ENUMERATING TOPOLOGICAL (n;)-CONFIGURATIONS

JURGEN BOKOWSKI AND VINCENT PILAUD

ABSTRACT. An (ny)-configuration is a set of n points and n lines in the projec-
tive plane such that their point —line incidence graph is k-regular. The configu-
ration is geometric, topological, or combinatorial depending on whether lines
are considered to be straight lines, pseudolines, or just combinatorial lines.

We provide an algorithm for generating, for given n and k, all topological
(ng)-configurations up to combinatorial isomorphism, without enumerating
first all combinatorial (ng)-configurations. We apply this algorithm to confirm
efficiently a former result on topological (184)-configurations, from which we
obtain a new geometric (184)-configuration. Preliminary results on (194)-confi-
gurations are also briefly reported.

1. INTRODUCTION

A point —line configuration is a set P of points and a set L of lines together
with an incidence relation, where two points of P can be incident with at most
one line of L and two lines of L can be incident with at most one point of P.
Throughout the paper, we only consider connected configurations, where any two
elements of P U L are connected via a path of incident elements. An isomorphism
(resp. a duality) between two configurations (P, L) and (P’,L’) is an incidence-
preserving map from P U L to P’ LU L’ which sends points to points and lines to
lines (resp. which exchanges points and lines).

According to the underlying structure, we distinguish three different levels of
configurations, in increasing generality:

Geometric configuration: Points and lines are points and lines in the real pro-
jective plane P.

Topological configuration: Points are points in P, but lines are pseudolines,
i.e. non-separating simple closed curves of P.

Combinatorial configuration: Just an abstract incidence structure (P, L) as
described above, with no additional geometric structure.

In this paper, we focus on regular configurations, i.e. whose incidence relation
is regular. More precisely, an (ny)-configuration (P,L) is a set P of n points and
a set L of n lines such that each point of P is contained in k lines of L and each
line of L contains k points of P. We have represented three famous 3-regular
configurations in Figure 1 to illustrate the previous definitions.

Point —line configurations have a long history in discrete 2-dimensional geometry.
We refer to Branko Griilnbaum’s recent monograph [Grii09] for a detailed treatment
of the topic and for historical references. As underlined in this monograph, the
current study of regular configurations focusses on the following two problems:

Vincent Pilaud was partially supported by grant MTM2011-22792 of the Spanish Ministerio
de Ciencia e Innovacién and by European Research Project ExploreMaps (ERC StG 208471).

1

2 JURGEN BOKOWSKI AND VINCENT PILAUD

FIGURE 1. (Left) Fano’s configuration is a combinatorial
(73)-configuration but is not realizable topologically or geomet-
rically. (Center) Kantor’s topological (103)-configuration is not
realizable geometrically. (Right) Pappus’ configuration is a geo-
metric (93)-configuration.

(i) For a given k, determine for which values of n do geometric, topological, and
combinatorial (ny)-configurations exist.
(ii) Enumerate and classify (ng)-configurations for given k and n.

In particular, it is challenging to determine the minimal value n for which (ny)-confi-
gurations exist and to enumerate these minimal configurations.

For k € {3,4}, the existence of (ng)-configurations is almost completely under-
stood. When k = 3, combinatorial (ns)-configurations exist for every n > 7, but
topological and geometric (n3)-configurations exist only for every n > 9. When
k = 4, combinatorial (n4)-configurations exist iff n > 13, topological (n4)-configu-
rations exist iff n > 17 [BS05, BGS09] and geometric (n4)-configurations exist iff
n > 18 [Gri06, BS11], with the possible exceptions of 19, 22, 23, 26, 37 and 43.
For k > 5, the situation is more involved, and the existence of combinatorial, topo-
logical and geometric (ny)-configurations is not determined in general.

Concerning the enumeration, an important effort has been done on combinatorial
(n3)- and (ng4)-configurations. Table 1 provides the known values of the number
ck(n) of combinatorial (ny)-configurations up to isomorphism. The first row of this
table (k = 3) appeared in [BBPO0O], except c3(19) which was announced later on
in [PBM*04, p.275]. The second row (k = 4) appeared in [BB99, p.34], except
¢4(19) which was only computed recently in [OC12].

In this paper, we are interested in the numbers tx(n) and gx(n) of topological
and geometric (ny)-configurations up to isomorphism. To obtain these numbers,
one method is to select the topologically or geometrically realizable configurations
among the list of all combinatorial (ny)-configurations. For example, the numbers

10 11 12 13 14 15 16 17 18

19

cs(n)
cq(n)

o oA

o |~

S | 0o

0 0 0 1 1 4 19 1972 971171

TABLE 1. The number ¢ (n) of combinatorial (ny)-configurations
up to isomorphism.

9
3 10 31 229 2036 21399 245342 3004881 38904499 530452205 7640941062
0

269224 652

ENUMERATING TOPOLOGICAL (ny)-CONFIGURATIONS 3

n | c3(n) ts(n) gs(n) n ca(n) ta(n) ga(n)
<6 0 0 0 <12 0 0 0

7 1 0 0 13 1 0 0

8 1 0 0 14 1 0 0

9 3 3 3 15 4 0 0
10 10 10 9 16 19 0 0
11 31 31 31 17 1972 1 0
12 229 229 229 18 971191 16 2
13 | 2036 ? ? 19 | 269224652 4028 ?

TABLE 2. The numbers tx(n) of topological (ny)-configurations
and gg(n) of geometric (ny)-configurations up to isomorphism.

ts(n) and g3(n) presented in Table 2 were derived from a careful study of the cor-
responding combinatorial configurations (see the historical remarks and references
in [Grii09]). In [Sch07], Lars Schewe provided a general method to study the topo-
logical realizability of a combinatorial configuration using satisfiability solvers, and
obtained the numbers ¢4(17) = 1 and ¢4(18) = 16. In [BS11], Jiirgen Bokowski and
Lars Schewe studied the geometric realizability of a combinatorial configuration.
This question is clearly an instance of the existential theory of the reals (ETR): it
boils down to determining whether a set of polynomial equalities and inequalities
admits a solution in the reals (indeed, the inclusion of a point in a line can be tested
by a polynomial equation). Using the construction sequences presented in [BS11],
the complexity of this instance of ETR can be decreased significantly. With this
method, Jirgen Bokowski and Lars Schewe showed that the only combinatorial
(174)-configuration which is topologically realizable is not geometrically realizable
and they exhibited a geometric (184)-configuration.

Table 2 summarizes the values of t3(n), gs(n), ta(n) and g4(n) known up-to-date
(we have additionally included our results in bold letters; see below). This table
indicates a clear difference of behavior between 3- and 4-regular configurations.
On the one hand, when k& = 3, most of the combinatorial (ns)-configurations are
topologically and geometrically realizable for small values of n. For n < 12, the only
counter-examples are the Fano (73)-configuration, the Mébius-Kantor (83)-configu-
ration, and Kantor’s (103)-configuration — see Figure 1 (left & center). On the
other hand, when k = 4, it is not reasonable to look for geometric (n4)-configura-
tions among all combinatorial (n4)-configurations. To further extend our knowledge
on geometric configurations, it thus seems crucial to limit our research to those
combinatorial configurations which are already topologically realizable.

Motivated by this observation, we present an algorithm for generating, for given n
and k, all topological (ny)-configurations up to isomorphism, without enumerating
first all combinatorial (ny)-configurations. The algorithm sweeps the projective
plane to construct a topological (ny)-configuration (P, L), but only considers as
relevant the events corresponding to the sweep of points of P. This strategy enables
us to identify along the way some isomorphic topological configurations, and thus
to maintain a reasonable computation space and time.

We have developed two different implementations of this algorithm. The first
one was written in HASKELL by the first author to develop the strategy of the

4 JURGEN BOKOWSKI AND VINCENT PILAUD

enumeration process. Once the general idea of the algorithm was settled, the second
author wrote another implementation in JAVA, focusing on the optimization of
computation space and time of the process.

We outline three applications of our algorithm. First, the algorithm is interesting
in its own right. Before describing some special methods for constructing topological
configurations, Branko Griinbaum writes in [Grii09, p. 165] that “the ezamples of
topological configurations presented so far have been ad hoc, obtained essentially
through (lots of) trial and error”. Our algorithm can reduce considerably the “trial
and error” method. Second, our algorithm enables us to check and confirm all
values of t4(n), for n < 18, obtained in earlier papers. We can use for that a single
method and reduce considerably the computation time (e.g. the computation of the
(184)-configurations needed several months of CPU-time in [Sch07], and only one
hour with our JAVA implementation). Finally, this algorithm enables us to compute
all £4(19) = 4028 isomorphism classes of topological (194)-configurations.

As an application of our enumeration results, we studied in detail the possible
geometric realizations of the topological (184)-configurations. Using a MAPLE in-
plementation of the construction sequence method of Jiirgen Bokowski and Lars
Schewe [BS05], we obtain that there are precisely 2 geometric (184)-configurations:
the first (184)-configuration constructed in [BS05], plus an additional one which
appears for the first time in this paper. In contrast, deriving the list of geometric
(194)-configurations from the list of topological (194)-configurations still requires
some computational effort and is left to a subsequent paper.

The first section of this paper is devoted to the enumeration algorithm for iso-
morphism classes of topological configurations. The second section presents the
application to the enumeration of geometric (18,)-configurations.

Topological configurations are pseudoline arrangements, or rank 3 oriented ma-
troids. We assume the reader to have some basic knowledge on these topics. We
refer to [Bok06, BLS'99, Knu92] for introductions.

2. TOPOLOGICAL CONFIGURATIONS

In this section, we present our algorithm to generate all isomorphism classes of
topological (ny)-configurations, for given n and k. Let us insist again on the crucial
fact that we do not need to enumerate first all combinatorial (ny)-configurations.
The main idea of the algorithm is to sweep the projective plane to construct a
topological (ny)-configuration (P, L), only focussing on the “relative positions of
the points of P” and ignoring at first the “relative positions of the other crossings
of the pseudolines of L” (precise definitions are given in Section 2.1). This strategy
enables us to identify along the way some isomorphic topological configurations,
and thus to maintain a reasonable computation space and time.

2.1. Three equivalence relations. There are three distinct notions of equiva-
lence on topological configurations.

The finest notion is the usual notion of topological equivalence between pseu-
doline arrangements in the projective plane: two configurations are topologically
equivalent if there is an homeomorphism of their underlying projective planes that
sends one arrangement onto the other.

The coarsest notion is that of combinatorial equivalence: two (ny,)-configurations
are combinatorially equivalent if they are isomorphic as combinatorial (ny)-confi-
gurations.

ENUMERATING TOPOLOGICAL (ny)-CONFIGURATIONS 5

The intermediate notion is based on the graph of admissible mutations. Re-
member that a mutation in a pseudoline arrangement is a local transformation of
the arrangement where only one pseudoline ¢ moves, sweeping a single vertex v of
the remaining arrangement. It only changes the position of the crossings of ¢ with
the pseudolines incident to v. If those crossings are all 2-crossings, the mutation
does not perturb the k-crossings of the arrangement, and thus produces another
topological (ny)-configuration. We say that such a mutation is admissible. Two
configurations are mutation equivalent if one can be obtained from the other by a
(possibly empty) sequence of admissible mutations followed by an homeomorphism
of the underlying projective space.

mutation

FIGURE 2. An admissible mutation.

Obviously, topological equivalence implies mutation equivalence, which in turn
implies combinatorial equivalence. The reciprocal implications are wrong.

As an illustration, the two (184)-configurations depicted in Figure 3 are com-
binatorially equivalent (the labels on the pseudolines provide a combinatorial iso-
morphism) but not topologically equivalent (the left one has 22 quadrangles and
2 pentagons, while the right one has 23 quadrangles). In fact, one can even check
that they are not mutation equivalent.

FIGURE 3. Two (184)-configurations which are combinatorially
equivalent but neither mutation nor topologically equivalent.

6 JURGEN BOKOWSKI AND VINCENT PILAUD

2.2. Representation of arrangements. In this section, we state certain proper-
ties of configurations that we can assume without loss of generality. In particular,
we choose a suitable representation of our pseudoline arrangements that we will use
for the description of the algorithm in Section 2.3.

SIMPLE CONFIGURATIONS — A topological configuration (P, L) is simple if no
three pseudolines of L meet at a common point except if it is a point of P. Since
any topological (ny)-configuration can be arbitrarily perturbed to become simple,
we only consider simple topological (ng)-configurations. Once we obtain all simple
topological (ng)-configurations, it is usual to obtain all (non-necessarily simple)
topological (ny)-configurations up to topological equivalence by exploring the mu-
tation graph, and we do not report on this aspect.

In a simple (ng)-configuration (P, L), there are two kinds of intersection points
among pseudolines of L: the points of P, which we also call k-crossings, and the
other intersection points, which we call 2-crossings. Each pseudoline of L contains
k k-crossings and n — 1 — k(k — 1) 2-crossings. In total, a simple (n)-configuration
has n k-crossings and () — n((g) — 1) 2-crossings.

SEGMENT LENGTH DISTRIBUTIONS — A segment of a topological configuration (P, L)
is the portion of a pseudoline of L located between two consecutive points of P.
If (P, L) is simple, a segment contains no k-crossing except its endpoints, but may
contain some 2-crossings. The length of a segment is the number of 2-crossings it
contains.

The circular sequence of the segment lengths on a pseudoline of L forms a
k-partition of n — 1 — k(k — 1). We call a mazimal representative of a k-tuple the
lexicographic maximum of its orbit under the action of the dihedral group (i.e. rota-
tions and reflections of the k-tuple). We denote by II the list of all distinct maximal
representatives of the k-partitions of n — 1 — k(k — 1), ordered lexicograhically. For
example, when k = 4 and n = 17, we have II = [4,0,0,0], [3,1,0,0], [3,0,1,0],
2,2,0,0], [2,0,2,0], [2,1,1,0], [2,1,0,1], [1,1,1,1].

A SUITABLE REPRESENTATION — We represent the projective plane as a disk where
we identify antipodal boundary points. Given a simple topological (ny)-configura-
tion (P, L), we fix a representation of its underlying projective plane which satisfies
the following properties (see Figure 4 left).

The leftmost point of the disk (which is identified with the rightmost point of the
disk) is a point of P, which we call the base point. The k pseudolines of L passing
through the base point are called the frame pseudolines, while the other n — k
pseudolines of L are called working pseudolines. The frame pseudolines decompose
the projective plane into k connected regions which we call frame regions. A crossing
is a frame crossing if it involves a frame pseudoline and a working crossing if it
involves only working pseudolines.

The boundary of the disk is a frame pseudoline, which we call the base line.
We furthermore assume that the segment length distribution A on the top half-
circle appears in II (i.e. is its own maximal representative), and that no maximal
representative of the segment length distribution of a pseudoline of L appears before
A in II. In particular, the leftmost segment of the base line is a longest segment of
the configuration.

baseline

ENUMERATING TOPOLOGICAL (ny)-CONFIGURATIONS 7

working

pseudolines

working

crossings

FIGURE 4. Suitable representation of a (174)-configuration, and
the corresponding wiring diagram.

WIRING DIAGRAM AND ALLOWABLE SEQUENCE — Another interesting representa-
tion of our (ng)-configuration is the wiring diagram [GP93] of its working pseudo-
lines (see Figure 4 right). It is obtained by sending the base point to infinity in the
horizontal direction. The frame pseudolines are k horizontal lines, and the n — k
working pseudolines are vertical wires. The orders of the working pseudolines on a
horizontal line sweeping the wiring diagram from top to bottom form the so-called
allowable sequence of the working arrangement, as defined in [GP93].

2.3. Description of the algorithm. Our algorithm can enumerate all topological
(ny)-configurations up to either topological or combinatorial equivalence. In order
to maintain a reasonable computation space and time, the main idea is to focus on
the relative positions of the points of the configurations and to ignore at first the
relative positions of the other crossings among the pseudolines. In other words, to
work modulo mutation equivalence as defined in Section 2.1.

More precisely, we first enumerate at least one representative of each mutation
equivalence class of topological (ny)-configurations. From these representatives, we
can derive:

(1) all topological (ng)-configurations up to topological equivalence: we explore
each connected component of the mutation graph with our representatives
as starting nodes.

(2) all combinatorial (ny)-configurations that are topologically realizable: we
reduce the result modulo combinatorial equivalence.

Since our motivation is to study geometric (ny)-configurations, we are only inter-
ested by point (2). We discuss a relatively efficient approach to test combinatorial
equivalence in Section 2.4. In this section, we give details on the different steps in
our algorithm.

12 11 10 9 8 7 6 5 4 3 2 1 0
| | | |~ | | |
1 | NS |
| =<
12 8 0 5 9 11 6 4 7 10 3 1 2
| | | |~ | | |
| I N | |
0 8 12 5 9 4 6 11 7 1 3 10 2
| | | —< | ——==_ | |
I | | | I
0 8 4 5 12 1 6 9 3 7 11 10 2
| | SN—<__ | > |
| | AN | AN |
LTI >
L >S< 1]
0 1 2 3 4 5 6 7 8 10 11 12

Begin
Working
crossing
Working
crossing

Frame
sweep

Frame
sweep

Frame
sweep
Working
crossing
Working

crossing

End

8 JURGEN BOKOWSKI AND VINCENT PILAUD

SWEEPING PROCESS — Our algorithm sweeps the projective plane to construct a
topological (ny)-configuration. The sweep line sweeps the configuration from the
base line on the top of the disk to the base line on the bottom of the disk. Inside
each frame region, it always passes through the base point and always completes
the configuration into an arrangement of n + 1 pseudolines. When it switches from
one frame region to the next one, it coincides with the separating frame pseudoline.
Along the way, it sweeps completely all the working pseudolines. Except those
located on the frame pseudolines, we assume that the crossings of the configuration
are reached one after the other by the sweep line. After the sweep line swept a
crossing, we remember the order of its intersections with the working pseudolines.
In other words, the sweeping process provides us with the allowable sequence of the
working pseudolines of our configuration.

Since admissible mutations are irrelevant for us, we only focus on the moments
when our sweep line sweeps a k-crossing. Thus, two different events can occur:

e when the sweep line sweeps a working k-crossing, and
e when the sweep line sweeps a frame pseudoline.

In the later case, we sweep simultaneously k — 1 frame k-crossings (each involving
the frame pseudoline and k — 1 working pseudolines), and n — 1 — k(k — 1) frame
2-crossings (each involving the frame pseudoline and a working pseudoline). Be-
tween two such events, the sweep line may sweep working 2-crossings which are
only taken into account when we reach a new event. Let us repeat again that the
precise positions of these working 2-crossings is irrelevant in our enumeration.

To obtain all possible solutions, we maintain a stack with all subconfigurations
which have been constructed so far, remembering for each one:

(i) the order of the working pseudolines on the current sweep line,
(ii) the number of frame and working k-crossings and 2-crossings which have al-
ready been swept on each working pseudoline,
(iii) the length of the segment currently swept by the sweep line, and
(iv) the history of the sweeps performed to reach this subconfiguration.

At each step, we remove the first subconfiguration from the stack, and insert all ad-
missible subconfigurations which can arise after sweeping a new working k-crossing
or a new frame pseudoline. We finally accept a configuration once we have swept
k frame pseudolines and n — k(k — 1) — 1 working k-crossings.

Any subconfiguration considered during the algorithm is a potential (ny)-confi-
guration. Throughout the process, we make sure that any pair of working pseudo-
lines cross at most once, that the number of frame pseudolines (resp. of working
k-crossings) already swept never exceeds k (resp. n — 1 — k(k — 1)), and that the
total number of working 2-crossings never exceeds (n — 2k)(n — 1 — k(k — 1))/2.
Furthermore, on each pseudoline, the number of frame and working k-crossings
(resp. 2-crossings) already swept never exceeds k (resp. n — 1 — k(k — 1)), the num-
ber of working 2- and k-crossings already swept never exceeds n — 1 — k(k — 1), and
the segment currently swept is not longer than the leftmost segment of the base line.

We now detail individually each step of the algorithm.

INITIALIZATION — We initialize our algorithm sweeping the base line. We only
have to choose the distribution of the lengths of the segments on the base line. The
possibilities are given by the list II of maximal representatives of k-partitions of
n—1—k(k—1).

ENUMERATING TOPOLOGICAL (ny)-CONFIGURATIONS 9

kernel
- - - = before

- - = after

left k-crossing right
FIGURE 5. Sweeping a working k-crossing.

SWEEP A WORKING k-CROSSING — If we decide to sweep a working k-crossing,
we have to choose the k working pseudolines which intersect at this k-crossing, and
the direction of the other working pseudolines.

Since we are allowed to perform any admissible mutation, we can assume that
all the pseudolines located to the left of the leftmost pseudoline of the working
k-crossing, and all those located to the right of the rightmost pseudoline of the
working k-crossing do not move.

We say that the pseudolines located between the leftmost and the rightmost
pseudolines of the working k-crossing form the kernel of the working k-crossing.
‘We have to choose the positions of the pseudolines of the kernel after the flip: each
pseudoline of the kernel either belongs to the working k-crossing, or goes to its left,
or goes to its right (see Figure 5).

A choice of directions for the kernel is admissible provided that

(i) each pseudoline involved in the k-crossing can still accept a working k-crossing;
(ii) each pseudoline of the kernel can still accept as many working 2-crossings as
implied by the choice of directions for the kernel,
(iii) no segment becomes longer than the leftmost segment of the base line; and
(iv) any two pseudolines which are forced to cross by the choice of directions for
the kernel did not cross earlier (i.e. they still form an inversion on the sweep
line before we sweep the working k-crossing).

SWEEP A FRAME PSEUDOLINE — If we decide to sweep a frame pseudoline, we
have to choose the (k — 1)? working pseudolines involved in one of the k — 1 frame
k-crossings, and the direction of the other working pseudolines.

As before, we can assume that a pseudoline does not move if it is located to the
left of the leftmost pseudoline involved in one of the k — 1 frame k-crossings, or to
the right of the rightmost pseudoline involved in one of the k — 1 frame k-crossings.
Otherwise, we can perform admissible mutations to ensure this situation.

The other pseudolines form again the kernel of the frame sweep, and we have to
choose their positions after the flip. Each pseudoline of the kernel either belongs
to one of the k — 1 frame k-crossings, or can choose among k possible directions:
before the first frame k-crossing, or between two consecutive frame k-crossings, or
after the last frame k-crossing (see Figure 6).

As before, a choice of directions for the kernel is admissible if

(i) each pseudoline involved (resp. not involved) in one of the k£ — 1 frame
k-crossings can still accept a frame k-crossing (resp. a frame 2-crossing);

(ii) each pseudoline of the kernel can still accept as many working 2-crossings as
implied by the choice of directions for the kernel;

10 JURGEN BOKOWSKI AND VINCENT PILAUD

kernel

LILZNA L WL L.

left k-crossing k-crossing k-crossing right

FIGURE 6. Sweeping a frame pseudoline (right).

(iii) no segment becomes longer than the leftmost segment of the base line; and

(iv) any two pseudolines which are forced to cross by the choice of directions for
the kernel did not cross earlier (i.e. they still form an inversion on the sweep
line before we sweep the frame pseudoline).

SWEEP THE LAST FRAME REGION — Our sweeping process finishes once we have
swept n — 1 — k(k — 1) working k-crossings and k frame pseudolines. Each resulting
subconfiguration should still be completed into a topological (ny)-configuration
with some necessary remaining 2-crossings. More precisely, we need to add on
each working pseudoline as many working 2-crossings as its number of inversions in
the permutation given by the working pseudolines on the final sweep line, without
creating segments that are too long.

After this last selection, all the constructed configurations are finally guaranteed
to be valid topological (ny)-configurations. To make sure that we indeed obtain
the representation presented in Section 2.2, we remove each configuration (P, L) in
which the maximal representative of the segment length distribution of a pseudoline
of L appears in the list II before the segment length distribution of its base line.

2.4. Testing combinatorial equivalence. In Section 2.1, we have seen three
equivalence relations between topological (n)-configurations: combinatorial, muta-
tion and topological equivalence. As explained in Section 2.3, our algorithm outputs
at least one representative per mutation equivalence class of topological (ny)-confi-
gurations. However, we can obtain more than one representative per class, and
two topological (ny)-configurations which are not mutation equivalent can still be
combinatorially equivalent. We thus need to reduce the output of our algorithm.

Note that the topological equivalence between two (ny)-configurations (P, Lq)
and (Py, L) can be tested in ©(n?) time. Indeed, since the topological configura-
tions are embedded on the projective plane, the matchings between P; and P, and
between L; and L induced by an homeomorphism mapping (Py, L1) to (P2, La) are
determined by the images of any two distinguished pseudolines ¢, ¢’ of Li. There-
fore, for each of the ©(n?) possible choices for the images of ¢,¢', we can test in
linear time whether this choice yields or not an homeomorphism between (Py, L)
and (Ps, L2). Both combinatorial and mutation equivalences are however harder to
decide computationally. We focus here on methods and heuristics to quickly test
combinatorial equivalence.

In order to limit unnecessary computation, we make use of combinatorial invari-
ants associated to configurations. If two configurations have distinct invariants,
they cannot be combinatorially equivalent. Reciprocally, if they share the same in-
variant, it provides us with information on the possible combinatorial isomorphisms

ENUMERATING TOPOLOGICAL (ny)-CONFIGURATIONS 11

between these two configurations. The invariants we have chosen are the clique and
coclique distributions. We furthermore need a multiscale invariant technique, based
on the notion of derivation of a combinatorial invariant. We introduce these notions
and methods in the next paragraphs.

CLIQUES AND COCLIQUES — Let (P,L) be a combinatorial configuration. For
j > 3, define a j-clique of (P, L) to be any set of j points of P which are pairwise
related by lines of L. For any point p of P, let ;(p) be the number of j-cliques
containing p, and let y(p) := (v,;(p))j>s. The clique distribution of (P,L) is the
multiset v(P) := {~v(p) | p € P}.

Similarly, a j-coclique of (P, L) is a set of j lines of L which are pairwise inter-
secting at points of P. For any line ¢ of L, let §;(¢) be the number of j-cocliques
containing ¢, and let 6(¢) := (;(¢));>3. The coclique distribution of (P, L) is the
multiset §(L) := {§(¢) | £ € L}. In other words, the coclique distribution of (P, L)
is the clique distribution of its dual configuration (L, P).

The pair (y(P),d(L)) of clique and coclique distributions of the configuration (P, L)
is a natural and powerful combinatorial invariant of (P, L).

DERIVATION OF COMBINATORIAL INVARIANTS — Let (P, L) be a (n)-configura-
tion. Assume that v : P — X and § : L — Y are two functions from the point
set and the line set of (P, L) respectively to arbitrary sets X and Y, such that
the multisets v(P) := {y(p) |p€ P} C X and 6(L) := {o6(¢) | L€ L} C Y are
combinatorial invariants of (P, L). The clique and coclique distributions are typical
examples of such functions v and é. Observe that we again abuse notation: the
functions 7 and ¢ usually depend on the configuration (P, L), but we consider that
this dependence is clear from the context. Note however that the target sets X
and Y of v and ¢ do not depend upon (P, L).

While reducing a set of configurations up to combinatorial equivalence, such a
pair of combinatorial invariants (v(P), (L)) can be used in two different ways:

(i) either to separate classes of combinatorial isomorphism: two configurations
with different invariants cannot be combinatorially equivalent;

(ii) or to guess combinatorial isomorphisms: an isomorphism between two config-
urations should respect the invariants v and é.

It often happens however that the pair of combinatorial invariants (y(P),d(L)) is
not precise enough neither to distinguish two configurations, nor to guess a com-
binatorial isomorphism between them. It occurs when many points (resp. many
lines) of a configuration (P, L) get the same image under ~ (resp. under §). Two
fundamentally different cases can lead to this situation. On the one hand, the con-
figuration (P, L) can have a large automorphism group. In this case, points (resp.
lines) in a common orbit under the automorphism group cannot be distinguished
combinatorially, and thus no invariant can speed up the isomorphism test. On the
other hand, it could also be that the combinatorial invariant (y(P),d(L)) is not
precise enough to distinguish the neighborhood properties of the points with the
same image under «y (resp. the lines with the same image under 9). In the later case,
we can construct a new pair of combinatorial invariants which refines (y(P), (L)),
taking into account the neighborhoods of points and lines in the configuration. We
call these invariants the derivatives of v and ¢ and denote them " and §’.

The derivative of the invariant v : P — X is the function 7/ : L — X* which
associates to a line £ of L the multiset v'(¢) := {~(p) | p € P,p € £}}. Intuitively,

12 JURGEN BOKOWSKI AND VINCENT PILAUD

the image 7/(¢) of a line ¢ contains all the combinatorial information carried by ~
concerning the points of P contained in ¢. Similarly, the derivative of the invariant
§ : L — Y is the function &’ : P — Y* which associates to a point p of P the multiset
§(p):={o6(¢)| e L,pel}. The pair (6'(P),7 (L)) is a pair of combinatorial
invariants as defined previously, and it refines the previous pair (y(P),d(L)).

If this new invariant is still not precise enough, we can consider higher order
derivatives v := (y(*=D) and 6 := (6= of the initial invariants. We
obtain this way a family of refinements of (y(P),d(L)). Of course, these invariants
ultimately carry the same combinatorial information. We use this family in the
following multiscale technique.

MULTISCALE INVARIANTS — The main idea of our reduction process is to use
derivative invariants in a multiscale process. Consider a set C of configurations that
we want to reduce up to combinatorial equivalence. Assume that v: P — X and
0 : L — 'Y are two functions defining a pair of combinatorial invariants (y(P), d(L))
of a configuration (P,L). We separate the configurations of C into classes with
distinct invariants, which we can consider independently. We now compute the
derivative invariants (6'(P),~'(L)) for each configuration (P, L). For a given class,
we then have three possible situations:

(1) If the derivative invariants (6'(P),~'(L)) are not the same for all config-
urations (P, L) of the class, we split the class into refined subclasses and
reiterate the refinement (computing one more derivative).

(2) If the derivative invariants (6’'(P),~'(L)) are the same for all configura-
tions (P, L) of the class but determine more information on the possible
isomorphisms between configurations of the class than the original invari-
ants (y(P),0(L)), then we reiterate the refinement.

(3) Otherwise, the derivative invariants (6'(P),v'(L)), as well as any further
derivative, provide the same combinatorial information as the original in-
variants (y(P),d(L)). Thus, we stop the refinement process and start a
brute-force search for possible isomorphisms between the remaining con-
figurations in the class. The efficiency of this brute-force search depends
on the quality of the combinatorial information provided by the invari-
ants (y(P),d(L)).

This process can be seen as a multiscale process: typically, some invariants provide
sufficiently information to deal with certain classes of C, while other classes require
far more precision (obtained by derivatives) to be reduced.

Using this multiscale technique, starting from the clique and coclique distribu-
tions of configurations, we managed to reduce the 69991 topological (194)-confi-
gurations produced by our sweeping algorithm into 4028 classes of combinatorial
equivalence in about one hour!.

2.5. Results. We present in this section the results of our algorithm. First, it
enables us to check efficiently all former enumerations of topological (ny)-confi-
gurations. The JAVA implementation developed by the second author finds all
(nk)-configurations in less than a minute’ when k = 3 and n < 11, or when k = 4
and n < 17. In particular, we checked that there is no topological (n4)-configura-
tion when n < 16 [BS05], and that there is a single topological (174)-configuration

1Cornputation times on a 2.4 GHz Intel Core 2 Duo processor with 4Go of RAM.

ENUMERATING TOPOLOGICAL (ny)-CONFIGURATIONS 13

up to combinatorial isomorphism. This configuration is represented in Figure 7,
and labeled in such a way that:
e the quarter-turn rotation which generates the symmetry group of the pic-
ture is the permutation (A)(B,C,D,E)(F,G,H,I)(J,K,L,M)(N,0)(P,Q); and
e the permutation (A,a)(B,b)... (P,p)(Q,q) is a self-polarity of the topolog-
ical configuration.

lines ‘ a b ¢ d e f g h i j k I m n o p q
N F I HGBED CBEDCAAAA

pomts | P J M L K T H G F E D C B C B F G
inliness|O O N O NP Q P QL K J MP QN O
QM L K J J MULI KU F T HGEDH I

FIGURE 7. The topological (174)-configuration [BGS09].

When k£ = 4 and n = 18, we reconstructed the 16 combinatorial equivalence
classes of topological (184)-configurations obtained in [Sch07] with satisfiability
solvers. See [BS11, Figure 6] for a description of these configurations. To obtain this
result, our implementation needed about one hour!, compared to several months
of CPU-time required in [Sch07]. The two (184)-configurations presented in Fig-
ure 3, which are combinatorially equivalent but not mutation equivalent, occurred
while we were reducing the list of (184)-configurations up to combinatorial equiva-
lence, using as a first reduction a certain invariant of mutation equivalence defined
in [BS12]. In the next section, we present two combinatorially distinct geometric
(184)-configurations obtained from the list of topological (184)-configurations.

Finally, we want to report on preliminary results concerning the enumeration of
topological (194)-configurations, which initially motivated our work. In about 15
days of computation time!, we obtained the complete list of topological (19,)-confi-
gurations:

1Cornputation times on a 2.4 GHz Intel Core 2 Duo processor with 4Go of RAM.

14 JURGEN BOKOWSKI AND VINCENT PILAUD

Result 1. There are precisely 4028 topological (194)-configurations up to combi-
natorial equivalence. Among them, 222 are self-dual.

From this list, we can immediately extract examples of topological (194)-configu-
rations with non-trivial symmetry groups, closing along the way an open question
of Branko Griinbaum [Grii09, p. 169, Question 5]. The next step is naturally to
study the possible geometric realizations of all these topological (194)-configura-
tions. This work in progress still requires an important computational effort and
will be reported in a subsequent paper.

3. APPLICATION TO GEOMETRIC (184)-CONFIGURATIONS

As an application of the enumeration of topological configurations, we derive
all isomorphism classes of geometric (184)-configurations. To obtain it, we im-
plemented in MAPLE the construction sequence method of Jiirgen Bokowski and
Lars Schewe [BS11]. Among the 16 topological (184)-configurations (first gener-
ated by Lars Schewe [Sch07] and now confirmed by our JAVA program), only 8 are
compatible with Pappus’ and Desargues’ Theorem. Starting from these remaining
configurations, we run our MAPLE code and obtain the following result:

Result 2. There are precisely two geometric (184)-configurations up to combina-
torial isomorphism.

The first geometric (184)-configuration was obtained in [BS05, Section 4].
In Figure 8, we have labeled its points A,...,R and lines a,...,r in such a way
that the permutation (A,a)(B,b)... (Q,q)(R,r) is a self-duality of the configuration.

d A

d
2 B
D ¢ Je Q/ 0, ¢/ |q\a h| \m \l \P f\ T i

lines ‘

in lines

O™ ITHo
j=sRocll i =g ol
O TQe
g N @R Rvslis
— @ (0
T = Qs
QT W
/| ZE Q=

I m
H J
N M
0O K
P P

OBz Ro
O = H|AQle
Z < gw=

k
I
0]
M
Q

o0~ H"o

a
D
points | G
E
P

FIGURE 8. Bokowski and Schewe’s geometric (184)-configuration [BS05].

ENUMERATING TOPOLOGICAL (ny)-CONFIGURATIONS 15

The automorphism group of the combinatorial configuration is generated by the
permutations:

(A,B,C)(D,E,F)(G,H,I)(J,K,L)(M,N,0)(P,Q,R)
(A)(K)(B,C,L,J)(D,F,IR)(E,QM,G)(H,0O,N,P)
(A)(K)(B,L)(C,J)(D,I)(E,M)(F,R)(G,Q)(H,N)(O,P)
and is isomorphic to the symmetric group on 4 elements. Together with the self-
duality (A,a)(B,b)... (Q,q)(R,r), the automorphism group of the Levi graph of the
configuration is thus isomorphic to &4 x Zs. Observe that only the first permuta-
tion (A,B,C) ... (P,Q,R) and the duality (A,a)(B,b) ... (Q,q)(R,r) are geometrically
visible, while the other generators of the automorphism group of the combinato-
rial configuration are not isometries of the geometric configuration of Figure 8. In
Figure 9, we have performed a projective transformation of the configuration of
Figure 8 (sending the four 3-valent points in Figure 8 to a square). The last gener-
ator (A)(K)(B,L)... (O,P) then becomes a central symmetry in the new geometric

(184)-configuration.
The realization space of this configuration consists of two points, both expressed
with coordinates in Q [1 + \/5]

P\ q\ K m\ k| p i la /g A/ Je b
T M T
j N R J
J
h i
! L QTR
SN
c H c
f h
b \ 1
g/ /Ae/ k|l o d |a \g KN \m i

FIGURE 9. Another geometric realization of Bokowski and
Schewe’s geometric (184)-configuration [BS05] of Figure 8.

The second geometric (184)-configuration is a result of our MAPLE code and
appears for the first time in this paper.

In Figure 10, we have labeled its points A, ..., R and lines a, ..., r in such a way
that the permutation (A,a)(B,b) ... (Q,q)(R,r) is a self-polarity of the configuration.

The automorphism group of the combinatorial configuration is generated by the
permutation (Q)(R)(A,P)(B,0)(C,N)(D,M)(E,L)(F,K)(G,J)(H,I). Together with the
self-polarity (A,a)(B,b)... (Q,q)(R,r), the automorphism group of the Levi graph
of the configuration is thus isomorphic to Zs X Zs. This group is completely realized
in the geometric representation of Figure 10.

The realization space of this configuration consists of two points, both expressed

with coordinates in Q [v/ 108 + 12v/ 93}

16 JURGEN BOKOWSKI AND VINCENT PILAUD

j R g i f h| /r
m
J G
d
k
P
b b

Q,
1
a
(0] (0]
P —A
1 f
d .
4 o1 g
lines‘abcdefghijklmnopqr
M I DCDDCCNNMMMNDNMMHEHDB F
points | N L H F O L KHTVFUEDBI KTIECE G
inlines|lO P G E K J I J GHGVF L J A B L J
P QP P QR R ODBIRI RQA A QA OZK

FIGURE 10. The new geometric (184)-configuration.

To conclude, we want to emphasize that the discovery of the first (184)-configu-
ration of Figure 8 inspired Branko Griinbaum to find a new family of (6m)-confi-
gurations, for any m > 3 (see [Grii09, Chapter 3, p. 171] and Figure 11). This
raises the following appealing open question:

Problem 3. Generalize our second geometric (184)-configuration of Figure 10 to
obtain another new infinite family of geometric (ny)-configurations.

N

Ficure 11. The (6m)-family inspired by the geometric
(184)-configuration of Figure 8.

ENUMERATING TOPOLOGICAL (ny)-CONFIGURATIONS 17

For example, we have been able to derive from the second geometric (184)-confi-
guration of Figure 10 a family of ((18 + 17m)4)-configurations. Unfortunately, the
set 18 + 17N does not intersect the set {19, 22,23, 26, 37,43} of values n for which
no (ny4)-configuration is known.

ACKNOWLEDGEMENTS

The first author thanks three colleagues from the Universidad Nacional Auténoma
de México, namely Ricardo Strausz Santiago, Rodolfo San Augustin Chi, and Oc-
tavio Paez Osuna, for many stimulating discussions about various different earlier
versions of the presented algorithm during his one year sabbatical stay (2008/2009)
in México City. We also thank Leah Berman from the University of Alaska Fair-
banks for valuable discussions and comments about the subject. We are grateful to
Branko Griinbaum, Tomaz Pisanski, and Gunnar Brinkmann for encouragements
and helpful communications. As frequent users, we are indebted to the development
team of the geometric software CINDERELLA, in particular Jiirgen Richter-Gebert
and Ulrich Kortenkamp. Finally, we thank two anonymous referees for their com-
ments and suggestions on the presentation.

REFERENCES

[BB99] Anton Betten and Dieter Betten. Tactical decompositions and some configurations vy.
J. Geom., 66(1-2):27-41, 1999.

[BBP00] Anton Betten, Gunnar Brinkmann, and Tomaz Pisanski. Counting symmetric con-
figurations vsz. Discrete Appl. Math., 99(1-3):331-338, 2000. Proceedings of the 5th
Twente Workshop on Graphs and Combinatorial Optimization (Enschede, 1997).

[BGS09] Jiirgen Bokowski, Branko Griinbaum, and Lars Schewe. Topological configurations
(n4) exist for all n > 17. European J. Combin., 30(8):1778-1785, 2009.

[BLST99] Anders Bjorner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and Giinter M.
Ziegler. Oriented matroids, volume 46 of Encyclopedia of Mathematics and its Appli-
cations. Cambridge University Press, Cambridge, second edition, 1999.

[Bok06] Jirgen Bokowski. Computational oriented matroids. Cambridge University Press,
Cambridge, 2006.

[BS05] Jirgen Bokowski and Lars Schewe. There are no realizable 154- and 164-configurations.
Rev. Roumaine Math. Pures Appl., 50(5-6):483-493, 2005.

[BS11] Jiirgen Bokowski and Lars Schewe. On the finite set of missing geometric configurations
(n4). To appear in Computational Geometry: Theory and Applications, 2011.

[BS12] Jiirgen Bokowski and Ricardo Strausz Santiago. A manifold associated to a topological

(ng)-configuration. Preprint, 2012.

[GP93] Jacob E. Goodman and Richard Pollack. Allowable sequences and order types in dis-
crete and computational geometry. In New trends in discrete and computational ge-
ometry, volume 10 of Algorithms Combin., pages 103-134. Springer, Berlin, 1993.

[Grii06]) Branko Griinbaum. Connected (n4) configurations exist for almost all n—second up-
date. Geombinatorics, 16(2):254-261, 2006.
[Grii09] Branko Griinbaum. Configurations of points and lines, volume 103 of Graduate Studies

in Mathematics. American Mathematical Society, Providence, RI, 2009.

[Knu92] Donald E. Knuth. Azioms and hulls, volume 606 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, Berlin, 1992.

[0C12] Octavio Pdez Osuna and Rodolfo San Agustin Chi. The combinatorial (194) configu-
rations. Ars Math. Contemp., 5(2):231-237, 2012.

[PBM104] Toma# Pisanski, Marko Boben, Dragan Marusi¢, Alen Orbanié, and Ante Graovac.
The 10-cages and derived configurations. Discrete Math., 275(1-3):265-276, 2004.

[Sch07] Lars Schewe. Satisfiability Problems in Discrete Geometry. PhD thesis, Technische
Universitat Darmstadt, 2007.

18

JURGEN BOKOWSKI AND VINCENT PILAUD

TECHNISCHE UNIVERSITAT DARMSTADT
E-mail address: juergen.bokowski@googlemail.com

CNRS & LIX, EcoLE POLYTECHNIQUE, PALAISEAU
E-mail address: vincent.pilaud@lix.polytechnique.fr
URL: http://www.lix.polytechnique.fr/"pilaud/

	1. Introduction
	2. Topological configurations
	2.1. Three equivalence relations
	2.2. Representation of arrangements
	2.3. Description of the algorithm
	2.4. Testing combinatorial equivalence
	2.5. Results

	3. Application to geometric (184)-configurations
	Acknowledgements
	References

