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ABSTRACT. We investigate a poset structure that extends the weak order on
a finite Coxeter group W to the set of all faces of the permutahedron of W.
We call this order the facial weak order. We first provide two alternative
characterizations of this poset: a first one, geometric, that generalizes the
notion of inversion sets of roots, and a second one, combinatorial, that uses
comparisons of the minimal and maximal length representatives of the cosets.
These characterizations are then used to show that the facial weak order is in
fact a lattice, generalizing a well-known result of A. Bjorner for the classical
weak order. Finally, we show that any lattice congruence of the classical weak
order induces a lattice congruence of the facial weak order, and we give a
geometric interpretation of their classes. As application, we describe the facial

boolean lattice on the faces of the cube and the facial Cambrian lattice on the

faces of the corresponding generalized associahedron.
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1. INTRODUCTION

The (right) Cayley graph of a Coxeter system (W, S) is naturally oriented by
the (right) weak order on W: an edge is oriented from w to ws if s € S is
such that ¢(w) < £(ws), see [BB05, Chapter 3] for details. A celebrated result
of A. Bjorner [Bj684] states that the weak order is a complete meet-semilattice and
even a complete ortholattice in the case of a finite Coxeter system. The weak order is
a very useful tool to study Coxeter groups as it encodes the combinatorics of reduced
words associated to (W, S), and it underlines the connection between the words and
the root system via the notion of inversion sets, see for instance [Dyell, HL15] and
the references therein.

In the case of a finite Coxeter system, the Cayley graph of W is isomorphic to the
1-skeleton of the W-permutahedron. Then the weak order is given by an orientation
of the 1-skeleton of the W-permutahedron associated to the choice of a linear form
of the ambiant Euclidean space. This point of view was very useful in order to build
generalized associahedra out of a W-permutahedron using N. Reading’s Cambrian
lattices, see [Real2, HLT11, Hoh12].

In this paper, we study a poset structure on all faces of the W-permutahedron
that we call the (right) facial weak order. This order was introduced by D. Krob,
M. Latapy, J.-C. Novelli, H.-D. Phan and S. Schwer in [KLNT01] for the symmetric
group then extended by P. Palacios and M. Ronco in [PR06] for arbitrary finite
Coxeter groups. Recall that the faces of the W-permutahedron are naturally pa-
rameterized by the Coxeter complex Py, which consists of all standard parabolic
cosets W/Wy for I C S. The aims of this article are:

(1) To give two alternative characterizations of the facial weak order (see The-
orem 3.14): one in terms of root inversion sets of parabolic cosets which
extend the notion of inversion sets of elements of W, and the other using
weak order comparisons between the minimal and maximal representatives
of the parabolic cosets. The advantage of these two definitions is that they
give immediate global comparison, while the original definition of [PRO6]
uses cover relations.

(2) To show that the facial weak order is a lattice (see Theorem 3.19), whose
restriction to the vertices of the permutahedron produces the weak order
as a sublattice. This result was motivated by the special case of type A
proved in [KLNTO01].

(3) To discuss generalizations of these statements to infinite Coxeter groups via
the Davis complex (see Theorem 3.30).

(4) To show that any lattice congruence = of the weak order naturally extends
to a lattice congruence = of the facial weak order (see Theorem 4.11). This
provides a complete description (see Theorem 4.22) of the simplicial fan F=
associated to the weak order congruence = in N. Reading’s work [Rea05]:
while the classes of = correspond to maximal cones in F=, the classes of =
correspond to all cones in F=. Relevant illustrations are given for Cambrian
lattices and fans [Rea06, RS09a], which extend to facial Cambrian lattices
on the faces of generalized associahedra (see Theorem 4.30).

The results of this paper are based on combinatorial properties of Coxeter groups,
parabolic cosets, and reduced words. However, their motivation and intuition come
from the geometry of the Coxeter arrangement and of the W-permutahedron. So
we made a point to introduce enough of the geometrical material to make the
geometric intuition clear.
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2. PRELIMINARIES

We start by fixing notations and classical definitions on finite Coxeter groups.
Details can be found in textbooks by J. Humphreys [Hum90] and A. Bjorner and
F. Brenti [BB05]. The reader familiar with finite Coxeter groups and root systems
is invited to proceed directly to Section 3.

2.1. Finite reflection groups and Coxeter systems. Let (V,(- | -)) be an n-
dimensional Euclidean vector space. For any vector v € V ~\ {0}, we denote by s,
the reflection interchanging v and —v while fixing the orthogonal hyperplane point-
wise. Remember that ws, = s,,(,yw for any vector v € V' \. {0} and any orthogonal
transformation w of V.

We consider a finite reflection group W acting on V| that is, a finite group gener-
ated by reflections in the orthogonal group O(V'). The Cozxeter arrangement of W
is the collection of all reflecting hyperplanes. Its complement in V' is a union of
open polyhedral cones. Their closures are called chambers. The Coxeter fan is the
polyhedral fan formed by the chambers together with all their faces. This fan is
complete (its cones cover V') and simplicial (all cones are simplicial), and we can as-
sume without loss of generality that it is essential (the intersection of all chambers
is reduced to the origin). We fix an arbitrary chamber C which we call the fun-
damental chamber. The n reflections orthogonal to the facet defining hyperplanes
of C are called simple reflections. The set S of simple reflections generates W. The
pair (W, S) forms a Cozeter system. See Figure 1 for an illustration of the Coxeter
arrangements of types As, Bs, and Hj.

2.2. Roots and weights. We consider a root system ® for W, i.e., a set of vec-
tors invariant under the action of W and containing precisely two opposite roots
orthogonal to each reflecting hyperplane of W. The simple roots A are the roots
orthogonal to the defining hyperplanes of C and pointing towards C. They form a
linear basis of V. The root system @ splits into the positive roots ®+:= ® N cone(A)
and the negative roots @~ := P Ncone(—A) = —P*, where cone(X) denotes the set
of nonnegative linear combinations of vectors in X C V. In other words, the posi-
tive roots are the roots whose scalar product with any vector of the interior of the

F1cURE 1. The type Asz, Bs, and H3 Coxeter arrangements.
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fundamental chamber C is positive, and the simple roots form the basis of the cone
generated by ®t. Each reflection hyperplane is orthogonal to one positive and one
negative root. For a reflection s € R, we set as to be the unique positive root
orthogonal to the reflection hyperplane of s, i.e., such that s = s,,.

We denote by oY :==2as/{as | as) the coroot corresponding to a; € A, and by
AY:= {a) | s € S} the coroot basis. The vectors of its dual basis V:= {w, | s € S}
are called fundamental weights. In other words, the fundamental weights of W
are defined by (aY | wy) = ds—¢ for all s,t € S. Geometrically, the fundamental
weight wy gives the direction of the ray of the fundamental chamber C not contained
in the reflecting hyperplane of s. We let Q:=W (V) = {w(ws) | w e W, s € S}
denote the set of all weights of W, obtained as the orbit of the fundamental weights
under W.

2.3. Length, reduced words and weak order. The length ¢(w) of an ele-
ment w € W is the length of the smallest word for w as a product of generators in S.
A word w = s1 -+ - s with s1,..., s, € S is called reduced if k = £(w). For u,v € W,
the product ww is said to be reduced if the concatenation of a reduced word for u
and of a reduced word for v is a reduced word for wv, i.e., if £(uv) = £(u) + £(v).
We say that u € W is a prefix of v € W if there is a reduced word for u that is the
prefix of a reduced word for v, i.e., if £(u='v) = £(v) — £(u).
The (right) weak order is the order on W defined equivalently by

u<v <= l(u)+Llu"tv) =L(v) <= uis a prefix of v.

A. Bjorner shows in [Bjo84] that the weak order defines a lattice structure on W
(finite Coxeter group), with minimal element e and maximal element w, (which
sends all positive roots to negative ones and all positive simple roots to negative
simple ones). The conjugation w — weoww, defines a weak order automorphism
while the left and right multiplications w +— wow and w +— ww, define weak order
anti-automorphisms. We refer the reader to [BB05, Chapter 3] for more details.

The weak order encodes the combinatorics of reduced words and enjoys a useful
geometric characterization within the root system, which we explain now. The
(left) inversion set of w is the set N(w):=®* N w(®~) of positive roots sent to
negative ones by w™!. If w = uv is reduced then N(w) = N(u) Uu(N(v)). In
particular, we have N(w) = {as,,s1(,), ..., 5152+ sp—1(as, )} for any reduced
word w = $1--- 8, and therefore ¢(w) = |N(w)|. Moreover, the weak order is
characterized in term of inversion sets by:

u<wv <= N(u) C N(v),

for any u,v € W. We refer the reader to [HL15, Section 2] and the references
therein for more details on inversion sets and the weak order.

We say that s € S is a left ascent of w € W if {(sw) = ¢(w) + 1 and a left descent
of w if ¢(sw) = ¢(w) — 1. We denote by Dr(w) the set of left descents of w. Note
that for s € S and w € W, we have s € Dp(w) < as € Nw) < s < w.
Similarly, s € S is a right descent of w € W if £(ws) = {(w) — 1, and we denote
by Dgr(w) the set of right descents of w.

2.4. Parabolic subgroups and cosets. Consider a subset I C S. The stan-
dard parabolic subgroup Wy is the subgroup of W generated by I. It is also a
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Coxeter group with simple generators I, simple roots Aj:= {as | s € I}, root sys-
tem &y = Wi (Ay) = & Nvect(Ar), length function £; = £ |y, , longest element w1,
etc. For example, Wy = {e} while Wg = W.

We denote by W!:= {w e W | £(ws) > ¢(w) for all s € I'} the set of elements
of W with no right descents in I. For example, W2 = W while W* = {e}.
Observe that for any x € W/, we have z(A;) C ®* and thus z(®}) C ®F. We will
use this property repeatedly in this paper.

Any element w € W admits a unique factorization w = w! - w; with w! € W/
and wy € Wy, and moreover, £(w) = £(w!) + £(w;) (see [BB05, Proposition 2.4.4]).
Therefore, W is the set of minimal length coset representatives of the cosets W/Wr.
Throughout the paper, we will always implicitly assume that z € W/ when writ-
ing that W7 is a standard parabolic coset. Note that any standard parabolic
coset xW = [z, zw,, ;] is an interval in the weak order. The Cozeter complex Py is
the abstract simplicial complex whose faces are all standard parabolic cosets of W:

Pw=W/Wr={aW,|ICS ceW}={aW,|ICS, zeW}
ICS

We will also need Deodhar’s Lemma: for s € S, I C S and z € W/, either
sz € W or sz = zr for some r € I. See for instance [GP00, Lemma 2.1.2] where
it is stated for the cosets Wi \W instead of W/W7.

2.5. Permutahedron. Remember that a polytope P is the convex hull of finitely
many points of V', or equivalently a bounded intersection of finitely many affine
halfspaces of V. The faces of P are the intersections of P with its supporting hy-
perplanes and the face lattice of P is the lattice of its faces ordered by inclusion. The
inner primal cone of a face F of P is the cone generated by {u —v |u € P,v € F}.
The outer normal cone of a face F' of P is the cone generated by the outer normal
vectors of the facets of P containing F'. Note that these two cones are polar to each
other. The normal fan is the complete polyhedral fan formed by the outer normal
cones of all faces of P. We refer to [Zie95] for details on polytopes, cones, and fans.

The W -permutahedron Perm? (W) is the convex hull of the orbit under W of a
generic point p € V' (not located on any reflection hyperplane of W). Its vertex and
facet descriptions are given by

Perm? (W) = conv {w(p) |w € W} = ﬂ {veV | {(wws)|v)<{ws|p)}.

SES
weW

Examples in types Ao and By are represented in Figure 2. Examples in types As,
Bs, and Hj are represented in Figure 3.

We often write Perm(WW) instead of Perm? (W) as the combinatorics of the W-
permutahedron is independent of the choice of the point p and is encoded by the
Coxeter complex Py,. More precisely, each standard parabolic coset Wy corre-
sponds to a face F(2W7y) of Perm? (W) given by

F(z2W;) = z(Perm?(W;)) = Perm?®(®) (aWiz™t).

Therefore, the k-dimensional faces of Perm? (W) correspond to the cosets zWj
with |I| = k and the face lattice of Perm” (W) is isomorphic to the inclusion poset
(Pw, C). The normal fan of Perm? (W) is the Coxeter fan. The graph of the permu-
tahedron Perm? (W) is isomorphic to the Cayley graph of the Coxeter system (W, .S).
Moreover, when oriented in the linear direction w, (p)—p, it coincides with the Hasse
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P (sts) F(stst)

F1GURE 2. Standard parabolic cosets of the type Ay and By Cox-
eter groups and the corresponding faces on their permutahedra.

FicUre 3. The type Az, Bs, and H3 permutahedra.

diagram of the (right) weak order on W. We refer the reader to [Hoh12] for more
details on the W-permutahedron.

Example 2.1. The Coxeter group of type A,_1 is the symmetric group &,,. Its
simple generators are the simple transpositions 7; = (i i + 1) for ¢ € [n — 1] with
relations 72 = 1 and 7;7;417; = Ti+17iTi+1. 1ts elements are permutations of [n] and
its standard parabolic cosets are ordered partitions of [n]. A root system for &,
consists in the set of vectors {e; — e; | i # j € [n]} where (e, ..., ey ) is the canonical
basis of R™. The type A3 Coxeter arrangement is represented in Figure 1 (left), and
the type Ay and As permutahedra are represented in Figures 2 (left) and 3 (left).
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3. FACIAL WEAK ORDER ON THE COXETER COMPLEX

In this section we study an analogue of the weak order on standard parabolic
cosets, which we call the facial weak order. It was defined for the symmetric group
by D. Krob, M. Latapy, J.-C. Novelli, H.-D. Phan and S. Schwer in [KLNT01], then
extended for arbitrary finite Coxeter groups by P. Palacios and M. Ronco in [PRO6].

Definition 3.1 ([KLN101, PR06]). The (right) facial weak order is the order <
on the Coxeter complex Py defined by cover relations of two types:

(1) aWr < 2Wiga if s ¢ I and x € WIV{s},
(2) Wi < 2wo 1w 1< sy W1 (s} if sel,
where I C S and 2 € WY,
We have illustrated the facial weak order on the faces of the permutahedron in

types Ay and Bs in Figure 4 and in type A3 in Figure 5.

stst

sts

stsW;

FIGURE 4. The facial weak order on the standard parabolic cosets
of the Coxeter group of types A and By. Edges are labelled with
the cover relations of type (1) or (2) as in Definition 3.1.

Remark 3.2. (1) These cover relations translate to the following geometric
conditions on faces of the permutahedron Perm(W): a face F is covered by
a face G if and only if either F' is a facet of G with the same weak order
minimum, or G is a facet of F' with the same weak order maximum.

(2) Consider the natural inclusion z — Wy from W to Py. For x < zs in
weak order, we have Wy < 2Wy,y < 25Wy in facial weak order. By tran-
sitivity, all relations in the classical weak order are thus relations in the
facial weak order. Although it is not obvious at first sight from Defini-
tion 3.1, we will see in Corollary 3.17 that the restriction of the facial weak
order to the vertices of Py precisely coincides with the weak order.
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ArsW;
rsWs
rs /Vt

V3
-

FIGURE 5. The facial weak order on the standard parabolic cosets
of the Coxeter group of type As.
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(3) Tt is known that for I C S the set of minimal length coset representa-
tives W7 has a maximal length element wows, 7. The element Wo [Wo T~ {5}

is therefore the maximal length element of the set WII Nty s
which is the set of minimal coset representatives of the cosets Wi /Wi (s,
see [GP00, Section 2.2] for more details.

Example 3.3. As already mentioned, the facial weak order was first considered by
D. Krob, M. Latapy, J.-C. Novelli, H.-D. Phan and S. Schwer [KLNT01] in type A.
The standard parabolic cosets in type A, _1 correspond to ordered partitions of [n],
see Example 2.1. The weak order on ordered partitions of [n] is the transitive
closure of the cover relations

(D) Al A A < Al A A A < A,

@) Al il I < A el e I A < A
where the notation X < Y is defined for X, Y C N by

X<Y < max(X)<min(Y) < z<yforalze XandyeY.

This paper gives two convenient characterizations of the facial weak order (see
Section 3.2). The first one uses sets of roots (see Section 3.1) to generalize the geo-
metric characterization of the weak order with inversion sets. The second one uses
weak order comparisons on the minimal and maximal representatives of the cosets.
The advantage of these definitions is that they give immediate global comparisons,
whereas the definition of [PRO6] uses cover relations. We use these new character-
izations of the facial weak order to prove that this poset is in fact a lattice (see
Section 3.3) and to study some of its order theoretic properties (see Section 3.4).

3.1. Root and weight inversion sets of standard parabolic cosets. We now
define a collection of roots and a collection of weights associated to each standard
parabolic coset. The notion of root inversion sets of standard parabolic cosets
generalizes the inversion sets of elements of W (see Proposition 3.10). We will use
root inversion sets extensively for our study of the facial weak order. In contrast,
weight inversion sets are not essential for our study of the facial weak order but will
be relevant when we study its lattice congruences. We define them here as they are
polar to the root inversion sets and appear naturally in our geometric intuition of
the W-Coxeter arrangement and of the W-permutahedron (see Proposition 3.7).

Definition 3.4. The root inversion set R(zWy) and weight inversion set W (W)
of a standard parabolic coset xW; are respectively defined by
R(zWyp):= x(q)_ U <I>}r) co and W (zWry) ::x(VS\I) C Q.

Remark 3.5. Root inversion sets are known as “parabolic subsets of roots” in the
sense of [Bou68, Section 1.7]. In particular for any x € W, the stabilizer of R(xW7)
for the action of W on the subsets of ® is the parabolic subgroup aW;z 1.

Example 3.6. Consider the facial weak order on the Coxeter group of type A,_1,
see Examples 2.1 and 3.3. Following [KLNT01], we define the inversion table
inv(\) € {-1,0, 1}(3) of an ordered partition A of [n] by
=1 if ATHE) < AT,
inv(\);; =<0 if A7HE) = A1),
1 i ATHE) > ATH().



10 ARAM DERMENJIAN, CHRISTOPHE HOHLWEG, AND VINCENT PILAUD

R(sts)

FIGURE 6. The root inversion sets (left) and weight inversion sets
(right) of the standard parabolic cosets in type As. Note that
positive roots point downwards.

The root inversion set of a parabolic coset zW; of G,, is encoded by the inversion
table of the corresponding ordered partition \. We have

-1 ife; —e; € R(zWy) but e; — e; ¢ R(zWy),
inv(A); =<0 ife; —e; € R(zWy) and ¢; — ¢; € R(zW)),
1 ife; —e; ¢ R(zW;) but e; —e; € R(zW7).

The following statement gives the precise connection to the geometry of the
W-permutahedron and is illustrated on Figure 6 for the Coxeter group of type As.

Proposition 3.7. Let W; be a standard parabolic coset of W. Then
(i) cone(R(xzW7y)) is the inner primal cone of the face F(aWy) of Perm(W),
(ii) cone(W (xWr)) is the outer normal cone of the face F(xWy) of Perm(W),
(#ii) the cones generated by the root inversion set and by the weight inversion set
of Wy are polar to each other:

cone(R(xW7y))® = cone(W (zW)).

Proof. On the one hand, the inner primal cone of F(W;) is generated by the vec-
tors @~ U®;] = R(eW;). On the other hand, the outer normal cone of F(W) is
generated by the normal vectors of F(W7), i.e., by Vg ; = W(eW;). The first two
points then follow by applying the orthogonal transformation x and the last point
is an immediate consequence of the first two. O

It is well-known that the map N, sending an element w € W to its inversion set
N(w) = ®* N w(P) is injective, see for instance [HL15, Section 2]. The following
corollary is the analogue for the maps R and W.

Corollary 3.8. The maps R and W are both injective.
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Proof. A face of a polytope is characterized by its inner primal cone (resp. outer
normal cone). O

In a finite Coxeter group, a subset R of & is an inversion set if and only if it is
separable from its complement by a linear hyperplane, or equivalently if and only if
both R and its complement &1 \ R are convex (meaning that R = ®* N cone(R)).
The following statement gives an analogue for root inversion sets.

Corollary 3.9. The following assertions are equivalent for a subset R of ®:

(1) R =R(xWj) for some coset W € Pw,

(ii)) R={a € ®|y(a) >0} for some linear function p : V. — R,
(i) R = ®Ncone(R) and RN {ta} # @ for all o € P.
Proof. According to Proposition 3.7, for any coset W7, the set R(zW7) is the set
of roots in the inner normal cone of the face F(xW7y) of Perm(WW). For any linear
function ¢ : V' — R, the set {a € ® | ¢(«) > 0} is the set of roots in the inner
normal cone of the face of Perm(W) defined by 1. Since any face is defined by at
least one linear function and any linear function defines a face, we get (i) < (ii).
The equivalence (ii) <= (iii) is immediate. O

Our next three statements concern the root inversion set R(aWg) for x € W.
For brevity we write R(x) instead of R(xWy). We first connect the root inversion
set R(x) to the inversion set N(x), to reduced words for x, and to the root inversion
sets R(zw,) and R(w,x).

Proposition 3.10. For any x € W, the root inversion set R(x) has the following
properties.

(i) R(z) = N(z) U —(®* \ N(z)) where N(z) = T Nx(®7) is the (left) inver-
sion set of x. In other words,

R(z)N®*T = N(z) and R(z)N®~ = —(®* < N(z)).
(i) If x = s189 - - si is reduced, then
R(z) =@~ A{tas,, £s1(as,), ..., Es1 - sp—1(as, )}
(iii) R(zw,) = —R(z) and R(w.z) = wo (R()).
Proof. For (i) we observe that R(z) = 2(®~) = (®TNa(®7))U (@~ Na(®7)). By
definition of the inversion set we get
R(z) =N(z)U—(®" nz(®")) = N(z) U —(®* < N(z)).

(ii) then follows from the fact that N(z) = {as,,s1(sy),.--,81 - sk—1(as,)}
Finally, (iii) follows from the definition of R and the fact that we(®*) = &®~. O

The next statement gives a characterization of the (classical) weak order in
terms of root inversion sets, which generalizes the characterization of the weak
order in term of inversion sets. We will see later in Theorem 3.14 that the same
characterization holds for the facial weak order.

Corollary 3.11. For z,y € W, we have
r<y < R(z)“R(y) C® and R(y)~R(z)C ot
<~ R(z)N®T C R(y)N®" and R(z)N® 2 R(y)Nd~.
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Proof. We observe from Proposition 3.10 (i) that
R(z) N R(y) = (N(2) ~ N(y)) U —(N(y) ~ N()).

The result thus follows immediately from the fact that * <y <= N(z) C N(y),
see Section 2.3. O

Finally, we observe that the root and weight inversion sets of a parabolic coset W
can be computed from that of its minimal and maximal length representatives x
and zw,, 7.

Proposition 3.12. The root and weight inversion sets of Wy can be computed
from those of x and xw, 1 by

R(zW;) = R(z) UR(zwo 1) and W (W) = W(z) N W (zwe 1).
Proof. For the root inversion set, we just write
R(z) UR(zwo 1) = (P ) Uzwe 1(27) = 2(®7) Ua(P™ ADy)
=2(®” U ) = R(zW;).

The proof is similar for the weight inversion set (or can be derived from Proposi-
tion 3.7). O

Corollary 3.13. For any coset xWy, we have
R(zW)Nd®~ =R(z)Nd~ and R(zW;)N &t = R(zw, 1) N O+

Proof. Since x < zw,, ;, Corollary 3.11 ensures that R(z) N &t C R(zws 1) N ot
and R(z) N ®~ D R(zw,,;) N ®~. Therefore, we obtain from Proposition 3.12 that

R(zW;)N®~ = (R(z) UR(zwo 1)) N®~ =R(z)Nd~,
and similarly
R(zW;)Nd" = (R(z) UR(zwo,1)) N+ = R(zws ;) N O O

3.2. Two alternative characterizations of the facial weak order. Using the
root inversion sets defined in the previous section, we now give two equivalent
characterizations of the facial weak order defined by P. Palacios and M. Ronco
in [PRO6] (see Definition 3.1). In type A, the equivalence (i) <= (ii) below is
stated in [KLNT01, Theorem 5| in terms of half-inversion tables (see Examples 3.3
and 3.6).

Theorem 3.14. The following conditions are equivalent for two standard parabolic
cosets Wi and yWy in Pw:

(i) aWr < yWy in facial weak order,

(1) R(zW;) N R(yW;) C ®~ and R(yW;) ~ R(zW;) C &T,
(i11) © <y and xwe 1 < ywo j in weak order.

Proof. We will prove that (i)=-(iii)=(ii)=-(i), the last implication being the most
technical.

The implication (i)=-(iii) is immediate. The first cover relation keeps x and trans-
forms zws, 1 t0 W, sy, and the second cover relation transforms x to xws rwo 1 {5}
but keeps zws ;. Since zwo 1 < Tw, ju(sy and T < Two 1Wo 1 {5}, We Obtain the
result by transitivity.
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For the implication (iii)=-(ii), Corollary 3.11 ensures that R(z) \ R(y) C &~
and R(y) ~ R(z) C ®* since z < y, and similarly that R(zws 1) ~ R(yws, ;) C &~
and R(yws, 7) ~ R(zwo 1) C @ since zwo 1 < yw,, . From Proposition 3.12, we
therefore obtain

R(zW;) N R(yW;) = (R(z) UR(zwo 1)) ™ (R(y) UR(yws,))
C (R(m) ~ R(y)) U (R(mwoJ) ~ R(ywo,J))
cCo .
We prove similarly that R(yW;) ~ R(zW;) C &T.

We now focus on the implication (ii)=-(i). We consider two standard parabolic
cosets Wy and yW; which satisfy Condition (ii) and construct a path of cover
relations as in Definition 3.1 between them. We proceed by induction on the car-
dinality | R(zW;) A R(yWy)|.

First, if |R(zW;) A R(yWy)| = 0, then R(zW;) = R(yW,), which ensures
that W = yW; by Corollary 3.8. Assume now that | R(zW;) A R(yW;)| > 0.
So we either have R(zW;)\R(yW;) # @ or R(yW;) N\ R(zW;) # &. We consider
only the case R(zW;) ~ R(yW;) # &, the other case being symmetric.

To proceed by induction, our goal is to find a new coset zWy so that

o W < zWk is one of the cover relations of Definition 3.1,

o Wy and yW still satisfy Condition (ii), and

e R:zWgk)A R(yWy) € R(zWr) A R(yWy).
Indeed, by induction hypothesis, there will exist a path from zWx to yW; consisting
of cover relations as in Definition 3.1. Adding the first step tW; < zWg, we then
obtain a path from W7 to yWj.

To construct this new coset zWx and its root inversion set R(zWx ), we will add
or delete (at least) one root from R(zWj). We first claim that there exists s € S
such that —x(as) ¢ R(yWy). Otherwise, we would have z(—A) C R(yWj). Since
&~ = cone(—A) N ® and R(yW;) = cone(R(yWy)) N @, this would imply that
z(®~) C R(yW). Moreover, z(®}) C ®* since z € W!. Thus we would obtain

R(zW;) N R(yW;) = (z(@7) Uz(®])) N R(yW)
€ (4(87) ~ R(W,)) Us(®})
Cot.
However, R(zW;) N\ R(yW;) C &~ by Condition (ii). Hence we would obtain that
R(zW;) N R(yW;) C ®* Nd~ = &, contradicting our assumption.

For the remaining of the proof we fix s € S such that —z(as) ¢ R(yWy)
and we set §:=x(as). By definition, we have —8 € R(xzW;) ~ R(yW;). More-
over, since —f8 ¢ R(yW;) and R(yW;) U —-R(yW;) Dy(®~)U—y(®~) =P, we
have 8 € R(yW;). We now distinguish two cases according to whether or not

B € R(zWy), that is, on whether or not s € I. In both cases, we will need the
following observation: since R(zW7) ~ R(yW;) C ®&~, we have

(%) z(®F) C T NR(zW;) C R(yWy).
First case: s ¢ I. Since —z(as) = —f8 € R(zW;) N~ R(yW;) C &, we have

that z(a,) € ®+ and thus z € W!Y{s}, We can therefore consider the standard
parabolic coset 2Wi :=xWis) where z:=x and K :=1U {s}. Its root inversion
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set is given by R(zWx) = R(zW;) Uz(®}). Note that zW; < 2W is a cover

relation of type (1) in Definition 3.1. It thus remains to show that zWx and yW;

still satisty Condition (ii) and that R(zWgk) A R(yWy) € R(zW;) A R(yWy).
Since 8 = z(as) € R(yW) and using Observation (x) above, we thus have

z(®) = cone ({8} Uz(®F)) N® C R(yW,).
Therefore we obtain
R(zWgk) N R(yW,) = R(zW;) Uz(®%) ~R(yW,) C R(zW) ~ R(yW,;) C &~
Moreover, since R(zW;) C R(zWk),
R(yW;) ~ R(zWg) C R(yW;) ~ R(zWy) C &F.

Therefore, we proved that the cosets zWyx and yW; still satisfy Condition (ii) and
that R(zWgk) A R(yWy) C R(zW;) A R(yWy). The strict inclusion then follows
since —3 belongs to R(zW;) A R(yWy) but not to R(zWgk) A R(yWy).

Second case: s € I. Let s* :=w, ;sw, ;. Consider the standard parabolic coset zW
where K :=1~{s*} and z:=zw, jwo k. Note that tW; < zWy is a cover relation
of type (2) in Definition 3.1. It thus remains to show that zWjx and yW still
satisfy Condition (ii) and that R(zWxk) A R(yW;) € R(zWi) A R(yWy).

We first prove that

(&) R(zW;) = R(zWk) Uz(®;) x(@;\{s}).
Observe that w071(<1f) = &~ A ®; and that U}o,](@]() = wOJ((I)I\{s*}) = (I)]\{S}.
Therefore,
wc,,[wo,K((I)_) = woJ((I)_ A@K) =07 A (P; (PI\{S})
and  wo jwo x (PF) = wo 1 (®%) = @}r\{s}.
Therefore we obtain the desired equality:
R(zW;) = 2(®~ U ®})
=z(® A (PN Dy gsy)) U m(@}"\{s}) Uz(®7) N x(@l_\{s})
= 2Wo 1Wo i (P7) Uzwo rwo 1 (Pf) Uz(®]) N x(@l_\{s})
=R(EWK)Uz(®) x(@;\{s}).
We now check that
(W) (z(®7) ~ x(@;\{s})) NR(yW;) = 2.
Indeed, assume that this set contains an element §. We have § = a(—03) + 7,
where ¢ > 0 and v € m(q);\{s}). Therefore, —3 = (§ — v)/a. Since § € R(yW)
and —v € x(@}r\{s}) C 2(®]) C R(yW,) by Observation (x) above, we would ob-
tain that —f € R(yWj), contradicting our definition of f.
Now, combining Equations (&) and (#), we obtain
R(yW;) N~ R(zWx) C R(yW;) ~R(zW;) C 7.
Moreover, since R(zWgk) C R(zWy),
R(Wk)~RyW;) CRaW;) ~R(yW;) C P~

Therefore, we proved that the cosets zWyx and yW; still satisfy Condition (ii)
and that R(zWgk) A R(yW;) € R(aW;) A R(yWy). The strict inclusion then



THE FACIAL WEAK ORDER AND ITS LATTICE QUOTIENTS 15

follows as —f belongs to R(zW;) A R(yW;) but not to R(zWgk) A R(yW). This
concludes the proof. ([

Remark 3.15. Observe that our characterization of the facial weak order in terms
of root inversion sets given in Theorem 3.14 (ii) is equivalent to the following:
xWr < yWy if and only if

(ii') R(zW;)Nn®T C R(yW;)Ndt and RzW;)Nd~ 2O RyW;)Nnd~.

Example 3.16. We have illustrated the facial weak order by the means of root
inversion sets in Figure 7. In this figure each face is labelled by its root inversion set.
To visualize the roots, we consider the affine plane P passing through the simple
roots {a, 8,7}. A positive (resp. negative) root p is then seen as a red upward
(resp. blue downward) triangle placed at the intersection of Rp with the plane P.
For instance,

R(CbWa) :{%B"‘%a+/8+’Y}U{—Oéa_ﬁ,—@—ﬂ_’77_04_6}-

is labeled in Figure 7 by

-8
V

—a=fv AB+y
—avy AN
Note that the star in the middle represents both a + 5+ v and —a — 8 — 7.

Using our characterization of Theorem 3.14 (ii) together with Corollary 3.11, we
obtain that the facial weak order and the weak order coincide on the elements of W.
Note that this is not at all obvious with the cover relations from Definition 3.1.

Corollary 3.17. For any x,y € W, we have x < y in weak order if and only
if aWgy < yWy in facial weak order.

The weak order anti-automorphisms z — rw, and x — we.x and the automor-
phism z — wezw, carry out on standard parabolic cosets. The following statement
gives the precise definitions of the corresponding maps.

Proposition 3.18. The maps
Wi — wozwe tWr and aWr — 2wo, 1wo Wiy, 1w,
are anti-automorphisms of the facial weak order. Consequently, the map
Wi — Worwo W, 1w,
is an automorphism of the facial weak order.

Proof. Using the characterization of the facial weak order given in Theorem 3.14 (ii)
we just need to observe that

R(wozxwo tWr) = wo(R(xWI)) and R(zwo jwoWy, 1w,) = — R(xWr).

This follows immediately from Propositions 3.12 and 3.10 (iii). (]
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FIGURE 7. The facial weak order on the standard parabolic cosets
of the Coxeter group of type As. Each coset W7y is replaced by
its root inversion set R(xW7), represented as follows: down blue
triangles stand for negative roots while up red triangles stand for
positive roots, and the position of each triangle is given by the
barycentric coordinates of the corresponding root with respect to
the three simple roots (a7 on the bottom left, as on the top, and
as on the bottom right). See Example 3.16 for more details.
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3.3. The facial weak order is a lattice. In this section, we show that the facial
weak order on standard parabolic cosets is actually a lattice. It generalizes the result
for the symmetric group due to D. Krob, M. Latapy, J.-C. Novelli, H.-D. Phan and
S. Schwer [KLNT01] to the facial weak order on arbitrary finite Coxeter groups
introduced by P. Palacios and M. Ronco [PR06]. It also gives a precise description
of the meets and joins in this lattice. The characterizations of the facial weak order
given in Theorem 3.14 are key here.

Theorem 3.19. The facial weak order (Pw, <) is a lattice. The meet and join of
two standard parabolic cosets xWi and yWy are given by:

aWr ANyWy = 2,Wk,  where z,=xz Ay and K,=Dp (z;l(xwo’l A ywoﬁj)),
Wi VyWy =2 Wk, where 2z, =zwerVywsy; and K,=Dp (z;l(x Y, y))
In other words, the meet xW; A yW is the biggest parabolic coset in the inter-
val [z Ay, zwo 1 A Yws ] containing z A y. Similarly, the join zW; V yWj is the
biggest parabolic coset in the interval [z Vy, zwo 1 Vyws, s] containing zws 1 Vyws ;.
Note that in the second point of Theorem 3.19, the minimal representative of
the coset z, Wk, is in fact z,wo k,, not z,. Unlike in the rest of the paper, we take

the liberty to use another coset representative than the minimal one to underline
the symmetry between meet and join in the facial weak order.

Example 3.20. Before proving the above statement, we give two examples of
computations of the meet and the join in the facial weak order.

(i) Consider first the Coxeter system
<r,s7t | r? =5 =12 = (rs) = (st)> = (rt)? = 1>

of type As. Figure 5 shows the facial weak order of Py and is a good way to
follow along. To find the meet of tsrW; and rtsWy, we compute:

2y =tsr ANrts =t,
K, = Dy (27 (tsrwo o Artswo z)) = Dy (t(tsrsts Arts)) = Dp(t(rts)) = {r}.

Thus we have that tsrWg A rtsWy = 2, Wk, = tW,.
(ii) For a slightly more complex example, consider the Coxeter system

(r,s,t| r?=s? =1t =(rs)" = (st)’ = (rt)* = 1)
of type Bs. To find the join of rstW,, and tsrsWgy, we compute:
2y = 18tWe rs V ESTSWo, o = 15tTSTS V 1818 = 1isrtsrt
K, =Dy (2] (rst Vtsrs)) = Dy (trstrstr(rtsrtst)) = Dp(r) = {r}
Thus we see that
rstWys V tsT8W0, 5 = 2,Wo i, Wi, = rtsrtsrt(r)W, = rtsrtstW,.

Proof of Theorem 3.19. Throughout the proof we use the characterization of the
facial weak order given in Theorem 3.14 (ii):

Wy <yW; < z <y and 2w, ; < ywo, .

We first prove the existence of the meet, then use Proposition 3.18 to deduce the
existence and formula for the join.
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Existence of meet. For any s € K,, we have

Uxwo 1 A ywo,g) — U(sz; H<e (sz (a?wo 1 A\ Ywo, J))
fﬁ( (xonAywoJ)
= l(zwo,1 Nywo,y) — (2 ) -1

Indeed, the first inequality holds in general (for reduced or non-reduced words).
The first equality follows from s € K, = Dr, (27  (zwo,1 A yws,s)). The last equal-
ity holds since z, = 2 Ay < zwo s A yws,y. We deduce from this inequality
that £(z,) < £(z.s ) Therefore, we have z, € Wn.

Since K, = Dy (27 (zwo 1 Ayws, 1)), we have wo k, < 271 (xwo 1 Ayws s). There-
fore z,wo k, < TWor A Yws, g, since z, € WHEr. We thus have z, = x A y < x
and 2,Wo i, < TWo, 1 N YWo g < TWo, 7, Which implies 2,Wg, < xWip, by Theo-
rem 3.14 (ii). By symmetry, z,Wg, < yW;.

It remains to show that z, W, is the greatest lower bound. Consider a standard
parabolic coset zWy such that zWx < 2W; and zWx < yW;. We want to show
that z2Wg < 2,Wk,, that is, z < z, and 2w, x < 2,Ws k,. The first inequality is
immediate since z < z and z < y so that z < xAy = z,. For the second one, we write
the following reduced words: = = za', y = zy/, and z, = zz/ where z/ =2’ A Y.
Since zwo x < TWo,r and zwo x < YWo, 7, We have

A ! / !
2Wo Kk < TWo,1 N YWo,j = 28 Wo 1 N 2Y Wo, 5 = 2( Wo 1 A Y Ws ).
Thus we x < x’ Wo, 1 N y' Wo, j, since all words are reduced here. Therefore
/ !
K C Dp(z'wo, 1 ANy'wo.g).

We now claim that Dy (z'we 1 A y'ws,j) € Dp(zlws k,). To see it, consider
s € Dp(2’'ws,1 A y'ws, 5) and assume by contradiction that s ¢ Dy (2 ws k,). Then s
does not belong to Dy (z]), since the expression z/w, kg, is reduced. By Deodhar’s
Lemma (see Section 2.4) we obtain that either s2/ € WX~ or s2/ = 2/t where

teDp(z~ Yo wo 1 A y'wo, 7)) =Dr(z Hawe 1 A ywo, 7)) =K.
In the first case we obtain
1+ £4(2) + lwo k) = U(sziwe k,) = L(ziwo i) — 1 =4(z]) + l(wo,k,) — 1
a contradiction. In the second case, we get

1+4(2) + lwo k) = U(s2lwo i, ) = (2 tws K, )

14
0(z) + L(two i, ) = £(2]) + L(wo,xc,) — 1,

a contradiction again. This proves that Dy (z'we 1 A y'we,s) C Dr(zlws K, )-

To conclude the proof, we deduce from K C Dy (z'wo 1 Ay wo,s) C Dp(zlws k)
that wo x < zlws k,, and finally that zw, x < zzlws K, = 2,Ws K, since all expres-
sions are reduced. Since z < z, and 2w, g < 2,Ws k,, We have 2Wg < 2z, Wk, so
that z, W, is indeed the greatest lower bound.

Existence of join. The existence of the join follows from the existence of meet
and the anti-automorphism ¥ : W — woxw, ;W from Proposition 3.18. Using
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the fact that we(wou A wov) = u V v, we get the formula

WiV yW; = ( IW[ /\ \IJ yWJ))

(wozwo, ;Wi A Woywo, yWy)

v
le( WoTWo,1 A WoYWo, J)WDL((wozwo IAWoYWo, 7)™ 1(woz/\woy)))
U((

(wozwo,1 A woyws, ;) Wk,)
= Wy (woxwoJ A woywo,J)wO,K\/ WK\/

= 2yWo K, WKW [l

We already observed in Corollary 3.17 that the classical weak order is a subposet
of the facial weak order. The formulas of Theorem 3.19 ensure that it is also a
sublattice.

Corollary 3.21. The classical weak order is a sublattice of the facial weak order.

Proof. If I = J = @, then K = @ in the formulas of Theorem 3.19. (I

Remark 3.22. It is well-known that the map x — zw, is an orthocomplementation
of the weak order: it is involutive, order-reversing and satisfies zwo,Ax = e and zw,V
T = w,. In other words, it endows the weak order with a structure of ortholattice,
see for instance [BB05, Corollary 3.2.2]. This is no longer the case for the facial weak
order: the map zW; — wozw, 1 W7 is indeed involutive and order-reversing, but is
not an orthocomplementation: for a (counter-)example, consider © = e and I = S.

3.4. Further properties of the facial weak order. In this section, we study
some properties of the facial weak order: we compute its partial Mébius function,
discuss formulas for the root inversion sets of meet and join, and describe its join-
irreducible elements.

3.4.1. Mobius function. Recall that the Mdbius function of a poset P is the func-
tion p : P X P — Z defined inductively by

1 if p=gq,
wpyq) =4~ > ulp,r) ifp<g,
p<r<q
0 otherwise.

We refer the reader to [Stal2] for more information on Mobius functions. The
following statement gives the values u(yWy) = u(eWpy, yWy) of the Mébius function
on the facial weak order.

Proposition 3.23. The Mébius function of the facial weak order is given by

(_l)lJla ify:e7
0, otherwise.

w(yWy) = p(eWs, yWy) = {

Proof. We first show the equality when y = e. From the characterization of The-
orem 3.14 (iii), we know that zW; < W if and only if = e and I C J. That
is, the facial weak order below W) is isomorphic to the boolean lattice on J (for
example, the reader can observe a 3-dimensional cube below W in Figure 5). The
result follows when y = e since the Mobius function of the boolean lattice on J is
given by u(I) = (—1)/! for I C J (inclusion-exclusion principle [Sta12]).
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We now prove by double induction on the length ¢(y) and the rank |J| that
wyWy) = 0 for any coset yW; with £(y) > 1 and J C S. Indeed, consider yW
with ¢(y) > 1 and assume that we have proved that u(xWp) = 0 for all 2W;
with 1 < ¢(z) < ¢(y) or with ¢(x) = {(y) and |I| < |J|. Since zW; < yW if and
only if x <y, or x =y and I C J we have

pyWy) == > paW)=— Y u).
aWr<yWy Wi<yW,

Therefore, since Wy < yW; <= wo 1 < ywo,y <= I C Dr(yw,,s), we have the
non-empty boolean lattice on Dy, (yws, ;) and

pyWy)=— > pW)=-= > pWH=- > (-pfl=0. O
Wir<yW, ICDr (ywo, ) ICDL (ywo,5)

3.4.2. Formulas for root inversion sets of meet and join. For X C ®, define the
closure operators

[X] =t n cone(X) and [X]
and their counterparts
[X] =0" N [@*\X]®  and  [X]_ =07~ [0\ X]".

©=on cone(X),

Note that [X N@*+]% = [X]%, [Xn&*]_ = [X]_, and —[X]¥ = [-X]°. Similar
formulas hold exchanging ©’s with @’s. Using these notations it is well known that
the inversion sets of the meet and join in the (classical) weak order can be computed

by

®
(V)  N(xAy) =[N(@)NN(y)], and N(@Vy)=[N(@)UN@y)]"
For references on this property, see for example [BEZ90, Theorem 5.5] and the
discussion in [HL15] for its extension to infinite Coxeter groups. Our next statement

extends these formulas to compute the root inversion sets of the meet and join in
the classical weak order.

Corollary 3.24. For xz,y € W, the root inversion sets of the meet and join of x
and y are given by

R(z Ay) = [R(z) UR()]" U [R(z) NR(y)] .
and R(zVy) = [R(z) "R(y)]_ U [R(z) UR(y)]".
Proof. This is immediate from Equation (©) and Proposition 3.10 (i). O

We would now like to compute the root inversion sets of the meet zW; A yW;
and join Wy vV yW; in the facial weak order in terms of the root inversion sets
of Wy and yW ;. However, we only have a partial answer to this question.

Proposition 3.25. For any cosets Wi, yW; € Py, we have
R(zW; AyWy) N &~ = [R(zW;) UR(yW,)]°,
and R(zWr AyW;)N®+ C [R(zwr) N R(yWJ)}GB,
while
REEWrvyW,)Nnd~ C [R(IW[
and R(zWiVyW;)Nnet

Il
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Proof. According to Theorem 3.19, we have zW; AyW; = 2, Wk, with z, =x Ay
and K, = Dg(z7 (zwo,1 A yws,)). Then using Corollaries 3.24 and 3.13, we have

REWiAyW)Nd™ =R(zWk,)N® =R(z,)N® =Rz Ay)Nd~
S] S}
= [R(z) UR(y)]” = [R(zW;) URW,)]".
Moreover, since z,Wo,x, < TWo,1 N\ YWo, 7, We have
RaW; AyWi)Ndt =R(z,Wg,) N+ = R(zws k,) N ot C R(zwo, 1 A yws 7) N ot

= [R(mwo’l) N R(ywo,J)]69 = [R(xWI) N R(yWJ)] ®

The proof is similar for the join, or can be obtained by the anti-automorphism of
Proposition 3.18. O

Remark 3.26. The inclusions R(zW; A yW;) N @T C [R(zw) N R(yWJ)]65
and R(zW; VyW;)N®~ C [R(zW;)N R(yVVJ)]e can be strict. For example, we
have by Example 3.20

R(tsrWg ArtsWy) N @1t = R(tW,) N @ = {a,v}
which differs from

[R(tSTWst) mR(TtSWZ)}@ = [{aa’y,a+ﬁ+’7a _ﬁv —Q— 5}]@ = {CY,’Y,CM-’-ﬂ-i—’Y}.
Following [KLN 01, Proposition 9], the set R(zW;AyW,;)N®* can be computed as
R(zW; AyW,)NdT =|Rna*

R

where the intersection runs over all R C ® satisfying the equivalent conditions of
Corollary 3.9 such that

RN C [R(zwy) NR(yW,)], while RN &~ 2 [R(zW;) UR(yW,)]".

However, this formula does not provide an efficient way to compute the root set of
meets and joins in the facial weak order.

3.4.3. Join irreducible elements. An element x of a finite lattice L is join-irreducible
if it cannot be written as x = \/Y for some Y C L ~ {x}. Equivalently, = is
join-irreducible if it covers exactly one element x, of L. For example, the join-
irreducible elements of the classical weak order are the elements of W with a single
descent. Meet-irreducible elements are defined similarly. We now characterize the
join-irreducible elements of the facial weak order.

Proposition 3.27. A coset W7 is join-irreducible in the facial weak order if and
only if I = @ and x is join-irreducible, or I = {s} and xs is join-irreducible.

Proof. Since xWr covers xWp_ 44 for any s € S, we have [I| < 1 for any join-
irreducible coset xW7.

Suppose I = &. The cosets covered by xWy are precisely the cosets xsWyy
with s < . Therefore, Wy is join-irreducible if and only if = is join-irreducible.
Moreover, (zWg), = {xy, 2} = 2sWi.

Suppose I = {s}. The cosets covered by xWy,, are precisely xWy and the
cosets Tsw, 54y Wys, 1y for zst < xs. Therefore, Wy, is join-irreducible if and only
if 25 only covers z, i.e., if xs is join-irreducible. Moreover, (xWy ). = {7} O

Using the anti-automorphism of Proposition 3.18, we get the following statement.
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Corollary 3.28. A coset xW; is meet-irreducible in the facial weak order if and
only if I = @ and x is meet-irreducible, or I = {s} and x is meet-irreducible.

3.5. Facial weak order on the Davis complex for infinite Coxeter groups.
A natural question is to wonder if a facial weak order exists for the Coxeter complex
of an infinite Coxeter system (W,S). As the definition given by P. Palacios and
M. Ronco makes extensive use of the longest element of each W and of the longest
element in the coset W, we do not know of any way to extend our results to the
Coxeter complex.

However, partial results could be obtained with the Davis complez, see for in-
stance [Dav08] or [ABO8], which is the abstract simplicial complex

Dy = U W/Wr.
ICS
W finite
Definition 3.29. Call facial weak order (Dw, <) on the Davis complex the order
defined by 2W; < yW; if and only if x < y and 2w, ; < yw,, s in right weak order.

All the results used to prove the existence and formula for the meet in Theo-
rem 3.19 in the case of a finite Coxeter system only use the above definition of
the facial weak order, as well as standard results valid for any Coxeter system;
the finiteness of Wi, being guaranteed by the fact that a standard parabolic sub-
group Wiy is finite if and only if there is w € W such that Dy (w) = K, see for
instance [BB05, Proposition 2.3.1]. We therefore obtain the following result that
generalizes A. Bjorner’s result for the weak order [Bjo84] to the facial weak order
on the Davis complex.

Theorem 3.30. The facial weak order on the Davis complex is a meet-semilattice.
The meet of two cosets xWy and yWy in Dy is

aWr ANyWy = 2, Wk, where z,=xz Ay and K,=Dp (z;l(mwo,I A ywoyj)).

4. LATTICE CONGRUENCES AND QUOTIENTS OF THE FACIAL WEAK ORDER

A lattice congruence on a lattice (L, <,A,V) is an equivalence class = which
respects meets and joins, meaning that x = 2’ and y = ' implies z Ay = 2’/ A 3/
and zVy = x’Vy'. In this section we start from any lattice congruence = of the weak
order and naturally define an equivalence relation = on the Coxeter complex Py,
by aWr = yW; <= =z =y and 2w, = yw,,j. The goal of this section is to
show that = always defines a lattice congruence of the facial weak order. This will
require some technical results on the weak order congruence = (see Section 4.2)
and on the projection maps of the congruence = (see Theorem 4.11).

On the geometric side, the congruence = of the facial weak order provides a
complete description (see Theorem 4.22) of the simplicial fan F= associated to the
weak order congruence = in N. Reading’s work [Rea05]: while the classes of =
correspond to maximal cones in F=, the classes of = correspond to all cones in F=
(maximal or not). We illustrate this construction in Section 4.7 with the facial
boolean lattice (faces of a cube) and with the facial Cambrian lattices (faces of
generalized associahedra) arising from the Cambrian lattices and fans of [Rea06,
RS09a).
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4.1. Lattice congruences and projection maps. We first recall the definition
of lattice congruences and quotients and refer to [Rea04, Rea06] for further details.

Definition 4.1. An order congruence is an equivalence relation = on a poset P
such that:

(i) Every equivalence class under = is an interval of P.

(ii) The projection 7' : P — P (resp. m : P — P), which maps an element
of P to the maximal (resp. minimal) element of its equivalence class, is order
preserving.

The quotient P/= is a poset on the equivalence classes of =, where the order
relation is defined by X <Y in P/= if and only if there exist representatives z € X
and y € Y such that x <y in P. The quotient P/= is isomorphic to the subposet
of P induced by m(P) (or equivalently by 7'(P)).

If, moreover, P is a finite lattice, then = is a lattice congruence, meaning that it
is compatible with meets and joins: for any x = z’ and y = 3/, we have zAy = 2’/ Ay/
and xVy = 2’ Vy'. The poset quotient P/= then inherits a lattice structure where
the meet X A'Y (resp. the join X VY) of two congruence classes X and Y is
the congruence class of x Ay (resp. of  V y) for arbitrary representatives z € X
and y €Y.

In our constructions we will use the projection maps 7' and 7 to define congru-
ences. By definition note that m(z) < x < 7'(z), that 7l o nT = 7l o m = 7! while
mom =mon = m, and that 7' and 7 are order preserving. The following lemma
shows the reciprocal statement.

Lemma 4.2. If two maps 7 : P — P and m : P — P satisfy
(i) m(z) <z < 7l(z) for any element x € P,
(is) mont = ntom =7 and mom =mon =m,
(i) 7 and m, are order preserving,
then the fibers of 7 and m coincide and the relation = on P defined by

r=y = 7(z) =7(y) = m(z) =m(y)
is an order congruence on P with projection maps ' and m.

Proof. First, Condition (ii) ensures that 7'(z) = 7'(y) < m(z) = m(y) for any
x,y € P, so that the fibers of the maps 7' and 7 coincide. We now claim that
if z € m(P), then the fiber wi_l(z) is the interval [z, 7'(z)]. Indeed, if m(x) = 2,
then 7'(x) = 7'(m(z)) = #'(2) by Condition (ii), so that z < z < 7(z) by Con-
dition (i). Reciprocally, for any z < x < 7/(2), Conditions (ii) and (iii) ensure
that z = m(z) < m(x) < m(n'(2)) = m(z) = 2, so that m(z) = 2. We conclude that
the fibers of n! (or equivalently of m) are intervals of P, and that 7' (resp. 7)) in-
deed maps an element of P to the maximal (resp. minimal) element of its fiber.
Since 7 and 7 are order preserving, this shows that the fibers indeed define an
order congruence. O

4.2. Congruences of the weak order. Consider a lattice congruence = of the
weak order whose up and down projections are denoted by n! and 7 respectively.
We will need the following elementary properties of =. In this section, the notation
W means that we are considering z in W7'.

Lemma 4.3. For any coset tWr and any s € I, we have x = 5 <= T5Wo,] = TWo ]-
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Proof. Assume x = xs. As x € W' and s € I, we have zs £ TSW,,7. Therefore,
TSWo,1 = TV TSWo 1 = TSV TSWo, 1 = TWo,7. The reverse implication can be proved
similarly or applying the anti-automorphism x — zw,. O

We will need a refined version of the previous lemma for cosets of a rank 2
parabolic subgroup. Consider a coset 2W(, 4y with s, € S\ Dg(x). It consist of
two chains

TS ws <o Satwo oy Sawo oy and T <ot <o S TS0 (o) S TG (o)

from x to Tw, 54y. The following two lemmas are of same nature: they state that
a single congruence between two elements of xWy, ;3 can force almost all elements
in Wy, 1y to be congruent. These lemmas are illustrated in Figure 8.

Lemma 4.4. For any coset W, 1y, if = x5 o1 25W, (5,1} = TWo {1} then
r=xs=wst = = TtWo 5,4} and xt=zxts=---= TSWo, {5,6) = TWo (s,t}-

Proof. Assume z = xs. For any zt < y < 2w, (5, we have x5V y = 2w, (44}
Since r = s and = is a lattice congruence, we get y =2V y =28V y = 2W, {1}
Now for any = < z < Tlw, {541, We have y A z = z. Since y = TWo {s,t} and = is a
lattice congruence, we get z = zw, 53 Az =y Az = x. The proof is similar if we
assume instead rsw, (51} = TWo (4,1} O

Lemma 4.5. For any coset Wy, 1y, if xs = xt then v =y for all y € Wy, 4y

Proof. Since zs = at, we have m(xs) = m(xt) and 7'(xs) = 7'(xt). Using that
m(zs) < xs < 7l(ws) and m(zt) < at < 7l(xs), we obtain that

m(zs) Sas Awt =1 < 2Wo [543 = 8V Wt < m(xs).

Since the congruence class of zs is the interval [my(xs), 7'(zs)], it certainly contains

all the coset Wy, 4. We conclude that o =y for all y € xW, ;. O
TWo {s,t} TWo {s,t}
xtwo,{s,t} /\ x5w07{s7t} xtwoy{&t} xswo,{&t}
| |
| | f—
xS\/ xt r=a xs xt
TWo {s,t} TWo {s,t}
xtwo,{s,t} /\ TSWo st} xtwo,{s,t} LSWo {s,t}
| |
, ! rs = at
xs@mt s xt
T T

FIGURE 8. In a coset xWy, ;y, a single congruence may force many
congruences. See Lemma 4.4 for the congruence x = zs (top) and
Lemma 4.5 for the congruence zs = xt (bottom).
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Throughout the end of this section, we write x £ y when z < y and z = y. In
other words, * £y <= x <y < 7l(z) <= m(y) < = < y. Note that the
relation £ is transitive (as the intersection of two transitive relations) and stable
by meet and join (as < is a lattice and = a lattice congruence).

The goal of the next statements is to show that one can “translate faces along
congruence classes”. We make this statement precise in the next lemmas.

Lemma 4.6. For any x € W and t € S\ Dgr(z) such that x # xt, there exists a
unique o'(z,t) € S\ Dg(7'(x)) such that xt £ n'(z)oN(z,t).

Proof. To prove the existence of o'(x,t), we work by induction on the length of a
minimal path from 2 to 7(x) in weak order. If x = 7'(x), then o'(x, ) = ¢ meets our
criteria. We now assume that there exists s € S \ Dg(z) such that z £ zs £ 7/(z).
Let o' = wtw, q54 and t' = w, (5 13twe g5,13- We get from Lemma 4.4 that 2 =
!, thus 7(z) = @(2') and @t £ zw, 54 = 2't'. Since x # wt, this also ensures
that 2’ # 2't’. Thus the length of a minimal path from between 't and 7'(2') is
strictly smaller than the length of a minimal path between x and 7'(z). Therefore,
by induction hypothesis, there exists o'(z’,#') € S such that 2't' £ #l(z/)o(a’, t).
We therefore obtain that
wt 22t 27(2)ol(2), ') = 7'(x)o' (', 1),

and conclude that o'(x,t) = o'(2',') meets our criteria.

To prove uniqueness, assume that there exist r # s € S\ Dg(y) which both
satisfy ot £ 7'(z)r and ot £ 7'(x)s. This implies that 7'(z)r = xt = 7'(x)s, so
that 7(z) = 7'(z)r = 7'(x)s by application of Lemma 4.5. We would therefore
obtain that z = 7'(z) = #'(2)r = xt, a contradiction. O

Lemma 4.7. For any coset xW;, the set X1(z, 1) = {O’T(I,t) | tel, v # a:t} 18
the unique subset of S~ Dp(m'(x)) such that zwe 1 £ 7 (x)ws st 1)-

Proof. Split I into I= U I where I=:= {t € I |z = at} and Iz := {t € I | = # xt}.
Since £ is stable by join, we get

TWo, 1 = ( \/ xt) Y ( \/ a:t) < 7l(x) v ( \/ WT(J?)O'T(.%',t)> = ﬂT(x)wo’ET(m’I).
tel= tels tels
To prove unicity, we observe that there already is a unique maximal subset X
of S\ Dg(n'(x)) such that 2w, ; £ 7'(z)w,,x since £ is stable by join. Consider
now any subset X of ¥ with this property. Since 7'(2)wo s = zwo 1 = 7(T)Wwo 5,
we obtain

WT(‘CC)U}O’E\EI = WT(x)wowg\E/ AN 7TT("E)’LU072 = WT(Z')MO?E\E/ AN WT(.’E)woygl = 7TT($).
Since (x) is maximal in its congruence class, this implies that wes.sv = e so
that ¥’ = X. O

We will furthermore need the following properties of o'(z,t) and X(x, I).
Lemma 4.8. For any coset xWr and any t € I, we have
o if x = xt then xtw, 1 = 7TT($)’LU072T($,I),
e if x % xt then xtw,; = 7'(z)o'(, E)Wo 531(, 1) -

In other words, either xtw, 1 = Two 1 = WT(x)quT(x,I), or vtwe 1 = 7 (z)0'(x, ) Wo 54z, 1) -
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Proof. If © = xt, then Lemma 4.3 ensures that ztw, ; = zwo; = WT(ﬁ)wo,m(z,]).
Assume now that = # zt. We have 7'(z)o'(x, t)Wo s31(2,1) Z WT(Z‘)U)O’ET(%I). Indeed,
Lemma 4.3 would imply that 7(z) = 7'(z)o'(x,t) contradicting the maximality
of 7(z) in its congruence class. Using the same argument as in Lemma 4.6, we
obtain that there is ¢’ such that zt'w, ; = 7'(2)0’(x, t)w, w1, 1. Observe that

+

at'we r = m(2)0M (2, t)wo w121y = T ()0 (2, E)wo 5310, 1y VT (2) 0 (2, ) = 2t'wo 1 Vas

for all s € I\ {t} such that x # zs. Since xt'w, 1 # Two, 1, we obtain that ¢’ =¢. O

Using similar arguments as in the previous lemmas, or applying the anti-automor-
phism z — zw,, we deduce the following statement, similar to Lemma 4.7.

Lemma 4.9. For any coset xWi, there is a unique subset ¥ (x,I) of Dg (m(zwoJ))
such that m(rwe 1)Wo 5 (x,1) £ T-

Remark 4.10. Consider a coset zW;. If 7l(x) = z then o'(z,t) =t for all t € T
and thus X%z, I) = I. Similarly, if m(zws 1) = 2w, s then X(x, 1) = 1.

4.3. Congruences of the facial weak order. Based on the properties estab-
lished in the previous section we now show that the lattice congruences of the weak
order naturally extend to lattice congruences of the facial weak order. We start
from a lattice congruence = of the weak order whose up and down projections
are denoted by n! and 7 respectively. We then define two maps IIT : Py, — Py,
and II} : Py — Pw by

HT(IEW]) = ﬂ'T(l‘)WEr(x,I) and HJ,(.CEW[) = m(xwo,I)WZl(w,I)

where X7(z,I) and X|(z,I) are the subsets of S defined by Lemmas 4.7 and 4.9.
Note that we again take the liberty here to write Il (W) = m(vwe 1)Ws (2.1
instead of I1y(xWr) = m(xwo, 1) Wo sit(x,1yWs (2,1) to make apparent the symmetry
between II" and TI,.

It immediately follows from Lemmas 4.7 and 4.9 that II(2WW7) is the biggest par-
abolic coset in the interval [7'(z), 7 (zws ;)] containing 7'(x) and similarly IT (W)
is the biggest parabolic coset in the interval [m(x), m(zws 1)] containing m(rws 1).

Theorem 4.11. The maps 1" and 11| fulfill the following properties:
(i) Wy(zW;) < 2W; < TN (xW;) for any coset zWr.
(i5) Mo IIT=TITo IIy = II" and ;o I, = 1| o IT" = 1.
(iii) TI" and 11| are order preserving.
Therefore, the fibers of the maps II" and I1} coincide and define a lattice congru-
ence = of the facial weak order.

Proof. Using the characterization of the facial weak order given in Theorem 3.14 (iii),
we obtain that #W; < II'(zW;) since # < 7l(z) and zwo 1 < m(2)w, s1(s, - Sim-
ilarly, II(aW;) < W since Wl(xw%])wo’guz’l) < z and m(zws 1) < Twe . This
shows (i).

For (ii), it follows from the definition that II'(IT"(xW;)) = IIN(7"(2) W1, 1)) is
the biggest parabolic coset in the interval [WT(WT(I')),WT(WT(x)wO,ET(L I))] contain-
ing 7 (7'(x)). However, we have 7' (7'(z)) = #'(z) and ' (7 (2)wo s11(4,1)) = T (2Wo,1)
since xwo 1 = WT(‘T)IUQET(%I). We conclude that IITo IIT = IIT. The proof is similar
for the other equalities of (ii).
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To prove (iii), it is enough to show that II" is order-preserving on covering re-
lations of the facial weak order (it is then order preserving on any weak order
relation by transitivity, and the result for II| can be argued similarly or using
the anti-automorphisms of Proposition 3.18). Therefore, we consider a cover rela-
tion xW; < yW in facial weak order and prove that IIT(zW;) < IIT(yW).

It is immediate if the cover relation xW; < yW; is of type (1), that is, if z =y
and J = I U {s}. Indeed, it follows from the characterization in terms of biggest
parabolic subgroups and from the fact that 7'(z) = 7'(y) and 7(zws 1) < 7(ywo s)-

Consider now a cover relation W < yWj of type (2), that is, with y = 2w, rws, s
and J = I \ {s}. Note that in this case 7'(z) < 7'(y) and 7'(zws 1) = 7 (ywo, ).
We therefore need to show that 7(z)ws sz, 1) < ™ (Y)W s31(y,.1)-

For t € S, define t*:=w, wo, jtws jwo,r s0 that the equality zw.; = yw, s
implies the equality ytwo j = xt*w, 1. Let

Je={teJ|ytwo g =ywo s} ={t € J | at™wo s =xwo s},
Jz={t € J | ytwo j # ywo s} = {t € J | at*wo 1 # zwo 1},

and consider
K= {wo s 0 (@, ) Wo s1ap) [ £ € Tz} and 2= 7(2)ws 10, 1y Wo, k-
Lemma 4.8 ensures that

WT(z)wOjT(I,I) ift e J=,

twe g = Tt we 1 =
yitbe.s il {ﬁ(x)a(x,t*)womm ifte Jy.

Therefore

Y= /\ytwo,J = /\ ytwo g N /\ ytwe, g

teJ teJ= teJz

= WT(x)wo,ZT(x,I) N /\ WT(x)UT(x,t*)wo,zT(x,z)
teJz

WT(x)wo,zT(z,I) /\ wo,ZT(m,I)UT(x7t*)wo,ET(z,I)
teJx

= WT(m)wO’ET(x’I)wc,’K =z.

By Lemma 4.7 applied to the coset zWi, there exists X'(z, K) such that

WT(x)wo,ET(a:J) = ZWo,K = WT(Z)wO,ET(z,K) = WT(y)wo,ET(LK)'

Since 7 (2)Wo s11(z,1) = TWo,1 = YWo, 7, it follows that ¥y, J) = ©1(z, K) by unicity
in Lemma 4.7 applied to the coset yW ;. We get that WT(x)wo,ET(x’[) < WT(y)wo’ET(ny)
and thus that IIT(zW;) < TN (yW;).

We conclude by Lemma 4.2 that the fibers of II" and II; indeed coincide and
define a lattice congruence = of the facial weak order. O

4.4. Properties of facial congruences. In this section, we gather some proper-
ties of the facial congruence = defined in Theorem 4.11.
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4.4.1. Basic properties. We first come back to the natural definition of = given in
the introduction of Section 4.

Proposition 4.12. For any cosets xWi,yW; € Pw,
W EYW; <= z=y and 2wo 1 = YWo, .

Proof. If xW; = yWy, then II'(2W;) = IIT(yW) so that 7'(z) = 7'(y) and = = y.
Moreover, IT(zW;) = II(yWy) so that m(zw, 1) = m(ywe ;) and zwe 1 = yws ;.
Therefore, the =congruence class of W determines the =-congruence classes
of z and of zw, ;. Reciprocally, we already observed that IT'(zW) is the biggest
parabolic coset in the interval [r'(z), 7'(zwo, 1)] containing #'(z). If x = y and
TWe 1 = Yws j, We obtain that IIT(zW;) = I (yW;). Therefore, the =-congruence
class of W only depends on the =-congruence classes of x and of zw, 1. O

Corollary 4.13. For any x,y € W, we have x =y <= aWgy = yWy. Therefore,
each congruence class v of = is the intersection of W with a congruence class T’

of =.

This corollary says that the congruence = of the facial weak order indeed extends
the congruence = of the weak order. Nevertheless, observe that not all congruences
of the facial weak order arise as congruences of the weak order (consider for instance
the congruence on P4, that only contracts sW; with stWy).

4.4.2. Join-irreducible contractions. Recall that an element z of a finite lattice L
is join-irreducible if it covers exactly one element x, (see Section 3.4.3). The
following statement can be found e.g., in [FIJN95, Lemma 2.32]. For a lattice
congruence = on L and y € L, let D=(y) denote the set of join-irreducible ele-
ments x < y not contracted by =, that is such that x, # x. For y,z € L, we then
have y = 2 <= D=(y) = D=(z) and lattice quotient L/= is isomorphic to the in-
clusion poset on {D=(y) | y € L}. In other words, the lattice congruence = is char-
acterized by the join-irreducible elements of L that it contracts. Even if this char-
acterization is not always convenient, it is relevant to describe the join-irreducibles
of the facial weak order contracted by = in terms of those contracted by =.

Proposition 4.14. The join-irreducible cosets of the facial weak order contracted
by = are precisely:
o the cosets Wy where x is a join-irreducible element of the weak order
contracted by =,
o the cosets xWy,, where xs is a join-irreducible element of the weak order
contracted by =.

Proof. The join-irreducible cosets of the facial weak order are described in Propo-
sition 3.27. Now zWy is contracted by = when Wy = (2Wy), = {z4, 2z},
that is, when z = x, by Proposition 4.12. Similarly, Wy, is contracted by =
when Wiy = (Wi, ). = {x}, that is, when xs = 2 by Proposition 4.12. O

4.4.3. Up and bottom cosets of facial congruence classes. The next statements deal
with maximal and minimal cosets in their facial congruence classes.

Proposition 4.15. For any coset Wy, we have
(i) INaW;) = aW; <= 7l(z) =z,
(i1) My(aWr) = aW; <= m(zws 1) = zws 1.
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Proof. We only prove (i), the proof of (ii) being symmetric. Recall the definition
N (2W;) = 7(2)Wsit(, 1y Therefore, II(xW;) = W clearly implies that 7'(z) = .
Reciprocally, if 7'(z) = x, then X¥(z,I) = I by the uniqueness of X'(z,I) in
Lemma 4.7. Therefore II'(zW;) = 7(2) W, 1) = W7 O

Call an element x in W a =-singleton if it is alone in its =-congruence class,
i.e., such that m(z) = z = 7'(z). Similarly, call a coset zW; a facial =-singleton if
it is alone in its =-congruence class, i.e., such that II;(zW;) = aW; = TN (aW7).

Proposition 4.16. (i) A coset tW7 is a facial =-singleton if and only if 7'(z) =
and m(zwo,1) = TWo ;.
(ii) If x is a =-singleton, then W7y is a facial =-singleton for any I C S~ Dr(z).
Moreover, zwo jWy is a facial =-singleton for any J C Dr(x).

Proof. (i) is an immediate consequence of Proposition 4.15. To prove (ii), we just
need to show that if  is a =-singleton, then m(zw, ;) = w1 for any I C S\ Dg(x).
If not, there would exist ¢t € S such that ztw. ; £ xwo ;. If t € I, then z = xt by
Lemma 4.3. Ift ¢ I, then ¢t < x. Since = is a lattice congruence and TtWo 1 = TWo, 1,

T =T ANTWo 1 =xNTtws | = L.

In both cases, we contradict the assumption that x is a =-singleton. We prove
similarly that if z is a =-singleton, then 7'(zw, ;) = zw, s for any J C Dg(x). O

Remark 4.17. Proposition 4.16 (ii) can be interpreted as follows: if the weak order
minimum or maximum element of a coset W7 is a =-singleton, then the coset xW7j
is a facial =-singleton. In fact, we conjecture that a coset is a facial =singleton if
it contains a =-singleton.

4.5. Root and weight inversion sets for facial congruence classes. As in
Section 3.1, we now introduce and study the root and weight inversion sets of the
congruence classes of =. Root inversion sets are then used to obtain equivalent
characterizations of the quotient lattice of the facial weak order by =. Weight
inversion sets are used later in Section 4.6 to describe all faces of N. Reading’s
simplicial fan F= associated to =.

Definition 4.18. The root inversion set R(T") and the weight inversion set W (T')
of a congruence class I' of = are defined by
R(I)= (] R(EWk) and W)= |J W(EWk).
Wk el Wk el
Proposition 4.19. Consider a congruence class T' = [xWr,yW;] of =.
(i) The cones generated by the root and weight inversion sets of I' are polar to
each other:
cone(R(T"))® = cone(W(T)).
(i) The positive and negative parts of the root inversion set of I' coincide with
that of xWy and yW:

RT)Not =REW,)N®t and R(I)N® =R(yW,)Nd .

(iii) The root and weight inversion sets of I' can be computed from that of Wy
and yWy by

RT) =REW;)NR(yW;) and W(T) =W (W) UW(@yW;).
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Proof. Since the polar of a union is the intersection of the polars, (i) is a direct
consequence of Proposition 3.7 (iii).
For (ii), consider zWk € I'. Since zW; < zWx < yW,, we have by Remark 3.15

RzW)Nne@T CREW)N®T and R(EWr)NE®™ D RyW;)Ne .

Therefore,

RI)N®" = () REW)NET =R@@W)NnoT,
z2Wgel

and  RI)N® = ()| REW)NE =REW,)Ne™.
z2Wgell

Finally, for (iii), we have already R(T") C R(zW7) N R(yW). For the other
inclusion, we have

R(@W) NRyW,;) N et CRW)NndT =R(()NeT C R(T),
and  R(zW;)NRW;)Nd~ CRyW,;)Nd~ =R()N®~ C R

~—

The equality on weights then follows by polarity. O

The following theorem is an analogue of Theorem 3.14. It provides characteriza-
tions of the quotient lattice of the facial weak order by = in terms of root inversion
sets of the congruence classes, and of comparisons of the minimal and maximal
elements in the congruence classes.

Theorem 4.20. The following assertions are equivalent for two congruence classes
L= [z2Wr,yWy] and T7 = [&'Wp,y W] of =:

(i) T <T’ in the quotient of the facial weak order by =,

(ZZ) LCW[ S x/W[/,

(iii) yW; <y'Wy,

(iv) W < y' Wy,

(v) x <y and zws ;1 < y'wo, g,

(vi) R(T) N R((I’) C & and R(I") \R(I") C &7,

(vii) RC)N®+* C R(IV)N®T and R(C)N®~ 2 R(IV)Nd~.

Proof. By definition, we have I' < I" in the quotient lattice if and only if there
exists zWgx € I' and 2/Wyg, € TV such that zWx < 2/Wg.. Therefore, any of
Conditions (ii), (iii), and (iv) implies (i). Reciprocally, since II|(zWg) = «W;
and II(2’Wgk+) = /Wy, and II| is order preserving, we get that (i) implies (ii).
Similarly, since IT(zWx) = yWy, O'(2'Wg) = y'W, and IIT is order preserving,
we get that (i) implies (iii). Since zW; < yW; and 'Wp < y'W, either of (ii)
and (iii) implies (iv). Moreover (iv) <= (v) by Theorem 3.14. We thus already
obtained that (i) < (ii) < (iii) < (iv) <= (v).

We now prove that (i) <= (vii). Assume first that I' < T”. Since (i) implies (ii)
and (iii), we have 2W; < &'Wp and yW; < y'Wy,. By Remark 3.15 and Proposi-
tion 4.19 (ii), we obtain

RIO)Net =REW)NdT CRE'Wr)NdT =R(IV) N,
and RIO)N® =RyW,)Nd DRYW)NE® =RI)NP™.
Reciprocally, assume that (vii) holds. By Proposition 4.19 (ii), we have
R(zW)NnedT C R@Wp)Nn®T and R@yW,)N® 2 Ry W,)Nnd .
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Since zW; < yW; and 2'Wy < y'W ., we obtain by Remark 3.15 that
R(zW;) Nd+T C R(@'Wp)NdT C R(y'Wy) N o+
and RzW)Nd™ C R(yW,;)Nnd™ O Ry Wy)Nnd.

Again by Remark 3.15, we obtain that W, < y'W,,, and thus that T' < T since (iv)
implies (i). This proves that (i) <= (vii).
This concludes the proof as the equivalence (vil) <= (vi) is immediate. O

4.6. Congruences and fans. Consider a lattice congruence = of the weak order
and the corresponding congruence = of the facial weak order. N. Reading proved
in [Rea05] that = naturally defines a complete simplicial fan which coarsens the
Coxeter fan. Namely, for each congruence class v of =, consider the cone C,
obtained by glueing the maximal chambers cone(z(V)) of the Coxeter fan corre-
sponding to the elements x in . It turns out that each of these cones C. is convex
and that the collection of cones {C,, | v € W/=}, together with all their faces, form
a complete simplicial fan which we denote by F=.

We now use the congruence = of the facial weak order to describe all cones of F=
(not only the maximal ones). This shows that the lattice structure on the maximal
faces of F= extends to a lattice structure on all faces of the fan F—=. Our description
relies on the weight inversion sets defined in the previous section.

Proposition 4.21. For a congruence class v of = and the corresponding congru-
ence class I' of = such that v =W NT (see Corollary 4.13), we have

c, = U cone(z(V)) = cone(W(I)).

Proof. We have
Cy = U cone(z(V)) = U cone(W(x)) = U cone(W (zWr)) = cone(W(I)).

TEY zeWnr xWipel

Theorem 4.22. The collection of cones {cone(W(I")) | T' € Pw /=} forms the com-
plete simplicial fan F=.

Proof. Denote by C the collection of cones {cone(W(T")) | I € Py /=}. The relative
interiors of the cones of C form a partition of the ambiant space V, since = is a
congruence of the Coxeter complex Py,. Similarly, the relative interiors of the cones
of F= form a partition of the ambiant space V since we already know that F= is
a complete simplicial fan [Rea05]. Therefore, we only have to prove that each cone
of F= is a cone of C. First, Proposition 4.21 ensures that the full-dimensional cones
of C are precisely the full-dimensional cones of F=. Consider now another cone F
of 7=, and let C and C’ be the minimal and maximal full-dimensional cones of F=
containing F' (in the order given by < /=). Since C' and C’ are full-dimensional
cones of F=, there exist congruence classes I and I of = such that C' = cone(W ("))
and C’ = cone(W(I"”)). One easily checks that the Coxeter cones contained in the
relative interior of F' are precisely the cones cone(W (xW7)) for the cosets Wy such
that « € I while zw, ; € I''. By Proposition 4.12, these cosets form a congruence
class Q of =. Tt follows that F' = cone(W(Q)) € C, thus concluding the proof. O

Corollary 4.23. A coset Wy is a facial =-singleton if an only if cone(W (zW7))
is a cone of F=.
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sts {sts}

{e}

FIGURE 9. The descent congruence classes of the standard para-
bolic cosets in type As (left) and the resulting quotient (right).

4.7. Two examples: Facial boolean and Cambrian lattices. To illustrate the
results in this section, we revisit two relevant families of lattice congruences of the
weak order, namely the descent congruence and the Cambrian congruences [Rea06].

4.7.1. Facial boolean lattices. The descent congruence is the congruence of the weak
order defined by x =9 y if and only if D (z) = Dy (y). The corresponding up and
down projections are given by m(x) = w, p, () and m(x) = WoWo 5 Dy (z)- Lhe
quotient of the weak order by =9 is isomorphic to the boolean lattice on S. The
fan F9e is given by the arrangement of the hyperplanes orthogonal to the simple
roots of A. It is the normal fan of the parallelepiped Para(WW) generated by the
simple roots of A.

Denote by =9 the facial weak order congruence induced by as defined in
Section 4.3. According to Theorem 4.22, the =9 congruence classes correspond to
all faces of the parallelepiped Para(W).

In the next few statements, we provide a direct criterion to test whether two
cosets are =%-congruent. For this, we need to extend to all cosets the notion of
descent sets.

—des

Definition 4.24. Let the (left) root descent set of a coset zW; be the set of roots
D(ICW]) = R(LEW[) N+A C o.

Figure 10 illustrates the root descent sets in type As (left) and As (right). For
the latter, we have just discarded the interior triangles in each root inversion set in
Figure 7.

Notice that the simple roots in the inversion set N(x) precisely correspond to
the descent set Dy (x):

ANN(z)={as|se Dr(z)} ={as|se S, l(sx) < l(x)}.

Similar to Proposition 3.10, the next statement concerns the root descent set D(xWg)
for x € W. For brevity we write D(z) instead of D(xWg).
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D(sts)

FIGURE 10. The root descent sets of the standard parabolic cosets
in type As (left) and As (right).

Proposition 4.25. For any x € W, the root descent set D(z) has the following
properties.

(i) D(z) = (ANN(z)) U —(A N\ N(z)). In other words,
D(z)N®* = (ANN(z)) and D(z)N®~ = —(A N N(z)).
(ii) D(zwo) = — D(x) and D(wox) = wo (D(x)).
Proof. The results follow immediately from Proposition 3.10 by intersecting with £A
appropriately. O

As in Proposition 3.12 and Corollary 3.13, the root descent set of a coset xW7y
can be computed from that of its minimal and maximal length representatives x
and zw, 1.

Proposition 4.26. The root and weight inversion sets of Wy can be computed
from those of x and zwe 1 by D(xW;) = D(z) UD(zw, 1). In other words,

DEW)N®™ =D(zx)Nd~ and D(zW;)N @ = D(zw, 1) N®T.

Proof. Follow immediately from Proposition 3.12 and Corollary 3.13 by intersecting
with +A appropriately. O

From the previous propositions, we obtain that the =9
is determined by the root descent set D(xW7).

-equivalence class of xW7p

Proposition 4.27. For any cosets sWi,yW;, we have W =% yW; if and only
if D(a2Wrp) = D(yWy).
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Proof. As observed in Proposition 4.12, the =%s-congruence class of W only
depends on the =9%s-congruence class of r and zw, s, and thus on the descent
sets Dr(z) and Dp(zwo ). By Propositions 4.25 (i) and 4.26, the root descent
set D(zWr) and the descent sets Dy, (z) and Dy (zwo ;) determine each other. We
conclude that the =%s_equivalence class of W is determined by the root descent
set D(zW7i). O

Finally, we observe that the facial =9

top faces of the W-permutahedron.

-singletons correspond to the bottom and

—des

Proposition 4.28. A coset zW; is a facial -singleton if and only if x = e

Or TWo,] = Wo.

Proof. As already mentioned, the up and down projection maps of the descent

congruence are given by m(x) = wo p,(») and m(x) = WoWo, S~ Dy (z)- From
Proposition 4.16, we therefore obtain that a coset zW7j is a singleton if and only
if wows s« Dy () = T and W p; (zw, ;) = TWo,1- The result follows. O

Example 4.29. In type A, the descent vector of an ordered partition A of [n] is
the vector des()\) € {—1,0,1}"~1 given by

=1 if ATIE) < AL+ 1),
des(A); =190 if A71(E) =A@+ 1),
L ifATHE) > AT+ 1).

These descent vectors where used by J.-C. Novelli and J.-Y. Thibon in [NTO06] to
see that the facial weak order on the cube is a lattice. See also [CP14].

4.7.2. Facial Cambrian lattices. Fix a Coxeter element ¢, i.e., the product of all
simple reflections in S in an arbitrary order. A simple reflection s € S is initial in ¢
if £(sc) < £(c). For s initial in ¢, note that scs is another Coxeter element for W
while sc is a Coxeter element for Wg_ 4.

In [Rea06, Rea07b], N. Reading defines the c-Cambrian lattice as a lattice quo-
tient of the weak order (by the c-Cambrian congruence) or as a sublattice of the
weak order (induced by c-sortable elements). There are several ways to present his
constructions, we choose to start from the projection maps of the c-Cambrian con-
gruence (as we did in the previous sections). These maps are defined by an induction
both on the length of the elements and on the rank of the underlying Coxeter group.
Namely, define the projection nf : W — W inductively by wf(e) = e and for any s
initial in c,

() = {S;er“(sw) if £(sw) < ((w)
T (wisy) if £(sw) > L(w),

where w = w) - () is the unique factorization of w such that wisy € Wg ysy and
£t w) > (89 w) for all t € S~ {s}. The projection 7, : W — W can then be
defined similarly, or by

o (w) = (ﬂ(cil) (wws) ) wo.

c

N. Reading proves in [Rea07b] that these projection maps 7, and o satisfy the
properties of Lemma 4.2 and therefore define a congruence =¢ of the weak order
called c-Cambrian congruence. The quotient of the weak order by the ¢-Cambrian
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congruence is called the c-Cambrian lattice. It was also defined as the smallest
congruence contracting certain edges, see [Rea06].

Cambrian congruences are relevant in the context of finite type cluster algebras,
generalized associahedra, and W-Catalan combinatorics. Without details, let us
point out the following facts:

(i) The fan F=. associated to the c-Cambrian congruence =¢ is the Cambrian fan
studied by N. Reading and D. Speyer [RS09b]. Is was proved to be the normal
fan of a polytope by C. Hohlweg, C. Lange and H. Thomas [HLT11]. See
also [Stel3, PS15] for further geometric properties. The resulting polytopes
are called generalized associahedra.

(ii) These polytopes realize the c-cluster complexes of type W. When W is crystal-
lographic, these complexes were defined from the theory of finite type cluster
algebras of S. Fomin and A. Zelevinsky [FZ02, FZ03].

(iii) The minimal elements in the c-Cambrian congruence classes are precisely the
c-sortable elements, defined as the elements w € W such that there exists
nested subsets Ky 2 Ky 2 --- D K, of § such that w = ¢k, ¢k, ... ck,
where cg is the product of the elements in K in the order given by c¢. The
maximal elements of the c-Cambrian congruence classes are the c-antisortable
elements, defined as the elements w € W such that ww, is ¢~ L-sortable.
N. Reading proved in [Rea07b] that the Cambrian lattice is in fact isomorphic
to the sublattice of the weak order induced by c-sortable elements (or by c-
antisortable elements). The c-sortable elements are connected to various W-
Catalan families: c-clusters, vertices of the c-associahedron, W-non-crossing
partitions. See [Rea07a] for precise definitions.

The results presented in this paper translate to the following statement.

Theorem 4.30. For any Coxeter element ¢ of W, the facial c-Cambrian congru-

=c

ence =°¢ on the Cozeter compler Py, defined by
Wi = yW; <= z =y and 2w, 1 =° yw,,j,

has the following properties:

(i) The c-Cambrian congruence =€ is the restriction of the facial c-Cambrian
congruence =° to W.

(ii) The quotient of the facial weak order by the facial c-Cambrian congruence =°
defines a lattice structure on the cones of the c-Cambrian fan of [RS09b], or
equivalently on the faces of the c-associahedron of [HLT11].

(iii) A coset xWy is minimal (resp. maximal) in its facial c-congruence class if
and only if xwo s is c-sortable (resp. x is c-antisortable). In particular, a
Cozeter cone cone(W (zW7r)) is a cone of the c-Cambrian fan if and only if x
1s c-antisortable and xw, 1 is c-sortable.

Proof. (i) is an application of Corollary 4.13. (iii) follows from Theorem 4.22 and
the fact that the c-Cambrian fan of [RS09b] is the normal fan of the c-associahedron
of [HLT11]. Finally, (iii) is a direct translation of Propositions 4.15 and 4.16. O

Example 4.31. Examples of facial Cambrian congruences in type As, A3, and B3
are represented in Figures 11, 12, and 13 respectively.

Example 4.32. In type A, the Tamari congruence classes correspond to binary
trees, while the facial Tamari congruence classes correspond to Schroder trees. The
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FIGURE 11. The st-Cambrian congruence classes of the standard
parabolic cosets in type Az (left) and the resulting quotient (right).

quotient of the facial weak order by the facial Tamari congruence was already
described in [PR06, NT06]. In [CP14], G. Chatel and V. Pilaud describe the Cam-
brian counterparts of binary trees and Schroder trees, and use them to introduce
the facial type A Cambrian lattices.

Remark 4.33. If = is an order congruence on a poset (P, <) with up and down
projections 7! and 7, the suborder of < induced by m(P) is isomorphic to the quo-
tient order P/= (see Definition 4.1). When P is a lattice, P/= is also a lattice,
so that (m(P), <) is a lattice. Although (m(P), <) is always a meet subsemilattice
of P, it is not necessarily a sublattice of P. In [Rea07b], N. Reading proved more-
over that the weak order induced on m (W) is actually a sublattice of the weak order
on W. In contrast, the facial weak order induced on II|(Py ) is not a sublattice of
the facial weak order on Py . An example already appears in A3 for ¢ = srt. Con-
sider xW; = tsrWy and yW; = stsrWs, so that aWy AyW; = 2. Wk, = tsrWs.
We observe that zw, 5 = srt|srt = w, and YWo, ] = srt|sr are srt-sortable while
2, Wo i, = St|sr is not.
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