LATTICES OF ACYCLIC PIPE DREAMS

NANTEL BERGERON, NOEMIE CARTIER, CESAR CEBALLOS, AND VINCENT PILAUD

ABSTRACT. We show that for any permutation w, the increasing flip graph on acyclic pipe
dreams with exiting permutation w is a lattice quotient of the interval [e,w] of the weak order.
We then discuss conjectural generalizations of this result to acyclic facets of subword complexes
on arbitrary finite Coxeter groups.
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1. INTRODUCTION

The weak order is the lattice on permutations of [rn] whose cover relations correspond to switch-
ing pairs of consecutive values in permutations. The Tamari lattice is the lattice on binary trees
with n internal nodes whose cover relations correspond to right rotations in binary trees. The
Tamari lattice is known to be the lattice quotient of the weak order by the sylvester congruence,
defined as the equivalence relation on permutations of [rn] whose equivalence classes are the sets
of linear extensions of binary trees (labeled in inorder and oriented towards their leaves).

This paper develops a similar framework for acyclic pipe dreams. Pipe dreams were introduced
by N. Bergeron and S. Billey in [BB93] to compute Schubert polynomials and later revisited in

NB was supported by NSERC and York Research Chair in Applied Algebra. CC was supported by the
Austrian Science Fund FWF (Project P 33278). NC & VP were partially supported by the French project
CHARMS (ANR 19CE400017). CC, NC & VP were also supported by the Austrian—French project PAGCAP
(ANR 21 CE480020 & FWF I 5788).

1



2 N. BERGERON, N. CARTIER, C. CEBALLOS, AND V. PILAUD
3657214

|

e

_j r

365724
e
g

.

N O Uk W~
3
3
B
B
B

FIGURE 1. Two pipe dreams of II(1365724) connected by an increasing flip (ex-
changing a contact with the crossing on the two red pipes 4 and 5).

the context of Grobner geometry by A. Knutson and E. Miller [KMO05], who coined the name pipe
dreams. They have important connections and applications to various areas related to Schubert
calculus and Schubert varieties [LS82, LS85]. A pipe dream is an arrangement of pipes in the
triangular shape, each entering along the vertical side and exiting along the horizontal side (see
Figure 1). They are grouped according to their exiting permutation, given by the order in which the
pipes appear along the horizontal axis. The linear extensions of a pipe dream are the permutations
of its pipes such that for each contact the northwest pipe appears before the southeast pipe in the
permutation. The pipe dreams with at least one linear extension are called acyclic and naturally
appear in the study of brick polytopes [PS12]. A flip in a pipe dream exchanges a contact with a
crossing between two pipes (see Figure 1), and the flip is increasing when the contact is southwest
of the crossing involved in the flip. A brief recollection on pipe dreams is given in Section 2.
In the core Section 3 of this paper, we show that for any permutation w,

e the sets of linear extensions of the acyclic pipe dreams with exiting permutation w form a
partition of the interval [e,w] of the weak order (Section 3.1),

e the equivalence relation defined by this partition is a lattice congruence of [e,w], that we
call the pipe dream congruence (Section 3.2),

e the Hasse diagram of the corresponding lattice quotient is isomorphic to the increasing
flip graph on acyclic pipe dreams with exiting permutation w (Section 3.3).

In summary, we obtain the following statement, illustrated in Figure 3.

Theorem A. For any permutation w, the Hasse diagram of the lattice quotient of the interval [e, w]
of the weak order by the pipe dream congruence of w is isomorphic to the increasing flip graph on
acyclic pipe dreams with exiting permutation w.

We recover the connection between the weak order and the Tamari lattice by the sylvester
congruence for a well-chosen exiting permutation w. Note that Theorem A is the correct gen-
eralization of the Tamari lattice, as neither the increasing flip poset on all pipe dreams, nor its
subposet induced by acyclic pipe dreams, are lattices in general (see Remarks 2.2 and 3.17).

We then explore in Section 4 some natural further topics on pipe dreams. We describe two
algorithms to compute the unique acyclic pipe dream whose linear extensions contain a given
permutation generalizing the binary tree insertion map on permutations (Sections 4.1 and 4.2),
we describe the pipe dream congruence as the transitive closure of a local rewriting rule generalizing
that of the sylvester congruence (Section 4.3), and we describe a natural commutative diagram of
lattice morphisms generalizing the connection between the recoil map and the binary tree insertion
map on permutations and the canopy on binary trees (Section 4.4).

Finally, we discuss in Section 5 (partly conjectural) extensions of our results to subword com-
plexes in finite Coxeter groups [KMO04]. Given a finite Coxeter group W with simple reflections S,
a word @ on S and an element w of W, the subword complex SC(Q,w) is a simplicial complex
whose facets are the complements of the reduced expressions of w inside the word Q. Pipe dreams
can be seen as facets of subword complexes for special words @) on the simple transpositions of
the symmetric groups. In general, there is again a natural increasing flip graph on the facets of
a subword complex, which was studied in particular in [PS13]. An important tool to understand
this flip is the root function introduced in [CLS14], which associates a root ry () to each position %
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and each facet I, and the root configuration R(I) of a facet I, which collects all roots ry(i) at
positions 7 in I. A brief recollection on finite Coxeter systems and subword complexes is given in
Sections 5.1 and 5.2.

We consider the set £(I) of linear extensions of a facet I of SC(Q,w), that is the set of elements 7
of W such that R(I) C w(®T). We prove the following statement in Section 5.4.

Theorem B. For any non-empty subword compler SC(Q,w), the sets L(I) for all facets I
of SC(Q,w) are order convex and form a partition of a lower set of the weak order that contains
the interval [e,w].

In contrast to the case of pipe dreams, there are some subword complexes and some facets for
which the interval [e,w] does not contain (even sometimes does not intersect) the set of linear
extensions L£(I). However, there is a large family of subword complexes for which this cannot
happen. We say that @ is sorting if it contains a reduced expression for w,.

Theorem C. If Q is sorting, then the sets L(I) for all facets I of SC(Q,w) form a partition of
the interval [e,w].

In the case when [e,w]| does not contain all sets of linear extensions, it is natural to consider
the restriction of this partition to [e,w] by the sets [e,w] N L£(w). This defines an equivalence rela-
tion =g, on [e,w] that we call the subword complex equivalence. As the sets of linear extensions
are not always intervals of the weak order, this equivalence relation is not always a lattice con-
gruence. This seems to be fixed by an additional assumption on Q). We say that @) is alternating
when all non-commuting pairs s,t € S alternate within ¢ (this notion was already considered in
[PS12, CLS14)).

Conjecture A. If Q is alternating, then the subword complex equivalence =q ., s a lattice con-
gruence of the interval [e,w] of the weak order.

When @ is alternating, we can thus consider the quotient [e,w]/=¢..,. In contrast to the case
of pipe dreams, the Hasse diagram of the quotient [e,w]/=q . is not always isomorphic to the
increasing flip graph on acyclic facets of SC(Q,w) for two reasons:

e First, not all acyclic facets of SC(Q, w) appear as elements of [e, w] /=@ . (see Remark 5.13).
We say that a facet is strongly acyclic if [e,w] N L(w) # 2.

e Second, not all flips between two strongly acyclic facets of SC(Q,w) define a cover relation
of [e,w]/=0.w (see Example 5.21). We say that the flip of a position ¢ in a facet I is
external if the root ry(7) directing the flip is a ray of the root configuration R(I).

This leads us to the following conjecture.

Conjecture B. If Q is alternating, then the Hasse diagram of the quotient [e,w]/ =qg . is iso-
morphic to the graph of extremal increasing flips between strongly acyclic facets of SC(Q,w).

Combining the sorting and alternating conditions of Theorem B and Conjectures A and B, we
thus obtain the following conjecture, which can be seen as the natural extension of Theorem A.

Conjecture C. IfQ is sorting and alternating, then the Hasse diagram of the quotient [e,w]/ =g«
is isomorphic to the graph of extremal increasing flips between acyclic facets of SC(Q,w).

This last conjecture has a strong connection to the geometry of subword complexes given
by brick polytopes [PS12, PS15] and brick polyhedra [JS21]. Namely, the extremal increasing
flips between acyclic facets of SC(Q,w) are precisely the bounded edges (meaning forgetting the
unbounded rays) of the brick polyhedron Brick(Q,w) oriented by a natural linear functional.
Conjecture C thus translates geometrically to the following.

Conjecture D. If Q is sorting and alternating, then the bounded oriented graph of the brick
polyhedron Brick(Q,w) is isomorphic to the Hasse diagram of the lattice quotient [e,w]/ =g w-

In particular, when w = w,, we obtain the following conjecture, extending results from [Pil18].

Conjecture E. If Q is sorting and alternating, then the oriented graph of the brick polytope
Brick(Q, wo) is isomorphic to the Hasse diagram of the lattice quotient of the weak order by =g ..
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2. PRELIMINARIES ON PIPE DREAMS

2.1. Pipe dreams. A pipe dream P is a filling of a triangular shape with crossings + and
contacts -~ so that all pipes entering on the left side exit on the top side. We only consider reduced
pipe dreams, where two pipes have at most one crossing. We label the pipes with 1,2,...,n in
the order of their entry points from top to bottom. We denote by wp € &,, the order of the
exit points of the pipes of P from left to right. In other words, the pipe entering at row 7 exits
at column wp'(i). For a fixed permutation w € &,,, we denote by II(w) the set of reduced pipe
dreams P such that wp = w.

A contact ¢ is flippable if the two pipes passing through contact ¢ have a crossing x. The
flip exchanges the contact ¢ with the crossing x. The flip is increasing if the contact ¢ is weakly
southwest of the crossing x. For example, Figure 1 illustrates an increasing flip from the left pipe
dream to the right pipe dream. The increasing flip graph is the graph of increasing flips on II(w).
It is clearly a directed acyclic graph, and it has a unique source and a unique sink [PP12], called
the greedy and antigreedy pipe dreams, and denoted P9 and P7. The increasing flip poset is
the reflexive and transitive closure of the increasing flip graph on II(w).

The contact graph of a pipe dream P is the directed graph P# with one node for each pipe
of P and one arc for each contact of P connecting the northwest pipe to the southeast pipe of the
contact’. We see equivalently the contact graph P# as a (multi)graph on the pipes of P or on the
integers [n]. We say that a pipe dream P is acyclic if its contact graph P# has no oriented cycle.
For an acyclic pipe dream P, we denote by <1p the transitive closure of the contact graph of P.
For w € 6,,, we denote by X(w) the set of acyclic pipe dreams of II(w).

Example 2.1. We say that a pipe dream is reversing if it fixes the first and last pipes and
reverses the order of the remaining pipes. In this case, it is natural to label the pipes from 0
to n + 1, so that the permutation of the pipes is p,:=[0,n,n — 1,...,2,1,n + 1]. As observed
in [Woo04, PP12, Pil10, Stull], the family of reversing pipe dreams belong to the Catalan families,
meaning that it is counted by the famous Catalan numbers. Figure 2 illustrates explicit bijections
between reversing pipe dreams of II(p,, ), binary trees with n internal nodes, and the triangulations
of a convex (n + 2)-gon. More precisely, the map which sends a contact in row ¢ and column j
of the triangular shape (indexed from 0 to n + 1) to the diagonal [i,n + 1 — j] of the (n + 2)-gon
provides the following correspondence:

pipe dream P € Q,,

pipe ¢ of P

contact between pipes ¢ and j of P
crossing between pipes ¢ and j of P
contact graph of P

contact flips in P

triangulation P* of the (n + 2)-gon,

triangle ¢* of P* (with central vertex i),
common side of triangles i* and j* of P*,
common bisector of triangles ¢* and j* of P*,
dual binary tree of P*,

diagonal flips in P*.
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FIGURE 2. The bijection between reversing pipe dreams (left), binary trees (mid-
dle) and triangulations (right).

We have reversed the usual orientation conventions of [PS12, PP12, Pill8] to suit better our purposes, in
particular in Section 4.2.
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Hence, this map sends the increasing flip poset on reversing pipe dreams to the Tamari lattice on
binary trees. This lattice is defined as the transitive closure of right rotations on binary trees, and is
obtained as the quotient of the weak order by the sylvester congruence. An important point here
is that all reversing pipe dreams are acyclic, since their contact graphs are (oriented) binary trees.

Remark 2.2. In contrast to Example 2.1, the increasing flip poset on all pipe dreams of II(w) is
not always a lattice. The first counter-example happens for the exiting permutation w = 12543.

2.2. Crossing and contact properties. We now gather some elementary properties of crossings
and contacts in pipe dreams that will be needed later to construct pipe dreams from permuta-
tions. For a pipe dream P € II(w), we call pipe j the pipe which enters at row j and exits at
column w1 (j).

Lemma 2.3. For any pipe dream P € II(w), the pipe j of P crosses precisely
e wvertically the pipes i such that i < j while w™'(i) > w™(j),
e horizontally the pipes k such that j < k while w=1(j) > w1 (k).

Proof. For i < j, if w=!(i) > w™1(j), then the pipes i and j have to cross exactly once (and j
must be the vertical pipe at that crossing), while if w™!(i) < w™!(j) the pipes i and j cannot
cross. The same argument applies for k > j. O

Lemma 2.4. For any pipe dream P € II(w), the pipe j has precisely
e ninv(w, j) many southeast elbows
e 1+ ninv(w,j) many northwest elbows -
e j—1—ninv(w,j) vertical crossings |
e w(j) — 1 —ninv(w, j) horizontal crossings —
where ninv(w, j):=#{i € [n] | i <j and w1 (i) <w™'(j)}.

Proof. Pipe j enters at row j and exits at column w™1(j), so that it passes through j+w™1(j) —1
grid points. By Lemma 2.3, it has # {i € [n] | i<jand w (i) >w (j)} = j—1— ninv(w,j)
vertical crossings and # {k € [n] | j <k and w™'(j) > w™*(k)} = w™*(j)—1—ninv(w, j) horizontal
crossings. The 142 ninv(w, j) remaining grid points along the pipe j are thus alternating northwest
elbows and southeast elbows. O

Lemma 2.5. A collection P of n pipes pairwise disjoint except at crossing and contacts and
such that for each j € [n], the pipe j enters at row j, exits at column w™(j), and has ninv(w, 5)
southeast contacts is a pipe dream of II(w).

Proof. The argument is similar to the previous lemma. Observe first that the pipe j must cross the
paths i such that i < j and w™1(i) > w™!(j) and the paths k such that j < k and w=1(j) > w1 (k).
Moreover, it has ninv(w, j) southeast elbows and thus 1+ninv(w, j) northwest elbows. This already
exhausts all j +w™1(j) — 1 grid points of j. Therefore, the pipe j can only cross at most once any
other pipe. O

2.3. Contact graph properties. We now state a simple observation about the poset <ip, and
two of its consequences, that will play essential roles in the proofs in Section 3.

Lemma 2.6. Let P be a pipe dream and i,j be pipes of P. If there is an elbow of pipe i weakly
northwest of an elbow of pipe j, then ¢ <p j.

Proof. Let x (resp. y) be the location of an elbow of pipe i (resp. j) such that z is weakly northwest
of y. We proceed by induction on the grid distance from = to y. If they coincide, then pipes i
and j share a contact, so that there is an edge from i to j in P#. Otherwise, let k be the pipe
of P with a southeast elbow at = (k is either the pipe i itself, or there is an edge from ¢ to k
in P#) and ¢ be the pipe of P with a northwest elbow at y (¢ is either the pipe j itself, or there
is an edge from £ to j in P#). Let R be the axis-parallel rectangle with corners x and y. Since
pipes k and £ cross at most once, at least one of them has an additional elbow along the sides
of R. Assume for instance that k& has an elbow at x’. Then 2’ is still weakly northwest of y and
',y are strictly closer than z,y. By induction, there is a directed path from k to £ in P#, and
thus a path directed form i to j. O
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Note that the reciprocal assertion of Lemma 2.6 is false. We conclude this section by two
consequences of Lemma 2.6.

Lemma 2.7. Ifi < j and w™'(i) < w™'(j), then i <p j for any P € II(w).

Proof. If i < j and w™1(i) < w™!(j), then the pipes i and j do not cross. Consider an elbow e of
the pipe 7. Since the pipe j passes southeast of e, it has an elbow southeast of e. We conclude
that ¢« <p j by Lemma 2.6. O

Lemma 2.8. Let P be a pipe dream and let i,j,k be three pipes of P such that i < j < k
and w™ (i) > w™L(j) > w (k). Ifi — k in P#, then either i <p j>p k ori>p j <p k.

Proof. Let ¢ denote the contact of pipes ¢ and k in P. Decompose the triangular shape into
three regions: the region A of all points located southwest of ¢, the region B of all points located
northwest or southeast of ¢, and the region C' of all points located northeast of c¢. Since i < j
and w™1(j) > w™l(k), the pipe j starts in region A and ends in region C. Hence, the pipe j
has an elbow e in region B. We thus obtain that ¢ <ip j >p k if this e is southeast of ¢, and
that i >p j <p k if e is northwest of c. O

3. LATTICE OF ACYCLIC PIPE DREAMS

As already mentioned, the increasing flip poset on reversing pipe dreams is isomorphic to the
Tamari lattice, which is a lattice quotient of the weak order. In this section, we extend this result
to any permutation w by showing that the sets of linear extensions of pipe dreams of ¥ (w) partition
the interval [e, w] (Section 3.1), that this partition actually defines a lattice congruence of the weak
order on [e, w] (Section 3.2), and that the Hasse diagram of the quotient by this congruence is the
increasing flip graph on acyclic pipe dreams of ¥(w) (Section 3.3). This section goes straight to
the proof of this property, and leaves alternative perspectives on this quotient to Section 4.

3.1. Linear extensions of pipe dreams. The main characters in this section are the following
sets of permutations.

Definition 3.1. We say that a permutation 7 is a linear extension of a pipe dream P € II(w)
if 771(i) < 7=1(4) for every arc i — j in P# (we should say linear extension of <Ip, but prefer to
simplify notation). We denote by L(P) the set of linear extensions of P.

In this section, we prove the following structural property of L(P), illustrated in Figure 3.
Theorem 3.2. The set {L(P) | P € ¥(w)} partitions the weak order interval [e,w].

Example 3.3. Following Example 2.1, observe that the permutations of {0,1,...,n,n + 1} be-
low p,, are precisely the permutations of the form [0, 7, n + 1] for some 7 € &,,. It is well-known
that any permutation 7 € &,, is a linear extension of a unique binary tree. This binary tree can
be obtained by inserting m from right to left in a binary search tree. Hence any permutation
of {0,1,...,n,n + 1} below p,, is a linear extension of a unique reversing pipe dream on n + 2
pipes. For instance, the pipe dream of Figure 2 has linear extensions 0421356, 0423156, 0421536,
0423516, 0425136, 0425316, 0452136, 0452316.

We will see in Section 4 insertion algorithms to compute the pipe dream P € 3(w) such
that m € L(P) for given permutations 7 < w. These algorithms are however not needed for the
proof of Theorem 3.2, which we break into the following three lemmas.

Lemma 3.4. If m:=UjiV covers ' :=UijV in weak order, and w € L(P) for some P € %(w), then
e if P# has no arc j — i, then 7' € L(P),
o otherwise, 7' € L(P') where P’ denotes the pipe dream obtained from P by flipping the
furthest northeast contact between pipes i and j in P.

Proof. The first point is obvious. For the second point, observe that the flip of the furthest contact
just reverses all arcs j — ¢ and exchanges ¢ and j at some extremities of the arcs of the contact
graph. O
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F1GURE 3. The pipe dream congruence on the weak order interval [12345, 31542]
(left) and the increasing flip graph on acyclic pipe dreams (right). The blue
bubbles represent the classes of the pipe dream congruence. The acyclic pipe
dreams are represented with their contact graphs.

Lemma 3.5. Ifm < w in weak order, then m is a linear extension of a unique pipe dream P € ¥(w).

Proof. Consider the greedy and antigreedy pipe dreams P and P9 of [PP12]. For any contact
between the pipes ¢ and j in P;T, with ¢ < j, we have
e if the pipes i and j never cross, then w™!(i) < w™1(4),
e if the pipes i and j cross, then w™!(i) > w™1(j) and the contact in P must be from i
to j (since all flips in P are increasing by definition).
We conclude that e € L'(P?T ). Conversely, if e € L(P), all arcs of P# are increasing, so that
all flips in P are increasing. We conclude that P is the unique pipe dream with e € E(PW ).
Similar arguments show that P9 is the unique pipe dream with w € C(Pg_% ). The result thus
follows from Lemma 3.4, since it shows that the existence (resp. uniqueness) of a pipe dream P
such that = € L(P) is preserved when going down (resp. up) in weak order. O

Lemma 3.6. If 7 is a linear extension of a pipe dream P € X(w), then m < w in weak order.

Proof. For any i < j with w™!(i) < w™1(j), we have i <lp j by Lemma 2.7, thus 7—1(i) < 7~ 1(4)
since ™ € L(P). In other words, any non-inversion of w is a non-inversion of m, so that 7 <w. 0O

Proof of Theorem 3.2. This is a direct consequence of Lemmas 3.5 and 3.6. O
Notation 3.7. For 7 € [e, w], we denote by pd(7,w) the pipe dream of 3 (w) such that 7 € L(pd(m,w)).
3.2. Pipe dream congruence. A congruence of a lattice (L, <, A, V) is an equivalence relation =

on L which respects meets and joins: x =2’ and y = ¢ implies t Ay =2’ Ay and zVy =12’ Vy'.
We will use the following classical characterization of lattice congruences, see [Real6].
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Proposition 3.8. An equivalence relation = on a lattice L is a congruence if and only if

(i) every equivalence class of = is an interval of L,
(i) the projections my : L — L and 7l L — L, which maps an element of L to the minimal and
mazximal elements of its equivalence class respectively, are order preserving.

We now focus on the following congruence, illustrated in Figure 3.

Definition 3.9. The pipe dream congruence is the equivalence relation =, on the weak order
interval [e, w] whose equivalence classes are the sets L£(P) of linear extensions of the pipe dreams P
of ¥(w). In other words, 7 =, " if and only if pd(m,w) = pd(7’,w).

Note that the pipe dream congruence indeed defines an equivalence relation by Theorem 3.2.
In this section, we prove that it is a lattice congruence.

Theorem 3.10. The pipe dream congruence =, is a congruence of the weak order interval [e,w].

Example 3.11. Following Examples 2.1 and 3.3, observe that the congruence =, on the permu-
tations of {0,1,...,n,n+ 1} below p,, corresponds to the sylvester congruence on &,,. The classes
of this congruence are the sets of linear extensions of the binary trees (considered as posets, la-
beled in inorder, and oriented towards their roots). It can also be defined by the classical rewriting
rule UjVikW = UjVkiW where i < j < k are elements of [n] while U, V, W are (possibly empty)
words on [n].

We will discuss in Section 4.3 rewriting rules for the pipe dream congruence =, for any permu-
tation w. These rewriting rules are however not needed for the proof of Theorem 3.10. We prove
it by checking both conditions of Proposition 3.8. For the first condition, we need the following
classical characterization of weak order intervals, see [BW91] or [CPP19].

Proposition 3.12 ([BW91, Thm. 6.8]). The set L£(<) of linear extensions of a poset < on [n]
forms an interval I of the weak order if and only if for every i < j < k,

1<k = i<jorj<k and i>k = i>jorj>k.

Moreover, the inversions of min(I) are the pairs i,j € [n] with ¢ < j and i > j, and the non-
inversions of max(I) are the pairs i,j € [n] withi < j andi < j.

Proposition 3.13. For any pipe dream P € X(w), the set L(P) is an interval of the weak order.

Proof. We just need to show that the poset <p satisfies the conditions of Proposition 3.12. Con-
sider i < j < k such that i <lp k. If w™1(i) < w™!(j), then i <p j by Lemma 2.7. Similarly,
ifw=1(j) <w™(k), then j <ip k by Lemma 2.7. We can thus assume that w=1(i) > w=1(j) > w™(k).
Decompose the triangular shape into three regions: the region A of all points located northeast
of the last elbow of the pipe j of P, the region B of all points located northwest or southeast of
an elbow of the pipe j of P, and the region C of all points located southwest of the first elbow of
the pipe j of P. Since i <p k, there is a path 7 form the exiting point of the pipe i of P to the
entering point of the pipe j of P which travels along the pipes of P, possibly jumping from the
northwest pipe to the southeast pipe of a contact it encounters. Since i < j and w=1(j) > w™(k),
the path 7 starts in region A and ends in region C, so that it necessarily passes from region A to
region C. Since the southwest corner of A is located northeast of the northeast corner of C, this
forces an elbow e of 7 to lie in region B. Lemma 2.6 then ensures that either ¢ <ip j (if e is north
of pipe j), or j <p k (if e is south of pipe j). The proof is similar if ¢ >p k. O

Proposition 3.14. Let 0,0’ be two permutations of [e,w] and C,C" denote their =,,-congruence
classes. Then o < o’ implies min(C) < min(C”) and max(C) < max(C") in weak order.

Proof. We prove the statement for the maximums, the proof for the minimums is symmet-
rical. Observe first that we can assume that o is covered by ¢’ in weak order, so that we
write ¢’ = os, for some simple transposition s,:=(p p + 1). The proof now works by induc-
tion on the weak order distance between o and max(C). If ¢ = max(C), the result is immediate
as max(C) = o < ¢’ <max(C’). Otherwise, o is covered by a permutation 7 in the class C,
and we write 7 = os, for some simple transposition s,:=(q ¢ + 1). Let P,P’ € ¥(w) be such
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that C = L(P) and C’ = L(P’). We now distinguish five cases, according to the relative positions

of p and ¢:

(1) If p > q+1, then 0 = UijVKEW , o' = UijVLkW and 7 = UjiV kLW for some i < j and k < £.
Define 7/ := 05,8, = 08,5, = UjiVkW. By Lemma 3.4, there is no arc i — j in P# (since o
and 7 both belong to C), and P# and P'# can only differ by arcs incident to k or £. Hence,
there is no arc i — j in P'#. We thus obtain again by Lemma 3.4 that 7/ € L(P') = C".

(2) If p = g+ 1, then 0 = UijkV, o/ = UikjV and 7 = UjikV for some i < j < k. De-
fine 77 =054, = 0845psq = UkjiV. Since o € L(P), we have i p j and j ¥ p k, so that
there is no arc i — k in P# by Lemma 2.8. By Lemma 3.4, there is no arc i — j in P#,
and P# and P'# can only differ by arcs incident to j or k. We thus obtain that there is no
arc i — j nor i — k in P'#. Consequently, again by Lemma 3.4, both ¢’s, and 7/ = 0”s,s,
belong to L(P') = C".

(3) If p= g, then ¢/ = 7 is in C, so that C = C’ and there is nothing to prove.

(4) If p=q — 1, we proceed similarly as in Situation (2).

(5) If p < ¢ — 1, we proceed similarly as in Situation (1).

In all cases, we found 7/ > 7 with 7/ € C’. Since 7 < 7/ with 7 € C and 7/ € C’, and since T is

closer to max(C) than o, we obtain that max(C) < max(C”") by induction hypothesis. O

Proof of Theorem 3.10. Follows from Proposition 3.8, whose conditions are guaranteed by Propo-
sitions 3.13 and 3.14. O

3.3. Pipe dream quotient. For a congruence = of a lattice L, the lattice quotient L/= is the
lattice on the classes of = where for any two congruence classes X and Y,

e X <Y in L/= if and only if there exist representatives z € X and y € Y such that z <y
in L, or equivalently min(X) < min(Y’), or equivalently max(X) < max(Y),

e X AY (resp. X VY) is the congruence class of z Ay (resp. of z V y) for arbitrary repre-
sentatives x € X and y € Y.

In this section, we aim at the following statement, illustrated in Figure 3.

Theorem 3.15. The Hasse diagram of the lattice quotient [e,w]/=,, is isomorphic to the increas-
ing flip graph on X(w). Hence, the transitive closure of the increasing flip graph on %(w) is a
lattice.

Example 3.16. Following Examples 2.1, 3.3 and 3.11, observe that the increasing flip poset on
reversing pipe dreams is isomorphic to the Tamari lattice, which is the quotient of the weak order
by the sylvester congruence.

Remark 3.17. The increasing flip poset on II(w) is the transitive closure of the increasing flip
graph on II(w). Observe that the two natural ways to restrict to the acyclic pipe dreams of X (w)
(restrict either the flip graph or the flip poset) do not coincide in general. Namely, the transitive
closure of the subgraph of the increasing flip graph induced by ¥ (w) may have strictly less relations
than the subposet of the increasing flip poset induced by ¥(w). Figure 4 illustrates two acyclic
pipe dreams of (126543) connected by a sequence of increasing flips in I1(126543) but by no
sequence of increasing flips in X(126543). In fact, the subposet of the increasing flip poset induced
by X(126543) is not even a lattice, as illustrated in ??. This example is minimal.

To prove Theorem 3.15, we need the following auxiliary statement.

Lemma 3.18. Consider two acyclic pipe dreams P, P’ € ¥(w) connected by the flip of a contact
between their pipes i and j. Then any directed path in P# or P'# between i and j is an arc.

Proof. Say that i < j while w™!(i) > w™1(j) and that i — j is an arc of P# while j — 4 is an arc
of P'#. Since P*# is acyclic, there is no path from j to i in P#. Assume by means of contradiction
that there isa pathi —k; = --- =k, = jin P# with p > 1. Since the arcs of P'# are the arcs
of P# where only extremities ¢ and j can be changed, P’'# contains the path ky — -+ — kp and at
least one of the arcs i — k1 or j — k1, and at least one of the arcs k, — j or k, — i. Consequently,
since P'# contains the arc j — i and is acyclic, it must contain the path j — k; — -+ — kp — i
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FIGURE 4. Two acyclic pipe dreams in 3(126543) connected by a sequence of
increasing flips in I1(126543) but by no sequence of increasing flips in ¥(126543).

126543 126543
1 o 1j_J L
2t
34— 3 r

FIGURE 5. Some acyclic pipe dreams of ¥(126543), connected by some strong
arrows representing increasing flips, and by a dotted arrow representing the rela-
tion of Figure 4. The subposet of the increasing flip poset on I1(126543) induced
by ¥(126543) contains the dotted arrow and is thus not a lattice (the two bottom
elements of the picture have no join while the two top elements of the picture
have no meet). In contrast, the transitive closure of the increasing flip graph
on %(126543) does not contain the dotted arrow and is a lattice (Theorem 3.15).

We thus obtained that ¢ <ip k1 <lp j while ¢ >p: k1 >pr j, and ky has a contact with ¢ in P that
becomes a contact with j in P’.

Consider now the contact ¢ of P which is a crossing in P’ and the contact ¢’ of P/ which is a
crossing of P. Let R the rectangle with corners ¢ and ¢’. Since k; has a contact with ¢ in P and
with j in P’ it must pass inside R. Since ¢ <p k1 <p j and i >p: k1 >ps j, the pipe k has no elbow
located northwest or southeast of ¢ or ¢/, hence no elbow located north, south, west or east of R.
We thus obtain that k must be straight before it reaches R, and after it leaves R. Hence k1 < i < j
and w1 (k1) > w™1(j) > w™1(i). By Lemma 2.7, this contradicts i <lp k1 and k; >ps j. O

Proof of Theorem 3.15. We need to prove that the following conditions are equivalent for two
distinct pipe dreams P, P’ € X(w):

(i) there is an increasing flip from P to P’,
(ii) there exist linear extensions m of P and 7’ of P’ such that 7’ covers 7 in weak order.
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Lemma 3.4 and Theorem 3.2 directly imply that (ii) = (i). For (i) = (ii), let i < j be the two
pipes involved in the flip between P and P’. Hence, i — j is an arc of P# while j — i is an arc
of P'#. By Lemma 3.18, there is no directed path from i to j in P# besides the arcs i — j (there
might be more than one such arc). Hence, there exists a linear extension 7 of P where ¢ and j
are consecutive. Write 7:=U4jV and define n’:=UjiV. Since i — j is an arc of P#, 7’ is not a
linear extension of P. Hence, by Lemma 3.4, 7’ is a linear extension of P’. O

Let us conclude by providing more equivalent characterizations of the increasing flip lattice
on X(w).

Proposition 3.19. For any pipe dreams P, P’ € ¥ (w), the following assertions are equivalent:

(i) there is a path from P to P’ in the increasing flip graph on X (w),
(ii) there exist linear extensions w of P and 7' of P’ such that m < " in weak order,
(i1i) the minimal (resp. max) linear extensions m of P and 7' of P satisfy m < 7’ in weak order.
(iv) there is no i < j such that i >p j and i <p: j,
(v) for alli < j,if i >p j, then j >ps i,
(vi) for alli < j,if i <p: j, then i <p j,

Proof. We already proved the equivalence (i) < (ii) in Theorem 3.15. The equivalence (ii) <
(iil) is valid for any lattice quotient. The equivalences (iii) < (iv) < (v) < (vi) follow from the
descriptions of Proposition 3.12 for the inversions of the minimum and the non-inversions of the
maximum of a weak order interval. O

4. FURTHER TOPICS ON PIPE DREAMS

In this section, we discuss four further topics on the pipe dream congruence. We first describe
two algorithms to construct the pipe dream pd(m,w) of ¥(w) of which a given permutation 7 is a
linear extension (Sections 4.1 and 4.2). We then describe the pipe dream congruence =, as the
transitive closure of a rewriting rule on permutations of [e,w] (Section 4.3). Finally, we describe
the natural coarsening of the pipe dream congruence =,, by the recoil congruence 2, (Section 4.4).

4.1. Sweeping algorithm. Our first algorithm to construct pd(w,w) is a sweeping algorithm,
inspired by the algorithm to compute greedy pipe dreams [PP12, PS13]. An extension of this
algorithm to subword complexes will be discussed in Section 5.6, and a related algorithm appeared
independently in [JS21]. We say that an order on the boxes of the triangular shape is northeast
compatible if each box b is before all boxes which are located weakly northeast of b.

Proposition 4.1. For any permutations w,w € &, such that 1 < w in weak order, the unique
pipe dream P € X (w) such that m € L(P) can be constructed by sweeping the triangular shape in
any northeast compatible order and placing a crossing when sweeping a vertex v of the grid where
pipe i arrives horizontally and pipe j arrives vertically if and only if

o i <jandw (i) >w l(j), and

o 7 1(i) > 77 1(j) or vertex v lies in column w=1(3).

See Figures 6 and 7.

Example 4.2. Figures 6 and 7 illustrate the sweeping algorithm for the exiting permutation
w = 561324 and the input permutations m = 513264 and 7 = 512364 respectively. The algorithm
has 15 steps, but we have grouped together steps 2 to 9 (second arrow) and steps 12 to 13 (fifth
arrow) as they have the same justification. For = = 513264 in Figure 6, we place

e contacts at steps 1, 10, 12, 13 and 15 since w™(i) < w~!(j), and at step 14 since i > j,
e crossings at steps 2 to 9 since i < j, w™1(i) > w™!(j) and we are in the column w=1(3),
and at step 11 since i < j, w™1(i) > w™1(j) and 7=1(i) > 7~ 1(j).
For m = 512364 in Figure 7, we make the same choices, except that we place
e a contact at step 11 since 771(i) < 7~ 1(j) and we are not in column w=(j),
e a crossing at step 14 since i < j, w™1(i) > w™!(j) and we are in the column w=1(j).
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6 61324 61324 61324 61324
1r1 -1 -1 1
2r2 — 2
3r3 —] 3
Lk 4 - |
6k 6

FIGURE 6. Sweeping algorithm for the permutations 7 = 513264 and w =

61324 61324 613214 61324 61324
1 1 1 2, 1 2, 1 o
2 2 2 ot 2 J 2 #u
3 3 3 ) 14 3 A1 03
| | A T - {j =
61 6 6 6 6

FIGURE 7. Sweeping algorithm for the permutations 7 = 512364 and w = 561324.

Proof of Proposition /.1. When we sweep vertex v where pipe i arrives horizontally and pipe j
arrives vertically,

e we have no choice but imposing a contact at v if ¢ > j (since pipes ¢ and j already crossed
before) or w™1(i) < w™!(j) (since pipes i and j do not cross at all),
e if i < jand w™1(i) > w™1(j), then
— if 771(i) > m~1(4) then pipes i and j cannot touch (otherwise m would not be a linear
extension of P), so that we have no choice but imposing a crossing at v,
— if 771 (p) < 77!(q) then
% if v lies in column w™!(j), then pipe j needs to go straight north, and we have
no choice but imposing a crossing at v,
* otherwise, we have no choice but imposing a contact at v (otherwise Lemma 2.6
ensures that j <p 4, so that = would not be a linear extension of P). O

4.2. Insertion algorithm. Our second algorithm to construct pd(m,w) is an insertion algorithm
inspired from [Pil18] and similar to the insertion in binary search trees.

We call staircase of length k a sequence eq, ..., e of southeast elbows such that e; is located
strictly southwest of e;y; for each i € [k — 1]. In other words, r; > -+ > rp and ¢1 < -+ < ¢
where e; is located in row 7; and column ¢;. For j € [n] such that j > r; and ¢x < w™1(j), there
is a unique pipe which enters at row j, exits at column w~!(j), and whose northeast elbows are
precisely covering the southeast elbows ey, ..., e;. Namely, it has a northeast elbow at row r; and
column ¢; for each i € [k], and a southeast elbow at row r;_1 and column ¢; for each i € [k + 1],
where by convention ro:=j and cx1:=w"1(4).

Proposition 4.3. For any permutations m,w € &, such that m < w in weak order, the unique
pipe dream P € Y(w) such that m € L(P) can be constructed starting from the empty triangular
shape and inserting the pipes w(1),...,m(n) one by one in the order of the permutation 7 as
northwest as possible. More precisely, at step t, we insert a pipe starting at row w(t), ending at
column w1 (m(t)), and whose northeast elbows are precisely covering the staircase of currently free
southeast elbows in the rectangle [w(t)] x [w™ (7 (t))]. See Figures 8 and 9.

Example 4.4. Figures 8 and 9 illustrate the insertion algorithm for the exiting permutation
w = 561324 and the input permutations m = 513264 and 7w = 512364 respectively. For instance,
when inserting the (green) pipe 4 in the last step, the currently free southeast elbows are the first
southeast elbow of the (blue) pipe 3 and the two southeast elbows of the (purple) pipe 2.

We need to argue that this algorithm indeed creates a pipe dream of II(w). To see it, we
observe that the following two invariants are maintained throughout the algorithm. We call hook
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FI1GURE 8. Insertion algorithm for the permutations 7 = 513264 and w = 561324.

w N =
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FIGURE 9. Insertion algorithm for the permutations 7 = 512364 and w = 561324.

of a southeast elbow e the union of the horizontal segment west of e and the vertical segment
north of e.

Lemma 4.5. At any time during the insertion algorithm, the support of the pipes already inserted
is precisely the union of the hooks of the currently free southeast elbows.

Proof. Immediate by induction, as the support of a pipe is precisely the union of the hooks of its
southeast elbows minus the union of the pipes of its northeast elbows. O

Corollary 4.6. The pipes constructed by the insertion algorithm are disjoint, except at crossings
and contacts.

Lemma 4.7. For any t,r,c € [n], the free southeast elbows in the rectangle [r] x [c] just before
step t of the insertion algorithm form a staircase of length

#{s<t|m(s) <randw (w(s)) <c} —#{s<t|m(s)>r and w™ Y(n(s)) > c}.

Proof. Denote by R the rectangle [r] x [¢]. The proof works by induction on ¢. Before step 1,
there is no southeast elbow in R. Assume now that just before step ¢, the free southeast elbows
in R form a staircase ey, ...,e with k given by the formula of the statement. At step ¢, we
insert a new pipe m(t) which enters at 7(t) and exits at w=!(m(t)). Let 0 <i<j<k+1 be
such that e;;1,...,e;_1 are the northwest elbows of pipe m(t) in R, and let €/,...,e, be the
southeast elbows of pipe 7(t) in R. Hence, the free southeast elbows in R after step ¢ form the
sequence e1,...,€;,€,...,€p,€;5,...,e,. We thus just need to see that e; is southwest of e} and €
is southwest of e;, and that

j—i if 7(s) <r and w™(n(s)) < ¢,
(=qj—i—2 ifn(s)>rand w l(n(s)) >c,
j—1t—1 otherwise.
Since the northwest and southeast elbows alternate along pipe 7(t), this follows from the fact that

the pipe 7(t) enters R with an horizontal step if 7(¢) < r and with a vertical step if 7(s) > r, and
exits R with a vertical step if w™!(m(¢)) < ¢ and with an horizontal step if w=*(7(s)) > c. O

We now derive two properties of the insertion algorithm from Lemma 4.7. Recall that we
denote by ninv(w, ) {Z €| | i<jandw (i) < wil(j)} the number of non-inversions of j
in a permutation w.

Corollary 4.8. For any t € [n], the free southeast elbows in the rectangle [r(t)] x [w™ (7 (t))] just
before step t of the insertion algorithm form a staircase of length ninv(w, 7(t)).
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Proof. Observe first that if there if » < s such that = (r) > 7r(s) and w1 (7(r)) > ( (s)), then
setting i:=n(s) and j:=m(r), we have i < j and 7~1(i) > 7~ 1(j) while w 1(l) < w™(j), which
contradicts our assumption that 7 < w. This implies that

#{s <t|m(s) <m(t) and w7 (s)) < w Hmw(t)} = ninv(w,7(t))
and #{s<t ’ m(s) > 7(t) and w ' (7(s)) > w (7 (t)} = 0.
Hence, the result follows from Lemma 4.7 applied to the parameters t, w(t),w ™ (7 (t)). O
Corollary 4.9. All pipes of constructed by the insertion algorithm remain in the triangular shape.
Proof. Let 1 <i < j <n. Note that
j—ninv(w,j)=#{i€n]|i<jandw (i) >w ()} +1<n—w () +1,

so that w™1(j) — ninv(w, j) +j > n+1. By Lemma 4.7, the pipe j has ninv(w, j) southeast elbows
in total, at most j — ¢ — 1 of which are strictly south of row 7, so that at least ninv(w,j) — j +1
of which are strictly north of row i. Hence, the eastmost point of pipe j in row ¢ is at most in
column w=(j) — ninv(w,5) + 7 —i < n —i+ 1. We conclude that pipe j indeed remains in the
triangular shape. ]

Proof of Proposition /.3. The insertion algorithm constructs a collection P of n pipes in the tri-
angular shape (by Corollary 4.9), which are pairwise disjoint except at crossings and contacts (by
Corollary 4.6). For each t € [n], the pipe m(¢) enters at row 7(t), exits at column w~!(r(¢)), and
has ninv(w, 7(¢)) many southeast contacts (by Corollary 4.8). We thus conclude that P is a pipe
dream of II(w) by a direct application of Lemma 2.5.

By construction, all southeast contacts of the pipe 7(t) inserted at step ¢ are in contact with
northwest contacts of pipes 7(s) inserted at steps s < t. In other words, all edges in the contact
graph of pd(m,w) are of the form 7 (s) — 7 (¢) for some s < ¢. It follows that the permutation 7 is
a linear extension of the pipe dream P. O

4.3. Rewriting rule. Recall from Example 3.11 that the sylvester congruence can be defined as
the transitive closure of the classical rewriting rule UjVikW = UjVEkiW where i < j < k are
elements of [n] while U, V, W are (possibly empty) words on [n] (as usual, we write the permutations
of &,, as words in one-line notation). We now describe a similar rewriting rule for the pipe dream
congruence =,,.

Proposition 4.10. On the interval [e,w] of the weak order, the pipe dream congruence =, co-
incides with the transitive closure of the rewriting rule UijV =, UjiV where 1 <1i < j < n are
elements of [n] while U,V are (possibly empty) words on [n] such that

#{keU|k>i}>#{keU|w (k) <w '()}.

Proof. Asthey are linear extensions of posets, the congruence classes of =, are connected by simple
transpositions. We thus just need to show that any two permutations 7:=UijV and 7’:=UjiV
of [e,w] which differ by the inversion of two consecutive values are equivalent for =, if and only
if#{kecU|k>i}>#{keU|w (k) <w '(j)}. Moreover, by Proposition 4.3, 7 =, 7’ if and
only if they are sent to the same pipe dream by the insertion algorithm. Let t:=71(i) = 7#’~1(j).
Before step ¢ of the insertion algorithm, we insert the word U both for 7 and for #’. The insertion
of i and j then commute if and only if there is no currently free elbow in the rectangle [i] x [w™1(5)].
By Lemma 4.7 applied to the parameters t, i,w™1(4), this is equivalent to

#{5<t|7r <iand wl(n(s)) < (N} <#{s<t|n(s)>iandw" Yn(s)) >w ' (5)}-
or written differently,
#{keUl|k<iandw ' (k) <w '(j)} <#{keU|k>iandw (k) >w '(j)}.

(note that to replace large by strict inequalities in the first set, we used that k& # i and w=*(k 7& w ()
since i, ¢ U while k € U). Finally, observe that adding # {k eU ’ k>iand w (k) <w™ (])}
from both side, we obtain the equivalent condition

#{keU|w (k) <w ()} <#{keU|k>i}. O
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Remark 4.11. Observe from the proof that the condition of Proposition 4.10 is equivalent to
#{keU|k<iandw '(k) <w ()} <#{keU|k>iandw (k) >w "'(j)}.
Observe moreover that since 7 < w and ¢ < j, we have
{keUl|k<iandw (k) <w ')} ={keli]|w (k) <w ()} and
{keU|k>iandw (k) >w ' ()} ={ken]|i<k<jandw (i) >w (k) >w'(j)}.
We close this section by two immediate consequences of Proposition 4.10 and Remark 4.11.

Corollary 4.12. A permutation is minimal (resp. mazimal) in its pipe dream congruence class
if and only if it avoids the patters ki — --- — k, — ji (resp. kv — -+ — kp — ij) where kg > i
and w™(ky) > w™L(j) for q € [p] and p = # {k € [i] } w (k) < w’l(j)}.

Proof. This is an immediate consequence of Proposition 4.10: a permutation 7 is minimal (resp. max-
imal) in its =,-congruence class if and only if it contains no consecutive exchangeable entries ji
(resp. ij) with ¢ < j. O

Corollary 4.13. If1<i<j<mnandj—i<#{keli|w (k) <w(j)}, then the pipes i
and j are comparable for <p in any acyclic pipe dream P € X(w).

Proof. If pipes i and j were incomparable in <1p, there would be two permutations UijV =, UjiV.
However, j —i < #{k € [i] | w (k) <w™'(j)} implies that the condition of Proposition 4.10
cannot hold, by Remark 4.11 O

4.4. Recoils and canopy. To conclude, we generalize the notion of recoils of permutations and
of canopy of a binary trees to show a natural commutative diagram of lattice homomorphisms.
We start with the easy generalization of recoils of a permutation.

Definition 4.14. Consider the graph G(w) with vertex set [n] and edge set
{ijli<jandj—i<#{keli]|w (k) <w '(j)}}.

Let Q(w) denote the set of acyclic orientations of G(w). The w-recoil congruence is the equivalence

relation on the weak order interval [e, w] whose equivalence classes are the sets of linear extensions

of the acyclic orientations of G(w). The w-recoils of a permutation m € [e,w] is the acyclic
orientation rec(m,w) € Q(w) such that 7 is a linear extension of rec(m,w).

We now generalize the canopy of a binary tree. Recall that the canopy of a binary tree T with n
internal nodes is the sign sequence can(T') € {—, +}"~! defined by can(T'); = — if the (i + 1)st leaf
of T is a left leaf and can(T"); = + if the (i+1)st leaf of T is a right leaf. Equivalently, can(T); = —
if the node ¢ of T is above the node i + 1 of T and can(T'); = + otherwise. This map was already
used by J.-L. Loday in [LR98, Lod04], but the name “canopy” was coined by X. Viennot [Vie07].
We now define a generalization of the canopy map for pipe dreams in ¥ (w), using Corollary 4.13.

Definition 4.15. The canopy of a pipe dream P € ¥(w) is the orientation can(P) € Q(w) where
each edge 7j is oriented ¢ — j if i <p jand j — ¢ if j <p 7.
Proposition 4.16. The maps rec(-,w), pd(-,w), and can(-) define the following commutative

diagram of lattice homomorphisms:

rec(-,w)

Proof. Consider a permutation 7 and let i < j € [n] be such that j—i < # {k <i | w™ (k) <w™'(j)}.
Assume that the edge ij is oriented from i to j. Then 7~1(i) < m~1(j), thus the pipe i is in-
serted before the pipe j in pd(m,w), so that i <,4(r.) J and there is also an arc from i to j
in can(pd(m,w)). O
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5. SUBWORD COMPLEXES

The objective of this section is to partially extend our results about the lattice structure of
acyclic pipe dreams (Section 3) to the wider context of subword complexes in finite Coxeter
groups. We start with some basic preliminaries on finite Coxeter groups (Section 5.1) and sub-
word complexes (Section 5.2). We then define linear extensions of facets of subword complexes
(Section 5.3) and present two theorems (Section 5.4) and five conjectures (Section 5.5) about them.
To conclude, we present a sweeping algorithm to construct the facet with a given linear extension
(Section 5.6)

5.1. Finite coxeter groups. We refer to [BB05, Hum90] for detailed references on Coxeter
groups. We consider a finite root system ® with positive roots ®*, negative roots ®~, and
simple roots A C ®*. The reflections along the hyperplanes orthogonal to the roots in ® generate
a finite Coxeter group W. We denote by s, € W the reflection orthogonal to a root a € ®, and
by oy € @ the positive root orthogonal to a reflection s € W. The group W is actually generated
by the simple reflections S = {s, | @« € A}, and the pair (W, 5) is a finite Coxeter system. Finite
root systems and finite Coxeter systems are classified in terms of Dynkin diagrams, see [Hum90].
The inversion set Inv(w) and the non-inversion set Ninv(w) of an element w € W are

Inv(w) =& Nw(®") and Ninv(w) ==&+ Nw(®™).

Note that
& = Inv(w) U Ninv(w) and w(®T) = — Inv(w) U Ninv(w).

A reduced expression of w is a product s1ss...sy = w of simple reflections s; € S such that ¢
is minimal. This minimal ¢ is the length ¢(w) of w. The length of w coincides with the size of its
inversion set Inv(w) since Inv(w) := {as,, s1(as,), S152(Qsg ), - -+ S182 ... Se—1(axs,) }-

The weak order on W is the partial order < defined by ¢ < w if there exists 7 € W such
that o7 = w and ¢(o) + £(7) = ¢(w). In other words, the element w has a reduced expression
with a prefix which is a reduced expression of o. Equivalently, the weak order corresponds to
the inclusion order on inversion sets, that is 0 < w if and only if Inv(c) C Inv(w). This order
defines a lattice structure on the elements of W. The minimal element is the identity e € W and
the maximal element is the unique longest element w, of W. Note that Inv(e) = @ = Ninv(w,)
and Ninv(e) = @ = Inv(w,), so that £(e) = 0 while {(w,) = |®T|.

Example 5.1. The Coxeter system of type A,_; is the symmetric group W = &,, with genera-
tors S = {7; | i € [n — 1]}, where 7; is the simple transposition 7; = (i i+1). It naturally acts on R"
by permutations of coordinates. Denoting by (e;);c[n] the canonical basis of R", the type A, 1
roots are all r; ;:=e; — e; for distinct ¢, j € [n], with positive roots r; ; for 1 < i < j < n and
simple roots 7; ;41 for i € [n—1]. The inversion set of m € &, is the set of roots e; —e; for the inver-
sions (4, j) of the permutation 7. The longest element is the reversed permutation [n,n—1,...,2,1]
(written in one line notation), and it admits the reduced expression 7y -+ Tp,_171 * = Tp—g * * - T1 T2 T1.

5.2. Subword complexes. Motivated by their study of Grobner geometry of Schubert vari-
eties [KMO5], A. Knutson and E. Miller introduced in [KM04] the following remarkable family of
simplicial complexes in the context of Coxeter groups.

Let (W, S) be a finite Coxeter system, @ = (¢1,.-.,¢m) be a word in the simple reflections S,
and w € W be an element of the group. For J C [r], we denote by @y the subword of @ consisting
of the letters with positions in J. The subword complex SC(Q,w) is the simplicial complex whose
facets are subsets I C [m] such that Qpy)\; is a reduced expression for w. We denote by F(Q,w)
the set of facets of SC(Q,w).

It is known that SC(Q,w) is either a ball or a sphere, in particular it is a pseudomanifold
(with or without boundary). The flip graph of SC(Q,w) is the graph whose vertices are the facets
of SC(Q,w) and whose edges are the ridges of SC(Q,w). In other words, two facets I, J € F(Q,w)
are connected by a flip if they differ one element: I \ {i} = J ~ {j} for some i € [ and j € J
with ¢ # j. The flip from I to J is called increasing if i < j, and decreasing otherwise. The
increasing flip graph on the facets of the subword complex is an acyclic graph which has a unique
source and a unique sink [Pill2, PS13]. These two special facets are called the greedy facet
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1% and the antigreedy facet I ar, They are the lexicographically smallest and largest facets of
SC(Q, ). The increasing flip poset is the transitive closure of the increasing flip graph.

An important tool to study subword complexes are the root functions introduced in [CLS14].
For a facet I of SC(Q,w), the root function r;(+) : [m] — ® sends a position % in the word Q to
the root r7(k) defined by

r](k) = H Q[k‘—l]\l(aqk)'

The root configuration is the set R(I) = {r;(i) | ¢ € I'}. The facet I is called acyclic if cone R(I) is
a pointed cone. We denote by F*(Q,w) the set of acyclic facets of the subword complex SC(Q,w).
We will use the following statement that enables to perform flips using the root function.

Lemma 5.2 ([CLS14, KMO04]). Let I be a facet of the subword complex SC(Q,w). Then

(1) i € I is flippable if and only if +r;(i) € Inv(w).

(2) If i € I is flippable, it can be flipped to the unique j € [m] ~ I such that r;(j) = £r7(i).
The flip is increasing (i < j) when r7(i) € ®* and decreasing (i > j) when rr(i) € .

(8) If I and J are two facets related by a flip, with I ~ {i} = J ~{j} and i < j, then

_ Jsplrr(k)), fori<k<j
ra(k) = {U(k), otherwise

where f:=r1(i) and sg € W is the reflection orthogonal to the root 5.
(4) i € I is not flippable if and only if r;(i) € Ninv(w).

Example 5.3. Continuing Example 5.1, we consider the type A, Coxeter system, the word
Q:=T1 - Tp_1T1 " Tn_o--*T1T2T1, and a permutation w € &,,. The word ) naturally fits on an
n X n triangular grid (place 74 in all boxes with row ¢ and column j such that i+j+k = n+1) and
each facet I of the subword complex SC(Q,w) corresponds to a pipe dream P; of II(w) (replace
each position in I by a contact in Py, and the other positions by crossings in Pr). The root function
is given r7 (i) = rp 4 := €, — e, where p is the pipe arriving from the west and g is the pipe arriving
from the south at the box of P; corresponding to position ¢ of (). Hence, the root configuration is
the incidence configuration R(I) = {rnq | (p,q) € PI#} of the contact graph of P;. In particular,
the acyclic facets of SC(Q,w) correspond to the acyclic pipe dreams of 3(w).

Example 5.4. More generally, for the type A, Coxeter system, the word @ can be represented
by a sorting network N, a facet I of the subword complex SC(Q,w) can be represented by a
pseudoline arrangement P on the network N, and the root configuration R([) is again the inci-
dence configuration of the contact graph of P;. We refer to [PP12, PS12, PS15] for details of this
representation and use it in Figures 11 to 15.

Example 5.5. For any finite Coxeter group W and any Coxeter element ¢ € W (a product of
all generators of S in a given arbitrary order), let wo(c) denote the c-sorting word of w, (the
lexicographically minimal reduced expression for w, in ¢, see [Rea06] for details). Extending the
observation of Example 2.1, it was shown in [CLS14] that the subword complex SC(cwo(c),ws) is
isomorphic to the cluster complex of type W. In particular, the increasing flip graph is the Hasse
diagram of the ¢-Cambrian lattice of [Rea06]. See Figure 10 (left) and Figure 13 for an example
with ¢ = 797173 in type Ajs.

Example 5.6. In contrast to the previous example, we have already seen in Remarks 2.2 and 3.17
that neither the increasing flip poset on all facets, nor its subposet induced by the acyclic facets, are
lattices in general, even in type A and even for pipe dreams. Here is another example in type A,
but in a case where all facets are actually acyclic. Consider the word Q = T ToT3ToT1T2T3T2 1
on the simple generators of the symmetric group &4 and the subword complex SC(Q,w,). The
increasing flip lattice of this subword complex is represented in Figure 10 (right) and Figure 15.
In Figure 10 (right), we have highlighted two blue facets which have no join and two red facets
which have no meet, proving that it is not a lattice (this was observed in [PS15, Rem. 5.12]).
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{7.8,9} {7,8,9}

{6,7,8) / W

{4,7,8} {6,7,9}

{5,7,9§///2 R\\\\
ST D
T {4,;,7} {1,8,9}

{3,5,9} {1,8,9} {4,5,6} {2,6,8}
\ / {3,4,6} {1,4,8} {2,6,9}
{3,4,5} {2,4,6} \\:::?\\\\\t><i/§&:///» \\\\
{1,3,9) {2,3,4} {1,2,8) {27376<L?4}/{1,2,9}
{1,2,3} {1,2,3}

FIGURE 10. The increasing flip poset on SC(Q, w,) where Q = ToT1T3ToT1 T3 T2 T1 T3
(left) and Q = 71773721 T2T3T271 (right) in type As. The left one is the 797 73-
Cambrian lattice, while the right one is not a lattice (the two facets highlighted
in blue have no join while the two facets highlighted in red have no meet). In
both examples, all facets are acyclic.

5.3. Linear extensions of facets. We now introduce the analogue of Definition 3.1 for subword
complexes.

Definition 5.7. Let SC(Q,w) be a non-empty subword complex and I € SC(Q,w) be a facet. A
linear extension of I is an element m € W such that R(/) C n(®"). We denote by £(I) the set of
linear extensions of I, and by
c@w= U £m
IeF(Q,w)
the set of linear extensions of all facets of SC(Q,w).

Example 5.8. In the situation of Examples 5.1 and 5.3, the linear extensions of a facet [
of SC(Q,w) are precisely the linear extensions of the pipe dream P; of II(w).

Lemma 5.9. A facet I is acyclic if and only if L(I) # &.

Proof. A classical result for finite root systems states that for any generic linear halfspace H* the
intersection ® N H™ is of the form 7(®*) for some 7w € W. Since any pointed cone is contained in
some generic linear halfspace, we obtain
I is acyclic <— coneR(I) is pointed
+— coneR(I) C w(PT) for some 7 € W
+— R() Cn(®") for some m € W
— L) #£ o O

The following lemma regards linear extensions of the greedy and antigreedy facets.

Lemma 5.10. Let I7 and I9" be the greedy and antigreedy facets of SC(Q,w), respectively. Then
(1) e € L(ITT).
(2) we L(I7).
(3) If e € L(I) then I = I¥".
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Proof. The greedy facet I T is the unique facet for which every flip (if any) is increasing. By
Lemma 5.2 (2), this implies that 19" is the unique facet I such that R(I) C ®* = e(®+). This
proves parts (1) and (3) of the Lemma.

For part (2) we need to analyze the possibilities for the set R(I7"). By Lemma 5.2 (2), if i € 19"
is flippable then r;z (i) € —Inv(w). Furthermore, if i € 19" is not flippable then ;7 (1) € Ninv(w).
Therefore, R(I7") C w(®+) = — Inv(w) U Ninv(w). O

5.4. Two theorems on linear extensions of facets. In this section, we present our two main
results about linear extensions for subword complexes (Theorems 5.11 and 5.16), extending the
results of Section 3.1.

A subset R of the weak order is

e a lower set if 0 < 7 and 7 € R implies o € R,
e order convex if 0 < 7 < p and o, p € R implies 7 € K.

Theorem 5.11. Let SC(Q,w) be a non-empty subword complex. Then

(1) For any facet I of SC(Q,w) set L(I) is order convex. (convez)
(2) L(Q,w) is a lower set of the weak order. (lower set)
(3) [e,w] C L(Q,w). (cover)
(4) If I # I then L(I) N L(]2) = 2. (partition)

Example 5.12. We have represented five examples in Figures 11 to 15. The last three use w = w,
and are spherical subword complexes (their brick polytopes are represented in Figures 17 to 19),
while the first two do not. We use the representation of the facets as pseudoline arrangements on
sorting networks, see Example 5.4.

Remark 5.13. Before proving it, we would like to make the following remarks about theorem.

(1) While the sets £(I) are order convex, they may not be intervals. See Figures 11 and 14
(the example of Figure 14 is borrowed from [PS15, Figure 9]).

(2) The lower set £(Q,w) may have more than one maximal element, and w is not necessarily
maximal in £(Q,w). See Figure 12.

(3) Some of the sets £(I) may not be included in, nor even meet [e,w]. See Figure 12.

Remark 5.14. We note that the set £(Q,w) of linear extensions has been considered indepen-
dently in the work on brick polyhedra by D. Jahn and C. Stump in [JS21]. In particular, £(Q,w) is
completely characterized using Bruhat cones in [JS21, Prop. 4.12], and the convex property (1) is
equivalent to [JS21, Lem. 4.13]. The other three properties also follow from their characterization,
see [JS21, Sect. 4.2]. Since we found these results independently, and the techniques we use to
prove them are rather different, we believe that it is relevant to keep our contributions here. More-
over, this leads to further perspectives and conjectures in connection to brick polyhedra which we
present in Section 5.5.

We will now prove the four points of Theorem 5.11 one by one.

Proof of Theorem 5.11 (1). Let ¢ < 7 < p be such that o,p € L£(I). By definition of linear
extensions, we have

R(I) Co(®1) = —Inv(e) UNinv(s) and R(I) C p(®") = —Inv(p) U Ninv(p).
Restricting to the set of negative and positive roots, respectively, we deduce
R(I)Nn®~ C —Inv(o) C —Inv(7) R(I) N ®* C Ninv(p) C Ninv(7)
since o0 < 7 < p. Therefore
R(I) C —Inv(7) U Ninv(7) = 7(®*)
and so 7 € L(I). O
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Proof of Theorem 5.11 (2). Let m € L(I) for some facet I. We need to show that if 7/ < 7 then
there exist another facet I’ such that 7’ € £(I’). It is enough to show this when m = 7’s for some
descent s of 7 (i.e. some s € S such that £(n’) < £(m)). Define 8 = n’(as) and observe that sg
preserves the set 7'(®) \ {8} = 7(®T) N {-B} =7(®T) N (dT).

By definition, 7 € £(I) if and only if R(I) C 7(®"). We now define a new facet I’ such that
7' € L(I"). We distinguish two cases, depending on whether or not —8 € R([).

Case 1: —3 ¢ R(I).
In this case, R(I) C n(®) \ {8} C «'(®T). Taking I’ = I, we have 7’ € L(I') as wanted.

Case 2: —3 € R(I).

In this case, we need to remove —f from the root configuration. We will achieve this by flipping
the position of the last —3 in I to create a new facet I’. This position is indeed flippable as we
will argue now.

Given a facet I of a subword complex SC(Q,w) and a positive root 3 € ®*, the restriction of
the list of roots

1"1(1),1“1(2), s ,I‘[(m)-
to the set {8, —(} is of the form

ﬂa"'a 6 afﬂa"-a 76
? J

The sequence of —f’s could in principle be empty and so does the sequence of 8’s. But if there
is a —f in this list, then there should be at least one [ preceding it. The position ¢ of the last
B is used in the reduced expression of w in the complement of I, that is ¢ ¢ I. The positions
of the other 8’s and —f’s all belong to I, and can all be flipped to i (see Lemma 5.2 (2)). In
particular, the position j of the last —3 belongs to I, and it can be flipped to 7 creating a new
facet I' = I ~ {j} N {i}.

Now, since 3 ¢ m(®*1). There must be only one /3 in the list. Otherwise, there would be at
least one 8 whose position belongs to the facet I. This would imply that 8 € R(I) and 7 would
not be a linear extension of I, which is a contradiction. So, our restricted list corresponding to I
looks like

By Lemma 5.2 (3), we obtain that flipping j to 4 creates the new facet I' = I ~ {j} N {i} whose
corresponding restricted list looks like

Moreover, since the reflection sz preserves the set
(@) {B} = 7(@T) N {8} = w(@T) N7 (®T).
then R(I') C 7/(®T). Thus, 7’ € L(I") as desired. O

Proof of Theorem 5.11 (3). By part (2), the union of all linear extensions of facets is a lower set.
So, we just need to show that w belongs to this set. This follows from w € E(I-‘ﬁ)7 which was
proven in Lemma 5.10. O

Proof of Theorem 5.11 (4). We show that if there is two facets I, Iy of SC(Q,w) and an ele-
ment m € W such that 7 € £(I;) N L£(I2) then I; = I5. The proof works by induction on the
length £(7) of 7. We already showed this for 7 = e in Lemma 5.10.

Let Iy, Iy be two facets such that e # 7 € L(I;) N L(I2). As in the proof of part (2), let 7’ = 7s
for some s € S such that ¢(7") < £(7), and let I], I} be the corresponding facets obtained using the
same steps of the proof. These new facets satisfy 7’ € L£(I1) N L(I3}), so that I] = I} by induction.

We now claim that it implies that I; = I;. We analyze the two cases if the proof of part (2).
Note that in Case 1, the resulting facet I’ obtained from I satisfies 8 ¢ R(I’), while in Case 2 we
have g € R(I'). As I{ = I}, this shows that I; and I fall either both into Case 1 or both into
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Case 2. If both fall into Case 1, then I} = I; and I} = I and so I; = I5 as desired. If both fall
into Case 2, then we just need to flip back the performed flip to obtain I; = I. O

Since L(I) # @ if and only if I € F*(Q,w) (i.e. I is an acyclic facet) by Lemma 5.9, and
also L(I) # L(J) for I # J by Theorem 5.11 (4), we have the following straightforward corollary.

Corollary 5.15. For any word Q and element w,

LQw= || <w.

IeF*(Quw)

As pointed out in Remark 5.13, there are subword complexes for which [e,w] # £(Q,w). Our
second fundamental theorem describes a large family of cases where equality holds. We say that
a word () is sorting if it contains a reduced expression of w,. Equivalently ) contains a reduced
expression for any element w € W. Still equivalently, Dem(Q) = w, where Dem(Q) denotes the
Demazure product of (), defined by Dem(e) = e and Dem(Qs) = max(Dem(Q), Dem(Q)s) (where
the max is in weak order).

Theorem 5.16. If the word Q is sorting, then the linear extensions of acyclic facets of SC(Q,w)
form a partition of the interval [e,w], that is

ewl= || £W).

IeF*(Quw)
The proof is based on the following statement, which follows from [JS21, Thm. 3.1 & Coro. 3.3].
Proposition 5.17 ([JS21]). If the word Q is sorting, then

( ﬂ cone R(I)) N ®* = Ninv(w).
IeF(Q,w)

Proof. We include a short proof here for self containment. We refer to [JS21] for the description
of the notation C*(w,-). By [JS21, Theorem 3.1] we have

(| coneR(I) = C*(w, Dem(Q)).
IeF(Q,m)

The word @ contains a reduced expression of w, if and only if Dem(Q) = w,. Furthermore,
by [JS21, Corollary 3.3] we have

CT(w,wo) N @ = Inv(wws,) = Ninv(w). O

Proof of Theorem 5.16. If m € L(I) for some facet I of SC(Q,w), then by Proposition 5.17 we
have

Ninv(w) C cone R(I) N ®* C conen(®™) N ®T = Ninv(r).
Thus m < w as desired. O

5.5. Five conjectures on linear extensions of facets. In this section, we present conjectural
generalizations of the results of Sections 3.2 and 3.3. By Corollary 5.15, we have

LQw= || &

IeF*(Q,w)

which naturally defines an equivalence relation on £(Q,w). However, this equivalence relation is
in general not a lattice congruence for two obvious reasons:

(i) while £(Q,w) is a lower set of the weak order containing [e,w] by Theorem 5.11, it does
not always coincides with [e,w] by Remark 5.13, and in fact it does not necessarily have a
maximal element, hence it is not necessarily a lattice,

(ii) while the sets L(I) are always order convex in the weak order by Theorem 5.11 (1), they are
not necessarily intervals in the weak order by Remark 5.13.
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To bypass Issue (i), we could restrict our attention to the situation when the word @ is sorting
by Theorem 5.16 (we will do that in Conjecture 5.23). Here, we want to be slightly more general,
so we will instead consider general words @), but restrict our attention to the interval [e,w] as
follows. For a facet I of SC(Q,w), we define L*(I):=L(I) N [e,w]. We say that I is strongly
acyclic if £*(I) # @, and we denote by F*(Q,w) the set of strongly acyclic facets of SC(Q,w).
Note that by Theorem 5.11 (4), we have

[e,w] = |_| L*(I).
I€F*(Quw)
We can thus now define the analogue of the pipe dream congruence of Definition 3.9 for subword
complexes as follows.

Definition 5.18. For a non-empty subword complex SC(Q, w), the subword complex equivalence
is the equivalence relation =g ,, on the interval [e,w] whose equivalence classes are the sets £*(I)
for all strongly acyclic facets I of F*(Q,w). In other words, 7 =¢g ., 7’ if and only if 7 and 7’ are
linear extensions of the same facet.

Example 5.19. Observe for instance that:

e the subword complex equivalence is a lattice congruence of the weak order in Figure 13
but not in Figures 14 and 15,
e the increasing flip poset is a lattice in Figures 13 and 14 but not in Figure 15.

The subword complex equivalence is not always a congruence because of Issue (ii) above. To fix
it, we now assume that the word @ is alternating, meaning that all non-commuting pairs s,t € S
alternate within @ (this notion was already considered in [PS12, CLS14]). This enables us to state
our first conjecture, intended to extend Theorem 3.10.

Conjecture 5.20. For a non-empty subword complex SC(Q,w) where Q is alternating, the sub-
word complex equivalence =q , is a lattice congruence of the interval [e,w] of the weak order.

We now intend to understand the quotient [e,w]/ =¢q . First, its elements correspond to the
congruence classes of =q ., hence to the strongly acyclic facets in F*(Q,w). The cover relations
are certain increasing flips between the facets in F*(Q,w). However, in contrast to Theorem 3.15,
not all increasing flips between two facets in F*(Q,w) yields a cover relation of F*(Q,w), as
illustrated by the following example.

Example 5.21. Consider the type As Coxeter system, the word QQ = 717971727172 and the longest
element w, = 71797 = T27T172. The subword complex SC(Q,w,) has eight facets, six of which are
acyclic. All the fibers of =q ., are singletons and the lattice quotient [e, w,]/ =g« coincides with
the weak order of type As. Note that the two acyclic facets {1,3,4} and {3,4,6} are connected
by a flip but the corresponding classes do not form a cover relation in [e, wo]/ =g w, -

We say that a flip between two facets I,J € F*(Q,w) with I ~ {i} = J \ {j} is extremal if
the root ry(4) is a ray of the root configuration R(I) (or equivalently, r;(j) is a ray R(J)). This
enables us to state our second conjecture, intended to extend Theorem 3.15.

Conjecture 5.22. For a non-empty subword complexr SC(Q,w) where Q is alternating, the Hasse
diagram of the lattice quotient [e,w]/ =g, is isomorphic to the graph of extremal increasing flips
between strongly acyclic facets of F*(Q,w).

We now specialize Conjectures 5.20 and 5.22 to the case of sorting and alternating words. In
this case, all acyclic facets are strongly acyclic by Theorem 5.16. Note that this is precisely the
situation we had in Section 3.

Conjecture 5.23. If Q is sorting and alternating, then the Hasse diagram of the lattice quo-
tient [e,w]/ =g s isomorphic to the graph of extremal increasing flips between acyclic facets

of F*(Q.w).

Moreover, there is a close connection with the brick polyhedra introduced in [JS21] as generaliza-
tions of the brick polytopes of [PS12, PS15]. We refer to the original papers [PS12, PS15, JS21] for a
definition of these polyhedra. We just need to know here that the brick polyhedron Brick(Q,w) has
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(4,5,6} {4,5,6} {4,5,6)
N ~ N
{1,5,6} {3,4,6} {3,4,6} {3,4,6}
o T T T
{1,4,5} (2,3,6} {1,4,5} {2,3,6} {1,4,5} {2,3,6}
T 1.2.6 g T T
(1,3,4) (1,26} (1,34} {1,3,4)
o “~ “~
{1,2,3} {1,2,3} {1,2,3}

FIGURE 16. The increasing flip graph on SC(Q, w,) (left), its restriction to acyclic
facets (middle) and the Hasse diagram of the quotient [e,w,]/ =@, Where each
class is labeled by its corresponding facet of SC(Q,w,) (right), for the subword
complex SC(Q,w,) where Q = Ty 7oT1T2T1 T2 and wo = 717271 = ToT172. Note that
the increasing flip {1, 3,4} — {3,4,6} is not a cover relation of [e, w,]/ =g w, -

e a vertex for each acyclic facet of F*(Q,w), and
e an edge for each extremal flip between two acyclic facets,

and that the graph of extremal increasing flips on acyclic facets is isomorphic to the bounded
graph (meaning forgetting the unbounded rays) of the brick polyhedron Brick(Q,w) oriented in
a suitable direction . This can be derived from [JS21, Thm. 4.4]. Conjecture 5.23 can thus be
translated geometrically as follows.

Conjecture 5.24. If Q) is sorting and alternating, then the bounded oriented graph of the brick
polyhedron Brick(Q,w) is isomorphic to the Hasse diagram of the lattice quotient [e,w]/ =g ..

In particular, specializing this conjecture to the brick polytopes [PS12, PS15] for which w = wo,
we obtain our last conjecture, intended to extend the results of [Pil18].

Conjecture 5.25. If Q is sorting and alternating, then the oriented graph of the brick poly-
tope Brick(Q, wo) is isomorphic to the Hasse diagram of a lattice quotient of the weak order.

Remark 5.26. Conjectures 5.20 and 5.22 to 5.25 holds in type A,: our specific proof of Theo-
rems 3.10 and 3.15 can be extended to arbitrary alternating words in type A, as will be shown
in [Car23]. They are also supported by computer experiments: we verified Conjectures 5.20
and 5.22 for all alternating words of length at most ¢(w,) (hence Conjectures 5.23 to 5.25 for all

alternating reduced expressions of w,) in types Bs, Bs, D4 and Hj.

Example 5.27. We have illustrated in Figures 17 to 19 the brick polytopes of the subword
complexes represented in Figures 13 to 15. Note that the oriented graph (from bottom to top)
defines a lattice in Figures 17 and 18 but not in Figure 19.

5.6. Sweeping algorithm. We now extend the sweeping algorithm of Section 4.1 to construct,
from a linear extension m € L£(Q,w), the unique acyclic facet I such that # € L£(I). We note
that this algorithm is related to an algorithm that was independently described in [JS21], see Re-
mark 5.29.

We start from a subword complex SC(Q,w) and any element m € W. The sweeping algorithm
outcomes a facet for every element m € W, and this will be the desired facet for each 7 € L(Q,w).

It starts by setting I° = & to be the empty set. It then scans the word Q = (q1, ..., ¢y) from
left to right. At position j € [m] it produces a new set I7 obtained from the previous one I'~! by
either adding j or not, according to certain rules. Roughly speaking, the goal of the algorithm is
to insert a reduced expression of w in @) by sweeping the word from left to right, while deciding
whether we use a letter or not by looking at the root 8 = rz;(j) that it produces. If 8 € Ninv(w)
then it can not be used (Case 1), otherwise we would not have a reduced expression for w. If
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FIGURE 17. The brick polytope of SC(Q,w,) where Q = ToT1 7372713727173 In
type As. Its graph, oriented from bottom to top is the Hasse diagram of the
lattice of Figure 10 (left) and Figure 13. This is actually the c-associahedron and
the c-Cambrian lattice for the Coxeter element ¢ = 757173 of type As.

FIGURE 18. The brick polytope of SC(Q,w,) where Q = ToT3T1T3T2T1T2T3T1 in
type Asz. Its graph, oriented from bottom to top is the Hasse diagram of the
lattice of Figure 14, but it is not obtained as a lattice quotient of the weak order.

FIGURE 19. The brick polytope of SC(Q,w,) where Q = T1ToT3TaT1 72737271 In
type As. Its graph, oriented from bottom to top is the Hasse diagram of the poset
of Figure 10 (right) and Figure 15, which is not a lattice (the two blue vertices
have no join while the two red vertices have no meet).
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B € Inv(w) then it takes it when 8 € Inv(m) (Case 2), or delays it as much as possible when
B € Ninv(m) (Case 3). If 8 € —Inv(w) it can simply not take it (Case 4).
More precisely, let Q7 = Q[j)~1s and denote by

rps (k) = [ Que- 11 (0g,)-
the partial root function for k < j. The rules are the following;:
Case 1: If r75(j) € Ninv(w) then IV = [P=1 U {j}.
Case 2: If r75(j) € Inv(w) N Inv(7) then [7 = [7~1
Case 3: If rp; (j) € Inv(w) N Ninv(7) then we consider two cases:
(a) If Q) 1s-1(;} contains areduced expression of w with prefix Q7! then I’ = I/~ U {;}.
(b) Otherwise I/ = [7~1.
Case 4: If r75(j) € — Inv(w) then I/ = '=1 U {j}.
We denote by sweep(Q,w, ) the resulting set I"™ obtained at the last step of the algorithm.
The objective of this section is the following statement.

Proposition 5.28. Let SC(Q,w) be a non-empty subword complex. Then, for every m € W,

(1) the set sweep(Q,w,7) is a facet of SC(Q,w),
(2) if m € L(I) for some facet I € SC(Q,w), then sweep(Q,w, ) = 1.

Remark 5.29. In [JS21, Sect. 3.3], D. Jahn and C. Stump describe an algorithm to compute the
f-antigreedy facet of a subword complex SC(Q,w) associated to a linear functional f. The output
of our algorithm coincides with the output of their algorithm whenever f is positive on 7(®™)
and negative on w(®7), see [JS21, Prop. 4.12]. Also, compare Proposition 5.28 (1) with [JS21,
Thm. 3.17 (a)], and Proposition 5.28 (2) with the second part of [JS21, Prop. 4.12].

Although the algorithm presented in [JS21] is more general, we highlight that our sweeping
algorithm is conceptually simpler, since we skip the step of translating the conditions on the sign
of f(ryi(j)) in the algorithm of [JS21]. We remark that these two algorithms were developed
independently, while approaching different problems. This shows that the sweeping algorithm has
a significant importance in the combinatorial and geometric understanding of subword complexes.

In order to prove Proposition 5.28, we first need to argue that the algorithm terminates, that
is, that any position j falls into one of the four cases above.

Lemma 5.30. At step j of the sweeping algorithm, the root r;(j) belongs to exactly one of the sets
Ninv(w), Inv(w) N Inv(m), Inv(w) N Ninv(r) or — Inv(w).
Proof. The root ry;(j) belongs to &+ U ®~ and we know that
&t = Inv(w) U Ninv(w) ¢~ = —Inv(w) U — Ninv(w)
Since we are inserting a reduced expression of w in @), the case — Ninv(w) never occurs. O
We now observe the main invariant of the sweeping algorithm.

Lemma 5.31. At any step j of the algorithm, Q7 is a reduced expression which is the prefix of a
reduced expression of w in Q) 1i-

Proof. The proof works by induction on j.

For j = 0, Q is the empty word which is reduced by definition. Furthermore, Q)10 = Q
contains a reduced expression of w because the subword complex is non-empty. The empty word
is a prefix of this reduced expression.

We assume now that the claim holds for 5 — 1 and we prove it for j. Note that

O = @~ iU =D"1u{jl,
@iy, if D=1

We analyze the different cases of the sweeping algorithm.
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(1) If r7;(§) € Ninv(w) then Q7 = Q7~!, which is reduced by induction hypothesis. Moreover,
it is a prefix of a reduced expression of w in Qpyjri-1. Since r7;(j) € Ninv(w), this
reduced expression can not use the letter g;; so, it is a reduced expression of w in Q)< 15
as desired.

(2) If rp5(j) € Inv(w) N Inv(rm) then @7 = Q="' o (g;), which is a reduced expression be-
cause '~ is reduced and 175 (j) € Inv(w).

Now let @ be a subword of Q)< ri-1 = Qpy)w1s Which is a reduced expression of w

with prefix @7~!, and let I be the corresponding facet.

Ifjé¢ 1. , then g; is used in CNQ and we are done because QNQ has Q7 as a prefix.

If j € I, then we can flip it to a position j/ > j (by Lemma 5.2 (2)), creating a new
reduced expression @’ of w which uses g;, and thus has (9 as a prefix.

(3)(a) If rps(j) € Inv(w) N Ninv(m) and Q) ri-1y;} contains a reduced expression of w with
prefix Q771 then Q7 = Q7~!. Therefore, @’ is reduced and it is a prefix of a reduced
expression of w in Q) ri-1< {5} = Qm)~17-

(3)(b) In this case, r7;(j) € Inv(w) N Ninv(r) but @7 = @Q’~! o (g;). The proof is similar to the
proof of (2).

(4) Ifrp5(j) € —Inv(w) then Q7 = @Q7~1. The argument is similar to that of Case (1). O

Finally, we need the following technical statement.

Lemma 5.32. Let I, I, € SC(Q,w) be two different facets, and j € [m] be the first position where
they differ. Without loss of generality assume

LN =L {i}
with j € Iy. Let  =ry,(j) =r5,(j), then
—B € coneR(I2).

In the proof of Lemma 5.32, let us write <p the strong Bruhat order, defined by  <p y if
and only if a reduced expression of y has a reduced expression of x as a subword, and z <p y
the covers of this order. We note that for any word @ and any x € W, we can find a reduced
expression of x as a subword of @ if and only if 2 <p Dem(Q) the Demazure product of Q. We
will use [JS21, Proposition 3.14], reformulated as follows.

Proposition 5.33 ([JS21]). Let SC(Q,w) be a non-empty subword complex. Then for any
facet I € SC(Q,w) and for any simple root « such that w <p sqw <p Dem(Q), we have o € R(I).

Proof of Lemma 5.32. Let us write w = uv with u the prefix of w defined by I; and Is on @ until
index j — 1 and v the suffix of w defined by the same facets from index j and onward. Let us also
write s the ;1 letter of Q and a the simple root associated with s. We note that 8 = 7, (j) = u(a),
and that since j ¢ I, we know that sv <p v (this is also a cover of the left weak order).

Let us call @' the suffix of @ starting at index j + 1, and I{, I} the restrictions of I; and I
to @'. The subwords induced by I} and I on @’ are suffixes of reduced subwords of Q, so they are
also reduced. Moreover, since j € I, we know that I] is a facet of SC(Q’,v); this means that this
subword complex is not empty and that v <z Dem(Q’). Similarly, since j ¢ I, we know that I} is a
facet of SC(Q’, sv). By combining the previous statements, we know that sv <p v < Dem(Q’) (or
equivalently and with v' = sv, that v' <p sv’ <p Dem(Q’)). We can thus apply Proposition 5.33
to obtain that a € R(I}).

Going back to our facets on @, we know that the prefix of w written by Is on @ N [j] is us,
and thus us(R(I4)) € R(I3). Therefore, we have us(a) = u(—a) = —u(a) = —f € R(I2), thus
concluding the proof. O

Proof of Proposition 5.28. Since the sweeping algorithm terminates by Lemma 5.30, Point (1)
follows directly from the invariant of the sweeping algorithm of Lemma 5.31 applied when j = m.

For Point (2), assume © € L£(I) and let I7 = I N [j]. We will show that the partial root
function r7;(-) agrees with the decisions taken in the sweeping algorithm. Indeed, we will see that
those decisions are forced.
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Recall that

and

meL(I) «— R()Cn(®)
+— cone R(I) C m(®T)

7(®") = — Inv(r) U Ninv (7).

We analyze the possible cases in the sweeping algorithm.

(1)
(2)
(3)(a)

If r7;(j) € Ninv(w) then clearly j € I is forced. Otherwise Q- ; would not be a reduced
expression of w.
If r7i(5) € Inv(w) NInv(nw) then j ¢ I is forced. Otherwise we would have an inversion of
7 in the root configuration, which contradicts m € £([).
If v7;(j) € Inv(w) N Ninv(7) and Q[ 1i-1 g5} contains a reduced expression of w with
prefix Q7! then j € IV is forced.

We argue this by contradiction. Assume j ¢ I/ (j ¢ I). Let I, = sweep(Q,w,n) and
I, = I. Applying Lemma 5.32, we deduce that 8 =r;(j) = r;(j) satisfies

—B € coneR(I).

But 8 € Ninv(7). This contradicts = € L(I).
If r75(j) € Inv(w) N Ninv(7) and Q< ri-1y;} does not contain a reduced expression of
w with prefix Q7! then j ¢ I is forced. Otherwise, the complement of I would not be a
reduced expression of w.

If r75(j) € —Inv(w) then j € I7 is clearly forced. Otherwise, the complement of I would
not be a reduced expression. O

Remark 5.34. Although the sweeping algorithm produces a facet I = sweep(Q,w, ) for ev-
ery w € W, in some cases we have m ¢ L(I). This happens because of Case (1), when a non-
inversion 8 € Ninv(w) of w is added to the root configuration R(I), such that § ¢ Ninv(r). This
is only potentially possible when 7 ¢ [e, w].
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