ) minimizes x 7→ 〈U |x 〉 on the face f(W )
associated to W .

A similar statement holds for the join T ∨ T̃ of T and T̃ in the slope increasing flip lattice.

Further properties of the slope increasing flip lattice, in connection with the weak order on the
permutations of [n+ 1] are discussed later in Section 3.3.
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3. Spines and normal fans

This section focusses on the normal fan of the associahedron Asso(P). The main observation
is that the normal cone of a face of Asso(P) is described by the spine of that face. In particular,
we explore the connection between the permutahedron Perm(n), the associahedron Asso(P), and
the parallelepiped Para(n) formed by the facets of Perm(n) incident to the vertices (1, 2, . . . , n+1)
or (n+ 1, n, . . . , 1). The normal fans of these polytopes are successive refinements, thus inducing
natural surjections from the permutations of [n + 1] to the triangulations of P, and from the
triangulations of P to the binary words of length n. We describe these surjections combinatorially
in terms of spines. Essentially all statements in this section are combinations of Lemma 13 with
results of the dictionary between preposets and braid cones discussed by A. Postnikov, V. Reiner
and L. Williams in [PRW08, Sect. 3.4].

3.1. Maximal normal cones. Using spines, we can describe the normal cones of any face of the
associahedron Asso(P). Nevertheless, we first concentrate on vertices and describe maximal normal
cones using triangulations and their spines. We discuss the more general setting in Section 3.2
where we recast Propositions 18, 19 and 20 into Propositions 22, 23 and 24.

For each vertex v of a given polytope P ⊂ Rn, the cone C(v) of v and the normal cone C�(v)
of v are the polyhedral cones

C(v) := cone
{
v′−v

∣∣ v′ vertex of P
}

and C�(v) := cone
{
u ∈ Rn

∣∣ 〈u |v 〉 = maxx∈P 〈u |x 〉
}
.

As the notation suggests, these two cones are polar to each other. Note that we consider the normal
cones of the polytopes Asso(P) and Perm(n) embedded in their affine span H :=H=([n+1]). From
Lemma 13, we obtain a description of both cones C(v) and C�(v) for the associahedron Asso(P).

Proposition 18 (Lemma 13 and [PRW08, Prop. 3.5]). For any triangulation T of P, the cone C(T )
of the vertex x(T ) of the associahedron Asso(P) is the incidence cone of the spine T ∗ while the
normal cone C�(T ) of x(T ) is the braid cone of the spine T ∗, that is,

C(T ) = cone {ei − ej | i∗j∗ ∈ T ∗} and C�(T ) =
⋂

i∗j∗∈T∗
{u ∈ H | ui ≤ uj} ,

where i∗j∗ ∈ T ∗ means that i∗j∗ is an oriented arc of T ∗.

We now recall basic properties of the permutahedron. The normal fan of the permutahe-
dron Perm(n) ⊂ Rn+1 is the fan defined by the braid arrangement which is formed by the
hyperplanes xi = xj , for i 6= j ∈ [n + 1]. For each permutation σ of [n + 1], the maximal
cone C�(σ) :=

{
x ∈ H

∣∣ xσ−1(i) ≤ xσ−1(i+1) for i ∈ [n]
}

of the braid arrangement is the normal
cone of the vertex (σ(1), . . . , σ(n+ 1)) of Perm(n).

Given a triangulation T of P, its spine T ∗ is an acyclic graph labeled by [n+1] and its transitive
closure defines a partial order ≺T on [n+ 1]. Remember that a linear extension of ≺T is a linear
order ≺L such that i ≺T j implies i ≺L j. Equivalently, it can be seen as a permutation σ
of [n+ 1] such that i ≺T j implies σ(i) < σ(j). Note that the linear order ≺L then coincides with
the one-line notation of the inverse of σ. These linear extensions precisely determine the normal
cones C�(σ) of Perm(n) which are contained in the normal cone C�(T ) of Asso(P) as follows.

Proposition 19 ([PRW08, Cor. 3.9]). For any triangulation T of P, the normal cone C�(T )
in Asso(P) is the union of the normal cones C�(σ) in Perm(n) of all linear extensions σ of the
transitive closure ≺T of T ∗.

Proposition 19 naturally defines a surjective map κ from the permutations of [n + 1] to the
triangulations of P, which sends a permutation σ of [n + 1] to the unique triangulation T of P
such that C�(T ) contains C�(σ). By Proposition 19, the fiber κ−1(T ) of a triangulation T of P is
the set of linear extensions of the spine T ∗.

Example 1 (continued). Consider the triangulation T ex of Figure 2 (left). Its fiber κ−1(T ex) con-
tains 35 permutations, for example [3, 4, 2, 1, 7, 6, 8, 5], [4, 6, 2, 1, 7, 5, 8, 3], and [7, 8, 3, 2, 5, 4, 6, 1],
since their corresponding linear orders (i.e. their inverse permutations) extend T ex.
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Figure 7. The sequence of paths π0(σex), π1(σex), . . . , π8(σex) for σex = [4, 6, 2, 1, 7, 5, 8, 3].

N. Reading [Rea06] described combinatorially the surjection κ as follows. Fix a permutation σ
of [n+1]. For i ∈ {0, . . . , n+1}, define πi(σ) to be the x-monotone path in P joining the vertices 0
and n + 2 and passing through the vertices of the symmetric difference D4σ−1([i]), with the con-
vention that [0] = ∅. As illustrated in Figure 7, the sequence of paths π0(σ), π1(σ), . . . , πn+1(σ)
sweeps the polygon P, starting from the lower hull of P and ending at the upper hull of P.
The path πi(σ) differs from the path πi−1(σ) by a single vertex: namely, vertex σ−1(i) be-
longs to πi−1(σ) but not to πi(σ) if it is a down vertex, and to πi(σ) but not to πi−1(σ) if it
is an up vertex. The triangulation κ(σ) associated to the permutation σ is the union of the
paths π0(σ), π1(σ), . . . , πn+1(σ).

This surjection can also be described directly in terms of spines. A leveled spine T~ is a
spine T ∗ whose nodes are additionally ordered by one of the linear extensions of T ∗. In other
words, the nodes of T~ are ordered by levels such that the partial order forced by the arcs of T ∗

is respected. From a permutation σ of [n + 1], we can directly construct a leveled spine κ(σ)~

whose underlying spine (when forgetting the levels) is the spine κ(σ)
∗

of the triangulation κ(σ)
associated to the permutation σ. The following algorithm constructs κ(σ)~ level by level from
bottom to top. We start writing σ in one-line notation σ(1)σ(2) . . . σ(n+ 1), and place a strand |||
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Figure 8. The construction of the leveled spine κ(σex)~ for σex = [4, 6, 2, 1, 7, 5, 8, 3].

before each position d ∈ D as well as after the last position. At each step i, we add a new node at
level i labeled by σ−1(i) as follows:

• If σ−1(i) is a down label, then the node at level i is a node H, with two incoming and
one outgoing strands. The strand just to the left of i glides to the right until it meets the
next strand at H where they merge to form a new vertical strand. See Figure 8, Steps 1,
3, 4, and 5.

• If σ−1(i) is an up label, then the node at level i is a node N, with one incoming and
two outgoing strands. The first strand to the right of i splits at N into two strands; one
remains vertical while the other glides to the left and stops just left of i. See Figure 8,
Steps 2, 6, 7, and 8.

The resulting leveled tree κ(σ)~, where the node at level i is labeled by σ−1(i), and where the
arcs are oriented upwards, gives the spine κ(σ)

∗
when we forget the levels. Note also that we

could have described this construction from top to bottom, but we have chosen our presentation
to match the construction of the triangulation κ(σ) described by N. Reading in [Rea06]. An
alternative presentation, where the nodes of κ(σ)~ give the table of the permutation σ can be
found in [CP14].

Example 1 (continued). Consider the permutation σex := [4, 6, 2, 1, 7, 5, 8, 3], given by its one-
line notation. The corresponding linear order is given by (σex)−1 = [4, 3, 8, 1, 6, 2, 5, 7]. Figure 7
illustrates the successive steps to construct the triangulation κ(σex), while Figure 8 shows the
successive steps to obtain the leveled spine κ(σex)~. The resulting triangulation and spine are
those of Figure 2 (left).

Example 2 (Loday’s associahedron, continued). In the situation of Loday’s polygon PLod, the sur-
jection κ can also be described in terms of insertion in binary search trees [CLRS09, Section 12.3].
Namely, for any permutation σ of [n+ 1], the spine κ(σ) is the last tree in the sequence of binary
search trees ∅ := τ0 ⊂ τ1 ⊂ · · · ⊂ τn+1 =: κ(σ), where τi is obtained by insertion of σ−1(n+ 2− i)
in τi−1.

Of particular interest are triangulations T of P whose fiber is a singleton. The corresponding
points x(T ) are precisely the vertices of the associahedron Asso(P) that are also vertices of the
permutahedron Perm(n). Moreover, they determine the half-spaces of the classical permutahedron
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that are needed to construct Asso(P): a facet-defining inequality of the classical permutahedron is
a facet-defining inequality of Asso(P) if and only if its bounding hyperplane contains a point x(T )
where κ−1(T ) is a singleton. This property was used in [HLT11] to generalize the construction
of Asso(P) to generalized associahedra for any finite Coxeter group as indicated in Section 6.
Relevant examples of triangulations whose fiber is a singleton are the minimal and maximal trian-
gulations T (P) and T (P) in the slope increasing flip lattice on P as presented in Proposition 16.
More general, the following equivalent statement characterizes triangulations whose fiber is a
singleton. It is a slight extension of [HL07, Prop. 1.4], translated in terms of spines.

Proposition 20 ([HL07, Prop. 1.4]). For a triangulation T of P and a permutation σ of [n+ 1],
the following assertions are equivalent:

(i) The spine T ∗ is a directed path (with blossoms) labeled by σ.
(ii) The transitive closure ≺T of the spine T ∗ is the linear order defined by σ.

(iii) The fiber of T with respect to the map κ is the singleton κ−1(T ) = {σ}.
(iv) The vertex x(T ) of Asso(P) coincides with the vertex (σ(1), . . . , σ(n+ 1)) of Perm(n).
(v) The cone C(T ) of Asso(P) coincides with the cone C(σ) of Perm(n).

(vi) The normal cone C�(T ) of Asso(P) coincides with the normal cone C�(σ) of Perm(n).

We now consider the parallelepiped Para(n) defined as the intersection of the hyperplane
H :=H=([n + 1]) with the half-spaces H≥([i]) and H≥([n + 1] r [i]) for i ∈ [n]. In other words,
Para(n) is defined by H :=H=([n+1]) and the facet-defining inequalities of Perm(n) whose bound-
ing hyperplane contains (1, 2, . . . , n+1) or (n+1, n, . . . , 1). We label the vertices of Para(n) by bi-
nary words of length n on the alphabet {±1} such that a vertex labeled by w :=w1 · · ·wn ∈ {±1}n
belongs to H≥([i]) if wi = 1 and to H≥([n+ 1]r [i]) if wi = −1. The normal cone of the vertex w
of Para(n) is the polyhedral cone C�(w) := {x ∈ H | wi(xi − xi+1) ≤ 0 for i ∈ [n]}. The following
statement characterizes which maximal normal cones of Asso(P) are contained in C�(w).

Proposition 21. In any spine T ∗, the nodes i∗ and (i + 1)
∗

are always comparable. For any
binary word w ∈ {±1}n, the normal cone C�(w) in Para(n) is the union of the normal cones C�(T )
in Asso(P) of all triangulations T of P with the following property: for all i ∈ [n], the node i∗ is
below (i + 1)

∗
in T ∗ if wi = 1 and above (i + 1)

∗
in T ∗ if wi = −1.

Proposition 21 naturally defines a surjective map λ from the triangulations of P to the binary
words of {±1}n, which sends a triangulation T of P to the unique word w ∈ {±1} such that C�(w)
contains C�(T ).

Example 2 (Loday’s associahedron, continued). J.-L. Loday describes in [Lod04, Sect. 2.7] an
equivalent surjection related to his realization. For a triangulation T of PLod, the image λ(T ) is
called the canopy of the binary tree T ∗. Alternative equivalent definitions are possible, see [Vie07].
The reader is invited to work out similar definitions for a general polygon P.

3.2. Normal fans. We now extend the results of the previous section to completely describe
the normal fan of Asso(P). In particular, Propositions 22, 23 and 24 extend Propositions 18, 19
and 20 from facets to any k-dimensional face. In other words, we describe the geometry of the
corresponding Cambrian fan of type A [RS09], see Section 6. The normal cone C�(F ) of a k-
dimensional face F of an n-dimensional polytope P ⊂ Rn is defined as

C�(F ) := cone
{
u ∈ Rn

∣∣ 〈u |v 〉 = maxx∈P 〈u |x 〉, for all v ∈ F
}

and has dimension n− k. The normal fan of P is the complete fan formed by the normal cones
of all faces of P . To describe the normal cones of all faces of Perm(n) and of Asso(P), we need
to introduce the following notions. For a more detailed presentation, we refer to the dictionary
between preposets and braid cones presented in [PRW08, Sect. 3.4].

A preposet on [n + 1] is a binary relation R ⊆ [n + 1] × [n + 1] which is reflexive and
transitive. Hence, any equivalence relation is a symmetric preposet and any poset is an an-
tisymmetric preposet. Any preposet R can in fact be decomposed into an equivalence rela-
tion ≡R := {(i, j) ∈ R | (j, i) ∈ R}, together with a poset structure ≺R :=R/≡R on the equiva-
lence classes of≡R. Consequently, there is a one-to-one correspondence between preposets on [n+1]
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and transitive-free acyclic oriented graphs on subsets of [n+ 1] whose vertex set partitions [n+ 1]:
a preposet R corresponds to the Hasse diagram of the poset ≺R on the equivalence classes of ≡R,
and conversely, an acyclic oriented graph whose vertex set partitions [n + 1] corresponds to its
transitive closure. We define the normal cone of a preposet R on [n+ 1] as the polyhedral cone

C�(R) :=
⋂

(i,j)∈R

{u ∈ H | ui ≤ uj} .

The preposets and their normal cones are convenient to describe the normal fan of the per-
mutahedron Perm(n). The k-dimensional faces of Perm(n) correspond to the following equivalent
combinatorial objects:

• the surjections from [n+ 1] to [n+ 1− k],
• the ordered partitions of [n+ 1] with n+ 1− k parts,
• the linear preposets on [n + 1] of rank n + 1 − k, i.e. the preposets L on [n + 1] whose

associated poset ≺L is a linear order on the n+ 1− k equivalence classes of ≡L.

We pass from surjections to ordered partitions by inversion: the fibers of a surjection from [n+ 1]
to [n + 1 − k] define an ordered partition of [n + 1] with n + 1 − k parts, and reciprocally the
positions of the elements of [n + 1] in an ordered partition of [n + 1] with n + 1 − k parts define
a surjection from [n + 1] to [n + 1 − k]. For example, the surjection [2, 2, 1, 1, 2, 1, 2, 1] (given in
one-line notation) corresponds to the ordered partition {3, 4, 6, 8}, {1, 2, 5, 7}. In turn, ordered
partitions and linear preposets are clearly equivalent.

To illustrate these descriptions of the faces of the permutahedron, observe that the vertices
of Perm(n) correspond to the (n+1)! permutations of [n+1], while the facets of Perm(n) correspond
to the 2n+1−2 proper and non-empty subsets of [n+1]. We denote by f(L) the face of Perm(n) that
corresponds to a linear preposet L. The normal cone of f(L) is precisely the normal cone C�(L).

The following two statements generalize Propositions 18 and 19 from vertices to all faces
of Asso(P). In particular, they provide a complete description of the normal fan of Asso(P)
and of its relation to the braid arrangement. Let C�(W ) denote the normal cone of the face f(W )
of Asso(P) that corresponds to a dissection W of P as described in Lemma 12.

Proposition 22 ([PRW08, Prop. 3.5]). For any dissection W of P, the normal cone C�(W ) is
the normal cone of the preposet of the spine W ∗.

An extension of a preposet R on [n + 1] is a preposet R̃ on [n + 1] containing R, that is, all

relations of R are also relations of R̃. A linear extension of R is an extension L of R which is a
linear preposet, that is, its associated poset ≺L is a linear order on the equivalence classes of ≡L.

Proposition 23 ([PRW08, Prop. 3.5]). For any dissection W of P, the normal cone C�(W )
in Asso(P) is the union of the normal cones C�(L) in Perm(n) of the linear extensions L of the
transitive closure ≺W of W ∗.

In other words, the normal cone of any face of Asso(P) is a union of normal cones of faces
of Perm(n). We say that the normal fan of the permutahedron Perm(n) refines the normal fan of
the associahedron Asso(P).

Example 1 (continued). For the dissection W̃ ex of Figure 4 (right), the normal cone C�(W̃ ex) is

the union of the braid cones of the linear extensions of W̃ ex given by

{1, 2, 3, 4, 5, 6, 7, 8} {3, 4, 5, 6, 7, 8}, {1, 2} {1, 2, 3, 4, 6, 8}, {5, 7}
{3, 4, 6, 8}, {1, 2, 5, 7} {3, 4, 6, 8}, {1, 2}, {5, 7} {3, 4, 6, 8}, {5, 7}, {1, 2}.

The first is a point, the next three are rays, and the last two are 2-dimensional cones.

Any k-dimensional face F of Perm(n) corresponds to a surjection τ : [n+1]→ [n+1−k] and an
ordered partition ρ = ρ1, . . . , ρn+1−k of [n+1] into n+1−k parts. We now present a combinatorial
description of the minimal normal cone of Asso(P) that contains the normal cone of F . As in the
previous Section 3.1 where we considered the situation k = 0, we can use dissections of P as well
as spines:
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Figure 9. The sequence of paths π0(ρex), π1(ρex), π2(ρex) for ρex = {3, 4, 6, 8}, {1, 2, 5, 7}.
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Figure 10. The construction of the leveled spine κ(τ ex)~ for τ ex = [2, 2, 1, 1, 2, 1, 2, 1].

(i) Starting from the ordered partition ρ, we construct a dissection κ(ρ) of P into n+1−k cells.
For i ∈ {0, . . . , n+ 1−k}, define πi(ρ) to be the x-monotone path in P joining the vertices 0
and n + 2 and passing through the vertices of the symmetric difference D4 (∪j≤i ρj). The
dissection κ(ρ) is the union of the paths π0(τ), . . . , πn+1−k(τ). See Figure 9.

(ii) Starting from the surjection τ : [n + 1] → [n + 1 − k], we construct a leveled spine κ(τ)~.
We write the surjection τ in one-line notation and proceed level by level from bottom to top
almost as in the previous section. The only difference is that all positions with the same
image i are treated simultaneously at level i. See Figure 10.

Example 1 (continued). Consider the surjection τ ex := [2, 2, 1, 1, 2, 1, 2, 1] (given in one-line no-
tation), or equivalently the ordered partition ρex := {3, 4, 6, 8}, {1, 2, 5, 7}. Figure 9 illustrates the
successive steps to construct the dissection κ(ρex), while Figure 10 shows the successive steps

to obtain the leveled spine κ(τ ex)~. The resulting dissection and spine are W̃ ex and W̃ ex
∗

of
Figure 4 (right).

The following statement extends Proposition 20.

Proposition 24. For a dissection W of P and a linear preposet L on [n + 1], the following
assertions are equivalent:

(i) The spine W ∗ is a directed path (with blossoms) labeled by L.
(ii) The transitive closure of the spine W ∗ is L.

(iii) The affine span of the face f(W ) of Asso(P) coincides with that of the face f(L) of Perm(n).
(iv) The normal cone C�(W ) of Asso(P) coincides with the normal cone C�(L) of Perm(n).

According to Lemma 11, these properties are stable by coarsenings and thus satisfied by all faces
containing a common vertex of the permutahedron Perm(n) and of the associahedron Asso(P).

To conclude, we extend Proposition 21. Note that the faces of the parallelepiped Para(n)
are in correspondence with ternary words of length n on the alphabet {−1, 0, 1}. For any word
w = w1 · · ·wn ∈ {−1, 0, 1}n, the normal cone of the corresponding face of Para(n) is the polyhe-
dral cone C�(w) := {x ∈ H | wi(xi − xi+1) ≤ 0 for i ∈ [n]}. The following statement characterizes
which normal cones of Asso(P) are contained in C�(w).

Proposition 25. For any dissection W of P, the labels i and i+ 1 are always comparable in W ∗.
For any ternary word w ∈ {−1, 0, 1}n, the normal cone C�(w) in Para(n) is the union of the
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normal cones C�(W ) of the dissection W of P with the following property: for all i ∈ [n], the
label i appears below i+ 1 in W ∗ if wi = 1, in the same node if wi = 0, and above if wi = −1.

3.3. Weak order, slope increasing flip lattice, and boolean lattice. To finish this section,
we briefly mention the relationship between the weak order on permutations of [n+ 1], the slope
increasing flip lattice on triangulations of P presented in Section 2.3, and the boolean lattice.
They can all be seen in terms of orientations of the 1-skeleta of Perm(n), Asso(P), and Para(n),
and they are related by the surjections κ and λ studied in this section.

An inversion of a permutation σ of [n + 1] is a pair i < j such that σ(i) > σ(j). The right
weak order on the permutations of [n + 1] is defined as the inclusion order on the inversion sets
of the permutations, and induces a lattice structure. The minimal element of this lattice is the
identity permutation e := [1, 2, . . . , n + 1], while the maximal element is w◦ := [n + 1, n, . . . , 2, 1].
The vector U := (n, n− 2, . . . ,−n+ 2,−n) defined in Section 2.3 joins the vertices corresponding
to these two extremal permutations. Orienting the 1-skeleton of the permutahedron Perm(n)
according to the direction U yields the Hasse diagram of the right weak order. Similarly, we
have seen that orienting the 1-skeleton of the associahedron Asso(P) according to the direction U
yields the increasing flip graph G(P) on the triangulations of P. Finally, orienting the 1-skeleton
of the parallelepiped Para(n) according to the direction U yields the Hasse diagram of the boolean
lattice. In fact, as observed in [Rea06, Rea04], these lattices are related by the surjections κ and λ.

Proposition 26 ([Rea06, Prop. 6.6]). The surjection κ from the permutations of [n + 1] to the
triangulations of P is a lattice homomorphism from the weak order to the slope increasing flip
lattice. Similarly, the surjection λ from the triangulations of P to the binary word with n letters
is a lattice homomorphism from the slope increasing flip lattice to the boolean lattice.

Example 2 (Loday’s associahedron, continued). For Loday’s polygon PLod, the maps κ and λ
send the weak order to the Tamari lattice to the boolean lattice. These maps were used by
J.-L. Loday and M. Ronco to construct and study Hopf algebra structures on binary trees [LR98].

These surjections identify the identity permutation e, the minimal triangulation T (P), and
the word [1]n, and similarly the longest permutation w◦, the maximal triangulation T (P), and
the word [−1]n. Moreover, the minimal and maximal permutations in the fiber κ−1(T ) of a
triangulation T of P are easily computed: they correspond to the minimal and maximal linear
extensions of the spine T ∗. For example, the minimal and maximal permutations of the fiber of
the triangulation T ex of Figure 2 (left) are [3, 4, 2, 1, 7, 6, 8, 5] and [7, 8, 3, 2, 5, 4, 6, 1], respectively.

4. Spines and Minkowski decompositions

Since the normal fan of Asso(P) coarsens the normal fan of the classical permutahedron, the
associahedra studied in this paper fit into the class of generalized permutahedra introduced by
A. Postnikov in [Pos09]. Any generalized permutahedron is obtained by gliding facets from the
classical permutahedron Perm(n) while staying in its deformation cone and can therefore be de-
scribed as

Defo
(
{zJ}∅ 6=J⊆[n+1]

)
:=

{
x ∈ Rn+1

∣∣∣∣ ∑
j∈[n+1]

xj = z[n+1] and
∑
j∈J

xj ≥ zJ for ∅ 6= J ( [n+ 1]

}
,

for a family {zJ}∅6=J⊆[n+1] ∈ R2[n+1]−1 such that z[n+1] =
(
n+2

2

)
and zI + zJ ≤ zI∪J + zI∩J for

all non empty I, J ⊆ [n+ 1]. In [ABD10], F. Ardila, C. Benedetti, and J. Doker proved that any
generalized permutahedron can be decomposed into a Minkowski sum and difference of dilated
faces of the standard simplex

Defo
(
{zJ}∅6=J⊆[n+1]

)
=

∑
∅6=I⊆[n+1]

yI4I ,

where 4I := conv {ei | i ∈ I}. Here, the Minkowski difference P −Q of two polytopes P,Q ⊂ Rn+1

is defined to be the unique polytope R ⊂ Rd+1 such that P = Q + R, if it exists. In other
words, P −Q is only defined if Q is a Minkowski summand of P . If we assume that all values {zJ}
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are tight, i.e. that they define face supporting hyperplanes of Defo({zJ}), then the dilation fac-
tors {yI} relate to the right hand sides {zJ} by Möbius inversion

zJ =
∑
I⊆J

yI and yI =
∑

∅6=J⊆I
(−1)|IrJ|zJ .

We now focus on the associahedra Asso(P). First, we determine the tight right hand sides {zJ}
for Asso(P); the proof is a straightforward computation.

Proposition 27 ([Lan13, Prop. 3.8]). Fix a subset J ⊆ [n + 1], and consider the dissection WJ

of P whose associated face f(WJ) maximizes the linear functional x 7→
∑
j∈J xj on Asso(P). Then

the right hand side zJ of the supporting hyperplane of Asso(P) normal to 11J is equal to

zJ =
∑
δ∈WJ

(
b(δ) + 1

2

)
−
(
n+ 2

2

)
|J ∩ U |,

where the sum runs over all diagonals δ of WJ , including boundary ones.

Note that the dissection WJ from this proposition can be computed with the methods presented
in Section 3.2 since its spine is WJ

∗ = κ(J, [n+ 1] r J).
We could now compute the dilation factors {yI} in the Minkowski decomposition of Asso(P)

from the right hand sides {zJ} by Möbius inversion. As observed by C. Lange in [Lan13], it turns
out however that the inversion simplifies to closed formulas presented below. In this section, we
give a short and self-contained proof for these formulas. Although our proof is largely inspired
from spines, we think that the dual presentation matches with the geometric intuition of the
reader better. On the other hand, the understanding of this proof in terms of spines is the key
to the generalization of Theorem 28 to signed tree associahedra [Pil13]. We therefore introduce
the following definitions both in the primal and dual picture and use dissections in the proof of
Theorem 28.

We say that a cell C of a dissection W of P is a big top if its lower convex hull is contained
in the lower hull of P. We think of C as schematic view of a cross-section of a circus tent where
the path on the upper convex hull (i.e. connecting the left-most with the right-most vertex of C)
corresponds to the tarpaulin. In terms of spines, the node C∗ of W ∗ has no incoming arcs, only
incoming blossoms. We denote by δ`(C) (resp. by δr(C)) the edge connecting the two leftmost
(resp. rightmost) vertices of C, and define the weight of C to be

Ω(C) := (−1)|C∩U |`(C)r(C),

where

`(C) =

{
−1 if δ`(C) is on the lower hull of C

a(δ`(C)) otherwise,

and similarly for r(C). In terms of spines, the value of `(C) is −1 if δ`(C)∗ is incoming at C∗ and
counts the number of blossoms of the subspine determined by the sink of δ`(C)∗ if it is outgoing
at C∗. By extension, we say that I ⊆ [n+ 1] is a big top if it is the set of intermediate vertices of
a big top CI (that is, the index set of C∗I), and we then define the weight Ω(I) := Ω(CI). We are
now ready to describe the Minkowski decomposition of the associahedron Asso(P).

Theorem 28 ([Lan13, Thm. 4.3]). For any I ⊆ [n + 1], the dilation factor yI in the Minkowski
decomposition of Asso(P) is given by

yI =


0 if I is not a big top,

Ω(I) + n+ 2 if I = {u} and u ∈ U,
Ω(I) otherwise.

Proof. It is sufficient to check that
∑
I⊆J yI = zJ for any J ⊆ [n + 1]. Fix a set J ⊆ [n + 1] and

consider the dissection WJ whose associated face f(WJ) maximizes the functional x 7→
∑
j∈J xj .

For any diagonal δ = ij of WJ with i < j, we define

lδ := |B(δ) ∩ [i]|, mδ := |B(δ) ∩ [i+ 1, j − 1]| and rδ := |B(δ) r [j − 1]|.
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We observe that:

(i) We have b(δ) = |B(δ)| = lδ + mδ + rδ.
(ii) For any big top I ⊆ J , the cell CI is contained in a single cell of WJ .
(iii) If J has an up vertex strictly in between two diagonals δ` and δr of P, then the sum of the

weights of all big tops I ⊆ J of P with prescribed δ`(CI) = δ` and δr(CI) = δr vanishes.
Indeed, if u is such a vertex, we can partition the big tops into pairs

{
I, I4{u}

}
whose

weights cancel since Ω(I) = −Ω(I4{u}).
We now want to compute

∑
I⊆J Ω(I). We use Observations (ii) and (iii) above to restrict the sum

to big tops whose intermediate vertices are all located between or on the vertical lines through
the endpoints of a diagonal of WJ . For the diagonal δ = ij, we partition the big tops I ⊆ J ∩ [i, j]
into those which

• contain neither i nor j: there are
(
mδ+1

2

)
such big tops, all of weight 1;

• contain i but not j and at least one other point: there are mδ such big tops, all of weight lδ,
if i ∈ U and none otherwise;

• contain j but not i and at least one other point: there are mδ such big tops, all of weight rδ,
if j ∈ U and none otherwise;

• contain both i and j: there is one such big top of weight lδrδ if i, j ∈ U and none otherwise;
• equal {i}: when i ∈ D there is no such big top; when i ∈ U there is only one of

weight Ω({i}) = −lδ(n+ 2− lδ), but it is counted in both diagonals of WJ incident to i;
• equal {j}: when j ∈ D there is no such big top; when j ∈ U there is only one of

weight Ω({j}) = −(n+ 2− rδ)rδ, but it is counted in both diagonals of WJ incident to j.

Summing all contributions, it follows that∑
I⊆J

Ω(I) =
∑
δ∈WJ

((
mδ + 1

2

)
+ lδmδ + mδrδ + lδrδ −

1

2
lδ(n+ 2− lδ)−

1

2
(n+ 2− rδ)rδ

)

=
∑
δ∈WJ

((
lδ + mδ + rδ + 1

2

)
− n+ 3

2
(lδ + rδ)

)
=
∑
δ∈WJ

(
b(δ) + 1

2

)
− (n+ 3)(n+ 2)|J ∩ U |

2
.

For the last equality, we used Observation (i) above and the fact that lδ′ + rδ′′ = n+ 2 for any two
diagonals δ′ and δ′′ sharing an endpoint in J ∩ U . We therefore obtain∑

I⊆J

yI =
∑
I⊆J

Ω(I) + (n+ 2)|J ∩ U | =
∑
δ∈WJ

(
b(δ) + 1

2

)
−
(
n+ 2

2

)
|J ∩ U | = zJ . �

Example 2 (Loday’s associahedron, continued). For Loday’s polygon PLod, the dilation factors
are given by yI = 1 if I is an interval of [n+ 1], and yI = 0 otherwise [Pos09].

5. Spines and invariants

This section is devoted to two further properties of Asso(P) which are invariant if the combi-
natorics of the (n + 3)-gon P changes. First, we show that the vertex barycenters of all associa-
hedra Asso(P) coincide with that of the permutahedron Perm(n). This surprising invariant was
observed in [Lod04] for J.-L. Loday’s associahedron, generalized in [HL07] and proved in [HLR10].
We use spines to achieve a shorter proof of this result. Second, we relate spines to the Narayana
numbers, using the fact that the f - and h-vectors of Asso(P) are independent of the choice of the
(n+ 3)-gon P.

5.1. Barycenters. In this section, we give an alternative proof of the following statement that
was first proved by C. Hohlweg, J. Lortie and A. Raymond [HLR10], see Section 6 for a discussion
on previous approaches and for references.

Theorem 29 ([HLR10, Thm. 3.3]). The vertex barycenters of the associahedron Asso(P) and of
the classical permutahedron Perm(n) coincide.
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Figure 11. A maximal path π in the spine of the triangulation T ex of Fig-
ure 2 (left). Considering the down label j = 4, we have k = 3 and ik = 3 is to the
right of π. Therefore, the combinatorial rotation of the triangulation T ex which
sends vertex 3 to vertex 4 sends π to a path with two incoming arcs at 4∗.

Recall that the barycenter of the classical permutahedron Perm(n) is the point
(
n+2

2 , . . . , n+2
2

)
.

The dihedral group D of order 2(n+3) acts combinatorially on the diagonals of the (n+ 3)-gon P,
and therefore on its triangulations. The following statement implies Theorem 29 and was already
observed and proven by [HLR10]. We provide a new elementary proof based on spines.

Theorem 30 ([HLR10, Thm. 3.4]). For any triangulation T of P, the barycenter of the vertices
of Asso(P) corresponding to the triangulations of the orbit DT coincides with the barycenter of the
classical permutahedron Perm(n).

Proof. Since we work with all the triangulations of the orbit DT at the same time, we refine the
earlier notation R(j) and write RT (j) for the number of maximal paths in the spine T ∗ whose edge
orientation is reversed at node j∗.

According to the definition of the vertices of Asso(P) and as observed in [HLR10], it suffices to
prove that ∑

µ∈D
|Rµ(T )(j)| = (n+ 2)(n+ 3),

for any given j ∈ [n + 1]. On the right-hand-side of the previous expression, we recognize the
number of oriented maximal paths in the spine T ∗. Consider such a path π from a blossom u
to a blossom v. Let δ1, . . . , δ` denote the diagonals of T such that π = δ∗1 . . . δ

∗
` . Here, both δ1

and δ` are boundary diagonals of P. For k ∈ [`], we let nk be the number of vertices of P in
the open half-space delimited by δk and containing the initial blossom u. Observe that nk is
strictly increasing from n1 = 0 to n` = n+ 1. We also denote by ik the common endpoint of the
diagonals δk and δk+1.

Let k ∈ [`− 1] be such that nk < j ≤ nk+1. Assume first that j is a down label and that ik is
to the right of the oriented path π. This situation is illustrated on Figure 11. Let ρ denote the
rotation of D which sends index ik to j. We claim that the path ρ(π) in the spine ρ(T )

∗
changes

orientation at node j∗ and traverses from left to right at that node. Indeed, since nk < j, the
diagonal ρ(δk) is incident to j on its left, and since j ≤ nk+1, the diagonal ρ(δk+1) is incident
to j on its right. This implies that ρ(δk) and ρ(δk+1) are the left and right bottom diagonals
of the triangle j∗ of ρ(T ), and thus that ρ(δk)∗ and ρ(δk+1)∗ are respectively the left and the
right incoming arcs of j∗ in ρ(T )

∗
. Observe moreover that ρ is the unique element of D such

that the path ρ(π) in the spine ρ(T )
∗

changes orientation while traversing from left to right at
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node j∗. With the same arguments, we prove that ρ is the unique element of D such that the
path ρ(π) in the spine ρ(T )

∗
changes orientation while traversing from left to right at node j∗ in

the situation when j is an up label and ik is on the left of the oriented path π. Finally, if either j
is an up label or ik lies on the left of the oriented path π, but not both, we prove similarly that
the reflection τ of D which sends ik to j is the unique transformation of D such that the path τ(π)
in the spine τ(T )

∗
changes orientation while traversing from left to right at node j∗.

Therefore, for each oriented maximal path π in T ∗, we obtain a unique element µπ of D such
that µπ(π) changes orientation while traversing from left to right at node j∗. Moreover, for
any π 6= π′, we clearly have either µπ 6= µπ′ or µπ(π) 6= µπ′(π

′). This ensures that, for all j ∈ [n+1],∑
µ∈D
|Rµ(T )(j)| = (n+ 2)(n+ 3). �

5.2. Narayana numbers. In this section, we use that the entry h`(Asso(P)) of the h-vector of
the associahedron yields the Narayana number Nar(n, `), see [PRW08, Sect. 10.2] and [Nar79]. As
a consequence, we relate combinatorial properties of spines to the Narayana numbers.

The f -vector of a polytope P ⊂ Rn is the vector f(P ) := (f0(P ), f1(P ), . . . , fn(P )) whose kth co-
ordinate fk(P ) is the number of k-dimensional faces of P . For example, fk(Perm(n)) is the number
of ordered partitions of [n+1] with n+1−k parts, while fk(Asso(P)) is the number of dissections
of P into n+ 1− k cells. The f -polynomial of P is the polynomial fP (X) :=

∑n
k=0 fk(P )Xk.

The h-vector h(P ) := (h0(P ), h1(P ), . . . , hn(P )) and the h-polynomial hP (X) :=
∑n
`=0 h`(P )X`

of a simple polytope P are defined by the relation

fP (X) = hP (X + 1),

or equivalently by the equalities

fk(P ) =

n∑
`=0

(
`

k

)
h`(P ) for 0 ≤ k ≤ n or h`(P ) =

n∑
k=0

(−1)k+`

(
k

`

)
fk(P ) for 0 ≤ ` ≤ n.

For example, h`(Perm(n)) is the Eulerian number

h`(Perm(n)) = Eul(n+ 1, `) =
∑̀
k=0

(−1)k
(
n+ 2

k

)
(`+ 1− k)n+1,

that is, the number of permutations of [n+ 1] with ` descents, while h`(Asso(P)) is the Narayana
number [Nar79]

h`(Asso(P)) = Nar(n, `) :=
1

n

(
n

`

)(
n

`− 1

)
.

Given any simple polytope P ⊂ Rn and any generic linear functional ψ ∈ (Rn)∗, it is known
that the `th entry h`(P ) of the h-vector of P equals the number of vertices of out-degree ` in the
1-skeleton of P oriented by increasing values of ψ. In particular, this ensures that the h-vector
is symmetric (since it gives the same vector for the functionals ψ and −ψ). Application of the
linear functional x 7→ 〈U |x 〉 to the 1-skeleton of Asso(P) yields the following description of the
Narayana numbers using Lemma 14. We say that an arc of a spine T ∗ is ordered if its source is
smaller than its target, and reversed otherwise.

Proposition 31. For any polygon P, the number of triangulations T of P whose spine T ∗ has `
ordered arcs and n− ` reversed arcs is the Narayana number Nar(n, `).

The symmetry of the h-vector immediately leads to the following corollary.

Corollary 32. For any polygon P, there are as many triangulations T of P whose spine T ∗ has
` ordered arcs and n− ` reversed arcs as triangulations T of P whose spine T ∗ has n− ` ordered
arcs and ` reversed arcs.

Example 2 (Loday’s associahedron, continued). For Loday’s polygon PLod, we obtain the classi-
cal description of the Narayana number Nar(n, `) as the number of (rooted) binary trees on n+ 1
nodes with ` right children and n− ` left children.
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6. Spines and existing work

To conclude this paper, we relate our results to existing work. This enables us to give some
taste of the various connections of the associahedron with different mathematical areas, to properly
refer to the literature, and to indicate some directions of further research.

Contact graphs of pseudoline arrangements on sorting networks — Motivated by poly-
topal realizations of generalizations of the associahedron (in relation with multitriangulations of
polygons), V. Pilaud and F. Santos defined the family of brick polytopes of sorting networks [PS12].
A sorting network N is a sequence of simple transpositions (i, i+ 1) of Sn+1. We are interested
in all possible reduced expressions for the longest permutation w◦ ∈ Sn+1 which are subsequences
of N . A network can be visually represented by a geometric diagram, formed by n+ 1 horizontal
lines (levels) together with some vertical segments between two consecutive levels (commutators)
corresponding to the simple transpositions of the network. The subsequences of the network N
which form reduced expressions for w◦ appear as crossing points of pseudoline arrangements on
the diagram of N . V. Pilaud and F. Santos associate to each such pseudoline arrangement Λ

(i) its brick vector b(Λ) ∈ Rn+1, whose ith coordinate counts the bricks (cells of the network)
below the ith pseudoline of Λ — thus explaining the name — and

(ii) its (oriented and labeled) contact graph Λ#, which encodes the contacts between the pseu-
dolines of Λ.

The brick polytope B(N ) of the sorting network N is the convex hull of all the points b(Λ). Its
properties are determined by the contact graphs Λ# of the pseudolines arrangements supported
by N . In particular, the brick vector b(Λ) is a vertex of B(N ) if and only if the contact graph Λ#

is acyclic, and the normal cone of b(Λ) is then the braid cone of the transitive closure of Λ#.
Based on the duality described in [PP12], it was observed in [PS12] that all associahedra of

C. Hohlweg and C. Lange [HL07] appear as brick polytopes of certain well-chosen networks. These
networks are obtained from the dual pseudoline arrangement of an (n + 3)-gon P by removing
its external hull. A triangulation T of P corresponds to a pseudoline arrangement T ? supported
by the diagram corresponding to P, and the contact graph of T ? is precisely the spine T ∗ of T
where we remove all blossoms. Our definition of spines of triangulations is thus a direct primal
description of contact graphs of pseudoline arrangements supported by these specific networks.

Graph associahedra, nestohedra, generalized permutahedra — The graph associahedron
of a graph G is a polytope whose faces correspond to collections of connected subgraphs of G which
are pairwise nested, or disjoint and non-adjacent. Its first polytopal realization was described by
M. Carr and S. Devadoss [CD06, Dev09], and later with other techniques by A. Postnikov [Pos09]
and A. Zelevinsky [Zel06]. The classical associahedra are graph associahedra for paths.

Generalizing the construction of C. Hohlweg and C. Lange [HL07], V. Pilaud defines the signed
nested complex of a signed tree T and constructs a signed tree associahedron realizing this simpli-
cial complex [Pil13]. The main tool of this construction is the definition of the spine of a nested
collection of signed tubes of T , which is based on the spines introduced and developed in this
paper.

Graph associahedra are graphical examples of nestohedra, which were studied in particular
in [Pos09, Zel06]. In turn, nestohedra appear in the work of A. Postnikov [Pos09] as specific ex-
amples of generalized permutahedra, obtained from the classical permutahedron by gliding certain
facets. Further properties of generalized permutahedra, in particular their relations with the braid
arrangement, their normal fans, and their face vectors, were later studied in detail by A. Postnikov,
V. Reiner and L. Williams [PRW08]. Slightly extending the arguments in Postnikov’s proof, the
authors observed that it sometimes suffices to glide some facets to infinity without changing the
other facets. This observation provides one more evidence that the construction of C. Hohlweg
and C. Lange [HL07] might be extended to signed versions of nestohedra. This question will be
investigated in [ČLP15].

Generalized associahedra and cluster algebras — Generalized associahedra are polytopal
realizations of finite type cluster complexes, which arise from the rich combinatorial theory of
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cluster algebras initiated by S. Fomin and A. Zelevinsky in [FZ02, FZ03]. Finite type cluster
algebras are classified by the Cartan-Killing classification for finite crystallographic root systems.
For example, the classical associahedra realize the cluster complexes of type A.

The first polytopal realizations of generalized associahedra were constructed by F. Chapoton,
S. Fomin and A. Zelevinsky in [CFZ02]. Extending the construction of [HL07], C. Hohlweg,
C. Lange and H. Thomas [HLT11] obtained various polytopal realizations, based on geometric
and combinatorial properties of Cambrian fans presented below. These realizations are obtained
by gliding to infinity certain facets of the Coxeter permutahedron, which is defined as the convex
hull of a generic point under the action of the underlying finite Coxeter group. Generalizing the
approach of [CFZ02], S. Stella [Ste13] recovered these realizations of [HLT11] and made precise
connections between the geometric properties of these generalized associahedra and the algebraic
and combinatorial properties of the corresponding cluster algebras. In their recent preprint [IO13],
K. Igusa and J. Ostroff study “mixed cobinary trees”, which are precisely the spines of the trian-
gulations of P. They use these trees to revisit type A cluster mutation process and its connection
to quiver representation theory.

In a different direction, V. Pilaud and C. Stump [PS15a] recently generalized the brick polytope
construction of V. Pilaud and F. Santos [PS12] mentioned above to spherical subword complexes
on finite Coxeter groups, defined by A. Knutson and E. Miller [KM04]. As in type A, cluster
complexes can be described as subword complexes of well-chosen words [CLS13], and the brick
polytopes of these subword complexes provide new descriptions of the generalized associahedra
of [HLT11]. The main tool for this construction is the root configuration of a facet of the subword
complex. In type A, this root configuration is formed by the column vectors of the incidence
matrix of the spine of the corresponding triangulation.

Cambrian lattices and fans — We have seen that the normal fan of the associahedron Asso(P)
is refined by that of the permutahedron, thus defining a surjective map κ from the permutahedron
of [n+1] to the triangulations of P. Moreover, the quotient of the weak order under this map gives
the increasing flip lattice, whose Hasse diagram is isomorphic to the 1-skeleton of the associahe-
dron Asso(P) oriented in the direction U. In Section 3 we described how spines combinatorially
encode the geometry of the normal fan and the sujection κ.

Based on N. Reading’s work on lattice congruences of the weak order on a finite Coxeter
group, N. Reading and D. Speyer extended these results to the context of finite type cluster
algebras [Rea04, Rea06, RS09]. They constructed the Cambrian fans providing various geometric
realizations of any cluster complex of finite type W . Subsequently, C. Hohlweg, C. Lange and
H. Thomas constructed generalized associahedra with some Cambrian fan as normal fan [HLT11].
These fans are refined by the Coxeter fan of W , thus defining a surjective map from W to the
clusters of the cluster algebra for W . The quotient of the weak order on W under this map is
the Cambrian lattice studied by N. Reading [Rea06], whose Hasse diagram is isomorphic to the
1-skeleton of the generalized associahedron oriented in the direction U.

In a recent paper [PS13], V. Pilaud and C. Stump studied natural generalizations of the in-
creasing flip order to arbitrary subword complexes. They described in particular four canonical
spanning trees of the flip graph of a subword complex, which led to efficient enumeration algo-
rithms of their facets. These results can be applied to obtain efficient enumeration schemes of the
triangulations of a polygon.

Barycenters — We now briefly discuss the history and the different strategies adopted to prove
the surprising property that the associahedron Asso(P) and the classical permutahedron Perm(n)
have the same vertex barycenters. According to J.-L. Loday [Lod04], this property was first
observed by F. Chapoton for Loday’s associahedron. By way of proof, it is claimed in that same
paper [Lod04] that any triangulation T of PLod contributes to the barycenter of Asso(PLod) as
much as the permutations of its fiber κ−1(T ) contribute to the barycenter of Perm(n). This
property would clearly imply that the barycenters of Asso(P) and Perm(n) coincide, since the
projection map κ is surjective from the permutations of [n + 1] to the triangulations of P. The



ASSOCIAHEDRA VIA SPINES 25

argument is however misleading since it already fails as soon as n ≥ 3. J.-L. Loday, informed by
C. Hohlweg around 2007, encouraged him to find a correct argument.

A complete proof of the equality of the barycenters was given for all associahedra Asso(P) by
C. Hohlweg, J. Lortie and A. Raymond in [HLR10]. The key observation of their proof is that
the barycenter of the points of Asso(P) corresponding to the orbit of a given triangulation under
the natural action of the dihedral group on P already coincides with the barycenter of Perm(n).
To prove this stronger statement, their method requires two steps: first, they prove the result for
Loday’s associahedron using an inductive argument on the number of vertices of the polygon PLod,
and second, they use a well-chosen map to send an arbitrary realization Asso(P) to Loday’s
realization Asso(PLod) preserving the barycenter.

In [PS15b], V. Pilaud and C. Stump provide a different proof of the barycenter property,
which extends to all finite Coxeter groups and all fairly balanced permutahedra (meaning not only
classical permutahedra, but more general ones). They also show that the barycenter of the vertices
of the generalized associahedron corresponding to certain orbits of clusters under a natural action
already vanishes. These extentions were conjectured by C. Hohlweg, C. Lange and H. Thomas
in [HLT11, Hoh]. The proof in [PS15b], based on brick polytopes [PS12, PS15a], also requires
two steps: it is first proved that all generalized associahedra have the same vertex barycenter,
and then that the barycenter of the superposition of the vertex sets of two well-chosen generalized
associahedra is the origin.

To our knowledge, the proof presented in this paper is the first direct and elementary proof of the
barycenter property for associahedra Asso(P) of type A. Although it highly relies on C. Hohlweg,
J. Lortie and A. Raymond’s observation on barycenters of dihedral orbits, our interpretation
of C. Hohlweg and C. Lange’s associahedra in terms of spines of the triangulations is the key
ingredient to simplify the computations.

Cambrian Hopf algebras — Hopf algebras are vector spaces endowed with a structure of algebra
and a structure of coalgebra which are compatible to each other. Such structures appear in partic-
ular in combinatorics. Relevant examples are the Hopf algebra on permutations by C. Malvenuto
and C. Reutenauer [MR95], the Hopf algebra on binary trees by J.-L. Loday and M. Ronco [LR98],
and the descent algebra on binary sequences by L. Solomon [Sol76]. These algebras are closely
related to the geometry of the permutahedron Perm(n), of Loday’s associahedron Asso(PLod), and
of the parallelepiped Para(n).

Extending these constructions, G. Chatel and V. Pilaud defined the Cambrian Hopf alge-
bra [CP14], with basis indexed by spines of triangulations. The geometric and combinatorial
properties of spines developed in the present paper are instrumental for the algebraic construc-
tion. For example, the definition of the surjections κ and λ are at the heart of the construction of
the Cambrian algebra. We refer the reader to [CP14] for further details.

Acyclic sets — The objects studied in this paper have further connections to more surprising
topics, which we illustrate here by a single example. In order to rank a list of candidates, voters of a
constituency can practice pairwise majority voting: each voter chooses a ranking of all candidates,
and each pair of candidates is then ranked according to the majority preference of the voters. To
avoid intransitive results, one possible solution is to force voters to make their choice among a
restricted set of rankings. A subset of permutations which guarantees intransitivity under pairwise
majority voting is called an acyclic set of linear orders. A natural but still open question is to
identify acyclic sets of linear orders of maximum cardinality for a given number of candidates.
In the context of higher Bruhat orders, Á. Galambos and V. Reiner [GR08] studied acyclic sets
from a combinatorial perspective and provided a unified description of certain acyclic sets known
to social choice theorists. Surprisingly, these specific acyclic sets have an interpretation in our
context: each such set corresponds to the set of common vertices of the permutahedron with some
associahedron Asso(P) studied in [HL07], or, by Proposition 20, to spines of triangulations of P
that are directed paths. Using this interpretation and the framework of sorting networks described
earlier, J.-P. Labbé and C. Lange recently derived explicit formulas for the cardinality of these
specific acyclic sets [LL15]. This generalizes a formula of Á. Galambos and V. Reiner [GR08]
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for Fishburn’s alternating scheme, which turns out to be the largest acyclic set in this family.
These formulas can also be extended to count common vertices of Coxeter permutahedra and
associahedra of [HLT11] for other finite Coxeter groups.
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[CLS13] Cesar Ceballos, Jean-Philippe Labbé, and Christian Stump. Subword complexes, cluster complexes, and
generalized multi-associahedra. J. Algebraic Combin., 2013.

[CP14] Grégory Chatel and Vincent Pilaud. Cambrian Hopf Algebras. Extended abstract in 27th Interna-

tional Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015), Preprint
arXiv:1411.3704, 2014.

[CSZ15] Cesar Ceballos, Francisco Santos, and Günter M. Ziegler. Many non-equivalent realizations of the asso-

ciahedron. Combinatorica, 2015.
[Dev09] Satyan L. Devadoss. A realization of graph associahedra. Discrete Math., 309(1):271–276, 2009.

[FZ02] Sergey Fomin and Andrei Zelevinsky. Cluster algebras. I. Foundations. J. Amer. Math. Soc., 15(2):497–
529, 2002.

[FZ03] Sergey Fomin and Andrei Zelevinsky. Cluster algebras. II. Finite type classification. Invent. Math.,

154(1):63–121, 2003.
[GKZ08] Israel Gelfand, Mikhail Kapranov, and Andrei Zelevinsky. Discriminants, resultants and multidimen-
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[LL15] Jean-Philippe Labbé and Carsten Lange. Counting c-singletons [Preliminary title]. In preparation, 2015.
[Lod04] Jean-Louis Loday. Realization of the Stasheff polytope. Arch. Math. (Basel), 83(3):267–278, 2004.

[LR98] Jean-Louis Loday and Maŕıa O. Ronco. Hopf algebra of the planar binary trees. Adv. Math., 139(2):293–

309, 1998.

http://arxiv.org/abs/1411.3704
http://arxiv.org/abs/1307.3587


ASSOCIAHEDRA VIA SPINES 27

[MHPS12] Folkert Müller-Hoissen, Jean Marcel Pallo, and Jim Stasheff, editors. Associahedra, Tamari Lattices and

Related Structures. Tamari Memorial Festschrift, volume 299 of Progress in Mathematics. Springer, New

York, 2012.
[MR95] Claudia Malvenuto and Christophe Reutenauer. Duality between quasi-symmetric functions and the

Solomon descent algebra. J. Algebra, 177(3):967–982, 1995.

[Nar79] Tadepalli V. Narayana. Lattice path combinatorics with statistical applications, volume 23 of Mathe-
matical Expositions. University of Toronto Press, Toronto, Ont., 1979.

[Pil13] Vincent Pilaud. Signed tree associahedra. Extended abstract in 26th International Conference on For-

mal Power Series and Algebraic Combinatorics (FPSAC 2014), Preprint arXiv:1309.5222, 2013.
[Pos09] Alexander Postnikov. Permutohedra, associahedra, and beyond. Int. Math. Res. Not. IMRN, (6):1026–

1106, 2009.

[Pou14] Lionel Pournin. The diameter of associahedra. Adv. Math., 259:13–42, 2014.
[PP12] Vincent Pilaud and Michel Pocchiola. Multitriangulations, pseudotriangulations and primitive sorting

networks. Discrete Comput. Geom., 48(1):142–191, 2012.
[PRW08] Alexander Postnikov, Victor Reiner, and Lauren K. Williams. Faces of generalized permutohedra.

Doc. Math., 13:207–273, 2008.

[PS12] Vincent Pilaud and Francisco Santos. The brick polytope of a sorting network. European J. Combin.,
33(4):632–662, 2012.

[PS13] Vincent Pilaud and Christian Stump. EL-labelings and canonical spanning trees for subword com-

plexes. In Discrete Geometry and Optimization, Fields Institute Communications Series, pages 213–248.
Springer, 2013.

[PS15a] Vincent Pilaud and Christian Stump. Brick polytopes of spherical subword complexes and generalized

associahedra. Adv. Math., 276:1–61, 2015.
[PS15b] Vincent Pilaud and Christian Stump. Vertex barycenter of generalized associahedra. Proc. Amer. Math.

Soc., 143(6):2623–2636, 2015.

[Rea04] Nathan Reading. Lattice congruences of the weak order. Order, 21(4):315–344, 2004.
[Rea06] Nathan Reading. Cambrian lattices. Adv. Math., 205(2):313–353, 2006.

[RS09] Nathan Reading and David E. Speyer. Cambrian fans. J. Eur. Math. Soc. (JEMS), 11(2):407–447, 2009.
[Sol76] Louis Solomon. A Mackey formula in the group ring of a Coxeter group. J. Algebra, 41(2):255–264, 1976.

[SS93] Steve Shnider and Shlomo Sternberg. Quantum groups: From coalgebras to Drinfeld algebras. Series in

Mathematical Physics. International Press, Cambridge, MA, 1993.
[Sta63] Jim Stasheff. Homotopy associativity of H-spaces I, II. Trans. Amer. Math. Soc., 108(2):293–312, 1963.

[Sta97a] Richard P. Stanley. Hipparchus, Plutarch, Schröder, and Hough. Amer. Math. Monthly, 104(4):344–350,
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