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Abstract. We present two simple descriptions of the denominator vectors of

the cluster variables of a cluster algebra of finite type, with respect to any
initial cluster seed: one in terms of the compatibility degrees between almost

positive roots defined by S. Fomin and A. Zelevinsky, and the other in terms of

the root function of a certain subword complex. These descriptions only rely
on linear algebra. They provide two simple proofs of the known fact that the

d-vector of any non-initial cluster variable with respect to any initial cluster

seed has non-negative entries and is different from zero.

1. Introduction

Cluster algebras were introduced by S. Fomin and A. Zelevinsky in the series
of papers [FZ02, FZ03a, FZ05, FZ07]. They are commutative rings generated by
a (possibly infinite) set of cluster variables, which are grouped into overlapping
clusters. The clusters can be obtained from any initial cluster seedX = {x1, . . . , xn}
by a mutation process. Each mutation exchanges a single variable y to a new
variable y′ satisfying a relation of the form yy′ = M+ +M−, where M+ and M−
are monomials in the variables involved in the current cluster and distinct from y
and y′. The precise content of these monomials M+ and M− is controlled by
a combinatorial object (a skew-symmetrizable matrix, or equivalently a weighted
quiver [Kel12]) which is attached to each cluster and is also transformed during
the mutation. We refer to [FZ02] for the precise definition of these joint dynamics.
In [FZ02, Theorem 3.1], S. Fomin and A. Zelevinsky proved that given any initial
cluster seed X = {x1, . . . , xn}, the cluster variables obtained during this mutation
process are Laurent polynomials in the variables x1, . . . , xn. That is to say, every
non-initial cluster variable y can be written in the form

y =
F (x1, . . . , xn)

xd11 · · ·x
dn
n

where F (x1, . . . , xn) is a polynomial which is not divisible by any variable xi
for i ∈ [n]. This intriguing property is called Laurent Phenomenon in cluster alge-
bras [FZ02]. The denominator vector (or d-vector for short) of the cluster variable y
with respect to the initial cluster seed X is the vector d(X, y) := (d1, . . . , dn). The
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d-vector of the initial cluster variable xi is d(X,xi) := − ei := (0, . . . ,−1, . . . , 0) by
definition.

Note that we think of the cluster variables as a set of variables satisfying some
algebraic relations. These variables can be expressed in terms of the variables in
any initial cluster seed X = {x1, . . . , xn} of the cluster algebra. Starting from a
different cluster seed X ′ = {x′1, . . . , x′n} would give rise to an isomorphic cluster
algebra, expressed in terms of the variables x′1, . . . , x

′
n of this seed. Therefore, the

d-vectors of the cluster variables depend on the choice of the initial cluster seed X
in which the Laurent polynomials are expressed. This dependence is explicit in the
notation d(X, y). Note also that since the denominator vectors do not depend on
coefficients, we restrict our attention to coefficient-free cluster algebras.

In this paper, we only consider finite type cluster algebras, i.e. cluster algebras
whose mutation graph is finite. They were classified in [FZ03a, Theorem 1.4] using
the Cartan-Killing classification for finite crystallographic root systems. In [FZ03a,
Theorem 1.9], S. Fomin and A. Zelevinsky proved that in the cluster algebra of any
given finite type, with a bipartite quiver as initial cluster seed,

(i) there is a bijection φ from almost positive roots to cluster variables, which
sends the negative simple roots to the initial cluster variables;

(ii) the d-vector of the cluster variable φ(β) corresponding to an almost positive
root β is given by the vector (b1, . . . , bn) of coefficients of the root β =

∑
biαi

on the linear basis ∆ formed by the simple roots α1, . . . , αn; and
(iii) these coefficients coincide with the compatibility degrees (αi ‖ β) defined in

[FZ03b, Section 3.1].

These results were extended to all cluster seeds corresponding to Coxeter ele-
ments of the Coxeter group (see e.g. [Kel12, Theorem 3.1 and Section 3.3]). More
precisely, assume that the initial seed is the cluster Xc corresponding to a Coxeter
element c (its associated quiver is the Coxeter graph oriented according to c). Then
one can define a bijection φc from almost positive roots to cluster variables such
that the d-vector of the cluster variable φc(β) corresponding to β, with respect to
the initial cluster seed Xc, is still given by the vector (b1, . . . , bn) of coordinates
of β =

∑
biαi in the basis ∆ of simple roots. Under this bijection, the collections

of almost positive roots corresponding to clusters are called c-clusters and were
studied by N. Reading [Rea07, Section 7].

In this paper, we provide similar interpretations for the denominators of the
cluster variables of any finite type cluster algebra with respect to any initial cluster
seed (acyclic or not):

(i) Our first description (Corollary 3.2) uses compatibility degrees: if {β1, . . . , βn}
is the set of almost positive roots corresponding to the cluster variables in any
initial cluster seed X = {φ(β1), . . . , φ(βn)}, then the d-vector of the cluster
variable φ(β) corresponding to an almost positive root β, with respect to
the initial cluster seed X, is still given by the vector of compatibility de-
grees ((β1 ‖ β), . . . , (βn ‖ β)) of [FZ03b, Section 3.1]. We also provide a refine-
ment of this result parametrized by a Coxeter element c, using the bijection φc
together with the notion of c-compatibility degrees (Corollary 3.3).

(ii) Our second description (Corollary 3.4) uses the recent connection [CLS13]
between the theory of cluster algebras of finite type and the theory of subword
complexes, initiated by A. Knutson and E. Miller [KM04]. We describe the
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entries of the d-vector in terms of certain coefficients given by the root function
of a subword complex associated to a certain word.

Using these results, we provide two alternative proofs of the known fact that,
in a cluster algebra of finite type, the d-vector of any non-initial cluster variable
with respect to any initial cluster seed is non-negative and not equal to zero (Corol-
lary 3.5).

Even if we restrict here to crystallographic finite types since we deal with cluster
variables of the associated cluster algebras, all the results not involving cluster
variables remain valid for any arbitrary finite type. This includes in particular
the results about almost positive roots, c-clusters, c-compatibility degrees, rotation
maps, and their counterparts in subword complexes. We also highlight that subword
complexes played a fundamental role in the results of this paper. Even if the
main result describing denominator vectors in terms of compatibility degrees can
be proved independently, we would not have been able to find it without using the
subword complex approach.

Finally, we also provide explicit geometric interpretations for all the concepts
and results in this paper for the classical types A, B, C and D in Section 7. Our
interpretation in type D is new and differs from known interpretations in the lit-
erature. It simplifies certain combinatorial and algebraic aspects and makes an
additional link between the theory of cluster algebras and pseudotriangulations.

2. Preliminaries

Let (W,S) be a finite crystallographic Coxeter system of rank n. We consider a
root system Φ, with simple roots ∆ := {α1, . . . , αn}, positive roots Φ+, and almost
positive roots Φ≥−1 := Φ+ ∪ −∆. We refer to [Hum90] for a reference on Coxeter
groups and root systems.

Let A(W ) denote the cluster algebra associated to type W , as defined in [FZ03a].
Each cluster is formed by n cluster variables, and is endowed with a weighted
quiver (an oriented and weighted graph on S) which controls the cluster dynamics.
Since we will not make extensive use of it, we believe that it is unnecessary to
recall here the precise definition of the quiver and cluster dynamics, and we refer
to [FZ02, Kel12] for details. For illustrations, we recall geometric descriptions of
these dynamics in types A, B, C, and D in Section 7.

Let c be a Coxeter element of W , and c := (c1, · · · , cn) be a reduced expression
of c. The element c defines a particular weighted quiver Qc: the Coxeter graph
of the Coxeter system (W,S) directed according to the order of appearance of
the simple reflections in c. We denote by Xc the cluster seed whose associated
quiver is Qc. Let w◦(c) := (w1, · · · , wN ) denote the c-sorting word for w◦, i.e. the
lexicographically first subword of the infinite word c∞ which represents a reduced
expression for the longest element w◦ ∈W . We consider the word Qc := cw◦(c) and
denote by m :=n+N the length of this word.

2.1. Cluster variables, almost positive roots, and positions in the word Qc.
We recall here the above-mentioned bijections between cluster variables, almost
positive roots and positions in the word Qc. We will see in the next sections that
both the clusters and the d-vectors (expressed on any initial cluster seed X) can
also be read off in these different contexts. Figure 1 summarizes these different
notions and the corresponding notations. We insist that the choice of the Coxeter
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cluster variables x, y ∈ A(W )
cluster X = {x1, . . . , xn}

compatibility degree d(x, y)
denominator vector d(X, y)

almost positive roots α, β ∈ Φ≥−1
c-cluster B = {β1, . . . , βn}

c-compatibility degree (α ‖c β)
compatibility vector dc(B, β)

positions i, j ∈ [m] in the word Qc

c-cluster I = {i1, . . . , in}
c-compatibility degree {i ‖c j}

coefficient vector dc(I, j)

φc ψc

ϑc

τ

τc τc

Figure 1. Three different contexts for cluster algebras of finite
type, their different notions of compatibility degrees, and the bi-
jections between them. See Sections 2.1, 2.2 and 2.3 for definitions.

element c and the choice of the initial cluster X are not related. The former provides
a labeling of the cluster variables by the almost positive roots or by the positions
in Qc, while the latter gives an algebraic basis to express the cluster variables and
to assign them d-vectors.

First, there is a natural bijection between cluster variables and almost positive
roots, which can be parametrized by the Coxeter element c. Start from the initial
cluster seed Xc associated to the weighted quiver Qc corresponding to the Coxeter
element c. Then the d-vectors of the cluster variables of A(W ) with respect to the
initial seed Xc are given by the almost positive roots Φ≥−1. This defines a bijection

φc : Φ≥−1 −→ {cluster variables of A(W )}
from almost positive roots to cluster variables. Notice that this bijection depends on
the choice of the Coxeter element c. When c is a bipartite Coxeter element, it is the
bijection φ of S. Fomin and A. Zelevinsky [FZ03a, Theorem 1.9] mentioned above.
Transporting the structure of the cluster algebra A(W ) through the bijection φc, we
say that a subset B of almost positive roots forms a c-cluster iff the corresponding
subset of cluster variables φc(B) forms a cluster of A(W ). The collection of c-
clusters forms a simplicial complex on the set Φ≥−1 of almost positive roots called
the c-cluster complex. This complex was described in purely combinatorial terms by
N. Reading in [Rea07, Section 7]. Given an initial c-cluster seed B := {β1, . . . , βn}
in Φ≥−1 and an almost positive root β, we define the d-vector of β with respect
to B as

dc(B, β) := d
(
φc(B), φc(β)

)
.

If c is a bipartite Coxeter element, then we speak about classical clusters and omit c
in the previous notation to write d(B, β).
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Second, there is a bijection

ϑc : [m] −→ Φ≥−1

from the positions in the word Qc = cw◦(c) to the almost positive roots as follows.
The letter ci of c is sent to the negative root −αci , while the letter wi of w◦(c) is
sent to the positive root w1 · · ·wi−1(αwi

). To be precise, note that this bijection
depends not only on the Coxeter element c, but also on its reduced expression c.
This bijection was defined by C. Ceballos, J.-P. Labbé and C. Stump in [CLS13,
Theorem 2.2].

Composing the two maps described above provides a bijection

ψc : [m] −→ {cluster variables of A(W )}

from positions in the word Qc to cluster variables (precisely defined by ψc :=φc◦ϑc).
Transporting the structure of A(W ) through the bijection ψc, we say that a subset I
of positions in Qc forms a c-cluster iff the corresponding cluster variables ψc(I) form
a cluster of A(W ). Moreover, given an initial c-cluster seed I ⊆ [m] in Qc and a
position j ∈ [m] in Qc, we define the d-vector of j with respect to I as

dc(I, j) := d
(
ψc(I), ψc(j)

)
.

It turns out that the c-clusters can be read off directly in the word Qc as follows.

Theorem 2.1 ([CLS13, Theorem 2.2 and Corollary 2.3]). A subset I of positions
in Qc forms a c-cluster in Qc if and only if the subword of Qc formed by the
complement of I is a reduced expression for w◦.

Remark 2.2. The previous theorem relates c-cluster complexes to subword com-
plexes as defined by A. Knutson and E. Miller [KM04]. Given a word Q on the
generators S of W and an element π ∈ W , the subword complex SC(Q, π) is the
simplicial complex whose faces are subwords P of Q such that the complement QrP
contains a reduced expression of π. See [CLS13] for more details on this connection.

2.2. The rotation map. In this section we introduce a rotation map τc on the
positions in the word Qc, and naturally extend it to a map on almost positive roots
and cluster variables using the bijections of Section 2.1 (see Figure 1). The rotation
map plays the same role for arbitrary finite type as the rotation of the polygons
associated to the classical types A, B, C and D, see e.g. [CLS13, Theorem 8.10]
and Section 7.

Definition 2.3 (Rotation maps). The rotation

τc : [m] −→ [m]

is the map on the positions in the word Qc defined as follows. If qi = s, then τc(i)
is defined as the position in Qc of the next occurrence of s if possible, and as the
first occurrence of w◦sw◦ otherwise.

Using the bijection ϑc from the positions in the word Qc to almost positive roots,
this rotation can also be regarded as a map from almost positive roots to almost
positive roots. For simplicity, we abuse of notation and also write

τc : Φ≥−1 −→ Φ≥−1
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for the composition ϑc◦τc◦ϑ−1c . This composition can be expressed purely in terms
of roots as

τc(α) =


c1 · · · ci−1(αci) if α = −αci ,
−αci if α = cn · · · ci+1(αci),

c(α) otherwise.

The first and the third lines of this equation are given by the root corresponding to
the next occurrence of the letter associated to α in Qc. The second line corresponds
to the case when the letter associated to α in Qc is the last occurrence of this
letter in Qc. This case can be easily explained as follows. Let η : S → S be
the involution η(s) = w◦sw◦. The last occurrence of η(ci) in Qc is the position
which is mapped under τc to the first occurrence of ci in Qc. In other words, if
we denote by α the root associated to the last occurrence of η(ci) in Qc, then
τc(α) = −αci . In addition, the word w◦(c) is, up to commutations, equal to a
word with suffix (η(c1), . . . , η(cn)) [CLS13, Proposition 7.1]. From this we conclude
that α = cn · · · ci+1(αci) as desired.

Using the bijection ψc from the positions in the word Qc to cluster variables, the
rotation can also be regarded as a map on the set of cluster variables. Again for
simplicity, we also write

τ : {cluster variables of A(W )} −→ {cluster variables of A(W )}

for the composition ψc ◦ τc ◦ ψ−1c . This composition can be expressed purely in
terms of cluster variables as follows. Consider the cluster variables expressed in
terms of the initial cluster seed Xc associated to the weighted quiver Qc (recall
that this quiver is by definition the Coxeter graph of the Coxeter system (W,S)
directed according to the order of appearance of the simple reflections in c). If y
is the cluster variable at vertex i of a quiver obtained from Qc after a sequence of
mutations µi1 → · · · → µir , then the rotation τ(y) is the cluster variable at vertex i
of the quiver obtained from Qc after the sequence of mutations µc1 → · · · → µcn →
µi1 → · · · → µir . Although defined using a Coxeter element c, this rotation map is
independent of the choice of c and we denote it by τ .

The following lemma is implicit in [CLS13, Proposition 8.6], see Corollary 6.5.

Lemma 2.4. The rotation map preserves clusters:

(i) a subset I ⊂ [m] of positions in the word Qc is a c-cluster if and only if τc(I)
is a c-cluster;

(ii) a subset B ⊂ Φ≥−1 of almost positive roots is a c-cluster if and only if τc(B)
is a c-cluster; and

(iii) a subset X of cluster variables is a cluster if and only if τ(X) is a cluster.

We present a specific example for the rotation map on the positions in the
word Qc, almost positive roots, and cluster variables below. For the computation
of cluster variables in terms of a weighted quiver we refer the reader to [Kel12].

Example 2.5. Consider the Coxeter group A2 = S3, generated by the simple
transpositions s1, s2 for si := (i i+ 1), and the associated root system with simple
roots α1, α2. Let c = s1s2 be a Coxeter element and Qc = (s1, s2, s1, s2, s1) be the
associated word. The rotation map on the positions in the word Qc, almost positive
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roots, and cluster variables is given by

τc : [m] −→ [m] τc : Φ≥−1 −→ Φ≥−1 τ : {var} −→ {var}

1 7−→ 3 −α1 7−→ α1 x1 7−→ 1 + x2
x1

2 7−→ 4 −α2 7−→ α1 + α2 x2 7−→ 1 + x1 + x2
x1x2

3 7−→ 5 α1 7−→ α2
1 + x2
x1

7−→ 1 + x1
x2

4 7−→ 1 α1 + α2 7−→ −α1
1 + x1 + x2

x1x2
7−→ x1

5 7−→ 2 α2 7−→ −α2
1 + x1
x2

7−→ x2

Remark 2.6. Let c be a bipartite Coxeter element, with sources corresponding
to the positive vertices (+) and sinks corresponding to the negative vertices (−).
Then, the rotation τc on the set of almost positive roots is the product of the
maps τ+, τ− : Φ≥−1 → Φ≥−1 defined in [FZ03b, Section 2.2]. We refer the interested
reader to that paper for the definitions of τ+ and τ−.

2.3. Three descriptions of c-compatibility degrees. In this section we intro-
duce three notions of compatibility degrees on the set of cluster variables, almost
positive roots, and positions in the word Qc. We will see in Section 3 that these
three notions coincide under the bijections of Section 2.1, and will use it to describe
three different ways to compute d-vectors for cluster algebras of finite type. We
refer again to Figure 1 for a summary of our notations in these three situations.

2.3.1. On cluster variables. Let X = {x1, . . . , xn} be a set of cluster variables
of A(W ) forming a cluster, and let

(2.1) y =
F (x1, . . . , xn)

xd11 · · ·x
dn
n

be a cluster variable of A(W ) expressed in terms of the variables {x1, . . . , xn} such
that F (x1, . . . , xn) is a polynomial which is not divisible by any variable xj for
j ∈ [n]. Recall that the d-vector of y with respect to X is d(X, y) = (d1, . . . , dn).

Lemma 2.7. For cluster algebras of finite type, the i-th component of the d-vector
d(X, y) is independent of the cluster X containing the cluster variable xi.

In view of this lemma, which is proven in Section 5.1, one can define a compati-
bility degree between two cluster variables as follows.

Definition 2.8 (Compatibility degree on cluster variables). For any two cluster
variables x and y, we denote by d(x, y) the x-component of the d-vector d(X, y)
for any cluster X containing the variable x. We refer to d(x, y) as the compatibility
degree of y with respect to x.

Observe that this compatibility degree is well defined for any pair of cluster
variables x and y, since any cluster variable x of A(W ) is contained in at least one
cluster X of A(W ).
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2.3.2. On almost positive roots.

Definition 2.9 (c-compatibility degree on almost positive roots). The c-compatibility
degree on the set of almost positive roots is the unique function

Φ≥−1 × Φ≥−1 −→ Z
(α, β) 7−→ (α ‖c β)

characterized by the following two properties:

(−αi ‖c β) = bi, for all i ∈ [n] and β =
∑

biαi ∈ Φ≥−1,(2.2)

(α ‖c β) = (τcα ‖c τcβ), for all α, β ∈ Φ≥−1.(2.3)

Remark 2.10. This definition is motivated by the classical compatibility degree
defined by S. Fomin and A. Zelevinsky in [FZ03b, Section 3.1]. Namely, if c is a
bipartite Coxeter element, then the c-compatibility degree (· ‖c ·) coincides with the
compatibility degree (· ‖ ·) of [FZ03b, Section 3.1] except that (α ‖c α) = −1 while
(α ‖ α) = 0 for any α ∈ Φ≥−1. Throughout this paper, we ignore this difference:
we still call classical compatibility degree, and denote by (· ‖ ·), the c-compatibility
degree for a bipartite Coxeter element c.

Remark 2.11. In [MRZ03], R. Marsh, M. Reineke, and A. Zelevinsky defined the
c-compatibility degree for simply-laced types in a representation theoretic way, and
extended this definition for arbitrary finite type by “folding” techniques. In [Rea07],
N. Reading also used the similar notion of c-compatibility between almost positive
roots. Namely, α and β are c-compatible when their compatibility degree vanishes.
Here, we really need to know the value of the c-compatibility degree, and not only
whether or not it vanishes.

Remark 2.12. Note that it is not immediately clear from the conditions in Defini-
tion 2.9 that the c-compatibility degree is well-defined. Uniqueness follows from the
fact that the orbits of the negative roots under τc cover all almost positive roots.
Existence is more involved and can be proved by representation theoretic argu-
ments. Our interpretation in Theorem 3.1 below gives alternative direct definitions
of c-compatibility, and in particular proves directly existence and uniqueness.

Remark 2.13. As observed by S. Fomin and A. Zelevinsky in [FZ03b, Proposi-
tion 3.3], if α, β are two almost positive roots and α∨, β∨ are their dual roots in
the dual root system, then (α ‖ β) = (β∨ ‖ α∨). Although not needed in this paper,
we remark that this property also holds for c-compatibility degrees. This property
is for example illustrated by the fact that the c-compatibility tables 4 and 6 of
respective types B2 and C2 are transpose to each other.

2.3.3. On positions in the word Qc. In this section, we recall the notion of root func-
tions associated to c-clusters in Qc, and use them in order to define a c-compatibility
degree on the set of positions in Qc. This description relies only on linear algebra
and is one of the main contributions of this paper. The root function was defined
by C. Ceballos, J.-P. Labbé, and C. Stump in [CLS13, Definition 3.2] and was
extensively used by V. Pilaud and C. Stump in the construction of Coxeter brick
polytopes [PS11].

Definition 2.14 ([CLS13]). The root function

r(I, ·) : [m] −→ Φ
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associated to a c-cluster I ⊆ [m] in Qc is defined by

r(I, j) :=σc
[j−1]rI(αqj ),

where σc
X denotes the product of the reflections qx ∈ Qc for x ∈ X in this order.

The root configuration of I is the set R(I) := {r(I, i) | i ∈ I} (Although the root
configuration is a priori a multi-set for general subword complexes, it is indeed a
set with no repeated elements for the particular choice of word Qc.)

As proved in [CLS13, Section 3.1], the root function r(I, ·) encodes exchanges
in the c-cluster I. Namely, any i ∈ I can be exchanged with the unique j /∈ I
such that r(I, j) = ±r(I, j) (see Lemma 5.1), and the root function can be updated
during this exchange (see Lemma 5.2). It was moreover shown in [PS11, Section 6]
that the root configuration R(I) forms a basis for Rn for any given initial c-cluster I
in Qc. It enables us to decompose any other root on this basis to get the following
coefficients, which will play a central role in the remainder of the paper.

Definition 2.15 (c-compatibility degree on positions in Qc). Fix any initial c-
cluster I ⊆ [m] of Qc. For any position j ∈ [m], we decompose the root r(I, j) on
the basis R(I) as follows:

r(I, j) =
∑
i∈I

ρi(j)r(I, i).

For i ∈ I and j ∈ [m], we define the c-compatibility degree as the coefficient

{i ‖c j} =

{
ρi(j) if j > i,

−ρi(j) if j ≤ i.

According to the following lemma, it is indeed valid to omit to mention the
specific c-cluster I in which these coefficients are computed. We refer to Section 5.2
for the proof of Lemma 2.16.

Lemma 2.16. The coefficients {i ‖c j} are independent of the choice of the c-cluster
I ⊆ [m] of Qc containing i.

Moreover, this compatibility degree is well defined for any pair of positions i, j ∈ [m]
of the word Qc, since for any i there is always a c-cluster I containing i.

3. Main results: Three descriptions of d-vectors

In this section we present the main results of this paper. We refer to Section 7.4
for explicit examples.

Theorem 3.1. The three notions of compatibility degrees on the set of cluster
variables, almost positive roots, and positions in the word Qc coincide under the
bijections of Section 2.1. More precisely, for every pair of positions i, j in the word
Qc we have

d(ψc(i), ψc(j)) = (ϑc(i) ‖c ϑc(j)) = {i ‖c j}.
In particular, if c is a bipartite Coxeter element, then these coefficients coincide
with the classical compatibility degrees of S. Fomin and A. Zelevinsky [FZ03b, Sec-
tion 3.1] (except for Remark 2.10).
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The proof of this theorem can be found in Section 6. The following three state-
ments are the main results of this paper and are direct consequences of Theorem 3.1.
The first statement describes the denominator vectors in terms of the compatibility
degrees of [FZ03b, Section 3.1].

Corollary 3.2. Let B := {β1, . . . , βn} ⊆ Φ≥−1 be a (classical) cluster in the sense
of S. Fomin and A. Zelevinsky [FZ03a, Theorem 1.9], and let β ∈ Φ≥−1 be an
almost positive root. Then the d-vector d(B, β) of the cluster variable φ(β) with
respect to the initial cluster seed φ(B) = {φ(β1), . . . , φ(βn)} is given by

d(B, β) =
(
(β1 ‖ β), . . . , (βn ‖ β)

)
,

where (βi ‖ β) is the compatibility degree of β with respect to βi as defined by
S. Fomin and A. Zelevinsky [FZ03b, Section 3.1] (except for Remark 2.10).

The next statement extends this result to any Coxeter element c of W .

Corollary 3.3. Let B := {β1, . . . , βn} ⊆ Φ≥−1 be a c-cluster in the sense of N. Read-
ing [Rea07, Section 7], and let β ∈ Φ≥−1 be an almost positive root. Then the
d-vector dc(B, β) of the cluster variable φc(β) with respect to the initial cluster
seed φc(B) = {φc(β1), . . . , φc(βn)} is given by

dc(B, β) =
(
(β1 ‖c β), . . . , (βn ‖c β)

)
,

where (βi ‖c β) is the c-compatibility degree of β with respect to βi as defined in
Definition 2.9.

Finally, the third statement describes the denominator vectors in terms of the
coefficients {i ‖c j} obtained from the word Qc.

Corollary 3.4. Let I ⊆ [m] be a c-cluster and j ∈ [m] be a position in Qc. Then
the d-vector dc(I, j) of the cluster variable ψc(j) with respect to the initial cluster
seed ψc(I) = {ψc(i) | i ∈ I} is given by

dc(I, j) =
(
{i ‖c j}

)
i∈I .

As a consequence, we obtain the following result which is proven in Section 6.4.

Corollary 3.5. For cluster algebras of finite type, the d-vector of a cluster variable
that is not in the initial seed is non-negative and not equal to zero.

This corollary was conjectured by S. Fomin and A. Zelevinsky for arbitrary
cluster algebras [FZ07, Conjecture 7.4]. In the case of cluster algebras of finite
type, this conjecture also follows from [CCS06, Theorem 4.4 and Remark 4.5] and
from [BMR07, Theorem 2.2], where the authors show that the d-vectors can be
computed as the dimension vectors of certain indecomposable modules.

4. Cluster variables and orbits of positions in the bi-infinite word Q̃

We now want to present the results of this paper in terms of orbits of letters of the

bi-infinite word Q̃ := (q̃i)i∈Z obtained by infinitely many repetitions of the product
of all generators in S. Up to commutations of consecutive commuting letters, this
word does not depend on the order of the elements of S in this product. Our
motivation is to avoid the dependence in the Coxeter element c, which is just a
technical tool to deal with clusters in terms of almost positive roots or positions in
the word Qc. This point of view was already considered in type A by V. Pilaud and
M. Pocchiola in [PP12] in their study of pseudoline arrangements on the Möbius
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strip. For arbitrary finite Coxeter groups, the good formalism is given by the
Auslander-Reiten quiver (see e.g. [CLS13, Section 8]). However, we do not really
need this formalism here and skip its presentation. The proofs of this section are
omitted but can be easily deduced from the results proved in Section 6 (more
precisely from Lemmas 6.3, 6.4 and 6.6) and Corollary 3.4.

We denote by η : S → S the involution η(s) = w◦sw◦ which conjugates a
simple reflection by the longest element w◦ of W , and by η(Qc) the word obtained
by conjugating each letter of Qc by w◦. As observed in [CLS13], the bi-infinite

word Q̃ coincides, up to commutations of consecutive commuting letters, with the
bi-infinite word · · ·Qc η(Qc) Qc η(Qc) Qc · · · obtained by repeating infinitely many
copies of Qc η(Qc). We can therefore consider the word Qc as a fundamental domain

in the bi-infinite word Q̃, and a position i in Qc as a representative of an orbit ĩ of

positions in Q̃ under the translation map τ : i 7→ i+m (note that this translation
maps the letter qi to the conjugate letter qi+m = w◦qiw◦). For a subset I of

positions in Qc, we denote by Ĩ :=
{
ĩ
∣∣ i ∈ I} its corresponding orbit in Q̃. It turns

out that the orbits of c-clusters are now independent of c.

Proposition 4.1. Let c and c′ be reduced expressions of two Coxeter elements.
Let I and I ′ be subsets of positions in Qc and Qc′ respectively such that their

orbits Ĩ and Ĩ ′ in Q̃ coincide. Then I is a c-cluster in Qc if and only if I ′ is a

c′-cluster of Qc′ . We then say that Ĩ = Ĩ ′ forms a cluster in Q̃.

In other words, we obtain a bijection Ψ from the orbits of positions in Q̃ (under
the translation map τ : i 7→ i+m) to the cluster variables of A(W ). A collection of
orbits forms a cluster if and only if their representatives in any (or equivalently all)
fundamental domain Qc for τ form the complement of a reduced expression for w◦.
Choosing a particular Coxeter element c defines a specific fundamental domain Qc

in Q̃, which provides specific bijections ϑc and φc with almost positive roots and
cluster variables. We insist on the fact that Ψ does not depend on the choice of a
Coxeter element, while ϑc and φc do.

We now want to describe the results of this paper directly on the bi-infinite

word Q̃. We first transport the d-vectors through the bijection Ψ: for a given

initial cluster seed Ĩ in Q̃, and an orbit j̃ of positions in Q̃, we define the d-vector

d(Ĩ , j̃) := d
(
Ψ(Ĩ),Ψ(j̃)

)
.

We want to express these d-vectors in terms of the coefficients {i ‖c j} from Defi-
nition 2.15. For this, we first check that these coefficients are independent of the
fundamental domain Qc on which they are computed.

Proposition 4.2. Let c and c′ be reduced expressions of two Coxeter elements.
Let i, j be positions in Qc and i′, j′ be positions in Qc′ be such ĩ = ĩ′ and j̃ = j̃′.
Then the coefficients {i ‖c j} and {i′ ‖c′ j′}, computed in Qc and Qc′ respectively,
coincide.

For any orbits ĩ and j̃ of Q̃, we can therefore define with no ambiguity the
coefficient {̃i ‖ j̃} to be the coefficient {i ‖c j} for i and j representatives of ĩ and j̃
in any arbitrary fundamental domain Qc. The d-vectors of the cluster algebra can
then be expressed from these coefficients.

Theorem 4.3. Let Ĩ be a collection of orbits of positions in Q̃ forming a cluster

in Q̃, and let j̃ be an orbit of positions in Q̃. Then the d-vector d(Ĩ , j̃) of the cluster
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variable Ψ(j̃) with respect to the initial cluster seed Ψ(Ĩ) is given by

d(Ĩ , j̃) = ({̃i ‖ j̃})ĩ∈Ĩ .

5. Proofs of Lemma 2.7 and Lemma 2.16

5.1. Proof of Lemma 2.7. For cluster algebras of finite type all clusters contain-
ing the cluster variable xi are connected under mutations. Therefore, it is enough
to prove the lemma for the cluster X ′ = {x1, . . . , xj−1, x′j , xj+1, . . . , xn} obtained
from X = {x1, . . . , xn} by mutating a variable xj with j 6= i. The variables xj and
x′j satisfy a relation

xj =
P (x1, . . . , x̂j , . . . , xn)

x′j
for a polynomial P in the variables {x1, . . . , x̂j , . . . , xn}, where x̂j means that we
skip variable xj . Replacing xj in equation (2.1) we obtain

y =
P̃ (x1, . . . , x

′
j , . . . , , xn)/x′j

mj

xd11 · · · x̂
dj
j · · ·x

dn
n P (x1, . . . , x̂j , . . . , xn)/x′j

dj

where mj is a non-negative integer and P̃ is a polynomial which is not divisible by

x′j and by any x` with ` 6= j. The Laurent phenomenon implies that P divides P̃ .
Thus , we obtain

y =
F̃ (x1, . . . , x

′
j , . . . , xn)

xd11 · · · x̂
dj
j · · ·x

dn
n

·
x′j
dj

x′j
mj

is the rational expression of the cluster variable y expressed in terms of the variables
of X ′. As a consequence, the d-vectors d(X, y) and d(X ′, y) differ only in the j-th
coordinate. In particular, the i-th coordinate remains constant after mutation of
any j 6= i as desired.

5.2. Proof of Lemma 2.16. Before proving this lemma we need some preliminar-
ies on subword complexes. Recall that I ⊂ [m] is a c-cluster of Qc if and only if the
subword of Qc with positions at the complement of I is a reduced expression of w◦
(see Theorem 2.1).

Lemma 5.1 ([CLS13, Lemma 3.3]). Let I ⊂ [m] be a c-cluster of Qc. Then,

(i) For every i ∈ I there exist a unique j /∈ I such that I4{i, j} is again a
c-cluster, where A4B := (A∪B)r (A∩B) denotes the symmetric difference.

(ii) This j is the unique j /∈ I satisfying r(I, j) = ±r(I, i).

This exchange operation between c-clusters is called flip. It correspond to mu-
tations between clusters in the cluster algebra. During the flip, the root function is
updated as follows.

Lemma 5.2 ([CLS13, Lemma 3.6]). Let I and J be two adjacent c-clusters of Qc

with I r i = J r j, and assume that i < j. Then, for every k ∈ [m],

r(I ′, k) =

{
ti(r(I, k)) if i < k ≤ j,
r(I, k) otherwise

Here, ti = wqiw
−1 where w is the product of the reflections qx ∈ Qc for x ∈ [i−1]rI.

By construction, ti is the reflection in W orthogonal to the root r(I, i) = w(αqi).
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This result implies the following Lemma.

Lemma 5.3. Let I and J be two adjacent c-clusters of Qc with I r i = J r j.
Then, for every k ∈ [m],

r(J, k) = r(I, k) + akr(I, i)

for some constant ak ∈ R.

Using the previous lemma, we now derive Lemma 2.16.

Proof of Lemma 2.16. This result is equivalent to prove that the coefficients ρi(j)
from Definition 2.15 are independent of the c-cluster I ⊂ [m] of Qc containing i.
Since all the c-clusters containing i are connected by flips, it is enough to prove
that ρi(j) is preserved by any flip not involving i. Let i ∈ I and let i′ ∈ I r i.
Then, i′ can be exchanged with a unique j′ /∈ I such that I ′ = I4{i′, j′} is again
a c-cluster. By Lemma 5.3 and part (ii) of Lemma 5.1,

r(I, j) =
∑
`∈I

ρ`(j)r(I, `).

implies

r(I ′, j) =
∑
`∈Iri′

ρ`(j)r(I
′, `) + a r(I, j′)

for some constant a ∈ R. In particular, this implies that the coefficients ρi(j) are
the same for I and I ′. �

6. Proof of Theorem 3.1

Our proof of Theorem 3.1 is based in Proposition 6.2 and Proposition 6.7. These
propositions are stated and proved in Section 6.1 and Section 6.2 respectively.

6.1. The map d(·, ·) satisfies relations (2.2) and (2.3). In this section we show
that the map d(·, ·) induces a map on the set of almost positive roots which satisfy
the properties (2.2) and (2.3) in the definition of the c-compatibility degree among
almost positive roots (Definition 2.9). Before stating this result in Proposition 6.2
we need the following lemma.

Lemma 6.1. Let X = {x1, . . . , xn} be a cluster and let y be a cluster variable
of A. Then the rational function of y expressed in terms of the variables in X is
exactly the same as the rational function of τy in terms of the variables in τX. In
particular,

d(X, y) = d(τX, τy).

Proof. We prove this proposition in two parts: first in the case where the cluster
seed X corresponds to a Coxeter element c, and then for any arbitrary cluster seed.

Let Xc be the cluster corresponding to a Coxeter element c, i.e. the set of vari-
ables on the vertices of the weighted quiver Qc corresponding to c. By definition of
the rotation map on the set of cluster variables, the rotated cluster τXc consists of
the variables on the vertices of the quiver obtained from Qc by consecutively apply-
ing the mutations µc1 → · · · → µcn . The resulting underlying quiver Q′ after these
mutations is exactly equal to Qc. Moreover, every sequence of mutations giving
rise to a variable y, which starts at the cluster seed (Qc, Xc) can be viewed as a se-
quence of mutations giving rise to τy starting at the rotated seed cluster (Q′, τXc).
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Since the quivers Qc and Q′ coincide, the rational functions for y and τy in terms
of the variables of Xc and τXc respectively are exactly the same as desired.

In the general case where X is an arbitrary cluster seed we proceed as follows.
For any cluster variable y and any clusters X and Y , denote by y(X) the rational
function of y in terms of the variables of the cluster X, and by Y (X) the rational
functions of the variables of Y with respect to the variables of the cluster X. Then,
using the fact y(X) = y(Y ) ◦ Y (X) and the first part of this proof we obtain

y(X) = y(Xc) ◦Xc(X) = τy(τXc) ◦ τXc(τX) = τy(τX)

as desired. �

As a direct consequence of this lemma we obtain the following key result.

Proposition 6.2. Let c be a Coxeter element. For every position i in the word Qc

denote by xi = ψc(i) the associated cluster variable. Then, the values d(xi, xj)
satisfy the following two properties:

d(xi, xj) = bi, for all i ∈ [n] and ϑc(j) =
∑

biαi ∈ Φ≥−1,(6.1)

d(xi, xj) = d(τxi, τxj), for all i, j ∈ [m].(6.2)

Proof. Let Xc be the set of cluster variables corresponding to the first n positions
of the word Qc, or equivalently, the cluster associated to the weighted quiver Qc
corresponding to the Coxeter element c. As discussed in Section 2.1, the d-vector of
the variable xj = φc(ϑc(j)) in terms of this initial quiver Qc is given by the almost
positive root ϑc(j). More precisely, we have

d(Xc, xj) = (b1, . . . , bn).

This implies relation (6.1) of the proposition. Relation (6.2) follows directly from
Lemma 6.1. �

6.2. The map {· ‖c ·} satisfies relations (2.2) and (2.3). In this section we show
that the map {· ‖c ·} induces a map on the set of almost positive roots which satisfy
the properties (2.2) and (2.3) in the definition of the c-compatibility degree among
almost positive roots (Definition 2.9). Before stating this result in Proposition 6.7
we need some preliminaries concerning the coefficients {i ‖c j}.

For this, we use an operation of jumping letters between the words Qc defined
in [CLS13, Section 3.2]. We denote by η : S → S the involution η(s) = w◦sw◦
which conjugates a simple reflection by the longest element w◦ of W . Given a
word Q := (q1, q2, · · · , qr), we say that the word (q2, · · · , qr, η(q1)) is the jumping
word of Q, or is obtained by jumping the first letter in Q. In the following three lem-
mas, we consider a reduced expression c := (s, c2, . . . , cn) of a Coxeter element c, and
the reduced expression c′ := (c2, . . . , cn, s) of the Coxeter element c′ := scs obtained
by deleting the letter s in c and putting it at the end.

Lemma 6.3 ([CLS13, Proposition 4.3]). The jumping word of Qc coincides with
the word Qc′ up to commutations of consecutive commuting letters.

Let σ denote the map from positions in Qc to positions in Qc′ which jumps the
first letter and reorders the letters (by commutations).

Lemma 6.4 ([CLS13, Proposition 3.9]). A subset I ⊂ [m] of positions in the
word Qc is a c-cluster if and only if σ(I) is a c′-cluster in Qc′ .
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We include a short proof of this lemma here for convenience of the reader.

Proof. Let P be the subword of Qc with positions at the complement of I in [m],
and let P ′ be the subword of Qc′ with positions at the complement of σ(I) in [m].
Recall from Theorem 2.1 that I is a c-cluster in Qc if and only if P is a reduced
expression of w◦. If 1 ∈ I, then P and P ′ are the same. If 1 /∈ I, then P ′ is the
jumping word of P . In both cases P is a reduced expression of w◦ if and only if P ′

is a reduced expression of w◦. Therefore, I is a c-cluster in Qc if and only if σ(I)
is a c′-cluster in Qc′ . �

Observe now that we obtain again c when we jump repeatedly all its letters.
However, a position i in Qc is rotated to the position τ−1c (i) by these operations.
This implies the following statement.

Corollary 6.5. A subset I ⊂ [m] of positions in the word Qc is a c-cluster if and
only if τc(I) is a c-cluster.

Using the jumping operation studied above, we now derive the following results
concerning the coefficients {i ‖c j}.

Lemma 6.6. If i′ :=σ(i) and j′ :=σ(j) denote the positions in Qc′ corresponding
to positions i and j in Qc after jumping the letter s, then

{i′ ‖c′ j′} = {i ‖c j}.

Proof. Let I be a c-cluster and k be a position in Qc. We denote by I ′ :=σ(I) the
c′-cluster corresponding to I and by k′ :=σ(k) the position in Qc′ corresponding
to k after jumping the letter s. By the definition of the root function we obtain
that

r(I ′, k′) =


−r(I, k) if k = 1 ∈ I,
r(I, k) if k = 1 /∈ I,
r(I, k) if k 6= 1 ∈ I,
sr(I, k) if k 6= 1 /∈ I,

Applying this relation to a c-cluster I containing i and a position j 6= i, we derive
that

ρi′(j
′) =

{
−ρi(j) if i = 1 or j = 1,

ρi(j) otherwise,

where ρi(j) denotes the ith coordinate of r(I, j) in the linear basis R(I) and ρi′(j
′)

denotes the i′th coordinate of r(I ′, j′) in the linear basis R(I ′). This implies that
{i′ ‖c′ j′} = {i ‖c j} by definition of {· ‖c ·}. �

Proposition 6.7. Let c be a Coxeter element and i and j be positions in the
word Qc. Then, the coefficients {i ‖c j} satisfy the following two properties:

{i ‖c j} = bi, for all i ∈ [n] and ϑc(j) =
∑

biαi ∈ Φ≥−1,(6.3)

{i ‖c j} = {τci ‖c τcj}, for all i, j ∈ [m].(6.4)

Proof. Let Ic = [n] be the c-cluster given by the first n positions in the word Qc.
Then

r(Ic, j) =

{
αcj if 1 ≤ j ≤ n,
ϑc(j) if n < j ≤ m.
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Therefore, by definition of the coefficients {i ‖c j} we have that the vector ({i ‖c j})i∈Ic
is given by the almost positive root ϑc(j). More precisely,

({i ‖c j})i∈Ic = (b1, . . . , bn).

This implies relation (6.3) of the proposition. Relation (6.4) follows from jump-
ing repeatedly all the letters of c in Qc. Thus, position i in Qc is rotated to
position τ−1c (i) by these operations, and the result follows from n applications of
Lemma 6.6. �

6.3. Proof of Theorem 3.1. By Definition 2.9, Proposition 6.2 and Proposi-
tion 6.7, the three maps d(ψc(·), ψc(·)), (ϑc(·) ‖c ϑc(·)) and {· ‖c ·} on the set of
positions in the word Qc satisfy the two properties (6.3) and (6.4) of Proposi-
tion 6.7. Since these properties uniquely determine a map on the positions in Qc

the result follows.

6.4. Proof of Corollary 3.5. In this section we present two independent proofs
of Corollary 3.5. The first proof follows from the description of d-vectors in terms
of c-compatibility degrees (α ‖c β) between almost positive roots as presented in
Corollaries 3.2 and 3.3. The second proof is based on the description of d-vectors in
terms of the coefficients {i ‖c j} obtained from the word Qc as presented in Corol-
lary 3.4. Our motivation for including this second proof here is to extend several
results of this paper to the family of “root-independent subword complexes”. This
family of simplicial complexes, defined in [PS11], contains all cluster complexes
of finite type. Using the brick polytope approach [PS12, PS11], V. Pilaud and
C. Stump constructed polytopal realizations of these simplicial complexes. Extend-
ing the results of this paper to root-independent subword complexes might lead to
different polytopal realizations of these simplicial complexes.

6.4.1. First proof. Corollary 3.5 follows from the following known fact.

Lemma 6.8 ([FZ03b, MRZ03, Rea07]). The compatibility degree (α ‖c β) is non-
negative for any pair of almost positive roots α 6= β. Moreover, (α ‖c β) = 0 if and
only if α and β are c-compatible, i.e. if they belong to some c-cluster.

Let B = {β1, . . . , βn} ⊂ Φ≥−1 be an initial c-cluster seed and β ∈ Φ≥−1 be
an almost positive root which is not in B. Then, by Lemma 6.8 there is at least
one i ∈ [n] such that (βi ‖c β) > 0, otherwise β would be c-compatible to with
all βi which is a contradiction. Corollary 3.5 thus follows from Corollary 3.3 and
Lemma 6.8.

6.4.2. Second proof. Corollary 3.5 follows from the next statement.

Lemma 6.9. The coefficient {i ‖c j} is non-negative for any pair of positions i 6= j
in the word Qc. Moreover, {i ‖c j} = 0 if and only if i and j are compatible, i.e. if
they belong to some c-cluster.

Proof. The non-negativity is clear if i is one of the first n letters. Indeed, computing
in the c-cluster I given by the initial prefix c of the word Qc, the root configura-
tion R(I) is the linear basis of simple roots, and the coefficients {i ‖c j} are the
coefficients of ϑc(j), which is an almost positive root. The non-negativity for an
arbitrary position i thus follows from Corollary 6.7 since the orbit of the initial
prefix c under the rotation τc cover all positions in Qc.
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For the second part of the lemma observe that if i and j belong to some c-
cluster I then the coefficient {i ‖c j} computed in terms of this cluster is clearly
equal to zero. Moreover, by Proposition 6.7 the coefficient {i ‖c j} = 0 if and only
if {τci ‖c τcj} = 0, and by Corollary 6.5 i and j belong to some c-cluster if and
only if τci and τcj belong to some c-cluster. Therefore, it is enough to prove the
result in the case when i ∈ [n] belongs to the first n positions in Qc. The result
in this case can be deduced from [CLS13, Theorem 5.1]. This theorem states that
if i ∈ [n], then i and j belong to some c-cluster if and only if ϑc(j) ∈ (Φ〈ci〉)≥−1
is an almost positive root of the parabolic root system that does not contain the
root αci . Since for i ∈ [n] the coefficient {i ‖c j} is the coefficient of the root αci in
the almost positive root ϑc(j), the result immediately follows. �

7. Geometric interpretations in types A, B, C and D

In this section, we present geometric interpretations for the classical types A,
B, C, and D of the objects discussed in this paper: cluster variables, clusters,
mutations, compatibility degrees, and d-vectors. These interpretations are classical
in types A, B and C when the initial cluster seed corresponds to a bipartite Coxeter
element, and can already be found in [FZ03b, Section 3.5] and [FZ03a, Section 12].
In contrast, our interpretation in type D slightly differs from that of S. Fomin and
A. Zelevinsky since we prefer to use pseudotriangulations (we motivate this choice
in Remark 7.1). Moreover, these interpretations are extended here to any initial
cluster seed, acyclic or not.
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Figure 2. Illustration of the geometric interpretations of denomi-
nator vectors in cluster algebras of classical types A, B, C and D.

In Section 7.1, we associate to each classical finite type a geometric configuration
and observe a correspondence between:
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cluster variables x, y ∈ A
cluster X = {x1, . . . , xn}

compatibility degree d(x, y)
denominator vector d(X, y)

(c.s. pairs of) diagonals δ, θ
geometric cluster T = {θ1, . . . , θn}

crossing number [ θ ‖ δ ]
crossing vector d(T, δ)

almost positive roots α, β ∈ Φ≥−1
c-cluster B = {β1, . . . , βn}

c-compatibility degree (α ‖c β)
compatibility vector dc(B, β)

positions i, j ∈ [m] in the word Qc

c-cluster I = {i1, . . . , in}
c-compatibility degree {i ‖c j}

coefficient vector dc(I, j)

χ

φc

ξcψc

ϑc

ζcζc

τ τ

τc τc

Figure 3. Four different contexts for cluster algebras of classical
finite types, their different notions of compatibility degrees, and
the bijections between them.

(i) cluster variables and diagonals (or centrally symmetric pairs of diagonals) in
the geometric picture;

(ii) clusters and geometric clusters: triangulations in type A, centrally symmetric
triangulations in types B and C, and centrally symmetric pseudotriangula-
tions in type D (i.e. maximal crossing-free sets of centrally symmetric pairs
of chords in the geometric picture);

(iii) cluster mutations and geometric flips (we can also express geometrically the
exchange relations on cluster variables);

(iv) compatibility degrees and crossing numbers of (c.s. pairs of) diagonals;
(v) d-vectors and crossing vectors of (c.s. pairs of) diagonals.

These interpretations can also be extended to read quivers in the geometric
pictures and to compute cluster variables in terms of perfect matchings of weighted
graphs. We focus in this paper on the d-vectors, and will study these extensions in
a forthcoming paper.

We denote by χ the bijection from (c.s. pairs of) diagonals to cluster variables.
Composing this bijection χ with the the bijections from Section 2.1 gives bijections
between the four contexts studied in this paper: cluster variables, (c.s. pairs of)
diagonals, almost positive roots, and positions in Qc. See Figure 3. All these bi-
jections preserve clusters, mutations, compatiblity degrees, and d-vectors. Observe
again that the two combinatorial descriptions of clusters and compatibility degrees
in terms of almost positive roots and positions in Qc both depend on the choice of
a Coxeter element c, while the algebraic and geometric descriptions do not.

In Section 7.2, we give a direct description of the map ζc :=χ−1 ◦ ψc from
positions in the word Qc to (c.s. pairs of) diagonals in the geometric picture.
This yields a simple geometric characterization of the reduced expressions of w◦
in the word Qc. Using this bijection, we can also explicitly describe the bijec-
tion ξc = χ−1 ◦ φc = ζc ◦ ϑ−1c from almost positive roots to (c.s. pairs of) diagonals
in the geometric picture. This yields a simple geometric characterization of c-cluster
complexes for any Coxeter element c, which we present in Section 7.3.
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Explicit examples, which illustrate how to compute all d-vectors with respect to
a non-acyclic cluster seed, are given in Section 7.4.

7.1. Denominator vectors and crossing vectors.

7.1.1. Type An. Consider the Coxeter group An = Sn+1, generated by the simple
transpositions τi := (i i+ 1), for i ∈ [n]. The corresponding geometric picture is
a convex regular (n + 3)-gon. Cluster variables, clusters, exchange relations, com-
patiblity degrees, and d-vectors in the cluster algebra A(An) can be interpreted
geometrically as follows:

(i) Cluster variables correspond to (internal) diagonals of the (n + 3)-gon. We
denote by χ(δ) the cluster variable corresponding to a diagonal δ.

(ii) Clusters correspond to triangulations of the (n+ 3)-gon.
(iii) Cluster mutations correspond to flips between triangulations. See Figure 4.
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Figure 4. Flip in type A.

Moreover, flipping diagonal [p, r] to diagonal [q, s] in a quadrilateral {p, q, r, s}
results in the exchange relation

χ([p, r]) · χ([q, s]) = χ([p, q]) · χ([r, s]) + χ([p, s]) · χ([q, r]).

In this relation, if δ is a boundary edge of the (n + 3)-gon, we can either set
χ(δ) = 1, or work with a frozen but arbitrary variable xδ.

(iv) Given any two diagonals θ, δ, the compatibility degree d(χ(θ), χ(δ)) between
the corresponding cluster variables χ(θ) and χ(δ) is given by the crossing
number [ θ ‖ δ ] of the diagonals θ and δ. By definition, [ θ ‖ δ ] is equal to −1
if θ = δ, to 1 if the diagonals θ 6= δ cross, and to 0 otherwise.

(v) Given any initial seed triangulation T := {θ1, . . . , θn} and any diagonal δ, the
d-vector of the cluster variable χ(δ) with respect to the initial cluster seed χ(T )
is the crossing vector d(T, δ) := ([ θ1 ‖ δ ], . . . , [ θn ‖ δ ]) of δ with respect to T .

(vi) The rotation map τ on the cluster variables corresponds to the rotation of
angle 2π

n+3 in the geometric picture.

See Figure 9 and Tables 1 – 2 in Section 7.4 for illustrations.

7.1.2. Types Bn and Cn. Consider the Coxeter group Bn (or Cn) of signed permu-
tations of [n], generated by the simple transpositions τi := (i i+ 1), for i ∈ [n− 1],
and the sign change τ0. The corresponding geometric picture is a convex regu-
lar (2n + 2)-gon. We label its vertices counter-clockwise from 0 to 2n + 1, and
we define p̄ := p + n + 1 (mod 2n + 2), for p ∈ {0, . . . , 2n + 1}. Cluster variables,
clusters, exchange relations, compatiblity degrees, and d-vectors in the cluster al-
gebras A(Bn) and A(Cn) can be interpreted geometrically as follows:
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(i) Cluster variables correspond to centrally symmetric pairs of (internal) diag-
onals or to long diagonals of the (2n + 2)-gon (for us, a long diagonal is a
diameter of the polygon, and we also consider it as a pair of diagonals). To
simplify notations, we identify a diagonal δ, its centrally symmetric copy δ̄,
and the pair {δ, δ̄}. We denote by χ(δ) = χ(δ̄) the cluster variable correspond-
ing to the pair {δ, δ̄}.

(ii) Clusters correspond to centrally symmetric triangulations of the (2n+ 2)-gon.
(iii) Cluster mutations correspond to flips of centrally symmetric pairs of diagonals

between centrally symmetric triangulations. See Figure 5.
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Figure 5. Three possible flips in types B and C: either the
quadrilateral involves no long diagonal (left), or one long diago-
nal is an edge of the quadrilateral (middle), or the two diagonals
of the quadrilateral are long diagonals (right).

As in type A, the exchange relations between cluster variables during a cluster
mutation can be understood in the geometric picture. For this, define κ = 1
in type B and κ = 2 in type C. Then, flipping the diagonal [p, r] to the
diagonal [q, s] in the quadrilateral {p, q, r, s} (and simultaneously [p̄, r̄] to [q̄, s̄]
in the centrally symmetric quadrilateral {p̄, q̄, r̄, s̄}) results in the following
exchange relations:

• if p < q < r < s < p̄ as in Figure 5 (left), then

χ([p, r]) · χ([q, s]) = χ([p, q]) · χ([r, s]) + χ([p, s]) · χ([q, r]);
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• if p < q < r < s = p̄ as in Figure 5 (middle), then

χ([p, r]) · χ([p̄, q]) = χ([p, q]) · χ([p̄, r]) + χ([q, r]) · χ([p, p̄])2/κ;

• if p < q < r = p̄ < s = q̄ as in Figure 5 (right), then

χ([p, p̄]) · χ([q, q̄]) = χ([p, q])κ + χ([p, q̄])κ.

In these relations, if δ is a boundary edge of the (2n + 2)-gon, we can either
set χ(δ) = 1, or work with a frozen but arbitrary variable xδ.

(iv) Given any two centrally symmetric pairs of diagonals θ, δ, the compatibility
degree d(χ(θ), χ(δ)) between the corresponding cluster variables χ(θ) and χ(δ)
is given by the crossing number [ θ ‖ δ ] of the pairs of diagonals θ and δ, defined
as follows. First, [ δ ‖ δ ] = −1. If now θ 6= δ, then
• In type Bn, we represent long diagonals by doubled long diagonals. If δ

is not a long diagonal then [ θ ‖ δ ] is the number of times that a repre-
sentative diagonal of the pair δ crosses the pair θ. If δ is a long diagonal
then [ θ ‖ δ ] is 1 if θ and δ cross, and 0 otherwise.

• In type Cn, the long diagonals remain as single long diagonals. The cross-
ing number [ θ ‖ δ ] is the number of times that a representative diagonal
of the pair δ crosses θ.

(v) Given any initial centrally symmetric seed triangulation T := {θ1, . . . , θn} and
any centrally symmetric pair of diagonals δ, the d-vector of the cluster vari-
able χ(δ) with respect to the initial cluster seed χ(T ) is the crossing vector
d(T, δ) := ([ θ1 ‖ δ ], . . . , [ θn ‖ δ ]) of δ with respect to T .

(vi) The rotation map τ on the cluster variables corresponds to the rotation of
angle 2π

2n+2 in the geometric picture.

See Figure 10 and Tables 3 – 4 – 5 – 6 in Section 7.4 for illustrations.

7.1.3. Type Dn. Consider the Coxeter group Dn of even signed permutations of [n],
generated by the simple transpositions τi := (i i + 1) for i ∈ [n − 1] and by the
operator τ0 which exchanges 1 and 2 and invert their signs. Note that τ0 and τ1
play symmetric roles in Dn (they both commute with all the other simple generators
except with τ2). This Coxeter group can be folded in type Cn−1, which provides a
geometric interpretation of the cluster algebra A(Dn) on a 2n-gon with bicolored
long diagonals [FZ03b, Section 3.5][FZ03a, Section 12.4]. In this section, we present
a new interpretation of the cluster algebra A(Dn) in terms of pseudotriangulations.
Our motivations for this interpretation are given in Remark 7.1.

We consider a regular convex 2n-gon, together with a disk D (placed at the
center of the 2n-gon), whose radius is small enough such that D only intersects
the long diagonals of the 2n-gon. We denote by Dn the resulting configuration,
see Figure 6. The chords of Dn are all the diagonals of the 2n-gon, except the
long ones, plus all the segments tangent to the disk D and with one endpoint
among the vertices of the 2n-gon. Note that each vertex p is adjacent to two of
the latter chords; we denote by pl (resp. by pr) the chord emanating from p and
tangent on the left (resp. right) to the disk D. Cluster variables, clusters, exchange
relations, compatiblity degrees, and d-vectors in the cluster algebras A(Dn) can be
interpreted geometrically as follows:

(i) Cluster variables correspond to centrally symmetric pairs of (internal) chords
of the geometric configuration Dn. See Figure 6 (left). To simplify notations,
we identify a chord δ, its centrally symmetric copy δ̄, and the pair {δ, δ̄}.
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Figure 6. The configuration D3 with its 9 centrally symmetric
pairs of chords (left). A centrally symmetric pseudotriangulation T
of D3 (middle). The centrally symmetric pseudotriangulation of D3

obtained from T by flipping the chords 2r and 2̄r.

We denote by χ(δ) = χ(δ̄) the cluster variable corresponding to the pair of
chords {δ, δ̄}.

(ii) Clusters of A(Dn) correspond to centrally symmetric pseudotriangulations
of Dn (i.e. maximal centrally symmetric crossing-free sets of chords of Dn).
Each pseudotriangulation of Dn contains exactly 2n chords, and partitions
conv(Dn) rD into pseudotriangles (i.e. interiors of simple closed curves with
three convex corners related by three concave chains). See Figure 6 (middle)
and (right). We refer to [RSS08] for a complete survey on pseudotriangula-
tions, including their history, motivations, and applications.

(iii) Cluster mutations correspond to flips of centrally symmetric pairs of chords
between centrally symmetric pseudotriangulations of Dn. A flip in a pseu-
dotriangulation T replaces an internal chord e by the unique other internal
chord f such that (T r e) ∪ f is again a pseudotriangulation of T . To be
more precise, deleting e in T merges the two pseudotriangles of T incident
to e into a pseudoquadrangle (i.e. the interior of a simple closed curve with
four convex corners related by four concave chains), and adding f splits the
pseudoquadrangle into two new pseudotriangles. The chords e and f are
the two unique chords which lie both in the interior of and on a geodesic
between two opposite corners of . We refer again to [RSS08] for more details.

For example, the two pseudotriangulations of Figure 6 (middle) and (right)
are related by a centrally symmetric pair of flips. We have represented dif-
ferent types of flips between centrally symmetric pseudotriangulations of the
configuration Dn in Figure 8. Finally, Figure 7 and Figures 12 – 13 – 14 show
the flip graph on centrally symmetric pseudotriangulations of D3 and D4,
respectively.

As in types A, B, and C, the exchange relations between cluster vari-
ables during a cluster mutation can be understood in the geometric picture.
More precisely, flipping e to f in the pseudoquadrangle with convex cor-
ners {p, q, r, s} (and simultaneously ē to f̄ in the centrally symmetric pseudo-
quadrangle ¯ ) results in the exchange relation

Π( , p, r) ·Π( , q, s) = Π( , p, q) ·Π( , r, s) + Π( , p, s) ·Π( , q, r),
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Figure 7. The type D3 mutation graph interpreted geometrically
with centrally symmetric pseudotriangulations of D3. The leftmost
and rightmost triangulations are related by a (centrally symmetric)
flip. Note that this graph is the 1-skeleton of the 3-dimensional
associahedron since D3 = A3.

where
• Π( , p, r) denotes the product of the cluster variables χ(δ) corresponding

to all chords δ which appear along the geodesic from p to r in — and
similarly for Π( , q, s) — and

• Π( , p, q) denotes the product of the cluster variables χ(δ) corresponding
to all chords δ which appear on the concave chain from p to q in —
and similarly for Π( , q, r), Π( , r, s), and Π( , p, s).

For example, the four flips in Figure 8 result in the following relations:

χ([p, r]) · χ([q, s]) = χ([p, q]) · χ([r, s]) + χ([p, s]) · χ([q, r]),

χ([p, r]) · χ(qr) = χ([p, q]) · χ(rr) + χ(pr) · χ([q, r]),

χ([p, r]) · χ([q, p̄]) = χ([p, q]) · χ([r, p̄]) + χ(p̄l) · χ(pr) · χ([q, r]),

χ(p̄l) · χ(pr) · χ(qr) = χ([p, q]) · χ(p̄r) + χ([q, p̄]) · χ(pr).

Note that the last relation will always simplify by χ(pr) = χ(p̄r). For a
concrete example, in the flip presented in Figure 6, we obtain the relation

χ(0̄l) · χ(0r) · χ(2r) = χ([0, 2]) · χ(0̄r) + χ([2, 0̄]) · χ(0r).
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Figure 8. Different types of flips in type D.

which simplifies to

χ(0̄l) · χ(2r) = χ([0, 2]) + χ([2, 0̄]).

(iv) Given any two centrally symmetric pairs of chords θ, δ, the compatibility
degree d(χ(θ), χ(δ)) between the corresponding cluster variables χ(θ) and χ(δ)
is given by the crossing number [ θ ‖ δ ] of the pairs of chords θ and δ. By
definition, [ θ ‖ δ ] is equal to −1 if θ = δ, and to the number of times that a
representative diagonal of the pair δ crosses the chords of θ if θ 6= δ.

(v) Given any initial centrally symmetric seed pseudotriangulation T := {θ1, . . . , θn}
and any centrally symmetric pair of chords δ, the d-vector of the cluster vari-
able χ(δ) with respect to the initial cluster seed χ(T ) is the crossing vector
d(T, δ) := ([ θ1 ‖ δ ], . . . , [ θn ‖ δ ]) of δ with respect to T .

(vi) The rotation map τ on the cluster variables corresponds to the rotation of an-
gle π

n in the geometric picture, except that the chords pl and pr are exchanged
after rotation.

See Figure 11 and Tables 7 – 8 in Section 7.4 for illustrations.

Remark 7.1. Our geometric interpretation of type D cluster algebras slightly
differs from that of S. Fomin and A. Zelevinsky in [FZ03b, Section 3.5][FZ03a, Sec-
tion 12.4]. Namely, to obtain their interpretation, we can just remove the disk in
the configuration Dn and replace the centrally symmetric pairs of chords {pl, p̄l}
and {pr, p̄r} by long diagonals [p, p̄] colored in red and blue respectively. Long di-
agonals of the same color are then allowed to cross, while long diagonals of different
colors cannot. Flips and exchange relations can then be worked out, with special
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Figure 9. Type A. The accordion Zc for c = τ5τ7τ6τ4τ3τ1τ2 (left)
and for c = τ1τ3τ2 (middle) and the initial seed triangulation
T = ζτ1τ3τ2({1, 5, 7}) = {[1, 5], [3, 5], [1, 3]} (right). See Tables 1 – 2.

rules for colored long diagonals, see [FZ03b, Section 3.5][FZ03a, Section 12.4]. Al-
though our presentation is only slightly different from the classical presentation, we
believe that it has certain advantages:

(i) It simplifies certain combinatorial and algebraic aspects. Compared to the
classical interpretation, we have no color code. Therefore, the notion of cross-
ing, the d-vector, the cluster mutations, and the exchange relations are simpler
to express (compare [FZ03a, Section 12.4]). In a forthcoming paper, we will
moreover interpret quivers on the pseudotriangulations and cluster variables
in terms of perfect matchings of weighted graphs.

(ii) It makes an additional link between cluster algebras and pseudotriangulations
(compare [PP12]). In particular, it ensures that types A, B, C and D general-
ized associahedra can all be realized as pseudotriangulation polytopes by the
construction of G. Rote, F. Santos, and I. Streinu [RSS03] (more precisely, by
the centrally symmetric version of it in types B, C and D).

7.2. Positions in the word Qc. Points (iii) and (iv) in the previous section al-
ready give two ways to compute d-vectors in the classical types A, B, C and D.
According to Corollary 3.4, the d-vectors can also be interpreted in terms of root
functions associated to the word Qc. In order to illustrate this, we present explicit
bijections between positions in Qc and (c.s. pairs of) diagonals in the geometric
picture. These bijections and the computation of d-vectors are illustrated in Ta-
bles 1 to 8, for the Coxeter elements and the initial cluster seeds from Figures 9, 10
and 11.

7.2.1. Type An. Let c be a Coxeter element of An, let c be a reduced expression
of c, and let Qc := cw◦(c) be the corresponding word. For i ∈ [n], we denote by πi
the position of the transposition τi in c.

We first define an accordion Zc in the (n+3)-gon (i.e. a triangulation whose dual
tree is a path) as follows. The (internal) diagonals of Zc are labeled by τ1, . . . , τn
in the order they appear along its dual path. The angle between two consecutive
diagonals labeled by τi and τi+1 is in clockwise direction if πi > πi+1 and counter-
clockwise direction if πi < πi+1. See Figure 9. The map ζc sends position πi to the
diagonal of Zc labeled by τi. More explicitly, if we label the vertices of the regular
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(n+ 3)-gon counter-clockwise from 0 to n+ 2, then we have ζc(πi) = [pi, qi], where

pi := 1 + | {j ∈ [n] | j < i and πj < πj+1} | (mod n+ 3),

qi := − 1− | {j ∈ [n] | j < i and πj > πj+1} | (mod n+ 3).

This only defines ζc on the first n positions in the word Qc. The other values
of ζc are then determined using the rotation map τc from Definition 2.3. Namely,
ζc(τc(i)) is defined as the rotation of angle 2π

n+3 of the diagonal ζc(i). Therefore,
the map ζc sends the position of the kth appearance of the generator τi in Qc to

the rotation of angle (k−1)2π
n+3 of the diagonal [pi, qi]. See Table 1 and Figure 9.

Under this bijection, a set I ⊂ [m] is the set of positions of the complement of
a reduced expression of w◦ in Qc (i.e. a c-cluster), if and only if the corresponding
diagonals ζc(I) form a triangulation of the (n+ 3)-gon.

7.2.2. Types Bn and Cn. Let c be a Coxeter element of Bn, let c be a reduced
expression of c, and let Qc := cw◦(c) be the corresponding word. We still denote
by πi the position of τi in c. Moreover, we still label the vertices of the regular (2n+
2)-gon counter-clockwise from 0 to 2n+1, and denote by p̄ := p+n+1 (mod 2n+2),
for p ∈ {0, . . . , 2n+ 1}.

The construction of the bijection ζc is similar to the construction of ζc in type A,
except that we start from the long diagonal [0, 0̄]. We first construct a centrally
symmetric accordion Zc associated to c as illustrated in Figure 10. The bijection ζc
is defined on the first n positions by ζc(πi) = [pi, qi] ∪ [pi, qi], where

pi := | {j ∈ [0, n− 1] | j < i and πj < πj+1} |,
qi :=n+ 1− | {j ∈ [0, n− 1] | j < i and πj > πj+1} |.

The images of the remaining positions in Qc are again determined by rotation.
Namely, ζc(τc(i)) is defined as the rotation of angle π

n+1 of the pair of diagonals ζc(i).
Therefore, the map ζc sends the position of the kth appearance of the generator τi
in Qc to the rotation of angle (k−1)π

n+1 of the pair of diagonals [pi, qi] ∪ [pi, qi]. See
Table 3 and Figure 10.
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Figure 10. Type B and C. The centrally symmetric accor-
dion Zc for c = τ0τ1τ3τ2 (left) and for c = τ0τ1 (middle) and the
initial seed triangulation T = ζτ0τ1({3, 4}) = {[1, 1̄], [1, 2̄], [1̄, 2]}
(right). See also Tables 3 – 4 – 5 – 6.
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Under this bijection, a set I ⊂ [m] is the set of positions of the complement of a
reduced expression of w◦ in Qc (i.e. a c-cluster), if and only if the corresponding cen-
trally symmetric pairs of diagonals ζc(I) form a centrally symmetric triangulation
of the (2n+ 2)-gon.

7.2.3. Type Dn. Let c be a Coxeter element of Dn, let c be a reduced expression
of c, and let Qc := cw◦(c) be the corresponding word. As before, we denote by πi
the position of τi in c. Moreover, we still label the vertices of the 2n-gon counter-
clockwise from 0 to 2n− 1, and define p̄ := p+ n (mod 2n) for p ∈ {0, . . . , 2n− 1}.

The bijection ζc is defined as follows. The positions π0 and π1 are sent to

ζc(π0) =

{
0l ∪ 0̄l if π0 > π2,

(n− 1)r ∪ (n− 1)
r

if π0 < π2,

ζc(π1) =

{
0r ∪ 0̄r if π1 > π2,

(n− 1)l ∪ (n− 1)
l

if π1 < π2,

and the positions π2, · · · , πn−1 are sent to ζc(πi) := [pi, qi] ∪ [p̄i, q̄i], where

pi := | {j ∈ [2, n− 1] | j < i and πj < πj+1} |,
qi :=n− 1− | {j ∈ [2, n− 1] | j < i and πj > πj+1} |.

In other words, the pairs of diagonals ζc(π2), . . . , ζc(πn−1) form a centrally sym-

metric pair of accordions based on the diagonals ζc(π2) = [0, n − 1] ∪ [0̄, (n− 1)].
We denote by Zc the centrally symmetric pseudotriangulation formed by the diag-
onals ζc(π0), . . . , ζc(πn−1).

Finally, the other values of ζc are determined using the rotation map τc from Def-
inition 2.3. Namely, ζc(τc(i)) is obtained by rotating by π

n the pair of chords ζc(i),
and exchanging pl with pr. See Table 7 and Figure 11.

Under this bijection, a set I ⊂ [m] is the set of positions of the complement of
a reduced expression of w◦ in Qc (i.e. a c-cluster), if and only if the corresponding
centrally symmetric pairs of chords ζc(I) form a centrally symmetric pseudotrian-
gulation of the (2n+ 2)-gon.
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Figure 11. Type D. The centrally symmetric “accordion” pseu-
dotriangulation Zc for c = τ3τ4τ0τ2τ1 (left) and for c = τ1τ2τ0
(middle) and the initial centrally symmetric seed pseudotriangula-
tion T = ζτ1τ2τ0({1, 7, 8}) = {2l, 2̄l, 1l, 1̄l, [1, 2̄], [1̄, 2]} (right). See
also Tables 7 – 8.
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7.3. Almost positive roots and c-cluster complexes. Composing the bijec-
tion of the previous section with the bijection between positions of the word Qc

and almost positive roots of Section 2.1 determines a bijection between almost pos-
itive roots and (c.s. pairs of) diagonals in the geometric picture for the classical
types A, B, C, and D. Using this bijection, which is described in detailed in this
section, we obtain a simple geometric description of c-cluster complexes of [Rea07,
Section 7] for any Coxeter element c.

7.3.1. Type An. The almost positive roots of type An are in bijection with the
diagonals of an (n + 3)-gon. The almost positive root associated to a diagonal δ
is the crossing vector d(Zc, δ) of δ with respect to the accordion Zc constructed in
Section 7.2.1. Under this bijection, a set of almost positive roots forms a c-cluster
if and only if the corresponding diagonals form a triangulation of the (n+ 3)-gon.

7.3.2. Types Bn and Cn. The almost positive roots of type Bn (or Cn) are in bi-
jection with the centrally symmetric pairs of diagonals of a regular (2n + 2)-gon.
The almost positive root associated to a pair of diagonals δ is the crossing vec-
tor d(Zc, δ) of δ with respect to the centrally symmetric accordion Zc constructed
in Section 7.2.2. Under this bijection, a set of almost positive roots forms a c-
cluster if and only if the corresponding centrally symmetric pairs of diagonals form
a centrally symmetric triangulation of the (2n+ 2)-gon.

7.3.3. Type Dn. The almost positive roots of type Dn are in bijection with the
centrally symmetric pairs of chords of the geometric configuration Dn. The almost
positive root associated to a pair of chords δ is the crossing vector d(Zc, δ) of δ with
respect to the centrally symmetric “accordion” pseudotriangulation Zc constructed
in Section 7.2.3. Under this bijection, a set of almost positive roots forms a c-cluster
if and only if the corresponding centrally symmetric pairs of chords form a centrally
symmetric pseudotriangulation of Dn.

7.4. Examples. Our goal in all examples below is to illustrate how to explicitly
compute all d-vectors with respect to a non-acyclic cluster seed. For this, we use
four different methods:

(i) either using direct computations of cluster variables;
(ii) or using compatibility degrees and applying Corollary 3.3

(iii) or using root functions on the word Qc and applying Corollary 3.4;
(iv) or using the interpretation of the d-vector in terms of crossings of diagonals

on the corresponding geometric picture.

These different methods are illustrated in types A3, B2, C2 and D3 in Tables 1
to 8. To illustrate further our approach to type D cluster algebras, which differs
from the classical one of [FZ03b, Section 3.5][FZ03a, Section 12], we worked out in
Appendix A an example in type D4. See Figures 12 – 13 – 14 and Table 9. The geo-
metric interpretation of denominator vectors is also illustrated for specific examples
of higher rank in Figure 2.
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TYPE A3, Coxeter element c = τ1τ3τ2, Cluster seed I = {1, 5, 7}

W
o
rd

Q
c

Position j in [9] 1 2 3 4 5 6 7 8 9

letter qj of Qc τ1 τ3 τ2 τ1 τ3 τ2 τ1 τ3 τ2

root r(I, j) α1 α3 α2 + α3 α1 + α2 + α3 α2 α1 −α2 − α3 α1 + α2 α2

root r(I, j)
in the basis R(I)

β1 −β2 − β3 −β3 β1 − β3 β2 β1 β3 β1 + β2 β2

diagonal ζc(j)
of the hexagon

[1, 5] [2, 4] [2, 5] [0, 2] [3, 5] [0, 3] [1, 3] [0, 4] [1, 4]

Almost positive root ϑc(j) −α1 −α3 −α2 α1 α3 α1 + α2 + α3 α2 + α3 α1 + α2 α2

cluster variable ψc(j) x1
x1 + x2 + x3

x2x3

x1 + x2
x3

x1 + x2 + x3
x1x3

x2
x2 + x3
x1

x3
x1 + x2 + x3

x1x2

x1 + x3
x2

d-vector

(−1
0
0

) (
0
1
1

) (
0
0
1

) (
1
0
1

) (
0
−1
0

) (
1
0
0

) (
0
0
−1

) (
1
1
0

) (
0
1
0

)

Table 1. Correspondence between positions of letters in Qτ1τ3τ2 , diagonals of the hexagon, almost positive roots, and cluster
variables in A(A3). The d-vectors of the cluster variables correspond to the crossing vectors of the corresponding diagonals
with respect to the seed triangulation T = ζτ1τ3τ2({1, 5, 7}) = {[1, 5], [3, 5], [1, 3]}. The column corresponding to the diagonals
of this triangulation are shaded. See also Figure 9.

TYPE A3, Coxeter element c = τ1τ3τ2, Compatibility table

position j in the word Qc 1 2 3 4 5 6 7 8 9

almost positive root ϑc(j) −α1 −α3 −α2 α1 α3 α1 + α2 + α3 α2 + α3 α1 + α2 α2

diagonal ζc(j) [1, 5] [2, 4] [2, 5] [0, 2] [3, 5] [0, 3] [1, 3] [0, 4] [1, 4]

1 −α1 [1, 5] −1 0 0 1 0 1 0 1 0

2 −α3 [2, 4] 0 −1 0 0 1 1 1 0 0

3 −α2 [2, 5] 0 0 −1 0 0 1 1 1 1

4 α1 [0, 2] 1 0 0 −1 0 0 1 0 1

5 α3 [3, 5] 0 1 0 0 −1 0 0 1 1

6 α1 + α2 + α3 [0, 3] 1 1 1 0 0 −1 0 0 1

7 α2 + α3 [1, 3] 0 1 1 1 0 0 −1 0 0

8 α1 + α2 [0, 4] 1 0 1 0 1 0 0 −1 0

9 α2 [1, 4] 0 0 1 1 1 1 0 0 −1

d-vector
d(X, y) = dc(I, j) = dc(B, β) = d(T, δ)

(−1
0
0

) (
0
1
1

) (
0
0
1

) (
1
0
1

) (
0
−1
0

) (
1
0
0

) (
0
0
−1

) (
1
1
0

) (
0
1
0

)

Table 2. c-compatibility table for the Coxeter element c = τ1τ3τ2 of type A3. The last line shows the d-vectors with respect
to the c-cluster I = {1, 5, 7} (corresponding to the cluster X = ψc(I), to the c-cluster B = ϑc(I) = {−α1, α3, α2 + α3}, and
to the triangulation T = ζc(I) = {[1, 5], [3, 5], [1, 3]}). In general, the d-vectors are the column vectors of the submatrix of
the matrix of c-compatibility degrees, with rows corresponding to I (or X, B, or T ).
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TYPE B2, Coxeter element c = τ0τ1, Cluster seed I = {3, 4}

W
o
rd

Q
c

Position j in [6] 1 2 3 4 5 6

letter qj of Qc τ0 τ1 τ0 τ1 τ0 τ1

root r(I, j) α0 2α0 + α1 α0 + α1 −2α0 − α1 α0 + α1 α1

root r(I, j)
in the basis R(I)

−β1 − β2 −β2 β1 β2 β1 2β1 + β2

c.s. pairs ζc(j)
of diagonals

[0, 0̄] [0, 1̄] ∪ [0̄, 1] [1, 1̄] [1, 2̄] ∪ [1̄, 2] [2, 2̄] [0, 2] ∪ [0̄, 2̄]

Almost positive root ϑc(j) −α0 −α1 α0 2α0 + α1 α0 + α1 α1

cluster variable ψc(j)
1 + x21 + x2

x1x2

1 + x21
x2

x1 x2
1 + x2
x1

(1 + x2)2 + x21
x21x2

d-vector

(
1
1

) (
0
1

) (
−1
0

) (
0
−1

) (
1
0

) (
2
1

)

Table 3. Correspondence between positions of letters in Qτ0τ1 , centrally symmetric pairs of di-
agonals of the hexagon, almost positive roots, and cluster variables in A(B2). The d-vectors of the
cluster variables correspond to the crossing vectors of the corresponding diagonals with respect to
the seed triangulation T = ζτ0τ1({3, 4}) = {[1, 1̄], [1, 2̄], [1̄, 2]}. The column corresponding to the
diagonals of this triangulation are shaded. See also Figure 10.

TYPE B2, Coxeter element c = τ0τ1, Compatibility table

position j in the word Qc 1 2 3 4 5 6

almost positive root ϑc(j) −α0 −α1 α0 2α0 + α1 α0 + α1 α1

diagonal ζc(j) [0, 0̄] [0, 1̄] ∪ [0̄, 1] [1, 1̄] [1, 2̄] ∪ [1̄, 2] [2, 2̄] [0, 2] ∪ [0̄, 2̄]

1 −α0 [0, 0̄] −1 0 1 2 1 0

2 −α1 [0, 1̄] ∪ [0̄, 1] 0 −1 0 1 1 1

3 α0 [1, 1̄] 1 0 −1 0 1 2

4 2α0 + α1 [1, 2̄] ∪ [1̄, 2] 1 1 0 −1 0 1

5 α0 + α1 [2, 2̄] 1 2 1 0 −1 0

6 α1 [0, 2] ∪ [0̄, 2̄] 0 1 1 1 0 −1

d-vector
d(X, y) = dc(I, j) =
dc(B, β) = d(T, δ)

(
1
1

) (
0
1

) (
−1
0

) (
0
−1

) (
1
0

) (
2
1

)

Table 4. c-compatibility table for the Coxeter element c = τ0τ1 of type B2. The last line shows
the d-vectors with respect to the c-cluster I = {3, 4} (corresponding to the cluster X = ψc(I),
to the c-cluster B = ϑc(I) = {α0, 2α0 + α1}, and to the centrally symmetric triangulation
T = ζc(I) = {[1, 1̄], [1, 2̄], [1̄, 2]}). In general, the d-vectors are the column vectors of the submatrix
of the matrix of c-compatibility degrees, with rows corresponding to I (or X, B, or T ).
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TYPE C2, Coxeter element c = τ0τ1, Cluster seed I = {3, 4}

W
o
rd

Q
c

Position j in [6] 1 2 3 4 5 6

letter qj of Qc τ0 τ1 τ0 τ1 τ0 τ1

root r(I, j) α0 α0 + α1 α0 + 2α1 −α0 − α1 α0 + 2α1 α1

root r(I, j)
in the basis R(I)

−β1 − 2β2 −β2 β1 β2 β1 β1 + β2

c.s. pairs ζc(j)
of diagonals

[0, 0̄] [0, 1̄] ∪ [0̄, 1] [1, 1̄] [1, 2̄] ∪ [1̄, 2] [2, 2̄] [0, 2] ∪ [0̄, 2̄]

Almost positive root ϑc(j) −α0 −α1 α0 α0 + α1 α0 + 2α1 α1

cluster variable ψc(j)
(1 + x1)2 + x22

x1x22

1 + x1
x2

x1 x2
1 + x22
x1

1 + x1 + x22
x1x2

d-vector

(
1
2

) (
0
1

) (
−1
0

) (
0
−1

) (
1
0

) (
1
1

)

Table 5. Correspondence between positions of letters in Qτ0τ1 , centrally symmetric pairs of di-
agonals of the hexagon, almost positive roots, and cluster variables in A(C2). The d-vectors of the
cluster variables correspond to the crossing vectors of the corresponding diagonals with respect to
the seed triangulation T = ζτ0τ1({3, 4}) = {[1, 1̄], [1, 2̄], [1̄, 2]}. The column corresponding to the
diagonals of this triangulation are shaded. See also Figure 10.

TYPE C2, Coxeter element c = τ0τ1, Compatibility table

position j in the word Qc 1 2 3 4 5 6

almost positive root ϑc(j) −α0 −α1 α0 α0 + α1 α0 + 2α1 α1

diagonals ζc(j) [0, 0̄] [0, 1̄] ∪ [0̄, 1] [1, 1̄] [1, 2̄] ∪ [1̄, 2] [2, 2̄] [0, 2] ∪ [0̄, 2̄]

1 −α0 [0, 0̄] −1 0 1 1 1 0

2 −α1 [0, 1̄] ∪ [0̄, 1] 0 −1 0 1 2 1

3 α0 [1, 1̄] 1 0 −1 0 1 1

4 α0 + α1 [1, 2̄] ∪ [1̄, 2] 2 1 0 −1 0 1

5 α0 + 2α1 [2, 2̄] 1 1 1 0 −1 0

6 α1 [0, 2] ∪ [0̄, 2̄] 0 1 2 1 0 −1

d-vector
d(X, y) = dc(I, j) =
dc(B, β) = d(T, δ)

(
1
2

) (
0
1

) (
−1
0

) (
0
−1

) (
1
0

) (
1
1

)

Table 6. c-compatibility table for the Coxeter element c = τ0τ1 of type C2. The last line shows
the d-vectors with respect to the c-cluster I = {3, 4} (corresponding to the cluster X = ψc(I),
to the c-cluster B = ϑc(I) = {α0, α0 + α1}, and to the centrally symmetric triangulation
T = ζc(I) = {[1, 1̄], [1, 2̄], [1̄, 2]}). In general, the d-vectors are the column vectors of the submatrix
of the matrix of c-compatibility degrees, with rows corresponding to I (or X, B, or T ).
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TYPE D3, Coxeter element c = τ1τ2τ0, Cluster seed I = {1, 7, 8}

W
o
rd

Q
c

Position j in [9] 1 2 3 4 5 6 7 8 9

letter qj of Qc τ1 τ2 τ0 τ1 τ2 τ0 τ1 τ2 τ1

root r(I, j) α1 α2 α0 + α2 α1 + α2 α0 + α1 + α2 α1 α0 −α0 − α2 α0

root r(I, j)
in the basis R(I)

β1 −β2 − β3 −β3 β1 − β2 − β3 β1 − β3 β1 β2 β3 β2

c.s. pairs ζc(j)
of chords of D3

2l ∪ 2̄l [0, 2] ∪ [0̄, 2̄] 0l ∪ 0̄l 0r ∪ 0̄r [0, 1̄] ∪ [0̄, 1] 1r ∪ 1̄r 1l ∪ 1̄l [1, 2̄] ∪ [1̄, 2] 2r ∪ 2̄r

Almost pos. root ϑc(j) −α1 −α2 −α0 α1 α1 + α2 α0 + α1 + α2 α2 α0 + α2 α0

cluster variable ψc(j) x1
x1 + x2 + x1x3

x2x3

x1 + x2
x3

(x1 + x2)(1 + x3)

x1x2x3

x1 + x2 + x2x3
x1x3

1 + x3
x1

x2 x3
1 + x3
x2

d-vector

(−1
0
0

) (
0
1
1

) (
0
0
1

) (
1
1
1

) (
1
0
1

) (
1
0
0

) (
0
−1
0

) (
0
0
−1

) (
0
1
0

)

Table 7. Correspondence between positions of letters in Qτ1τ2τ0 , centrally symmetric pairs of chords in D3, almost positive
roots, and cluster variables in A(D3). The d-vectors of the cluster variables correspond to the crossing vectors of the
corresponding chords with respect to the seed pseudotriangulation T = ζτ1τ2τ0({1, 7, 8}) = {2l, 2̄l, 1l, 1̄l, [1, 2̄], [1̄, 2]}. The
column corresponding to the chords of this pseudotriangulation are shaded. See also Figure 11.

TYPE D3, Coxeter element c = τ1τ2τ0, Compatibility table

position j in the word Qc 1 2 3 4 5 6 7 8 9

almost positive root ϑc(j) −α1 −α2 −α0 α1 α1 + α2 α0 + α1 + α2 α2 α0 + α2 α0

chords ζc(j) 2l ∪ 2̄l [0, 2] ∪ [0̄, 2̄] 0l ∪ 0̄l 0r ∪ 0̄r [0, 1̄] ∪ [0̄, 1] 1r ∪ 1̄r 1l ∪ 1̄l [1, 2̄] ∪ [1̄, 2] 2r ∪ 2̄r

1 −α1 2l ∪ 2̄l −1 0 0 1 1 1 0 0 0

2 −α2 [0, 2] ∪ [0̄, 2̄] 0 −1 0 0 1 1 1 1 0

3 −α0 0l ∪ 0̄l 0 0 −1 0 0 1 0 1 1

4 α1 0r ∪ 0̄r 1 0 0 −1 0 0 1 1 0

5 α1 + α2 [0, 1̄] ∪ [0̄, 1] 1 1 0 0 −1 0 0 1 1

6 α0 + α1 + α2 1r ∪ 1̄r 1 1 1 0 0 −1 0 0 0

7 α2 1l ∪ 1̄l 0 1 0 1 0 0 −1 0 1

8 α0 + α2 [1, 2̄] ∪ [1̄, 2] 0 1 1 1 1 0 0 −1 0

9 α0 2r ∪ 2̄r 0 0 1 0 1 0 1 0 −1

d-vector
d(X, y) = dc(I, j) =
dc(B, β) = d(T, δ)

(−1
0
0

) (
0
1
1

) (
0
0
1

) (
1
1
1

) (
1
0
1

) (
1
0
0

) (
0
−1
0

) (
0
0
−1

) (
0
1
0

)

Table 8. c-compatibility table for the Coxeter element c = τ1τ2τ0 of type D3. The last line shows the d-vectors with respect
to the c-cluster I = {1, 7, 8} (corresponding to the cluster X = ψc(I), to the c-cluster B = ϑc(I) = {−α1, α2, α0 + α2}, and
to the centrally symmetric triangulation T = ζc(I) = {2l, 2̄l, 1l, 1̄l, [1, 2̄], [1̄, 2]}). In general, the d-vectors are the column
vectors of the submatrix of the matrix of c-compatibility degrees, with rows corresponding to I (or X, B, or T ).
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Appendix A. Type D4 cluster algebra

In this appendix, we illustrate further our interpretation of type Dn cluster
algebras in terms of centrally symmetric pseudotriangulations, with an example in
type D4.

We consider the Coxeter element τ0τ3τ2τ1 of D4. The corresponding centrally
symmetric “accordion” pseudotriangulation Zτ0τ3τ2τ1 is represented in Figure 12 (left),
and the map ζτ0τ3τ2τ1 is given in Table 9.
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1
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Figure 12. The centrally symmetric “accordion” pseudotrian-
gulation Zτ0τ3τ2τ1 (left) and the initial seed pseudotriangulation
T = {[1, 3], [1̄, 3̄], 1l, 1̄l, [1, 3̄], [1̄, 3], 3l, 3̄l} (right). In each pseudo-
triangulation, the number at the center of the disk is its label in the
mutation graph represented on Figure 14, and each pair of chords
is labeled with the pseudotriangulation obtained when flipping it.
We use the same conventions in Figures 13 and 14.

We also compute cluster variables with respect to the seed pseudotriangulation

T = ζτ0τ3τ2τ1({6, 8, 14, 16}) = {[1, 3], [1̄, 3̄], 1l, 1̄l, [1, 3̄], [1̄, 3], 3l, 3̄l},
represented in Figure 12 (right). The remaining 48 centrally symmetric pseudotri-
angulations of D4 are represented in Figure 13, and their flip graph in Figure 14.

Finally, we have computed in Table 9 the d-vectors of all cluster variables with
respect to the initial seed T . For this, we can now use either the direct computation
of the cluster variables, or the geometric description of d-vectors as crossing vectors,
or the root function in the word Qc.
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Figure 13. The remaining 48 centrally symmetric pseudotriangulations of the configuration D4. See Figure 12 for
an explanation of the labeling conventions, and Figure 14 for the mutation graph.
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Figure 14. The type D4 mutation graph. We have represented some of the corresponding centrally symmetric
pseudotriangulations of D4 on this picture, while the others can be found on Figures 12 and 13. The underlying graph
used for the representation is a Schlegel diagram of the generalized associahedron [CFZ02, HLT11, PS11].



TYPE D4, Coxeter element c = τ0τ3τ2τ1, Cluster seed I = {6, 8, 14, 16} — First half

W
o
rd

Q
c

Position j in [16] 1 2 3 4 5 6 7 8

letter qj of Qc τ0 τ3 τ2 τ1 τ0 τ3 τ2 τ1

root r(I, j) α0 α3 α0 + α2 + α3 α0 + α1 + α2 + α3 α2 + α3 α0 + α2 α1 + α2 + α3 −α0

root r(I, j)
in the basis R(I)

−β2 −β1 − β2 − β3 −β2 − β3 −β2 − β3 − β4 −β3 β1 −β3 − β4 β2

c.s. pairs ζc(j)
of chords of D4

3r ∪ 3̄r [0, 2] ∪ [0̄, 2̄] [0, 3] ∪ [0̄, 3̄] 0r ∪ 0̄r 0l ∪ 0̄l [1, 3] ∪ [1̄, 3̄] [0, 1̄] ∪ [0̄, 1] 1l ∪ 1̄l

Almost positive root ϑc(j) −α0 −α3 −α2 −α1 α0 α3 α0 + α2 + α3 α0 + α1 + α2 + α3

cluster variable ψc(j)
x1 + x3
x2

x1x2 + x1x4 + x2x3 + x3x4
x1x2x3

x1x2 + x1x4 + x3x4
x2x3

x1x2 + x1x4 + x2x3 + x3x4
x2x3x4

x2 + x4
x3

x1
x1x2 + x1x4 + x2x3

x3x4
x2

d-vector

0
1
0
0


1

1
1
0


0

1
1
0


0

1
1
1


0

0
1
0


−1

0
0
0


0

0
1
1


 0
−1
0
0



TYPE D4, Coxeter element c = τ0τ3τ2τ1, Cluster seed I = {6, 8, 14, 16} — Second half

W
o
rd

Q
c

Position j in [16] 9 10 11 12 13 14 15 16

letter qj of Qc τ0 τ3 τ2 τ1 τ0 τ3 τ2 τ1

root r(I, j) α1 α0 + α1 + 2α2 + α3 α0 + α1 + α2 α1 + α2 α0 + α2 −α2 − α3 α2 −α1

root r(I, j)
in the basis R(I)

−β4 β1 − β3 − β4 β1 − β4 β1 + β2 − β4 β1 β3 β1 + β2 β4

c.s. pairs ζc(j)
of chords of D4

1r ∪ 1̄r [0, 2̄] ∪ [0̄, 2] [1, 2̄] ∪ [1̄, 2] 2r ∪ 2̄r 2l ∪ 2̄l [1, 3̄] ∪ [1̄, 3] [2, 3̄] ∪ [2̄, 3] 3l ∪ 3̄l

Almost positive root ϑc(j) α2 + α3 α0 + α2 α0 + α1 + 2α2 + α3 α2 α0 + α1 + α2 α1 + α2 + α3 α1 + α2 α1

cluster variable ψc(j)
x1 + x3
x4

x1x2 + x1x4 + x2x3 + x3x4
x1x3x4

x1x2 + x2x3 + x3x4
x1x4

x1x2 + x1x4 + x2x3 + x3x4
x1x2x4

x2 + x4
x1

x3
x1x4 + x2x3 + x3x4

x1x2
x4

d-vector

0
0
0
1


1

0
1
1


1

0
0
1


1

1
0
1


1

0
0
0


 0

0
−1
0


1

1
0
0


 0

0
0
−1


Table 9. Correspondence between positions of letters in Qτ0τ3τ2τ1 , centrally symmetric pairs of chords in D4, almost positive roots, and cluster
variables in A(D4). The d-vectors of the cluster variables correspond to the crossing vectors of the corresponding chords with respect to the seed
pseudotriangulation T = ζτ0τ3τ2τ1({6, 8, 14, 16}) = {[1, 3], [1̄, 3̄], 1l, 1̄l, [1, 3̄], [1̄, 3], 3l, 3̄l}. The column corresponding to the chords of this pseudotrian-
gulation are shaded. See also Figure 12.



38 C. CEBALLOS AND V. PILAUD

(C. Ceballos) Department of Mathematics and Statistics, York University, Toronto,

Ontario M3J 1P3, CANADA

E-mail address: ceballos@mathstat.yorku.ca

URL: http://garsia.math.yorku.ca/~ceballos/
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