

On type cones of g-vector fans

 A. PADROL(Sorbonne Univ.)
Y. PALU
(Univ. Amiens)
V. PILAUD

(CNRS \& École Polytechnique)

P.-G. PLAMONDON

(Univ. Paris-Saclay \rightarrow Univ. Versailles)
slides: http://www.lix.polytechnique.fr/~pilaud/FPSAC20.pdf preprint: https://arxiv.org/pdf/1906.06861.pdf
0 This talk is being recorded 0

KINEMATIC ASSOCIAHEDRON

ASSOCIAHEDRON

associahedron $=$ polytope whose graph is the flip graph on triangulations of a polygon

ASSOCIAHEDRON

associahedron $=$ polytope whose graph is the flip graph on triangulations of a polygon
Three families of constructions (with non-equivalent normal fans):

Gelfand-Kapranov-Zelevinsky ('94)
Billera-Filliman-Sturmfels ('90)

G-VECTOR FAN

Shnider-Sternberg ('93)
Loday ('04)
Hohlweg-Lange ('07)
Hohlweg-Lange-Thomas ('12)
Hohlweg-P.-Stella ('18)

D-VECTOR FAN

(Pictures by CFZ)
Chapoton-Fomin-Zelevinsky ('02)
Ceballos-Santos-Ziegler ('11)

ASSOCIAHEDRON

associahedron $=$ polytope whose graph is the flip graph on triangulations of a polygon
Three families of constructions (with non-equivalent normal fans):

Gelfand-Kapranov-Zelevinsky ('94)
Billera-Filliman-Sturmfels ('90)

G-VECTOR FAN

Shnider-Sternberg ('93)
Loday ('04)
Hohlweg-Lange ('07)
Hohlweg-Lange-Thomas ('12)
Hohlweg-P.-Stella ('18)

D-VECTOR FAN

(Pictures by CFZ)
Chapoton-Fomin-Zelevinsky ('02)
Ceballos-Santos-Ziegler ('11)

Unidentified Construction of the Associahedron = KINEMATIC ASSOCIAHEDRON

KINEMATIC ASSOCIAHEDRON

kinematic associahedron $=n$-dimensional associahedron constructed in the Arkani-Hamed-Bai-He-Yan ('18) $\quad n(n+3) / 2$-dimensional kinematic space as a section of the positive orthant with an n-dimensional affine subspace

KINEMATIC ASSOCIAHEDRON

kinematic associahedron $=n$-dimensional associahedron constructed in the $n(n+3) / 2$-dimensional kinematic space as a section of the positive orthant with an n-dimensional affine subspace
fix parameters $\ell_{A}, \ldots, \ell_{F}>0$
$\boldsymbol{z} \geq 0$ indexed by internal diagonals of $(n+3)$-gon

$$
z_{\square}+z_{\triangle}-z_{\triangle}=\boldsymbol{\ell}_{A}
$$

$$
z_{\searrow}+z_{\square}-z_{\triangle}-z_{\square}=\boldsymbol{\ell}_{B}
$$

$$
\boldsymbol{z}_{\triangle}+\boldsymbol{z}_{\square}-\boldsymbol{z}_{\square}=\boldsymbol{\ell}_{C}
$$

$$
z_{Q}+z_{\lambda}-\boldsymbol{z}_{\square}=\boldsymbol{\ell}_{D}
$$

$$
\boldsymbol{z}_{\square}+\boldsymbol{z}_{/}-\boldsymbol{z}_{\square}-\boldsymbol{z}_{\lambda}=\boldsymbol{\ell}_{E}
$$

$$
z_{\lambda}+z_{V^{\prime}}^{-z_{\Lambda}}=\boldsymbol{\ell}_{F}
$$

KINEMATIC ASSOCIAHEDRON

kinematic associahedron $=n$-dimensional associahedron constructed in the
Arkani-Hamed-Bai-He-Yan ('18) $n(n+3) / 2$-dimensional kinematic space as a section of the positive orthant with an n-dimensional affine subspace
fix parameters $\ell_{A}, \ldots, \ell_{F}>0$
$z \geq 0$ indexed by internal diagonals of $(n+3)$-gon

$\boldsymbol{z}_{\langle }+\boldsymbol{z}_{\lambda}-\boldsymbol{z}_{\lambda}=\boldsymbol{\ell}_{A}$

$$
\boldsymbol{z}_{\triangle}+\boldsymbol{z}_{\square}-\boldsymbol{z}_{\square}-\boldsymbol{z}_{\square}=\boldsymbol{\ell}_{B}
$$

$$
\boldsymbol{z}_{\square}+\boldsymbol{z}_{\square}-\boldsymbol{z}_{\square}=\boldsymbol{\ell}_{D}
$$

$$
\boldsymbol{z}_{\square}+\boldsymbol{z}_{\Lambda}^{-\boldsymbol{z}}-\boldsymbol{z}_{\square}=\boldsymbol{\ell}_{E}
$$

$$
\boldsymbol{z}_{\swarrow}+\boldsymbol{z}_{\square}^{-\boldsymbol{z}_{\nearrow}}=\boldsymbol{\ell}_{F}
$$

Let $X(n)=\{(a, b) \mid 0 \leq a<b \leq n+2\}$ and $Y(n)=\{(a, b) \mid 1 \leq a<b \leq n+1\}$. For any $\ell \in \mathbb{R}_{>0}^{Y(n)}$, the polytope

$$
\left\{\begin{array}{l|l}
\boldsymbol{z} \in \mathbb{R}^{X(n)} & \begin{array}{l}
\boldsymbol{z} \geq 0, \quad \boldsymbol{z}_{(0, n+2)}=0 \quad \text { and } \quad \boldsymbol{z}_{(a, a+1)}=0 \text { for all } 0 \leq a \leq n+1 \\
\boldsymbol{z}_{(a-1, b)}+\boldsymbol{z}_{(a, b+1)}-\boldsymbol{z}_{(a, b)}-\boldsymbol{z}_{(a-1, b+1)}=\boldsymbol{\ell}_{(a, b)} \text { for all }(a, b) \in Y(n)
\end{array}
\end{array}\right\}
$$

is an associahedron.

TYPE CONES

CHOOSING RIGHT-HAND-SIDES

$\mathcal{F}=$ complete simplicial fan in \mathbb{R}^{n} with N rays
$\boldsymbol{G}=(N \times n)$-matrix whose rows are representatives of the rays of \mathcal{F} for a height vector $\boldsymbol{h} \in \mathbb{R}_{>0}^{N}$, consider the polytope $\mathbb{P}_{\boldsymbol{h}}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{G} \boldsymbol{x} \leq \boldsymbol{h}\right\}$

A

B

C

CHOOSING RIGHT-HAND-SIDES

$\mathcal{F}=$ complete simplicial fan in \mathbb{R}^{n} with N rays
$\boldsymbol{G}=(N \times n)$-matrix whose rows are representatives of the rays of \mathcal{F} for a height vector $\boldsymbol{h} \in \mathbb{R}_{>0}^{N}$, consider the polytope $\mathbb{P}_{\boldsymbol{h}}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{G} \boldsymbol{x} \leq \boldsymbol{h}\right\}$

A

B

C

CHOOSING RIGHT-HAND-SIDES

$\mathcal{F}=$ complete simplicial fan in \mathbb{R}^{n} with N rays
$\boldsymbol{G}=(N \times n)$-matrix whose rows are representatives of the rays of \mathcal{F} for a height vector $\boldsymbol{h} \in \mathbb{R}_{>0}^{N}$, consider the polytope $\mathbb{P}_{\boldsymbol{h}}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{G} \boldsymbol{x} \leq \boldsymbol{h}\right\}$

A

B

C

When is \mathcal{F} the normal fan of \mathbb{P}_{h} ?

CHOOSING RIGHT-HAND-SIDES

$\mathcal{F}=$ complete simplicial fan in \mathbb{R}^{n} with N rays
$\boldsymbol{G}=(N \times n)$-matrix whose rows are representatives of the rays of \mathcal{F} for a height vector $\boldsymbol{h} \in \mathbb{R}_{>0}^{N}$, consider the polytope $\mathbb{P}_{\boldsymbol{h}}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{G} \boldsymbol{x} \leq \boldsymbol{h}\right\}$

B

C

When is \mathcal{F} the normal fan of \mathbb{P}_{h} ?
face \mathbb{F} of polytope \mathbb{P}
normal cone of $\mathbb{F}=$ positive span of the outer normal vectors of the facets containing \mathbb{F} normal fan of $\mathbb{P}=\{$ normal cone of $\mathbb{F} \mid \mathbb{F}$ face of $\mathbb{P}\}$

WALL-CROSSING INEQUALITIES

$\mathcal{F}=$ complete simplicial fan in \mathbb{R}^{n} with N rays
$\boldsymbol{G}=(N \times n)$-matrix whose rows are representatives of the rays of \mathcal{F} for a height vector $\boldsymbol{h} \in \mathbb{R}_{>0}^{N}$, consider the polytope $\mathbb{P}_{\boldsymbol{h}}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{G} \boldsymbol{x} \leq \boldsymbol{h}\right\}$

WALL-CROSSING INEQUALITIES

$\mathcal{F}=$ complete simplicial fan in \mathbb{R}^{n} with N rays
$\boldsymbol{G}=(N \times n)$-matrix whose rows are representatives of the rays of \mathcal{F} for a height vector $\boldsymbol{h} \in \mathbb{R}_{>0}^{N}$, consider the polytope $\mathbb{P}_{\boldsymbol{h}}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{G} \boldsymbol{x} \leq \boldsymbol{h}\right\}$

WALL-CROSSING INEQUALITIES

$\mathcal{F}=$ complete simplicial fan in \mathbb{R}^{n} with N rays
$\boldsymbol{G}=(N \times n)$-matrix whose rows are representatives of the rays of \mathcal{F} for a height vector $\boldsymbol{h} \in \mathbb{R}_{>0}^{N}$, consider the polytope $\mathbb{P}_{\boldsymbol{h}}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{G} \boldsymbol{x} \leq \boldsymbol{h}\right\}$

wall-crossing inequality for a wall $\boldsymbol{R}=$

$$
\sum_{s \in \boldsymbol{R} \cup\left\{r, r, r^{\prime}\right\}} \alpha_{\boldsymbol{R}, s} h_{s}>0 \quad \text { where }
$$

- $\boldsymbol{r}, \boldsymbol{r}^{\prime}=$ rays such that $\boldsymbol{R} \cup\{\boldsymbol{r}\}$ and $\boldsymbol{R} \cup\left\{\boldsymbol{r}^{\prime}\right\}$ are chambers of \mathcal{F}
- $\alpha_{\boldsymbol{R}, s}=$ coeff. of unique linear dependence $\sum \alpha_{\boldsymbol{R}, s} s=0$ with $\alpha_{\boldsymbol{R}, r}+\alpha_{\boldsymbol{R}, r^{\prime}}=2$

$$
\boldsymbol{s} \in \boldsymbol{R} \cup\left\{\boldsymbol{r}, \boldsymbol{r}^{\prime}\right\}
$$

WALL-CROSSING INEQUALITIES

$\mathcal{F}=$ complete simplicial fan in \mathbb{R}^{n} with N rays
$\boldsymbol{G}=(N \times n)$-matrix whose rows are representatives of the rays of \mathcal{F} for a height vector $\boldsymbol{h} \in \mathbb{R}_{>0}^{N}$, consider the polytope $\mathbb{P}_{\boldsymbol{h}}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{G} \boldsymbol{x} \leq \boldsymbol{h}\right\}$

$$
\text { wall-crossing inequality for a wall } \boldsymbol{R}=\sum_{s \in \boldsymbol{R} \cup\left\{\boldsymbol{r}, \boldsymbol{r}^{\prime}\right\}} \alpha_{\boldsymbol{R}, s} h_{s}>0 \quad \text { where }
$$

- $\boldsymbol{r}, \boldsymbol{r}^{\prime}=$ rays such that $\boldsymbol{R} \cup\{\boldsymbol{r}\}$ and $\boldsymbol{R} \cup\left\{\boldsymbol{r}^{\prime}\right\}$ are chambers of \mathcal{F}
- $\alpha_{\boldsymbol{R}, s}=$ coeff. of unique linear dependence $\sum \alpha_{\boldsymbol{R}, s} \boldsymbol{s}=0$ with $\alpha_{\boldsymbol{R}, \boldsymbol{r}}+\alpha_{\boldsymbol{R}, \boldsymbol{r}^{\prime}}=2$

$$
s \in \overline{\boldsymbol{R} \cup\left\{\boldsymbol{r}, \boldsymbol{r}^{\prime}\right\}}
$$

\mathcal{F} is the normal fan of $\mathbb{P}_{h} \Longleftrightarrow h$ satisfies all wall-crossing inequalities of \mathcal{F}

WALL-CROSSING INEQUALITIES

$\mathcal{F}=$ complete simplicial fan in \mathbb{R}^{n} with N rays
$\boldsymbol{G}=(N \times n)$-matrix whose rows are representatives of the rays of \mathcal{F} for a height vector $\boldsymbol{h} \in \mathbb{R}_{>0}^{N}$, consider the polytope $\mathbb{P}_{\boldsymbol{h}}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{G} \boldsymbol{x} \leq \boldsymbol{h}\right\}$

A

B

C
wall-crossing inequalities:

$$
\begin{array}{ll}
\text { wall 1: } & h_{2}+h_{5}>0 \\
\text { wall 2: } & h_{1}+h_{3}>h_{2} \\
\text { wall 3: } & h_{2}+h_{4}>h_{3} \\
\text { wall 4: } & h_{3}+h_{5}>h_{4} \\
\text { wall 5: } & h_{1}+h_{4}>0
\end{array}
$$

TYPE CONE

$\mathcal{F}=$ complete simplicial fan in \mathbb{R}^{n} with N rays
$\boldsymbol{G}=(N \times n)$-matrix whose rows are representatives of the rays of \mathcal{F} for a height vector $\boldsymbol{h} \in \mathbb{R}_{>0}^{N}$, consider the polytope $\mathbb{P}_{\boldsymbol{h}}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{G} \boldsymbol{x} \leq \boldsymbol{h}\right\}$

$$
\text { type cone } \begin{aligned}
\mathbb{T} \mathbb{C}(\mathcal{F}) & =\text { realization space of } \mathcal{F} \\
& =\left\{\boldsymbol{h} \in \mathbb{R}^{N} \mid \mathcal{F} \text { is the normal fan of } \mathbb{P}_{\boldsymbol{h}}\right\} \\
& =\left\{\boldsymbol{h} \in \mathbb{R}^{N} \mid \boldsymbol{h} \text { satisfies all wall-crossing inequalities of } \mathcal{F}\right\}
\end{aligned}
$$

TYPE CONE

$\mathcal{F}=$ complete simplicial fan in \mathbb{R}^{n} with N rays
$\boldsymbol{G}=(N \times n)$-matrix whose rows are representatives of the rays of \mathcal{F} for a height vector $\boldsymbol{h} \in \mathbb{R}_{>0}^{N}$, consider the polytope $\mathbb{P}_{\boldsymbol{h}}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{G} \boldsymbol{x} \leq \boldsymbol{h}\right\}$

$$
\text { type cone } \begin{aligned}
\mathbb{T} \mathbb{C}(\mathcal{F}) & =\text { realization space of } \mathcal{F} \\
& =\left\{\boldsymbol{h} \in \mathbb{R}^{N} \mid \mathcal{F} \text { is the normal fan of } \mathbb{P}_{\boldsymbol{h}}\right\} \\
& =\left\{\boldsymbol{h} \in \mathbb{R}^{N} \mid \boldsymbol{h} \text { satisfies all wall-crossing inequalities of } \mathcal{F}\right\}
\end{aligned}
$$

McMullen ('73)

some properties of $\mathrm{TC}(\mathcal{F})$:

- $\mathrm{TC}(\mathcal{F})$ is an open cone
(dilations preserve normal fans)
- $\mathbb{T C}(\mathcal{F})$ has lineality space $G \mathbb{R}^{n} \quad$ (translations preserve normal fans)
- dimension of $\mathbb{T C}(\mathcal{F}) / G \mathbb{R}^{n}=N-n$

TYPE CONE

$\mathcal{F}=$ complete simplicial fan in \mathbb{R}^{n} with N rays
$\boldsymbol{G}=(N \times n)$-matrix whose rows are representatives of the rays of \mathcal{F} for a height vector $\boldsymbol{h} \in \mathbb{R}_{>0}^{N}$, consider the polytope $\mathbb{P}_{\boldsymbol{h}}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{G} \boldsymbol{x} \leq \boldsymbol{h}\right\}$

$$
\text { type cone } \begin{aligned}
\mathbb{T} \mathbb{C}(\mathcal{F}) & =\text { realization space of } \mathcal{F} \\
& =\left\{\boldsymbol{h} \in \mathbb{R}^{N} \mid \mathcal{F} \text { is the normal fan of } \mathbb{P}_{\boldsymbol{h}}\right\} \\
& =\left\{\boldsymbol{h} \in \mathbb{R}^{N} \mid \boldsymbol{h} \text { satisfies all wall-crossing inequalities of } \mathcal{F}\right\}
\end{aligned}
$$

some properties of $\mathbb{T C}(\mathcal{F})$:

- closure of $\mathrm{TC}(\mathcal{F})=$ polytopes whose normal fan coarsens $\mathcal{F}=$ deformation cone
- Minkowski sums \longleftrightarrow positive linear combinations

EXM: SUBMODULAR FUNCTIONS

braid fan $=$
$\mathbb{C}(\sigma)=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid x_{\sigma(1)} \leq \cdots \leq x_{\sigma(n)}\right\}$

permutahedron $=$ $\operatorname{conv}\left\{\left[\sigma^{-1}(i)\right]_{i \in[n]} \mid \sigma \in \mathfrak{S}_{n}\right\}$

EXM: SUBMODULAR FUNCTIONS

braid fan $=$

$$
\mathbb{C}(\sigma)=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid x_{\sigma(1)} \leq \cdots \leq x_{\sigma(n)}\right\}
$$

permutahedron $=$

$$
\operatorname{conv}\left\{\left[\sigma^{-1}(i)\right]_{i \in[n]} \mid \sigma \in \mathfrak{S}_{n}\right\}
$$

closed type cone of braid fan $=\{$ deformed permutahedra $\}=\{$ submodular functions $\}$

$$
\begin{aligned}
& \text { braid fan }= \\
& \qquad \mathbb{C}(\sigma)=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid x_{\sigma(1)} \leq \cdots \leq x_{\sigma(n)}\right\}
\end{aligned}
$$

permutahedron $=$

$$
\operatorname{conv}\left\{\left[\sigma^{-1}(i)\right]_{i \in[n]} \mid \sigma \in \mathfrak{S}_{n}\right\}
$$

deformed permutahedron $=$ polytope whose normal fan coarsens the braid fan

$$
\operatorname{Defo}(\boldsymbol{z})=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid\langle\mathbb{1} \mid \boldsymbol{x}\rangle=\boldsymbol{z}_{[n]} \text { and }\left\langle\mathbb{1}_{R} \mid \boldsymbol{x}\right\rangle \geq \boldsymbol{z}_{R} \text { for all } R \subseteq[n]\right\}
$$

for some vector $\boldsymbol{z} \in \mathbb{R}^{2^{[n]}}$ such that $\boldsymbol{z}_{R}+\boldsymbol{z}_{S} \leq \boldsymbol{z}_{R \cup S}+\boldsymbol{z}_{R \cap S}$ and $\boldsymbol{z}_{\varnothing}=0$

SIMPLICIAL TYPE CONE

$\mathcal{F}=$ complete simplicial fan in \mathbb{R}^{n} with N rays
$\boldsymbol{G}=(N \times n)$-matrix whose rows are representatives of the rays of \mathcal{F}
$\boldsymbol{K}=(N-n) \times N$-matrix that spans the left kernel of \boldsymbol{G} (ie. $\boldsymbol{K} \boldsymbol{G}=\mathbf{0}$)

SIMPLICIAL TYPE CONE

$\mathcal{F}=$ complete simplicial fan in \mathbb{R}^{n} with N rays
$\boldsymbol{G}=(N \times n)$-matrix whose rows are representatives of the rays of \mathcal{F}
$\boldsymbol{K}=(N-n) \times N$-matrix that spans the left kernel of $\boldsymbol{G}($ ie. $\boldsymbol{K} \boldsymbol{G}=\mathbf{0})$
Classical affine transformation on polytopes:

$$
\begin{aligned}
& \mathbb{P}_{\boldsymbol{h}}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{G} \boldsymbol{x} \leq \boldsymbol{h}\right\} \longrightarrow \mathbb{Q}_{\boldsymbol{h}}=\left\{\boldsymbol{z} \in \mathbb{R}^{N} \mid \boldsymbol{z} \geq 0 \text { and } \boldsymbol{K} \boldsymbol{z}=\boldsymbol{K} \boldsymbol{h}\right\} \\
& \boldsymbol{x} \longmapsto \\
& \boldsymbol{z}=\boldsymbol{h}-\boldsymbol{G} \boldsymbol{x}
\end{aligned}
$$

SIMPLICIAL TYPE CONE

$\mathcal{F}=$ complete simplicial fan in \mathbb{R}^{n} with N rays
$\boldsymbol{G}=(N \times n)$-matrix whose rows are representatives of the rays of \mathcal{F}
$\boldsymbol{K}=(N-n) \times N$-matrix that spans the left kernel of $\boldsymbol{G}($ ie. $\boldsymbol{K} \boldsymbol{G}=\mathbf{0})$
Classical affine transformation on polytopes:

$$
\begin{aligned}
& \mathbb{P}_{\boldsymbol{h}}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{G} \boldsymbol{x} \leq \boldsymbol{h}\right\} \longrightarrow \mathbb{Q}_{\boldsymbol{h}}=\left\{\boldsymbol{z} \in \mathbb{R}^{N} \mid \boldsymbol{z} \geq 0 \text { and } \boldsymbol{K} \boldsymbol{z}=\boldsymbol{K} \boldsymbol{h}\right\} \\
& \boldsymbol{x} \longmapsto \\
& \boldsymbol{z}=\boldsymbol{h}-\boldsymbol{G} \boldsymbol{x}
\end{aligned}
$$

All polytopal realizations of \mathcal{F} are affinely equivalent to

$$
\mathbb{Q}_{\boldsymbol{h}}=\left\{\boldsymbol{z} \in \mathbb{R}^{N} \mid \boldsymbol{z} \geq 0 \text { and } \boldsymbol{K} \boldsymbol{z}=\boldsymbol{K} \boldsymbol{h}\right\}
$$

for any \boldsymbol{h} in the type cone $\mathbb{T}(\mathcal{F})$.

SIMPLICIAL TYPE CONE

$\mathcal{F}=$ complete simplicial fan in \mathbb{R}^{n} with N rays
$\boldsymbol{G}=(N \times n)$-matrix whose rows are representatives of the rays of \mathcal{F}
$\boldsymbol{K}=(N-n) \times N$-matrix that spans the left kernel of $\boldsymbol{G}($ ie. $\boldsymbol{K} \boldsymbol{G}=\mathbf{0})$
Classical affine transformation on polytopes:

$$
\begin{aligned}
& \mathbb{P}_{\boldsymbol{h}}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{G} \boldsymbol{x} \leq \boldsymbol{h}\right\} \longrightarrow \mathbb{Q}_{\boldsymbol{h}}=\left\{\boldsymbol{z} \in \mathbb{R}^{N} \mid \boldsymbol{z} \geq 0 \text { and } \boldsymbol{K} \boldsymbol{z}=\boldsymbol{K} \boldsymbol{h}\right\} \\
& \boldsymbol{x} \longmapsto \\
& \boldsymbol{z}=\boldsymbol{h}-\boldsymbol{G} \boldsymbol{x}
\end{aligned}
$$

All polytopal realizations of \mathcal{F} are affinely equivalent to

$$
\mathbb{Q}_{\boldsymbol{h}}=\left\{\boldsymbol{z} \in \mathbb{R}^{N} \mid \boldsymbol{z} \geq 0 \text { and } \boldsymbol{K} \boldsymbol{z}=\boldsymbol{K} \boldsymbol{h}\right\}
$$

for any \boldsymbol{h} in the type cone $\operatorname{TC}(\mathcal{F})$.
Assume that the type cone $\mathbb{T C}(\mathcal{F})$ is simplicial.
$\boldsymbol{K}=(N-n) \times N$-matrix whose rows are inner normal vectors of the facets of $\mathbb{T C}(\mathcal{F})$.
All polytopal realizations of \mathcal{F} are affinely equivalent to

$$
\mathbb{R}_{\ell}=\left\{\boldsymbol{z} \in \mathbb{R}^{N} \mid \boldsymbol{z} \geq 0 \text { and } \boldsymbol{K} \boldsymbol{z}=\boldsymbol{\ell}\right\}
$$

for any positive vector $\ell \in \mathbb{R}_{>0}^{N-n}$.
Padrol-Palu-P.-Plamondon ('19+)

TYPE CONES OF G-VECTOR FANS

SYLVESTER FAN AND CLASSICAL ASSOCIAHEDRON

sylvester fan $=$
$\mathbb{C}(T)=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid x_{i} \leq x_{j}\right.$ if $i \rightarrow j$ in T$\}$

associahedron $=$ conv $\left\{[\ell(T, i) \cdot r(T, i)]_{i \in[n]} \mid \mathrm{T}\right.$ binary tree $\}$

SYLVESTER FAN AND CLASSICAL ASSOCIAHEDRON

sylvester fan
chambers \longleftrightarrow triangulations

associahedron vertices \longleftrightarrow triangulations

SYLVESTER FAN AND CLASSICAL ASSOCIAHEDRON

sylvester fan
chambers \longleftrightarrow triangulations rays \longleftrightarrow internal diagonals

associahedron vertices \longleftrightarrow triangulations facets \longleftrightarrow internal diagonals

SYLVESTER FAN AND CLASSICAL ASSOCIAHEDRON

sylvester fan
chambers \longleftrightarrow triangulations
rays \longleftrightarrow internal diagonals
exch. rays \longleftrightarrow pairs crossing diagonals
associahedron vertices \longleftrightarrow triangulations facets \longleftrightarrow internal diagonals

SYLVESTER FAN AND CLASSICAL ASSOCIAHEDRON

wall crossing inequalities $=$

$$
\begin{aligned}
& \text { for all } 0 \leq a<b<c<d \leq n+2, \\
& \boldsymbol{z}_{(a, c)}+\boldsymbol{z}_{(b, d)}-\boldsymbol{z}_{(b, c)}-\boldsymbol{z}_{(a, d)}>0
\end{aligned}
$$

facet defining inequalities $=$

for all $1 \leq a<b \leq n+1$,

$$
\boldsymbol{z}_{(a-1, b)}+\boldsymbol{z}_{(a, b+1)}-\boldsymbol{z}_{(a, b)}-\boldsymbol{z}_{(a-1, b+1)}>0
$$

\Longrightarrow simplicial type cone

$\left(\#\right.$ facets $\left.=\binom{n+1}{2}=\frac{n(n+3)}{2}-n=N-n\right)$

Let $X(n)=\{(a, b) \mid 0 \leq a<b \leq n+2\}$ and $Y(n)=\{(a, b) \mid 1 \leq a<b \leq n-1\}$. For any $\ell \in \mathbb{R}_{>0}^{Y(n)}$, the polytope

$$
\left\{\begin{array}{l|l}
\boldsymbol{z} \in \mathbb{R}^{X(n)} & \begin{array}{l}
\boldsymbol{z} \geq 0, \quad \boldsymbol{z}_{(0, n+2)}=0 \quad \text { and } \quad \boldsymbol{z}_{(a, a+1)}=0 \text { for all } 0 \leq a \leq n+1 \\
\boldsymbol{z}_{(a-1, b)}+\boldsymbol{z}_{(a, b+1)}-\boldsymbol{z}_{(a, b)}-\boldsymbol{z}_{(a-1, b+1)}=\boldsymbol{\ell}_{(a, b)} \text { for all }(a, b) \in Y(n)
\end{array}
\end{array}\right\}
$$

is an associahedron.

G-VECTOR FANS AND GENERALIZED ASSOCIAHEDRA

$B_{\circ}=$ finite type exchange matrix (acyclic or not, simply-laced or not) $\mathcal{A}\left(B_{\circ}\right)=$ cluster algebra with principal coefficients and initial exchange matrix B_{\circ} $\mathcal{F}\left(B_{\circ}\right)=\boldsymbol{g}$-vector fan of $\mathcal{A}\left(B_{\circ}\right)$

Exm: stereographic projections of type A_{3} and C_{3} cyclic \boldsymbol{g}-vector fans

$$
\left[\begin{array}{ccc}
0 & -1 & 1 \\
1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
0 & -1 & 2 \\
1 & 0 & -2 \\
-1 & 1 & 0
\end{array}\right]
$$

G-VECTOR FANS AND GENERALIZED ASSOCIAHEDRA

$B_{\circ}=$ finite type exchange matrix (acyclic or not, simply-laced or not) $\mathcal{A}\left(B_{\circ}\right)=$ cluster algebra with principal coefficients and initial exchange matrix B_{\circ} $\mathcal{F}\left(B_{\circ}\right)=\boldsymbol{g}$-vector fan of $\mathcal{A}\left(B_{\circ}\right)$

mesh mutation $=$ mutation $(B, X) \rightarrow\left(B^{\prime}, X^{\prime}\right)$ with $X \backslash\{x\}=X^{\prime} \backslash\left\{x^{\prime}\right\}$ such that $b_{x y} \geq 0$ for all $y \in X$
initial mesh mutation $=$ ends at an initial cluster variable x^{\prime}
facets of type cone of $\mathcal{F}\left(B_{\circ}\right)=\boldsymbol{g}$-vector dependences of non-initial mesh mutations
\Longrightarrow simplicial type cone
(\# non-initial mesh mutations $=\#$ cluster variables $-\#$ initial cluster variables)

G-VECTOR FANS AND GENERALIZED ASSOCIAHEDRA

$B_{0}=$ finite type exchange matrix (acyclic or not, simply-laced or not) $\mathcal{A}\left(B_{0}\right)=$ cluster algebra with principal coefficients and initial exchange matrix B_{0} $\mathcal{F}\left(B_{\circ}\right)=\boldsymbol{g}$-vector fan of $\mathcal{A}\left(B_{0}\right)$

$\mathcal{V}\left(B_{\circ}\right)=\{$ cluster variables $\}$.
$\mathcal{M}\left(B_{\circ}\right)=\left\{\left(x, x^{\prime}\right)\right.$ exchangeable by a non-initial mesh mutation $\}$.
For any $\ell \in \mathbb{R}_{>0}^{\mathcal{M}\left(B_{0}\right)}$, the polytope

$$
\left\{\boldsymbol{z} \in \mathbb{R}^{\mathcal{V}\left(B_{\circ}\right)} \mid \boldsymbol{z} \geq 0 \text { and } \boldsymbol{z}_{x}+\boldsymbol{z}_{x^{\prime}}-\sum_{y} \alpha_{x, x^{\prime}}(y) \boldsymbol{z}_{y}=\boldsymbol{\ell}_{x, x^{\prime}} \text { for all }\left(x, x^{\prime}\right) \in \mathcal{M}\left(B_{\circ}\right)\right\}
$$

is a generalized associahedron.
$\alpha_{x, x^{\prime}}=\left|b_{x, y}\right|$ if $y \in X$ and 0 otherwise
Bazier-Matte-Douville-Mousavand-Thomas-Yıldırım ('18 ${ }^{+}$)

SIMPLICIAL TYPE CONE

Assume that the type cone $\mathbb{T C}(\mathcal{F})$ is simplicial.
$\boldsymbol{K}=(N-n) \times N$-matrix whose rows are inner normal vectors of the facets of $\mathbb{T} \mathbb{C}(\mathcal{F})$. All polytopal realizations of \mathcal{F} are affinely equivalent to

$$
\mathbb{R}_{\boldsymbol{\ell}}=\left\{\boldsymbol{z} \in \mathbb{R}^{N} \mid \boldsymbol{z} \geq 0 \text { and } \boldsymbol{K} \boldsymbol{z}=\boldsymbol{\ell}\right\}
$$

for any positive vector $\ell \in \mathbb{R}_{>0}^{N-n}$.
Padrol-Palu-P.-Plamondon ('19+)
Fundamental exms: \boldsymbol{g}-vector fans of cluster-like complexes

sylvester fans

Arkani-Hamed-Bai-He-Yan ('18)

finite type g-vector fans wrt any seed (acyclic or not)

finite gentle fans
for brick and 2-acyclic quivers
Palu-P.-Plamondon ('18)

