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Abstract. We define a natural lattice structure on all subsets of a finite root system that ex-

tends the weak order on the elements of the corresponding Coxeter group. For crystallographic
root systems, we show that the subposet of this lattice induced by antisymmetric closed subsets

of roots is again a lattice. We then study further subposets of this lattice which naturally cor-

respond to the elements, the intervals and the faces of the permutahedron and the generalized
associahedra of the corresponding Weyl group. These results extend to arbitrary finite crystal-

lographic root systems the recent results of G. Chatel, V. Pilaud and V. Pons on the weak order

on posets and its induced subposets.

1. Introduction

The weak order is a fundamental ordering of the elements of a Coxeter group. It can be defined
as the prefix order in reduced expressions of the elements of the group, or more geometrically
as the inclusion poset of the inversion sets of the elements of the group. For finite Coxeter
groups, the weak order is known to be a lattice [Bjö84] and its Hasse diagram is the graph of the
permutahedron of the group oriented in a linear direction. The rich theory of congruences of the
weak order [Rea04] yield to the construction of Cambrian lattices [Rea06] with its connection to
Coxeter Catalan combinatorics and finite type cluster algebras [FZ02, FZ03a]. This point of view
was fundamental for the construction of generalized associahedra [HLT11]. We refer to the survey
papers [Rea12, Rea16, Hoh12] for details on these subjects.

More recently, some efforts were devoted to develop certain extensions of the weak order beyond
the elements of the group. This led in particular to the notion of facial weak order of a finite Coxeter
group, pioneered in type A in [KLN+01], defined for arbitrary finite Coxeter groups in [PR06],
and proved to be a lattice in [DHP18]. This order is a lattice on the faces of the permutahedron
that extends the weak order on the vertices.

In type A, an even more general notion of weak order on integer binary relations was recently
introduced in [CPP17]. This order is defined by R 4 S ⇐⇒ RInc ⊇ SInc and RDec ⊆ SDec for any
two binary relations R,S on [n], where RInc := {(a, b) ∈ R | a < b} and RDec := {(b, a) ∈ R | a < b}
respectively denote the increasing and decreasing subrelations of R. It turns out that the subposet
of this weak order induced by posets on [n] is a lattice. In fact, many relevant lattices can be
recovered as subposets of the weak order on posets induced by certain families of posets. Such
families include the vertices, the intervals and the faces of the permutahedron, associahedra [Lod04,
HL07], permutreehedra [PP18], cube, etc. For the vertices, the corresponding lattices are the
weak order on permutations, the Tamari lattice on binary trees, the type A Cambrian lattices,
the permutree lattices [PP18], the boolean lattice on binary sequences, etc.

The goal of this paper is to extend these results beyond type A. We define the weak order on
subsets R,S of a finite root system Φ by R 4 S ⇐⇒ R+ ⊇ S+ and R− ⊆ S−, where R+ := R∩Φ+

and R− := R ∩ Φ−. This order is a lattice on all subsets of Φ, which are the analogues of type A
integer binary relations. In turn, the analogues of type A integer posets are Φ-posets, i.e. subsets R
of Φ that are both antisymmetric (α ∈ R implies −α /∈ R) and closed (in the sense of [Bou68],
α, β ∈ R and α+β ∈ Φ implies α+β ∈ R). Our central result is that the subposet of the weak order
induced by Φ-posets is also a lattice when the root system Φ is crystallographic. For example,
the weak orders on A2-, B2- and G2-posets are represented in Figures 1 and 2. Surprisingly, this
property fails for non-crystallographic root systems, and the proof actually requires to develop
delicate properties on subsums of roots in crystallographic root systems.

We then switch to our motivation to study the weak order on Φ-posets. We consider Φ-posets
corresponding to the vertices, the intervals and the faces of the permutahedron, the associahedra,
and the cube of type Φ. Considering the subposets of the weak order induced by these specific
families of Φ-posets allows us to recover the classical weak order and the Cambrian lattices, their
interval lattices, and their facial lattices.

VP was partially supported by the French ANR grant SC3A (15 CE40 0004 01).
1
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2. Root systems

This section gathers some notions and properties on finite crystallographic root systems and
Weyl groups. We refer to the textbooks by J. Humphreys [Hum90], N. Bourbaki [Bou68], and A.
Björner and F. Brenti [BB05] for further details on basic definitions and classical properties.

2.1. Root systems. Let V be a real Euclidean space with scalar product 〈· | ·〉. For α ∈ V r {0},
we define α∨ := 2α/〈α |α〉. We denote by sα the reflection orthogonal to a non-zero vector α ∈ V ,
defined by sα(v) = v − 〈α∨ | v〉α. A finite root system Φ is a finite set of non-zero vectors in V
such that Φ ∩ Rα = {α,−α} and sαΦ = Φ for all α ∈ Φ. We denote by W the Coxeter group
generated by the reflections sα for α ∈ Φ. Throughout this paper, we will denote by R(Φ) the
collection of all subsets of Φ.

We choose a generic linear functional f and denote by Φ+ := {α ∈ Φ | f(α) > 0} the set of
positive roots and by Φ− := {α ∈ Φ | f(α) < 0} the set of negative roots. We denote by ∆ the
simple roots. They are the roots of the rays of the cone R≥0Φ+ and form a linear basis, so that any
positive root is a positive linear combination of simple roots. The height of a root α =

∑
δ∈∆ αδδ

is h(α) =
∑
δ∈∆ αδ. The absolute height of α is |h|(α) = |h(α)|.

The root system Φ is crystallographic if 〈α∨ |β〉 ∈ Z for any α, β ∈ Φ. Equivalently, the Coxeter
group W stabilizes the lattice ZΦ, and is called a Weyl group. In most of the paper, we restrict
our attention to crystallographic root systems. Remarks 6, 7, 13, 33 and 36 justify this restriction.

Example 1 (Type A). Let (ei)i∈[n+1] be the standard basis of Rn+1. The symmetric group Sn+1

acts on Rn+1 by permutation of coordinates. It is the Weyl group of type An. The roots are
ΦAn

= {ei − ej | 1 ≤ i 6= j ≤ n+ 1}, the positive roots are Φ+
An

= {ei − ej | 1 ≤ i < j ≤ n+ 1}
and the simple roots are ∆An

= {ei − ei+1 | i ∈ [n]}. A subset of ΦAn
can thus be identified with

a binary relation on [n] via the bijection (i, j) ∈ [n]2 ←→ ei − ej ∈ ΦA. Note that the height
of ei − ej is j − i.

2.2. Sums of roots in crystallographic root systems. We now gather statements on sums of
roots in crystallographic root systems that are needed throughout the paper and that we consider
interesting for their own sake. We start by a statement from [Bou68] providing sufficient conditions
for the sum or difference of two roots to be again a root in a crystallographic root system Φ.

Theorem 2 ([Bou68, Chap. 6, 1.3, Thm. 1]). For any α, β in a crystallographic root system Φ,

(i) if 〈α |β〉 > 0 then α− β ∈ Φ or α = β,
(ii) if 〈α |β〉 < 0 then α+ β ∈ Φ or α = −β.

We say that a (multi)set X ⊆ Φ

• is summable if its sum ΣX is again a root of Φ,
• has no vanishing subsum if ΣY 6= 0 for any ∅ 6= Y ⊆ X.

Proposition 3 and Theorems 4 and 5 ensure that a summable set of roots with no vanishing subsum
has many summable subsets. We start with sums of three roots.

Proposition 3. Let Φ be a crystallographic root system. If α, β, γ ∈ Φ are such that α+β+γ ∈ Φ
has no vanishing subsum, then at least two of the three subsums α+ β, α+ γ and β + γ are in Φ.

Proof. Assume by means of contradiction that α + β /∈ Φ and α + γ /∈ Φ. Since α + β + γ
has no vanishing subsum, α 6= −β and α 6= −γ. By contraposition of Theorem 2 (ii), we obtain
that 〈α |β〉 ≥ 0 and 〈α | γ〉 ≥ 0. Therefore, 〈α+β+γ |β+γ〉 = 〈α |β〉+〈α | γ〉+〈β+γ |β+γ〉 > 0,
since β + γ 6= 0. It follows that either 〈α + β + γ |β〉 > 0 or 〈α + β + γ | γ〉 > 0. Assume for
instance 〈α + β + γ |β〉 > 0. Theorem 2 (i) thus implies that either α + γ ∈ Φ or α + γ = 0
contradicting either of our assumptions on α+ γ. �

It is proved in [Bou68, Chap. 6, 1.6, Prop. 19] that any summable subset X of positive roots
admits a filtration of summable subsets X1 ( X2 ( · · · ( X|X|−1 ( X|X| = X. We now use
Proposition 3 to extend this property in two directions: first we consider subsets of all roots
(positive and negative), second we show that we can additionally prescribe the initial set X1 to be
a chosen root of Φ. This latter improvement will be crucial all throughout the paper.
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Theorem 4. Let Φ be a crystallographic root system. Any summable set X ⊆ Φ with no vanishing
subsum admits a filtration of summable subsets {α} = X1 ( X2 ( · · · ( X|X|−1 ( X|X| = X for
any α ∈ X.

Proof. The proof works by induction on |X|. It is clear for |X| = 2, so that we consider |X| > 2. By
induction, it suffices to find a summable subset X|X|−1 of size |X| − 1 such that α ∈ X|X|−1 ⊂ X.
Since

∑
β∈X〈β |ΣX〉 = 〈ΣX |ΣX〉 > 0, there exists β ∈ X such that 〈β |ΣX〉 > 0. Since X

has no vanishing subsum, β 6= ΣX. Theorem 2 (i) thus ensures that X r {β} is summable.
If α 6= β, then we set X|X|−1 := X r{β} and conclude by induction. Otherwise, we proved that
both {α} and X r {α} are summable. Let Y be inclusion maximal with α ∈ Y ( X such that
both Y and X r Y are summable. Assume that |X r Y| ≥ 2. By induction hypothesis, there
exists Z ⊂ XrY summable with |Z| = |X r Y|−1 ≥ 1. Let γ be the root in (XrY)rZ. Since γ,
ΣY and ΣZ are roots and γ + ΣY + ΣZ = ΣX ∈ Φ, Proposition 3 affirms that either {γ} ∪ Y
or Y ∪ Z is summable, contradicting the maximality of Y. We therefore obtained a summable
subset Y with α ∈ Y ⊆ X with |Y| = |X| − 1. We set X|X|−1 := Y and conclude by induction. �

Finally, we obtain the following generalization of Proposition 3.

Theorem 5. Let Φ be a crystallographic root system. Any summable set X ⊆ Φ with no vanishing
subsum admits at least p distinct summable subsets of size |X| − p+ 1, for any 1 ≤ p ≤ |X|.

Proof. Note that it holds for p = 1 and p = |X|. We now proceed by induction on |X| to prove the
result for 1 < p < |X|. By Theorem 4, X admits a summable subset Y of size |X|−1. Since 1 < p,
we can apply the induction hypothesis to find p− 1 distinct summable subsets Z1, . . . ,Zp−1 of Y
of size |Y| − p + 2 = |X| − p + 1. Moreover, by Theorem 4 there exists at least one summable
subset Zp of X of size |X| − p+ 1 containing the root α in X r Y. This subset Zp is distinct from
all the subsets Z1, . . . ,Zp−1 of Y, since it contains α. This concludes the proof. �

Remark 6. All results presented in this section fail for non-crystallographic root systems. For

example, consider the Coxeter group of typeH3 with Dynkin diagram 1 2 3
5

and the positive
roots α :=α1, β :=α2 and γ := s1s2s3(α2) = ψ(α1 + α2 + α3), where ψ = −2 cos(4π/5). Then

• 〈α |β〉 < 0 while α+ β /∈ Φ and α 6= −β,
• α+ β + γ ∈ Φ while α+ β /∈ Φ and β + γ /∈ Φ (although α+ γ ∈ Φ).

Remark 7. For later purposes, we will need an even stronger counter-example to Theorem 4 in
non-crystallographic root systems. Consider the Coxeter group of type H2 = I2(5) and the roots
α :=α1, β :=α2, γ :=ψα1 + ψα2 and δ := − α1 − ψα2, where ψ = −2 cos(4π/5). It is not difficult
to check that Φ∩ {aα+ bβ + cγ + dδ | a, b, c, d ∈ N} = {α, β, γ, δ, α+ β + γ + δ}. In particular,
there is not even a single flag X1 ( X2 ( X3 ( {α, β, γ, δ} of summable subsets of {α, β, γ, δ},
even though {α, β, γ, δ} is itself summable.

2.3. Φ-posets. In Section 3, we will consider certain specific families of collections of roots. We
start with the simple definition of symmetric and antisymmetric subsets of roots.

Definition 8. A subset R ⊆ Φ is symmetric if −R = R and antisymmetric if R ∩ −R = ∅. We
denote by S(Φ) (resp. A(Φ)) the set of symmetric (resp. antisymmetric) subsets of roots of Φ.

We now want to define closed sets of roots. The next statement is proved by A. Pilkington [Pil06,
Sect. 2] for subsets of positive roots. We extend it to subsets of all roots using Theorem 4.

Lemma 9. In a crystallographic root system Φ, the following conditions are equivalent for R ⊆ Φ:

(i) α+ β ∈ R for any α, β ∈ R such that α+ β ∈ Φ,
(ii) mα+ nβ ∈ R for any α, β ∈ R and m,n ∈ N such that mα+ nβ ∈ Φ,

(iii) α1 + · · ·+ αp ∈ R for any α1, . . . , αp ∈ R such that α1 + · · ·+ αp ∈ Φ.

Proof. The proof follows that of [Pil06, Sect. 2]. The implications (iii) =⇒ (ii) =⇒ (i) are clear.
Assume now that (i) holds and consider α1, . . . , αp ∈ R such that α1+· · ·+αp ∈ Φ. By Theorem 4,
there exists a flag X1 ( X2 ( · · · ( Xp = {α1, . . . , αp} of summable subsets of Φ. Applying
inductively (i), we obtain that ΣXi ∈ R for all i ∈ [p], and thus that α1 + · · ·+ αp ∈ R. �
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Definition 10. In a crystallographic root system Φ, a subset R ⊆ Φ is closed if it satisfies the
equivalent conditions of Lemma 9. We denote by C(Φ) the set of closed subsets of roots of Φ.

Definition 11. In a crystallographic root system Φ, the closure of R ⊆ Φ is the set Rcl :=NR∩Φ.

Remark 12. The map R 7→ Rcl is a closure operator on Φ, meaning that

∅cl = ∅, Φ ⊆ Φcl, R ⊆ S =⇒ Rcl ⊆ Scl and (Rcl)cl = Rcl

for all R,S ⊆ Φ. Moreover Rcl is closed and R is closed if and only if R = Rcl.

Remark 13. Lemma 9 fails for non-crystallographic root systems. For example, consider the
roots α, β, γ, δ of Remark 7. Then the set R := {α, β, γ, δ} satisfies (i) but not (iii).

Remark 14. As studied in details by A. Pilkington in [Pil06], even in crystallographic root
systems, there are other possible notions of closed sets of roots. Namely, one says that R ⊆ Φ is

• N-closed if mα+ nβ ∈ R for any α, β ∈ R and m,n ∈ N such that mα+ nβ ∈ Φ,
• R-closed if xα+ yβ ∈ R for any α, β ∈ R and x, y ∈ R such that xα+ yβ ∈ Φ,
• convex if R = Φ ∩ C for a convex cone C in V .

Note that convex implies R-closed which implies N-closed, but that the converse statements are
wrong even for finite root systems [Pil06, p. 3192]. In this paper, we will only work with the notion
of N-closedness in crystallographic root systems, as it is discussed in [Bou68]. Remarks 34 and 37
justify this restriction.

Example 15 (Type A). Identify subsets of roots with integer binary relations via the bijec-
tion (i, j) ∈ [n]2 ←→ ei − ej ∈ ΦA. A subset of roots is symmetric (resp. antisymmet-
ric, resp. closed) if the corresponding integer binary relation is symmetric (resp. antisymmetric,
resp. transitive). (Note that here the three notions of closed sets of roots coincide in type A.)

This example motivates the definition of the central object of this paper.

Definition 16. In a crystallographic root system Φ, a Φ-poset is an antisymmetric and N-closed
subset of roots of Φ. We denote by P(Φ) the set of all Φ-posets.

We speak of Weyl posets when we do not want to specify the root system. We will introduce
in Section 3.4 a natural lattice structure on Φ-posets. We will see in Section 4 various subfamilies
of Φ-posets arising from classical Coxeter and Coxeter Catalan combinatorics.

To conclude this preliminary section on Φ-posets, we gather simple observations on their sub-
sums and their extensions.

Lemma 17. For any Φ-poset R and any α1, . . . , αp ∈ R, we have α1 + · · ·+ αp 6= 0.

Proof. Assume that R is a Φ-poset and that there are α1, . . . , αp ∈ R such that α1 + · · ·+αp = 0.
Then α2 + · · · + αp = −α1 is a root, so Lemma 9 (iii) ensures that α2 + · · · + αp ∈ R since R is
closed. We obtain that α1 ∈ R and −α1 ∈ R, contradicting the antisymmetry of R. �

Finally, we need Φ-poset extensions. The subsets of Φ are naturally ordered by inclusion, and we
consider the restriction of this inclusion order on Φ-posets. For R ∈ P(Φ), we call extensions of R
the Φ-posets S containing R, and we let E(R) := {S ∈ P(Φ) | R ⊆ S}. Note that R ⊆

⋂
E(R) but

the reverse inclusion does not always hold (consider for example R := {α1 + α2, α2} in type B2).
For later purposes, we are interested in maximal Φ-posets in the extension order.

Proposition 18. For R ∈ P(Φ), we have E(R) = {R} if and only if {α,−α} ∩ R 6= ∅ for
all α ∈ Φ.

Proof. Clearly if {α,−α}∩R 6= ∅ for all α ∈ Φ, then adding any root to R breaks the antisymmetry,
so that E(R) = {R}. Reciprocally, assume that there exists α ∈ Φ such that {α,−α} ∩ Φ = ∅.
Let S := (R ∪ {α})cl and T := (R ∪ {−α})cl. By definition, both S and T are closed, and we claim
that at least one of them is antisymmetric, thus proving that R admits a non-trivial extension.



THE WEAK ORDER ON WEYL POSETS 5

Assume by means of contradiction that neither S nor T are antisymmetric. Let β ∈ S ∩ −S
and γ ∈ T ∩ −T. By definition of the closure, we can write

β =
∑
δ∈R

λδδ + λαα = −
∑
δ∈R

κδδ − καα and γ =
∑
δ∈R

µδδ − µαα = −
∑
δ∈R

νδδ + ναα,

where λδ, κδ, µδ, νδ are non-negative integer coefficients for all δ ∈ R ∪ {α}. Moreover, we have
λα + κα 6= 0 6= µα + να since R is antisymmetric and closed. This implies that∑

δ∈R

(
(λα + κα)(µδ + νδ) + (µα + να)(λδ + κδ)

)
δ = 0.

Lemma 17 thus ensures that (λα + κα)(µδ + νδ) + (µα + να)(λδ + κδ) = 0 which in turns implies
that λδ = κδ = µδ = νδ = 0 for all δ ∈ R, a contradiction. �

3. Weak order on Φ-posets

3.1. Weak order on all subsets. Let Φ be a finite root system (not necessarily crystallographic
for the moment), with positive roots Φ+ and negative roots Φ−. We denote by R(Φ) the set of
all subsets of Φ. For R ∈ R(Φ), we denote by R+ := R ∩ Φ+ its positive part and R− := R ∩ Φ−

its negative part. The following order was considered in type A in [CPP17].

Definition 19. The weak order on R(Φ) is defined by R 4 S ⇐⇒ R+ ⊇ S+ and R− ⊆ S−.

Remark 20. The name for this order relation will be transparent in Section 4. Note that there
is an arbitrary choice of orientation in Definition 19. The choice we have made here may seem
unusual, as the apparent contradiction in Proposition 45 suggests. However, it is more coherent
with the case of type A as treated in [CPP17] and it simplifies the presentation of Section 4.1.3.

Proposition 21. The weak order 4 on R(Φ) is a lattice with meet and join

R ∧R S = (R+ ∪ S+) t (R− ∩ S−) and R ∨R S = (R+ ∩ S+) t (R− ∪ S−).

Furthermore, it is graded by R 7→ |R−| − |R+| and its cover relations are given by

R 4 R r {α} for α ∈ R+ and R r{β} 4 R for β ∈ R−.

Proof. It is the Cartesian product of two boolean lattices (the reverse inclusion poset on the
positive roots and the inclusion poset on the negative roots). �

This section is devoted to show that the restriction of the weak order to certain families of
subsets of roots (antisymmetric, closed and Φ-posets) still defines a lattice structure when Φ is
crystallographic and to express its meet and join operations. For example, the weak orders on
A2-, B2- and G2-posets are represented in Figures 1 and 2.

3.2. Weak order on antisymmetric subsets. We start with the antisymmetry condition.

Proposition 22. The meet ∧R and the join ∨R both preserve antisymmetry. Thus, the set A(Φ)
of antisymmetric subsets of Φ induces a sublattice of the weak order on R(Φ).

Proof. Consider two antisymmetric subsets R,S ∈ R(Φ) and let α ∈ (R∧RS)+ = R+∪S+. Assume
for instance α ∈ R+. Since R is antisymmetric, −α /∈ R−, so that −α /∈ R− ∩ S− = (R ∧R S)−.
We conclude that R ∧R S is antisymmetric. The proof for R ∨R S is similar. �

Proposition 23. All cover relations in the weak order on A(Φ) are cover relations in the weak
order on R(Φ). In particular, the weak order on A(Φ) is still graded by R 7→ |R+| − |R−|.
Proof. Consider a cover relation R 4 S in the weak order onA(Φ). We have R+ ⊇ S+ and R− ⊆ S−

where at least one of the inclusions is strict. Suppose first that R+ 6= S+. Let α ∈ R+ r S+

and T := Rr{α}. Note that T ∈ A(Φ) and R ≺ T 4 S. Since S covers R, we get S = T = R r {α}.
Similarly if S− 6= R− let α ∈ S−rR− and T := S−r{α}. Then T ∈ A(Φ) and R 4 T ≺ S implies
that T = R = S r {α}. In both cases, R 4 S is a cover relation of the weak order on R(Φ). �

Corollary 24. In the weak order on A(Φ), the antisymmetric subsets that cover a given antisym-
metric subset R ∈ A(Φ) are precisely the relations

• R r {α} for any α ∈ R+,
• R ∪ {β} for any β ∈ Φ− r R− such that −β /∈ R+.
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3.3. Weak order on closed subsets. We want to prove that the weak order on closed subsets
of Φ is also a lattice. Contrarily to Propositions 21 and 22, we now need to assume that the root
system Φ is crystallographic (see Remarks 13, 33 and 36). Unfortunately, as C(Φ) is stable by
intersection but not by union, it is not preserved by the meet ∧R and the join ∨R, so that it
does not induce a sublattice of the weak order on R(Φ). Proving that it is still a lattice requires
more work. Following [CPP17], we start with a weaker notion of closedness. We say that a subset
R = R+tR− is semiclosed if both R+ and R− are closed. We denote by SC(Φ) the set of semiclosed
subsets of Φ. Note that C(Φ) ⊆ SC(Φ) but that the reverse inclusion does not hold in general.

Proposition 25. The weak order 4 on SC(Φ) is a lattice with meet and join

R ∧SC S = (R+ ∪ S+)cl t (R− ∩ S−) and R ∨SC S = (R+ ∩ S+) t (R− ∪ S−)cl.

Proof. Observe first that R ∧SC S is indeed semiclosed (Tcl is always closed and C(Φ) is stable by
intersection). Moreover, R ∧SC S 4 R and R ∧SC S 4 S. Assume now that T ⊆ Φ is semiclosed
such that T 4 R and T 4 S. Then T+ ⊇ R+ ∪ S+ and T− ⊆ R− ∩ S−. Moreover, since T+ is
closed, we get that T+ ⊇ (R+ ∪ S+)cl so that T 4 R ∧SC S. We conclude that R ∧SC S is indeed
the meet of R and S. The proof is similar for the join. �

Proposition 26. All cover relations in the weak order on SC(Φ) are cover relations in the weak
order on R(Φ). In particular, the weak order on SC(Φ) is still graded by R 7→ |R−| − |R+|.

Proof. Consider a cover relation R 4 S in the weak order on SC(Φ). We have R+ ⊇ S+ and
R− ⊆ S− where at least one of the inclusions is strict. We distinguish two cases.

Suppose first that R+ 6= S+, and consider α ∈ R+ rS+ of minimal height in R+ rS+. Observe
that α cannot be decomposed in R+: if α = γ + δ with γ, δ ∈ R+, then h(γ), h(δ) < h(α), so
γ, δ ∈ S+ by minimality of h(α), which contradicts the closedness of S+. Consider now T := Rr{α}.
Let γ, δ ∈ T+ with γ+δ ∈ Φ. Then γ, δ ∈ R+ so that γ+δ ∈ R+ since R+ is closed. Since γ+δ 6= α,
this implies that γ + δ ∈ T+. This shows that T+ is closed. Since T− = R− is also closed, we
obtain that T is semiclosed. Since R 6= T and R 4 T 4 S, this proves that T = S = R r {α}.

Assume now that R− 6= S−, and let β ∈ S− r R− of minimal height (or equivalently maximal
absolute height). Consider T := R∪{β}. Let γ, δ ∈ T− with γ+δ ∈ Φ. If γ, δ ∈ R−, then γ+δ ∈ R−

since R− is closed. Assume now that δ = β. Then γ, β ∈ S− and S− is closed, we have γ+β ∈ S−

and h(γ+β) < h(β), which ensures that γ+β ∈ R− by minimality of h(β). This shows that T− is
closed. Since T+ = R+ is also closed, we obtain that T is semiclosed. Since R 6= T and R 4 T 4 S,
this proves that T = S = R ∪ {β}. �

Corollary 27. In the weak order on SC(Φ), the semiclosed subsets of Φ that cover a given semi-
closed subset R ∈ SC(Φ) are precisely the relations:

• R r {α} for any α ∈ R+ such that there is no γ, δ ∈ R+ with α = γ + δ,
• R ∪ {β} for any β ∈ Φ− r R− such that β + γ ∈ Φ =⇒ β + γ ∈ R for all γ ∈ R−.

We now come back to closed subsets of Φ introduced in Definition 16. Unfortunately, C(Φ) still
does not induce a sublattice of SC(Φ). We thus need a transformation similar to the closure R 7→
Rcl to transform a semiclosed subset of Φ into a closed one. For R ∈ R(Φ), we define the negative
closure deletion Rncd and the positive closure deletion Rpcd by

Rncd := R r
{
α ∈ R−

∣∣ ∃X ⊆ R+such that α+ ΣX ∈ Φ r R
}
,

Rpcd := R r
{
α ∈ R+

∣∣ ∃X ⊆ R−such that α+ ΣX ∈ Φ r R
}
.

As in Section 2.2, the notation ΣX in these formulas denotes the sum of all roots in X.

Remark 28. In the case that R is semiclosed, we can assume that the set X in the definitions
of Rncd and Rpcd is such that the α+ΣX has no vanishing subsum. Observe first that no vanishing
subsum can contain α. Indeed, if Y ⊆ X is such that α + ΣY = 0, then X r Y ⊆ R− and R−

closed implies that α + ΣX = Σ(X r Y) ∈ R. Now if Y ⊆ X is such that ΣY = 0, then
α+ Σ(X r Y) = α+ ΣX /∈ R, so that we can replace X by X r Y.

Lemma 29. For any R ∈ R(Φ), we have Rncd 4 R 4 Rpcd.
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Proof. Since Rncd (resp. Rpcd) is obtained from R by deleting negative (resp. positive) roots, we
have (Rncd)+ = R+ ⊇ (Rpcd)+ and (Rncd)− ⊆ R− = (Rpcd)−, so that Rncd 4 R 4 Rpcd. �

Lemma 30. If Φ is crystallographic and R ⊆ Φ is semiclosed, then both Rncd and Rpcd are closed.

Proof. Assume by means of contradiction that R is semiclosed and Rncd is not closed. Then there
are roots α, β ∈ Rncd such that α + β ∈ Φ r Rncd. Consider two such roots such that α + β has
minimal absolute height. We distinguish four cases:

• If α, β ∈ Φ+, then α, β ∈ (Rncd)+ = R+, which is closed, so that α+ β ∈ R+ = (Rncd)+.
Contradiction.

• If α ∈ Φ− and β ∈ Φ+, we distinguish again two cases:
– If α+ β /∈ R, then the set {β} ensures α /∈ Rncd. Contradiction.
– If α + β ∈ R, then since α + β ∈ R r Rncd, there exists X ⊆ R+ such that
α+ β + ΣX ∈ Φ r R. Since β ∈ R+, the set {β} ∪ X ensures α /∈ Rncd. Contra-
diction.

• If α ∈ Φ+ and β ∈ Φ−, the argument is symmetric.
• If α, β ∈ Φ−, then α + β ∈ R− since R− is closed. Since α + β ∈ R r Rncd, there

exists X ⊆ R+ such that (α + β) + ΣX ∈ Φ r R. By Remark 28, we can assume
that (α+ β) + ΣX has no vanishing subsum. By Theorem 4, there exists γ ∈ X such
that α + β + γ ∈ Φ. By Proposition 3, we can assume without loss of generality
that β + γ ∈ Φ. We now distinguish four cases:

– If β + γ /∈ R, then the set {γ} ensures β /∈ Rncd. Contradiction.
– If β+γ ∈ R+, then T = {β+γ}∪ (Xr{γ}) ⊆ R+ and α+ΣT = α+β+ΣX ∈ ΦrR

so that α /∈ Rncd. Contradiction.
– If β + γ ∈ R− r Rncd, then there exists T ⊆ R+ such that β + γ + ΣT ∈ Φ r R.

Since γ ∈ R+, the set {γ} ∪ T ensures that β /∈ Rncd. Contradiction.
– If β + γ ∈ (Rncd)−, then we have α ∈ Rncd and β + γ ∈ Rncd with α + β + γ ∈ Φ.

Moreover, h(α+ β + γ) < h(α+ β) since α+ β ∈ Φ− while γ ∈ Φ+ and β + γ ∈ Φ−.
By minimality in the choice of α+ β, we obtain that α+ β + γ ∈ Rncd. Observe now
that X r {γ} ⊆ R+ and α+ β + γ + Σ(X r {γ}) = α+ β + ΣX ∈ Φ r R. Therefore:
∗ If α+β+γ is negative, the set Xr{γ} ensures α+β+γ /∈ Rncd. Contradiction.
∗ If α+ β + γ is positive, then R+ is not closed. Contradiction.

In all cases, we have reached a contradiction. We conclude that if R is semiclosed, then Rncd is
closed. The proof is symmetric for Rpcd. �

Proposition 31. When Φ is crystallographic, the weak order on C(Φ) is a lattice with meet and join

R ∧C S =
(
(R+ ∪ S+)cl t (R− ∩ S−)

)ncd
and R ∨C S =

(
(R+ ∩ S+) t (R− ∪ S−)cl

)pcd
.

Proof. First, the weak order 4 on C(Φ) is a subposet of the weak order 4 on R(Φ), and it is
bounded below by Φ+ and above by Φ−. We therefore just need to show that there is a meet and
a join and that they are given by the above formulas.

Let R,S ∈ C(Φ) and M = R∧SC S so that Mncd = R∧C S. Observe that we have Mncd 4 M 4 R
and Mncd 4 M 4 S by Lemma 29. Moreover, since M is semiclosed, Mncd is closed by Lemma 30.
Therefore, Mncd is closed and below both R and S.

Consider now T ∈ C(Φ) such that T 4 R and T 4 S. Since T ∈ SC(Φ) and M = R ∧SC S,
we have T 4 M. Therefore, T+ ⊇ M+ = (Mncd)+ and T− ⊆ M−. Assume by means of
contradiction that T 64 Mncd. Then we have T− 6⊆ (Mncd)−. Consider α ∈ T− r (Mncd)− of
minimal absolute height. By definition of Mncd, there exists X ⊆ M+ such that α+ ΣX ∈ Φ r M.
Since M+ = (R ∧SC S)+ = (R+ ∪ S+)cl, we can assume without loss of generality (up to developing
each root of X) that X ⊆ (R+ ∪ S+). By Remark 28, we can moreover assume that α + ΣX has
no vanishing subsum. By Theorem 4, there exists β ∈ X such that α+ β ∈ Φ.

Since β ∈ X ⊆ (R+ ∪S+), we can assume that β ∈ R+. Since α ∈ T− ⊆ R−, β ∈ R+ ⊆ T+ and
both R and T are closed, we obtain that α+ β ∈ R ∩ T. We now distinguish two cases:

• If α + β is positive, then α + β ∈ R+ ⊆ M+. Since X r {β} ⊆ M+ and M+ is closed, we
obtain that α+ ΣX = (α+ β) + Σ(X r {β}) ∈ M+. Contradicion.
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• If α + β is negative, we have α + β ∈ T−. Moreover, α + β has smaller absolute height
than α since α ∈ Φ−, β ∈ Φ+ and α+β ∈ Φ−. By minimality in the choice of α, we obtain
that α+β ∈ Mncd. Since Xr{β} ⊆ M+ this implies that α+ΣX = (α+β)+Σ(Xr{β}) ∈ M.
Contradiction.

Since we reached a contradiction in both cases, we obtain that T 4 Mncd. Hence, Mncd is indeed
the meet of R and S for the weak order on C(Φ). The proof is similar for the join. �

Remark 32. In contrast to Propositions 23 and 26 and Corollaries 24 and 27, the cover relations
in the weak order on C(Φ) are more intricate and the weak order on C(Φ) is not graded in general.

Remark 33. All results presented in this section fail for non-crystallographic root systems. In
view of Remark 13, it might a priori depend of the notion of N-closed subsets considered. However,
the following example works for either of the notions (i), (ii) and (iii) of Lemma 9.

Consider the Coxeter group of type H3 with Dynkin diagram 1 2 3
5

. Consider the
roots α :=α1 ∈ Φ+, β :=−α1−ψα2 ∈ Φ− and γ :=−ψα1−α2−α3 ∈ Φ−, where ψ = −2 cos(4π/5).
Note that β + γ ∈ Φ− and α + β + γ ∈ Φ−, while α + β /∈ Φ and α + γ /∈ Φ. Consider the
sets R := {α, β, γ, β + γ, α + β + γ}, S := {β, γ, β + γ}, U := {α, β} and V := {α, γ}. Note
that R,S,U and V are closed, and that both U and V are weak order smaller than both R and S.
Moreover, we claim that there is no closed subset T which is weak order larger than both U
and V and weak order smaller than both R and S. Indeed, such a set T should contain α, β, γ
and thus β + γ and α+ β + γ by closedness, which would contradict T 4 S. This implies that R
and S have no meet and that U and V have no join in the weak order on closed subsets of Φ,
thus contradicting the result of Proposition 31 in the non-crystallographic type H3. In fact, even
Lemma 30 fails in type H3 since {α, β, γ, β + γ}ncd = {α, β, γ} is not closed.

Remark 34. As mentioned in Remark 14, even for crystallographic root systems, there are
different possible notions of closed subsets (which all coincide in type A). Unfortunately, it turns
out that Proposition 31 fails for the other notions of closed sets. The smallest counter-example is
in type B3. Consider the sets of roots R := {−α1, −α1−α2, −α1−α2−α3, −α1−2α2−2α3, α3},
S := {−α1, −α1 − α2 − α3, −α1 − 2α2 − 2α3}, U := {−α1, α3} and V := {−α1 − 2α2 − 2α3, α3}.
Note that R,S,U and V are convex, and that both U and V are weak order smaller than both R
and S. We have U∨CV = R∧C S = {−α1, −α1−2α2−2α3, α3} but this set is not convex. In fact,
we claim that there is no convex subset T which is weak order larger than both U and V and weak
order smaller than both R and S. Indeed, such a set T should contain {−α1, −α1−2α2−2α3, α3}
and thus also −α1−α2 = (−α1)/2 + (−α1−2α2−2α3)/2 +α3, contradicting T 4 S. This implies
that R and S have no meet and that U and V have no join in the weak order on convex subsets
of Φ.

3.4. Weak order on Φ-posets. Recall from Definition 16 that P(Φ) denotes the set of Φ-posets,
i.e. of antisymmetric closed subsets of Φ. We finally show that the restriction of the weak order
to the Φ-posets still defines a lattice structure. The weak orders on A2-, B2- and G2-posets are
represented in Figures 1 and 2.

Theorem 35. The meet ∧C and the join ∨C both preserve antisymmetry. Thus, when Φ is
crystallographic, the set P(Φ) of Φ-posets induces a sublattice of the weak order on C(Φ).

Proof. Let R,S ∈ P(Φ) and M = R ∧SC S so that Mncd = R ∧C S. Assume that Mncd is not
antisymmetric, and let α ∈ (Mncd)+ such that −α ∈ (Mncd)−. Since (Mncd)− ⊆ M− = R−∩S− and
both R and S are antisymmetric, we obtain that α /∈ R+ ∪ S+. Since α ∈ (Mncd)+ = (R+ ∪ S+)cl,
there exists X ⊆ R+ ∪ S+ such that |X| ≥ 2 and α = ΣX. By Theorem 4, there exists β ∈ X such
that Σ(X r {β}) ∈ Φ. Since X r {β} ⊆ M+ ⊆ Mncd, −α ∈ Mncd and Mncd is closed, we obtain
that Σ(X r {β}) + (−α) = −β ∈ (Mncd)− ⊆ R− ∩ S−. As β ∈ R+ ∪ S+, this contradicts the
antisymmetry of either R or S. �

Remark 36. Theorem 35 fails for non-crystallographic types. An example in type H3 is given in
Remark 33 (since the sets R,S,U and V are all antisymmetric and thus Φ-posets).
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Remark 37. Even for crystallographic root systems, Theorem 35 fails for the other notions of
closed sets. An example in type B3 is given in Remark 34 (since the sets R,S,U and V are all
antisymmetric and thus Φ-posets).

Proposition 38. All cover relations in the weak order on P(Φ) are cover relations in the weak
order on R(Φ). In particular, the weak order on P(Φ) is still graded by R 7→ |R−| − |R+|.
Proof. Consider a cover relation R 4 S in the weak order on P(Φ). We have R+ ⊇ S+ and R− ⊆ S−

where at least one of the inclusions is strict. Suppose first that R+ ⊇ S+ and consider the set
X := {α ∈ R+ r S+ | 6 ∃ β, γ ∈ R+ with α = β + γ}. This set X is nonempty as it contains any α
in R+ r S+ with |h|(α) minimal. Consider now α ∈ X with |h|(α) maximal and let T := R r{α}.
We claim that T is still a Φ-poset. It is clearly still antisymmetric. For closedness, assume by
means of contradiction that there is β, γ ∈ T such that α = β + γ. Since α ∈ X ⊆ Φ+, we can
assume that β ∈ R− and γ ∈ R+, and we choose β so that |h|(β) is minimal. We claim that there
is no δ, ε ∈ R+ such that γ = δ + ε. Otherwise, since α = β + γ = β + δ + ε ∈ Φ, we can assume
by Proposition 3 that β + δ ∈ Φ ∪ {0}. If β + δ ∈ Φ−, then β + δ ∈ R− (since R is closed) which
contradicts the minimality of β. If β+δ ∈ Φ+, then β+δ ∈ R+ (since R is closed), which together
with γ ∈ R+ and (β + δ) + γ = α contradicts α ∈ X. Finally, if β + δ = 0, then β = −δ which
contradicts the antisymmetry of R. This proves that there is no δ, ε ∈ R+ such that γ = δ+ ε. By
maximality of h(|α|) in our choice of α this implies that γ ∈ S. Since β ∈ R− ⊆ S−, we therefore
obtain that β + γ = α /∈ S while β, γ ∈ S, contradicting the closedness of S. This proves that T
is closed and thus it is a Φ-poset. Moreover, we have R 6= T and R 4 T 4 S where S covers R,
which implies that S = T = R r {α}. We prove similarly that if R− 6= S−, there exists α ∈ Φ−

such that S = R ∪ {α}. In both cases, R 4 S is a cover relation in the weak order on R(Φ). �

Corollary 39. In the weak order on P(Φ), the Φ-posets that cover a given Φ-poset R ∈ SC(Φ)
are precisely the relations:

• R r {α} for any α ∈ R+ so that there is no γ, δ ∈ R+ with α = γ + δ,
• R ∪ {β}, for any β ∈ Φ− r R− such that −β /∈ R+ and β + γ ∈ Φ =⇒ β + γ ∈ R for all
γ ∈ R.

Remark 40. We have gathered in Table 1 the number of Φ-posets for the root systems of type An,
Bn, Cn and Dn for small values of n (the other lines of the table will be explained in the next
section). Note that the number of semiclosed, closed and posets differ in type B4 and C4. This
should not come as a surprise since the notion of closed sets used in this paper (Definition 10) is
not preserved when passing from roots to coroots.

type A B/C D (n ≥ 4)

# antisym. 31, 33, 36, 310 [A047656] 31, 34, 39 [A060722] 312 [A053764]

# semiclosed 22, 72, 402, 3572 [A006455] 22, 122, 1722, 53102 / 53182 8882

# closed 4, 29, 355, 6942 [A000798] 4, 55, 1785 / 1803 18291

# Φ-posets 3, 19, 219, 4231 [A001035] 3, 37, 1235 / 1225 219

# WOEP 2, 6, 24, 120 [A000142] 2, 8, 48, 384 [A000165] 192 [A002866]

# WOIP 3, 17, 151, 1899 [A007767] 3, 27, 457 3959

# WOFP 3, 13, 75, 541 [A000670] 3, 17, 147, 1697 [A080253] 865 [A080254]

# COEP 2, 5, 14, 42 [A000108] 2, 6, 20, 70 [A000984] 50 [A051924]

# COIP(bip) 3, 13, 70, 433 3, 18, 138, 1185 622

# COIP(lin) 3, 13, 68, 399 [A000260] 3, 18, 132, 1069 578

# COFP 3, 11, 45, 197 [A001003] 3, 13, 63, 321 [A001850] 233

# BOEP 2, 4, 8, 16, 32 [A000079] 2, 4, 8, 16, 32 [A000079] 16 [A000079]

# BOIP 3, 9, 27, 81 [A000244] 3, 9, 27, 81 [A000244] 81 [A000244]

# BOFP 3, 9, 27, 81 [A000244] 3, 9, 27, 81 [A000244] 81 [A000244]

Table 1. Numerology in types An, Bn, Cn and Dn for small values of n. Further
values can be found using the given references to [OEIS].

https://oeis.org/A047656
https://oeis.org/A060722
https://oeis.org/A053764
https://oeis.org/A006455
https://oeis.org/A000798
https://oeis.org/A001035
https://oeis.org/A000142
https://oeis.org/A000165
https://oeis.org/A002866
https://oeis.org/A007767
https://oeis.org/A000670
https://oeis.org/A080253
https://oeis.org/A080254
https://oeis.org/A000108
https://oeis.org/A000984
https://oeis.org/A051924
https://oeis.org/A000260
https://oeis.org/A001003
https://oeis.org/A001850
https://oeis.org/A000079
https://oeis.org/A000079
https://oeis.org/A000079
https://oeis.org/A000244
https://oeis.org/A000244
https://oeis.org/A000244
https://oeis.org/A000244
https://oeis.org/A000244
https://oeis.org/A000244
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4. Some relevant subposets

In this section, we consider certain specific families of Φ-posets corresponding to the vertices,
the intervals and the faces in the permutahedron (Section 4.1), the generalized associahedra (Sec-
tion 4.2), and the cube (Section 4.3).

4.1. Permutahedron. The W -permutahedron Permp(W ) is the convex hull of the orbit under W
of a point p in the interior of the fundamental chamber of W . It has one vertex w(p) for each
element w ∈W and its graph is the Cayley graph of the set S of simple reflections of W . Moreover,
when oriented in the linear direction w◦(p)− p, its graph is the Hasse diagram of the weak order
on W . Recall that the weak order is defined equivalently for any v, w ∈W by v 4 w if and only if

• `(v) + `(v−1w) = `(w), where `(w) is the length of w, i.e. the minimal length of an
expression of the form ` = s1 · · · sk with s1, . . . , sk ∈ S,

• v is a prefix of w, i.e. there exists u ∈W such that w = vu and `(w) = `(v) + `(u),
• inv(v) ⊆ inv(w), where inv denotes the inversion set inv(w) := Φ+ ∩ w(Φ−),
• there is an oriented path from v(p) to w(p) in the graph of the permutahedron oriented

in the linear direction w◦(p)− p.
In the sequel, we will often drop p from the notation Permp(W ) as the combinatorics of Permp(W )
is independent of p as long as this point is generic.

4.1.1. Elements. For an element w ∈W , we consider the Φ-poset

R(w) :=w(Φ+).

We say that R(w) is a weak order element poset and let WOEP(Φ) := {R(w) | w ∈W} denote the
collection of all such Φ-posets.

Remark 41. Table 1 reports the cardinality of WOEP(Φ) in type An, Bn, Cn and Dn for small
values of n. It is just the order of W , which is known as the product formula

|WOEP(Φ)| = |W | =
∏
i∈[n]

di,

where (d1, . . . , dn) are the degrees of W .

Remark 42. Geometrically, R(w) is the set of roots of Φ not contained in the cone of Permp(W )
at the vertex w(p), i.e. R(w) = Φ r cone {w′(p)− w(p) | w′ ∈W}. See Figure 3.

We now characterize the Φ-posets of WOEP(Φ).

Proposition 43. A Φ-poset R ∈ P(Φ) is in WOEP(Φ) if and only if α ∈ R or −α ∈ R for all α ∈ Φ.

Proof. This is folklore. See for instance [Bou68, Chap. 6, 1.7, Coro. 1]. �

Remark 44. We have already encountered these Φ-posets in Proposition 18: a poset is in WOEP(Φ)
if and only if it is its unique extension. In other words, the maximal extensions of a Φ-poset R are
all in WOEP(Φ), and it is thus natural to consider L(R) := {w ∈W | R ⊆ R(w)}. For example, in
type A, the set L(R) is the set of linear extensions of the poset R.

The following statement connects the subposet of the weak order induced by WOEP(Φ) with
the classical weak order on W , and thus justifies the name in Definition 19.

Proposition 45. For w ∈W , we have inv(w) = Φ+∩−R(w) and R(w) =
(
Φ+ r inv(w)

)
t − inv(w).

In particular, for v, w ∈ W , we have R(v) 4 R(w) in the weak order on WOEP(Φ) if and only
if v 4 w in the weak order on W .

Proof. The first equality is just the definition of inv(w) and the second comes from the fact

that |{α,−α} ∩ R(w)| = 1, so that R(w)− = Φ− r −R(w)
+

= Φ− r − inv(w). Finally, v 4 w in
the weak order on W ⇐⇒ inv(v) ⊆ inv(w) ⇐⇒ Φ+ r inv(v) ⊇ Φ+ r inv(w). This shows the
equivalence with R(v) 4 R(w). �

Remark 46. In fact, R(v) 4 R(w) ⇐⇒ R(v)+ ⊇ R(w)+ ⇐⇒ R(v)− ⊆ R(w)− ⇐⇒ v 4 w.
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Corollary 47. The weak order on WOEP(Φ) is a lattice with meet and join

R(v) ∧WOEP R(w) = R(v ∧W w) and R (v) ∨WOEP R(w) = R(v ∨W w).

The following statement connects this lattice structure on WOEP(Φ) with that on P(Φ), and
is our original motivation to study the weak order on P(Φ).

Proposition 48. The set WOEP(Φ) induces a sublattice of the weak order on P(Φ).

Proof. Let R,S ∈WOEP(Φ) and M = R ∧SC S = (R+ ∪ S+)cl t (R− ∩ S−) so that Mncd = R ∧C S.
Assume by means of contradiction that Mncd is not in WOEP(Φ), and consider α ∈ Φ+ with |h|(α)
minimal such that {α,−α} ∩Mncd = ∅.

Since (Mncd)+ = M+ = (R+ ∪ S+)cl, we have α /∈ R+ and α /∈ S+. Since R,S ∈ WOEP(Φ),
we get −α ∈ R− and −α ∈ S−, so that −α ∈ M−. Therefore −α ∈ M r Mncd, so that there
exists X ⊆ M+ such that ΣX−α ∈ ΦrM. As usual, we assume that X has no vanishing subsum.
Since M+ = (R+ ∪ S+)cl, we can moreover assume that X ⊆ R+ ∪ S+ (up to developing each root
of X). We finally choose an inclusion minimal such subset X of R+ ∪ S+.

Assume first that X = {β}. We have β ∈ R+ ∪ S+, say β ∈ R+. Since −α ∈ M− = R− ∩ S−,
β ∈ R and R is closed, we have β−α ∈ R. Since β−α /∈ M+, we obtain that β−α ∈ Φ−. Therefore,
as β ∈ Φ+, we have |h|(β − α) < |h|(α). By minimality of |h|(α), we obtain that α − β ∈ Mncd.
We conclude that α− β ∈ Mncd and β ∈ R+ ⊆ Mncd while α /∈ Mncd, contradicting the closedness
of Mncd.

Assume now that |X| ≥ 2. Since α /∈ M+ = (R+ ∪ S+)cl and X ⊆ R+ ∪ S+, we obtain
that X ∪ {−α} has no vanishing subsums. Therefore, Proposition 5 ensures that X ∪ {−α} has
at least two strict summable subsets. In particular, there is Y ( X such that ΣY − α ∈ Φ. By
minimality of X, we obtain that ΣY − α ∈ M. We distinguish two cases:

• If ΣY − α ∈ M+, then ΣX − α /∈ M+ while ΣY − α ∈ M+ and X r Y ⊆ M+ contradicts
the closedness of M+.

• If ΣY − α ∈ M−, then |h|(ΣY − α) < |h|(α). By minimality of |h|(α), we obtain that
– either ΣY − α ∈ Mncd, which implies that ΣX− α = (ΣY − α) +

(
Σ(X r Y)

)
∈ M, a

contradiction.
– or α−ΣY ∈ Mncd, which implies that α = (α−ΣY) + ΣY ∈ Mncd, which contradict

our assumption on α.

As we reached a contradiction in all cases, we conclude that Mncd ∈ WOEP(Φ). The proof is
similar for the join. �

4.1.2. Intervals. For w,w′ ∈ W with w 4 w′, we denote by [w,w′] := {v ∈W | w 4 v 4 w′} the
weak order interval between w and w′. We associate to each weak order interval [w,w′] the Φ-poset

R(w,w′) :=
⋂

v∈[w,w′]

R(v) = R(w) ∩ R(w′) = R(w)− t R(w′)+.

Say that R(w,w′) is a weak order interval poset and let WOIP(Φ) := {R(w,w′) | w,w′ ∈W, w 4 w′}
denote the collection of all such Φ-posets. Table 1 reports the cardinality of WOIP(Φ) in type An,
Bn, Cn and Dn for small values of n.

Recall from Remark 44 that we denote by L(R) := {w ∈W | R ⊆ R(w)} the set of maximal
extensions of a Φ-poset R. We will use the following observation to characterize these Φ-posets.

Lemma 49. A Φ-poset R ∈ P(Φ) is in WOIP(Φ) if and only if L(R) has a unique weak order
minimum w (resp. maximum w′) that moreover satisfies R(w)− = R− (resp. R(w′)+ = R+).

Proof. Observe first that Remark 46 implies that R(w,w′) ⊆ R(v) ⇐⇒ R(w)− ⊆ R(v)− and
R(w′)+ ⊆ R(v)+ ⇐⇒ v ∈ [w,w′]. Therefore, L

(
R (w,w′)

)
has a unique weak order minimum w

and a unique weak order maximum w′ and R(w)− = R(w,w′)− while R(w′)+ = R(w,w′)+.
Conversely, if L(R) has a unique weak order minimum w and a unique weak order maximum w′

and R(w)− = R− while R(w′)+ = R+, then R = R(w)− t R(w′)+ = R(w,w′) by definition. �

Remark 50. In Lemma 49, the final hypothesis is crucial as it may happen that R 6=
⋂
E(R)

(consider for example R = {α1 + α2, α2} in type B2).
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We can now characterize the Φ-posets of WOIP(Φ).

Proposition 51. A Φ-poset R ∈ P(Φ) is in WOIP(Φ) if and only if α+ β ∈ R implies α ∈ R or
β ∈ R for all α, β ∈ Φ− and all α, β ∈ Φ+.

Proof. By Lemma 49, this boils down to show that the following assertions are equivalent:

(i) L(R) has a unique weak order minimum w (resp. maximum w′) that moreover satisfies
R(w)− = R− (resp. R(w′)+ = R+),

(ii) α+ β ∈ R implies α ∈ R or β ∈ R for all α, β ∈ Φ− (resp. for all α, β ∈ Φ+).

We prove the result for the maximum and α, β ∈ Φ+. The result for the minimum and α, β ∈ Φ−

follows by symmetry.
Assume first that (ii) holds. Consider the subset of roots S := R+∪(Φ−r−R+). Note that R ⊆ S

(since R is antisymmetric), that S is antisymmetric, and that T 4 S for any antisymmetric T such
that R ⊆ T (as R has been completed with all possible negative roots to obtain S). We moreover
claim that S is closed. Indeed, consider α, β ∈ S such that α+ β ∈ Φ. We distinguish four cases:

• If α ∈ R and β ∈ R, then α+ β ∈ R ⊆ S.
• If α /∈ R and β ∈ R, then α ∈ S r R ⊆ Φ− so that −α ∈ Φ+ r R+. Then,

– if α+β ∈ Φ+, then we have −α ∈ Φ+rR+ and α+β ∈ Φ+ with −α+(α+β) = β ∈ R
so that Condition (ii) ensures that α+ β ∈ R,

– if α+β ∈ Φ−, then −(α+β) /∈ R (as otherwise we would have −α = −(α+β)+β ∈ R,
a contradiction). Therefore, α+ β ∈ Φ− r−R+ ⊆ S.

• If α ∈ R and β /∈ R, the argument is symmetric.
• If α /∈ R and β /∈ R, then α, β ∈ S r R ⊆ Φ− and −α,−β ∈ Φ+ r R. By condition (ii),

this implies that −α− β ∈ Φ+ r R+. Therefore, α+ β ∈ Φ− r−R+ ⊆ S.

We thus obtained in all cases that α+ β ∈ S so that S is closed. We conclude that S is a Φ-poset
and that T 4 S for any antisymmetric T such that R ⊆ T. In particular, S is the unique maximum
of the set E(R) of extensions of R. Moreover, S+ = R+. Using Propositions 18 and 43, we obtain
that there exist w′ ∈W such that S = R(w′). This concludes the proof that (ii) =⇒ (i).

Conversely, assume by means of contradiction that (i) holds but not (ii). Let w′ denote the
weak order maximal element of L(R), and let α, β ∈ Φ+ r R be such that α + β ∈ R. We then
distinguish two cases:

• If α ∈ R(v) for all v ∈ L(R), then α ∈ R(w′)+ = R+. Contradiction.
• Otherwise, there exists v ∈ L(R) such that−α ∈ R(v). Since v 4 w′, this gives−α ∈ R(w′).

Since α+β ∈ R ⊆ R(w′) and R(w′) is closed, we get β ∈ R(w′)+ = R+. Contradiction. �

We now describe the weak order on WOIP(Φ). It corresponds to the Cartesian product order
on intervals of the weak order.

Proposition 52. For any two weak order intervals v 4 v′ and w 4 w′, we have R(v, v′) 4 R(w,w′)
in the weak order on WOIP(Φ) if and only if v 4 w and v′ 4 w′.

Proof. From the definition of R(w,w′) and Remark 46, we have

R(v, v′) 4 R(w,w′) ⇐⇒ R(v, v′)+ ⊇ R(w,w′)+ and R(v, v′)− ⊆ R(w,w′)−

⇐⇒ R(v′)+ ⊇ R(w′)+ and R(v)− ⊆ R(w)−

⇐⇒ v′ 4 w′ and v 4 w. �

Corollary 53. The weak order on WOIP(Φ) is a lattice with meet and join

R(v, v′)∧WOIPR(w,w′) = R(v∧Ww, v′∧Ww′) and R(v, v′)∨WOIPR(w,w′) = R(v∨Ww, v′∨Ww′).

Remark 54. It follows from the expressions of ∧WOIP and ∨WOIP that WOEP(Φ) also induces a
sublattice of WOIP(Φ).

Remark 55. To conclude on intervals, we however observe that the weak order on WOIP(Φ) is
not a sublattice of the weak order on Φ-posets. For example, in type A2 we have

{α1, α1 + α2} ∨C {α2, α1 + α2} = {α1 + α2} while {α1, α1 + α2} ∨WOIP {α2, α1 + α2} = ∅.
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4.1.3. Faces. The faces of the permutohedron Permp(W ) correspond to the cosets of the standard
parabolic subgroups of W . Recall that a standard parabolic subgroup of W is a subgroup WI

generated by a subset I of the simple reflections of W . Its simple roots are the simple roots ∆I

of ∆ corresponding to I, its root system is ΦI = WI(∆I) = Φ ∩ R∆I and its longest element is
denoted by w◦,I . A standard parabolic coset is a coset under the action of a standard parabolic
subgroup WI . Such a standard parabolic coset can be written as xWI where x is its minimal
length coset representative (thus x has no descent in I, see Section 4.3). Each standard parabolic
coset xWI (with I ⊆ S disjoint from the descent set des(x) of x) corresponds to a face

F(xWI) = x
(
Permp(WI)

)
= Permx(p)

(
xWIx

−1
)
.

See Figure 3 for an illustration in type A2 and B2.
In [DHP18], A. Dermenjian, C. Hohlweg and V. Pilaud also associated to each standard par-

abolic coset xWI the set of roots R(xWI) :=x(Φ− ∪ Φ+
I ). These Φ-posets were characterized

in [DHP18] as follows.

Proposition 56 ([DHP18, Coro. 3.9]). The following assertions are equivalent for a subset of
roots R ∈ R(Φ):

(i) R = R(xWI) for some parabolic coset xWI of W ,
(ii) R = {α ∈ Φ | ψ(α) ≥ 0} for some linear function ψ : V → R,

(iii) R = Φ ∩ cone(R) is convex closed and |R ∩ {α,−α}| ≥ 1 for all α ∈ Φ.

Moreover, they used this definition to recover the following order on faces of the permutahedron,
defined initially in type A in [KLN+01] and latter for arbitrary finite Coxeter groups in [PR06].

Proposition 57 ([DHP18]). The following assertions are equivalent for two standard parabolic
cosets xWI = [x, xw◦,I ] and yWJ = [y, yw◦,J ] of W :

• x 4 y and xw◦,I 4 yw◦,J ,

• R(xWI)
+ ⊆ R(yWJ)+ and R(xWI)

− ⊇ R(yWJ)−,
• xWI 4 yWJ for the transitive closure 4 of the two cover relations xWI ≺ xWI∪{s}

for s /∈ I ∪ des(x) and xWI ≺ (xw◦,Iw◦,Ir{s})WIr{s} for s ∈ I.

The resulting order on standard parabolic cosets is the facial weak order defined in [KLN+01,
PR06, DHP18]. This order extends the weak order on W since xW∅ 4 yW∅ ⇐⇒ x 4 y for
any x, y ∈W . Moreover, it defines a lattice on standard parabolic cosets of W with meet and join

xWI ∧FW yWJ = z∧WK∧ where z∧ = x ∧W y and K∧ = des
(
z−1
∧ (xw◦,I ∧W yw◦,J)

)
,

xWI ∨FW yWJ = z∨WK∨ where z∨ = xw◦,I ∨W yw◦,J and K∨ = des
(
z−1
∨ (x ∨W y)

)
.

Note that R(xWI) is not a Φ-poset as it is not antisymmetric when I 6= ∅. Here, we will
therefore associate to xWI the set of roots

R(xWI) := Φ r R(xWI) = x(Φ+ r Φ+
I ).

Note that R(xWI) coincides with the weak order interval poset R(x, xw◦,I). We say that R(xWI)
is a weak order face poset and we let WOFP(Φ) := {R(xWI) | xWI standard parabolic coset of W}
denote the collection of all such Φ-posets. Table 1 reports the cardinality of WOFP(Φ) in type An,
Bn, Cn and Dn for small values of n.

Remark 58. Geometrically, R(xWI) is the set of roots of Φ not contained in the cone of Permp(W )
at the face F(xWI), i.e. R(xWI) = Φ r cone {w′(p)− w(p) | w ∈ xWI , w

′ ∈W}. See Figure 3.

Proposition 56 yields the following characterization of the Φ-posets in WOFP(Φ).

Proposition 59. The following assertions are equivalent for a subset of roots R ∈ R(Φ):

(i) R is a weak order face poset of WOFP(Φ),
(ii) R = {α ∈ Φ | ψ(α) < 0} for some linear function ψ : V → R,

(iii) R = Φ ∩ cone(R) is convex closed and |R ∩ {α,−α}| ≤ 1 for all α ∈ Φ.

Proof. This immediately follows from the characterization of R(xWI) in Proposition 56 and the
definition R(xWI) := Φ r R(xWI). �
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Figure 3. The sets R(xWI) of the standard parabolic cosets xWI in
type A2 (left) and B2 (right). Note that positive roots point downwards.

We now observe that the weak order induced by WOFP(Φ) corresponds to the facial weak order
of [PR06, DHP18].

Proposition 60. For any standard parabolic cosets xWI and yWJ , we have R(xWI) 4 R(yWJ)
in the weak order on WOFP(Φ) if and only if xWI 4 yWJ in facial weak order.

Proof. By definition of R(xWI) and Proposition 57, we have

R(xWI) 4 R(yWJ) ⇐⇒ R(xWI)
+ ⊇ R(yWJ)+ and R (xWI)

− ⊆ R(yWJ)−

⇐⇒ R(xWI)
+ ⊆ R(yWJ)+ and R(xWI)

− ⊇ R(yWJ)−

⇐⇒ xWI 4 yWJ . �

Corollary 61. The weak order on WOFP(Φ) is a lattice with meet and join

R(xWI)∧WOFPR(yWJ) = R(xWI∧FW yWJ) and R(xWI)∨WOFPR(yWJ) = R(xWI∨FW yWJ).

Remark 62. To conclude, note that the weak order on WOFP(Φ) is a lattice but not a sublattice
of the weak order on P(Φ), nor on WOIP(Φ). This was already observed in [CPP17, Rem. 31] in
type A. For example, in type A2 we have

{−α1, α2} ∨C ∅ = {−α1, α2} ∨WOIP ∅ = {α2} while {−α1, α2} ∨WOIP ∅ = {α2, α1 + α2}.

4.2. Generalized associahedra. We now consider Φ-posets corresponding to the vertices, the
intervals and the faces of the generalized associahedra of type Φ. These polytopes provide geo-
metric realizations of the type Φ cluster complex, in connection to the type Φ cluster algebra of
S. Fomin and A. Zelevinsky [FZ02, FZ03a]. A first realization was constructed by F. Chapoton,
S. Fomin and A. Zelevinsky in [CFZ02] based on the compatibility fan of [FZ03b, FZ03a]. An
alternative realization was constructed later by C. Hohlweg, C. Lange and H. Thomas in [HLT11]
based on the Cambrian fan of N. Reading and D. Speyer [RS09].

Although the sets of roots that we consider in this section have a strong connection to these
geometric realizations (see Remarks 64 and 78), we do not really need for our purposes the precise
definition of the geometry of these associahedra or of these Cambrian fans. We rather need
a combinatorial description of their vertices and faces. The combinatorial model behind these
constructions is the Cambrian lattice on sortable elements as developed by N. Reading [Rea06,
Rea07a, Rea07b], which we briefly recall now.

Let c be a Coxeter element, i.e. the product of the simple reflections of W in an arbitrary order.
The c-sorting word of an element w ∈W is the lexicographically smallest reduced expression for w



THE WEAK ORDER ON WEYL POSETS 17

in the word c∞ := ccccc · · · . We write this word as w = cI1 . . . cIk where cI is the subword of c
consisting only of the simple reflections in I. An element w ∈W is c-sortable when these subsets
are nested: I1 ⊇ I2 ⊇ · · · ⊇ Ik. An element w ∈ W is c-antisortable when ww◦ is (c−1)-sortable.
See [Rea07a] for details on Coxeter sortable elements and their connections to other Coxeter-
Catalan families.

For an element w ∈ W , we denote by πc↓(w) the maximal c-sortable element below w in weak

order and by π↑c (w) the minimal c-antisortable element above w in weak order. The projection
maps πc↓ and π↑c can also be defined inductively, see [Rea07b]. Here, we only need that these maps

are order preserving projections from W to sortable (resp. antisortable) elements, and that their
fibers are intervals of the weak order of the form [πc↓(w), π↑c (w)]. Therefore, they define a lattice
congruence ≡c of the weak order, called the c-Cambrian congruence. The quotient of the weak
order by this congruence ≡c is the c-Cambrian lattice. It is isomorphic to the sublattice of the
weak order induced by c-sortable (or c-antisortable) elements. In particular, for two c-Cambrian
classes X,Y , we have X 4 Y in the c-Cambrian lattice ⇐⇒ there exists x ∈ X and y ∈ Y such
that x 4 y in the weak order on W ⇐⇒ πc↓(X) 4 πc↓(Y ) ⇐⇒ π↑c (X) 4 π↑c (Y ). We denote
by X ∧c Y and X ∨c Y the meet and join of the two c-Cambrian classes X,Y .

Let w◦(c) = q1 . . . qN denote the c-sorting word for the longest element w◦. It defines an order
on Φ+ by αq1 <c q1(αq2) <c q1q2(αq3) <c · · · <c q1 . . . qN−1(αqN ). A subset R of positive roots is
called c-aligned if for any α <c β such that α+ β ∈ R, we have α ∈ R. It is known that w ∈W is
c-sortable if and only if its inversion set inv(w) is c-aligned [Rea07b].

4.2.1. Elements. For a c-Cambrian class X, we consider the Φ-poset

R(X) :=
⋂
w∈X

R(w) = R
(
πc↓(X)

)
∩ R

(
π↑c (X)

)
= R

(
πc↓(X)

)− t R
(
π↑c (X)

)+
.

Note that by definition, R(X) coincides with the weak order interval poset R
(
πc↓(X), π↑c (X)

)
.

We say that R(X) is a c-Cambrian order element poset and we denote the collection of all such
Φ-posets by COEP(c) := {R(X) | X c-Cambrian class}.

Remark 63. Table 1 reports the cardinality of COEP(c) in type An, Bn, Cn and Dn for small
values of n. Observe that this cardinality is independent of the choice of the Coxeter element c,
and is the Coxeter-Catalan number (counting many related objects from clusters of type Φ to
non-crossing partitions of W ):

|COEP(c)| = Cat(W ) =
∏
i∈[n]

1 + di
di

,

where (d1, . . . , dn) still denote the degrees of W .

Remark 64. Geometrically, R(X) is the set of roots of Φ not contained in the cone of the
vertex corresponding to X in the generalized associahedron Asso(c) of C. Hohlweg, C. Lange and
H. Thomas in [HLT11]. See Figure 4.

Let us now take a little detour to comment on a conjectured characterization of these Φ-posets,
inspired from a similar characterization in type A proved in [CPP17, Prop. 60]. Note that it uses
the c-Cambrian order interval posets formally defined in the next section and characterized in
Proposition 72. It also requires the notion of c-snakes. A c-snake in a Φ-poset R is a sequence of
roots α1, . . . , αp ∈ R such that

• either α2i ∈ Φ−, α2i+1 ∈ Φ+ and α1 <c −α2 >c α3 <c −α4 >c . . .
• or α2i ∈ Φ+, α2i+1 ∈ Φ− and −α1 >c α2 <c −α3 >c α4 <c . . .

A c-snake decomposition of a root α in R is a decomposition α =
∑
i∈[p] λiαi, where λi ∈ N

and α1, . . . , αp is a c-snake of R. The following conjectural characterization of c-Cambrian order
element posets was proved in type A in [CPP17, Prop. 60] and has been checked computationally
for small Coxeter types using [Sd16].

Conjecture 65. A Φ-poset R ∈ P(Φ) is in COEP(c) if and only if it is in COIP(c) (characterized
in Proposition 72) and any root α ∈ Φ admits a c-snake decomposition in R.



18 JOËL GAY AND VINCENT PILAUD

Even without this characterization, we can at least describe the weak order on these posets.

Proposition 66. For any two c-Cambrian classes X and Y , we have R(X) 4 R(Y ) in the weak
order on COEP(c) if and only if X 4 Y in the c-Cambrian lattice.

Proof. By definition, a c-Cambrian class X admits both a minimal element πc↓(X) and a maximal

element π↑c (X). Therefore, R(X) = R
(
πc↓(X), π↑c (X)

)
∈WOIP(Φ). Moreover, for two c-Cambrian

classes X,Y , Proposition 52 implies that R(X) 4 R(Y ) in the weak order on WOIP(Φ) if and only
if πc↓(X) 4 πc↓(Y ) and π↑c (X) 4 π↑c (Y ) in weak order on W . But this is equivalent to X 4 Y in
the c-Cambrian lattice as mentioned above. �

Remark 67. In fact, R(X) 4 R(Y ) ⇐⇒ R(X)+ ⊇ R(Y )+ ⇐⇒ R(X)− ⊆ R(Y )− ⇐⇒ X 4 Y .

Corollary 68. For any Coxeter element c, the weak order on COEP(c) is a lattice with meet and join

R(X) ∧COEP(c) R(Y ) = R(X ∧c Y ) and R(X) ∨COEP(c) R(Y ) = R(X ∨c Y ).

Although it anticipates on the c-Cambrian order interval posets studied in the next section, let
us state the following result that will be a direct consequence of Corollary 74 and Proposition 75.

Proposition 69. For any Coxeter element c, the set COEP(c) induces a sublattice of the weak
order on COIP(c) and thus also a sublattice of the weak order on WOIP(Φ).

We conclude our discussion on COEP(c) with one more conjecture, which was proved in type A
in [CPP17, Coro. 88] and checked computationally for small Coxeter types using [Sd16]. Note that
there is little hope to attack this conjecture before proving either Conjecture 65 or Conjecture 76.

Conjecture 70. For any Coxeter element c, the set COEP(c) induces a sublattice of the weak
order on P(Φ).

4.2.2. Intervals. For two c-Cambrian classes X,X ′ with X 4 X ′ in the c-Cambrian order, we de-
note by [X,X ′] := {Y c-Cambrian class | X 4 Y 4 X ′} the c-Cambrian order interval between X
and X ′. We associate to each c-Cambrian order interval [X,X ′] the Φ-poset

R(X,X ′) :=
⋂

Y ∈[X,X′]

R(Y ) = R(X) ∩ R(X ′) = R(X)− ∪ R(X ′)+.

Note that by definition, R(X,X ′) coincides with the weak order interval poset R
(
πc↓(X), π↑c (X ′)

)
.

We say that R(X,X ′) is a c-Cambrian order interval poset and we denote the collection of all such
Φ-posets by COIP(c) := {R(X,X ′) | X,X ′ c-Cambrian classes, X 4 X ′}.

Remark 71. Table 1 reports the cardinality of COIP(c) in type An, Bn, Cn and Dn for small
values of n and different choices of the Coxeter element c. We have denoted by bip the bipartite
Coxeter element, and by lin the linear one (with the special vertex first in type B/C and the two
special vertices first in type D). Note that in contrast to COEP(c), the cardinality of COIP(c)
depends on the choice of the Coxeter element c (this comes from the fact that the c-Cambrian
lattices for different choices of Coxeter element c are not isomorphic and have distinct intervals,
although they have the same number of elements).

We now characterize the Φ-posets in COIP(c).

Proposition 72. A Φ-poset R ∈ P(Φ) is in COIP(c) if and only if α+ β ∈ R and α <c β implies
β ∈ R for all α, β ∈ Φ+ (resp. α ∈ R for all α, β ∈ Φ−).

Proof. Consider a Φ-poset R ∈ P(Φ). By definition, R is in COIP(c) if and only if R = R(w,w′)
is in WOIP(Φ) where w is c-sortable while w′ is c-antisortable. However, w is c-sortable if and

only if inv(w) = Φ+ ∩ −R(w) = −R(w)
−

= −R(w,w′)
−

= −R− is c-aligned, i.e. if and only
if α + β ∈ R− =⇒ α ∈ R− for any α <c β. Similarly, w′ is c-antisortable if and only
if α+ β ∈ R+ =⇒ β ∈ R+ for any α <c β. �

Proposition 73. For two c-Cambrian intervals X 4 X ′ and Y 4 Y ′, we have R(X,X ′) 4 R(Y, Y ′)
in the weak order on COIP(c) if and only if X 4 Y and X ′ 4 Y ′ in the c-Cambrian order.
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Proof. By definition of R(X,X ′) and Remark 67, we obtain

R(X,X ′) 4 R(Y, Y ′) ⇐⇒ R(X,X ′)+ ⊇ R(Y, Y ′)+ and R(X,X ′)− ⊆ R(Y, Y ′)−

⇐⇒ R(X ′)+ ⊇ R(Y ′)+ and R(X)− ⊆ R(Y )−

⇐⇒ X ′ 4 Y ′ and X 4 Y. �

Corollary 74. For any Coxeter element c, the weak order on COIP(c) is a lattice with meet and join

R(X,X ′)∧COIP(c)R(Y, Y ′) = R(X∧cY,X ′∧cY ′) and R(X,X ′)∨COIP(c)R(Y, Y ′) = R(X∨cY,X ′∨cY ′).

The following statement connects this lattice structure on COIP(c) with that on WOIP(Φ).

Proposition 75. For any Coxeter element c, the set COIP(c) induces a sublattice of the weak
order on WOIP(Φ).

Proof. Consider two c-Cambrian intervals X 4 X ′ and Y 4 Y ′. By Corollary 53, we have

R(X,X ′) ∧WOIP R(Y, Y ′) = R
(
πc↓(X), π↑c (X ′)

)
∧WOIP R

(
πc↓(Y ), π↑c (Y ′)

)
= R

(
πc↓(X) ∧W πc↓(Y ), πc↓(X

′) ∧W πc↓(Y
′)
)

= R
(
πc↓(X ∧c Y ), πc↓(X

′ ∧c Y ′)
)
,

where the last equality follows from the fact that c-sortable elements (resp. c-antisortable elements)
induce a sublattice of the weak order. �

The following conjecture indicates that COIP(c) behaves much better than WOIP(Φ) as sub-
poset of P(Φ). This conjecture unfortunately remains open for now but was proved in type A
in [CPP17, Coro. 82] and verified for small Coxeter types using [Sd16]. Note that it is not implied
by Proposition 75 since WOIP(Φ) is not a sublattice of P(Φ). Observe also that it would imply
Conjecture 70.

Conjecture 76. For any Coxeter element c, the set COIP(c) induces a sublattice of the weak
order on P(Φ).

4.2.3. Faces. To remain at a combinatorial level and avoid geometric descriptions (see Remark 78),
we consider a combinatorial model for the faces of the associahedron Asso(c) that rely on results
of [DHP18, Sec. 4]. The c-Cambrian congruence≡c extends to the c-Cambrian facial congruence on
all faces of the permutahedron Perm(W ) defined by xWI ≡c yWJ ⇐⇒ x ≡c y and xw◦,I ≡c yw◦,J .
This relation is a lattice congruence of the facial weak order on faces of the permutahedron Perm(W )
[DHP18, Prop. 4.12] and we denote by Πc

↓ and Π↑c its down and up projections. Moreover, the

c-Cambrian facial congruence classes precisely correspond to the faces of the associahedron Asso(c)
of [HLT11].

For a c-Cambrian facial congruence class F , we consider the Φ-poset

R(F ) :=
⋂

xWI∈F
R(xWI) = R

(
Πc
↓(F )

)− ∩ R
(
Π↑c(F )

)+
.

Note that if Πc
↓(F ) = xWI and Π↑c(F ) = yWJ , then R(F ) coincides with the weak order interval

poset R(x, yw◦,J). We say that R(F ) is a c-Cambrian order face poset and denote the set of such
Φ-posets by COFP(c) := {R(F ) | F c-Cambrian facial congruence class}.

Remark 77. Table 1 reports the cardinality of COFP(c) in type An, Bn, Cn and Dn for small
values of n. Note that this cardinality is again independent of the choice of the Coxeter element c
(it is the number of faces in the generalized associahedron, i.e. the number of partial clusters in
the corresponding cluster algebra).

Remark 78. Geometrically, R(F ) is the set of roots of Φ not contained in the cone of the face F
in the generalized associahedron Asso(c) of C. Hohlweg, C. Lange and H. Thomas in [HLT11]. See
Figure 4.
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Figure 4. The sets R(F ) for the faces F of the c-associahedron in type A2 (left)
and B2 (right). Note that positive roots point downwards.

It would be interesting to have a characterization of the Φ-posets in COFP(c) similar to that
given in [CPP17] in type A (see [CPP17, Prop. 46] for the Tamari faces and [CPP17, Prop. 63]
for the type A Cambrian faces in general).

Here, we just connect the weak order on COFP(c) with the facial weak order on the associahe-
dron Asso(c) considered in [DHP18, Sec. 4.7.2]. This order is the quotient of the facial weak order
on the faces of the permutahedron Perm(W ) by the c-Cambrian facial congruence ≡c.

Proposition 79. For any two c-Cambrian facial congruence classes F and G, we have R(F ) 4 R(G)
in the weak order on COFP(c) if and only if F 4 G in the c-Cambrian facial lattice.

Proof. This is immediate from the definitions:

R(F ) 4 R(G) ⇐⇒ R
(
Π↑c(F )

)+ ⊇ R
(
Π↑c(G)

)+
and R

(
Πc
↓(F )

)− ⊆ R
(
Πc
↓(G)

)−
⇐⇒ Π↑c(F ) 4 Π↑c(G) and Πc

↓(F ) 4 Πc
↓(G)

⇐⇒ F 4 G. �

Corollary 80. For any Coxeter element c, the weak order on COFP(c) is a lattice.

Remark 81. To conclude, note that the weak order on COFP(c) is a lattice but not a sublattice of
the weak order on P(Φ), nor on WOIP(Φ), nor on COIP(c). This was already observed in [CPP17,
Rem. 47] in type A. For example, consider the example of Remark 62 for the Coxeter element s1s2

in type A2.

4.3. Cube. To conclude this paper, we consider Φ-posets corresponding to the vertices, the inter-
vals and the faces of the cube (see Remarks 82 and 88), corresponding to the descent congruence
on W . Recall that a (left) descent of w ∈ W is a simple root α ∈ ∆ such that sαw 4 w, or
equivalently α ∈ inv(w). The descent set of w is des(w) := inv(w) ∩∆. The descent class of w is
the set of elements of W that have precisely the same descent set as w. Note that descent classes
correspond to subsets of ∆: for A ⊆ ∆, we denote by ZA the descent class of elements of W with A
as descent set. These classes define the descent congruence on W , whose down and up projections

we denote by πd↓ and π↑d.

4.3.1. Elements. For a subset A ⊆ ∆ corresponding to the descent class ZA, we consider the
Φ-poset

R(A) :=
(
−A t (∆ rA)

)cl
= Φ ∩ N

(
−A t (∆ rA)

)
=
⋂

w∈ZA

R(w) = R
(
πd↓(ZA)

)
∩ R

(
π↑d(ZA)

)
= R

(
πd↓(ZA)

)− t R
(
π↑d(ZA)

)+
.
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Note that by definition, R(A) coincides with the weak order interval poset R
(
πc↓(ZA), π↑c (ZA)

)
.

We say that R(A) is a boolean order element poset and we denote the collection of all such Φ-posets
by BOEP(Φ) := {R(A) | A ⊆ ∆}. Note that there are 2n many Φ-posets in BOEP(Φ), see Table 1.

Remark 82. Geometrically, R(A) is the set of roots of Φ not contained in the cone of the vertex
corresponding to A in the parallelepiped generated by the simple roots ∆. See Figure 5.

These Φ-posets are characterized in the next statement. Its proof is delayed to Section 4.3.2 as
it requires the characterization of the boolean order interval posets.

Proposition 83. A Φ-poset R ∈ P(Φ) is in BOEP(Φ) if and only if

(i) α+ β ∈ R =⇒ α ∈ R and β ∈ R for all α, β ∈ Φ+ and all α, β ∈ Φ−,
(ii) α ∈ R or −α ∈ R for any simple root α ∈ ∆.

The following statement characterizes the weak order induced by BOEP(Φ).

Proposition 84. For any subsets A,B ⊆ ∆, we have R(A) 4 R(B) in the weak order on BOEP(Φ)
if and only if A ⊆ B in boolean order.

Proof. From the definition R(A) = Φ ∩ N
(
−A t (∆ rA)

)
, we obtain that

R(A) 4 R(B) ⇐⇒ R(A)+ ⊇ R(B)+ and R(A)− ⊆ R(B)−

⇐⇒ ∆ rA ⊇ ∆ rB and A ⊆ B. �

Remark 85. In fact, R(A) 4 R(B) ⇐⇒ R(A)+ ⊇ R(B)+ ⇐⇒ R(A)− ⊆ R(B)− ⇐⇒ A ⊆ B.

Corollary 86. The weak order on BOEP(Φ) is a lattice with meet and join

R(A) ∧BOEP R(B) = R(A ∩B) and R (A) ∨BOEP R(B) = R(A ∪B).

Although it anticipates on the boolean order interval posets studied in the next section, let us
state the following result that will be a direct consequence of Corollary 91 and Proposition 92.

Proposition 87. The set BOEP(Φ) induces a sublattice of the weak order on BOIP(Φ) and there-
fore on the weak orders on P(Φ), on WOIP(Φ) and on COIP(c) for all Coxeter element c.

4.3.2. Intervals and Faces. We finally consider intervals in the boolean order, or equivalently faces
of the cube (see Remark 88). For two subsets A ⊆ A′ of ∆, we consider

R(A,A′) := =
⋂

A⊆B⊆A′

R(B) = R(A) ∩ R(A′) = R(A)− t R(A′)+.

Note that by definition, R(A,A′) coincides with the weak order interval poset R
(
πc↓(ZA), π↑c (ZA′)

)
.

Observe also that BOIP(Φ) ⊆ COIP(c) for any Coxeter element c since the descent congruence
coarsens the c-Cambrian congruence. We say that R(A,A′) is a boolean order interval poset and
we denote the set of such Φ-posets by BOIP(Φ) := {R(A,A′) | A ⊆ A′ ⊆ ∆}.

Remark 88. Geometrically, R(A,A′) is the set of roots of Φ not contained in the cone of the face
corresponding to A ⊆ A′ in the parallelepiped generated by the simple roots ∆. See Figure 5.

These Φ-posets are characterized as follows.

Proposition 89. A Φ-poset R ∈ P(Φ) is in BOIP(Φ) if and only if α+ β ∈ R =⇒ α ∈ R and β ∈ R
for all α, β ∈ Φ+ and all α, β ∈ Φ−.

Proof. Consider first R(A,A′) ∈ BOIP(Φ) and α+β ∈ R(A,A′) with α, β ∈ Φ−. For γ ∈ ∆, denote
by [α : γ] the coefficient of γ in the decomposition of α on the simple root basis. If [α : γ] 6= 0,
then [α + β : γ] 6= 0 which implies that γ ∈ A since α+ β ∈ R(A,A′)− = R(A)− ⊆ N(−A).
We therefore obtain that α ∈ Φ ∩ N(−A) = R(A)− ⊆ R(A,A′). By symmetry, we conclude
that α ∈ R(A,A′) and β ∈ R(A,A′) for any α, β ∈ Φ− such that α + β ∈ R(A,A′). The proof is
similar when α, β ∈ Φ+.

Conversely, consider R ∈ P(Φ) such that α+ β ∈ R =⇒ α ∈ R and β ∈ R for all α, β ∈ Φ+

and all α, β ∈ Φ−. Define A := − (R ∩ −∆) and A′ := Φ r (R ∩∆). We claim that R = R(A,A′),
i.e. that R− = R(A)− and R+ = R(A′)+. We prove the latter, the former is similar. Observe first



22 JOËL GAY AND VINCENT PILAUD

Figure 5. The sets R(F ) for the faces F of the cube in type A2 (left) and B2

(right). Note that positive roots point downwards.

that ∆rA′ ⊆ R, so that R(A′)+ = Φ∩N(∆rA′) ⊆ R since R is closed. Conversely, we prove by
induction on |γ| that any γ ∈ R+ belongs to R(A′)+. Consider γ ∈ R+, and let X be the multiset of
simple roots such that γ = ΣX. By Theorem 4, there exists α ∈ X such that β = Σ(Xr{α}) ∈ Φ.
Since α+ β = γ ∈ R, we get that α ∈ R and β ∈ R. We have α ∈ ∆ ∩ R = Φ rA′ ⊆ R(A′)+ and
β ∈ R(A′)+ (by induction hypothesis). Since R(A′)+ is closed, this shows γ = α+ β ∈ R(A′)+. �

We are now in position to provide the proof of Proposition 83 postponed in Section 4.3.1.

Proof of Proposition 83. Observe first that for A ⊆ ∆, the boolean order element poset R(A)
satisfies (i) by Proposition 89 and (ii) since α ∈ R(A) if α ∈ ∆ rA and −α ∈ R(A) if α ∈ A.

Conversely, consider a Φ-poset R satisfying (i) and (ii). The proof of Proposition 89 ensures that
R = R(A,A′) where A := − (R ∩ −∆) and A′ := Φ r (R ∩∆). Condition (ii) ensures that A = A′

so that R = R(A,A) = R(A) ∈ BOEP(Φ). �

The following statement characterizes the weak order induced by BOIP(Φ).

Proposition 90. For two boolean intervals A ⊆ A′ and B ⊆ B′, we have R(A,A′) 4 R(B,B′) in
the weak order on BOIP(Φ) if and only if A ⊆ B and A′ ⊆ B′ in boolean order.

Proof. Using Remark 85, we obtain that

R(A,A′) 4 R(B,B′) ⇐⇒ R(A,A′)+ ⊇ R(B,B′)+ and R(A,A′)− ⊆ R(B,B′)−

⇐⇒ R(A′)+ ⊇ R(B′)+ and R(A)− ⊆ R(B)−

⇐⇒ ∆ rA′ ⊇ ∆ rB′ and A ⊆ B
⇐⇒ A′ ⊆ B′ and A ⊆ B. �

Corollary 91. The weak order on BOIP(Φ) is a lattice with meet and join

R(A,A′)∧BOIP R(B,B′) = R(A∩B,A′∩B′) and R(A,A′)∨BOIP R(B,B′) = R(A∪B,A′∪B′).
We conclude with a connection between the lattice structure of the weak orders on BOIP(Φ)

with that on P(Φ), WOIP(Φ) and COIP(c).

Proposition 92. The set BOIP(Φ) induces a sublattice of the weak order on P(Φ), on WOIP(Φ)
and on COIP(c) for all Coxeter element c.

Proof. Let R = R(A,A′) and S = R(B,B′) be two boolean order interval posets, and consider
M = R ∧SC S. Observe that

M− = R− ∩ S− = −Acl ∩ −Bcl = −(A ∩B)cl

and M+ = (R+ ∪ S+)cl =
(
(∆ rA′)cl ∪ (∆ rB′)cl

)cl
=
(
∆ r (A′ ∩B′)

)cl
.

In other words, we obtain that M = R ∧BOIP S is already in BOIP(Φ), and consequently

R ∧C S = Mncd = M = R ∧BOIP S ∈ BOIP(Φ).

As BOIP(Φ) ⊆ COIP(c) ⊆ WOIP(Φ) ⊆ P(Φ), we have R ∧BOIP S 4 R ∧COIP(c) S 4 R ∧WOIP S 4
R ∧BOIP S so that all these meets coincide. The proof is similar for the join. �
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