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KINEMATIC ASSOCIAHEDRON



ASSOCIAHEDRON

associahedron = polytope whose graph is the flip graph on triangulations of a polygon

vertices ↔ triangulations

edges ↔ flips

faces ↔ dissections

facets ↔ internal diagonals

vertices ↔ binary trees

edges ↔ rotations

faces ↔ Schröder trees

facets ↔ corollas
Tamari (’51) Stasheff (’63)



ASSOCIAHEDRON

associahedron = polytope whose graph is the flip graph on triangulations of a polygon

Three families of constructions (with non-equivalent normal fans):

SECONDARY FAN

Gelfand–Kapranov–Zelevinsky (’94)

Billera–Filliman–Sturmfels (’90)

G-VECTOR FAN

Shnider–Sternberg (’93)

Loday (’04)

Hohlweg–Lange (’07)

Hohlweg–Lange–Thomas (’12)

Hohlweg–P.–Stella (’18)
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Chapoton–Fomin–Zelevinsky (’02)

Ceballos–Santos–Ziegler (’11)
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(Pictures by CFZ)

Chapoton–Fomin–Zelevinsky (’02)

Ceballos–Santos–Ziegler (’11)

Unidentified Construction of the Associahedron = KINEMATIC ASSOCIAHEDRON
Arkani-Hamed–Bai–He–Yan (’18) Bazier-Matte–Douville–Mousavand–Thomas–Yıldırım (’18+)



KINEMATIC ASSOCIAHEDRON

kinematic associahedron = n-dimensional associahedron constructed in the

n(n + 3)/2-dimensional kinematic space as a section of the

positive orthant with an n-dimensional affine subspace

Arkani-Hamed–Bai–He–Yan (’18)
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fix parameters `A, . . . , `F > 0

z ≥ 0 indexed by internal diagonals of (n + 3)-gon

C

B E

A D F

z + z − z = `A

z + z − z − z = `B

z + z − z = `C
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z + z − z − z = `E

z + z − z = `F



KINEMATIC ASSOCIAHEDRON

kinematic associahedron = n-dimensional associahedron constructed in the

n(n + 3)/2-dimensional kinematic space as a section of the

positive orthant with an n-dimensional affine subspace

Arkani-Hamed–Bai–He–Yan (’18)

fix parameters `A, . . . , `F > 0

z ≥ 0 indexed by internal diagonals of (n + 3)-gon

a
b

a b+1

b+1
a–1

b

a –1

z + z − z = `A

z + z − z − z = `B

z + z − z = `C

z + z − z = `D

z + z − z − z = `E

z + z − z = `F

Let X(n) = {(a, b) | 0 ≤ a < b ≤ n + 2} and Y (n) = {(a, b) | 1 ≤ a < b ≤ n + 1}.
For any ` ∈ RY (n)

>0 , the polytope{
z ∈ RX(n)

∣∣∣∣ z ≥ 0, z(0,n+2) = 0 and z(a,a+1) = 0 for all 0 ≤ a ≤ n + 1

z(a−1,b) + z(a,b+1) − z(a,b) − z(a−1,b+1) = `(a,b) for all (a, b) ∈ Y (n)

}
is an associahedron. Arkani-Hamed–Bai–He–Yan (’18)
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CHOOSING RIGHT-HAND-SIDES

F = complete simplicial fan in Rn with N rays

G = (N × n)-matrix whose rows are representatives of the rays of F
for a height vector h ∈ RN

>0, consider the polytope Ph = {x ∈ Rn | Gx ≤ h}
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CHOOSING RIGHT-HAND-SIDES

F = complete simplicial fan in Rn with N rays

G = (N × n)-matrix whose rows are representatives of the rays of F
for a height vector h ∈ RN

>0, consider the polytope Ph = {x ∈ Rn | Gx ≤ h}

14

23

5

A B C

When is F the normal fan of Ph?

face F of polytope P

normal cone of F = positive span of the outer normal

vectors of the facets containing F

normal fan of P = { normal cone of F | F face of P }



WALL-CROSSING INEQUALITIES

F = complete simplicial fan in Rn with N rays

G = (N × n)-matrix whose rows are representatives of the rays of F
for a height vector h ∈ RN

>0, consider the polytope Ph = {x ∈ Rn | Gx ≤ h}
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F = complete simplicial fan in Rn with N rays

G = (N × n)-matrix whose rows are representatives of the rays of F
for a height vector h ∈ RN

>0, consider the polytope Ph = {x ∈ Rn | Gx ≤ h}

r r'

R

wall-crossing inequality for a wall R =
∑

s∈R∪{r,r′}

αR,s hs > 0 where

• r, r′ = rays such that R ∪ {r} and R ∪ {r′} are chambers of F
• αR,s = coeff. of unique linear dependence

∑
s∈R∪{r,r′}

αR,s s = 0 with αR,r + αR,r′ = 2
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αR,s s = 0 with αR,r + αR,r′ = 2

F is the normal fan of Ph ⇐⇒ h satisfies all wall-crossing inequalities of F



WALL-CROSSING INEQUALITIES

F = complete simplicial fan in Rn with N rays

G = (N × n)-matrix whose rows are representatives of the rays of F
for a height vector h ∈ RN

>0, consider the polytope Ph = {x ∈ Rn | Gx ≤ h}

14

23

5

A B C
wall-crossing inequalities:

wall 1 : h2 + h5 > 0

wall 2 : h1 + h3 > h2

wall 3 : h2 + h4 > h3

wall 4 : h3 + h5 > h4

wall 5 : h1 + h4 > 0

H5> H1>
H3>

H2>H4>

A
B

C



TYPE CONE

F = complete simplicial fan in Rn with N rays

G = (N × n)-matrix whose rows are representatives of the rays of F
for a height vector h ∈ RN

>0, consider the polytope Ph = {x ∈ Rn | Gx ≤ h}

type cone TC(F) = realization space of F
=
{
h ∈ RN

∣∣ F is the normal fan of Ph

}
=
{
h ∈ RN

∣∣ h satisfies all wall-crossing inequalities of F
}McMullen (’73)
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TYPE CONE

F = complete simplicial fan in Rn with N rays

G = (N × n)-matrix whose rows are representatives of the rays of F
for a height vector h ∈ RN

>0, consider the polytope Ph = {x ∈ Rn | Gx ≤ h}

type cone TC(F) = realization space of F
=
{
h ∈ RN

∣∣ F is the normal fan of Ph

}
=
{
h ∈ RN

∣∣ h satisfies all wall-crossing inequalities of F
}McMullen (’73)
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H5> H1>
H3>

H2>H4>

some properties of TC(F):
• TC(F) is an open cone (dilations preserve normal fans)

• TC(F) has lineality space GRn (translations preserve normal fans)

• dimension of TC(F)/GRn = N − n



TYPE CONE

F = complete simplicial fan in Rn with N rays

G = (N × n)-matrix whose rows are representatives of the rays of F
for a height vector h ∈ RN

>0, consider the polytope Ph = {x ∈ Rn | Gx ≤ h}

type cone TC(F) = realization space of F
=
{
h ∈ RN

∣∣ F is the normal fan of Ph

}
=
{
h ∈ RN

∣∣ h satisfies all wall-crossing inequalities of F
}McMullen (’73)
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some properties of TC(F):
• closure of TC(F) = polytopes whose normal fan coarsens F = deformation cone

• Minkowski sums ←→ positive linear combinations



EXM: SUBMODULAR FUNCTIONS
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braid fan = permutahedron =

C(σ) =
{
x ∈ Rn

∣∣ xσ(1) ≤ · · · ≤ xσ(n)
}

conv
{
[σ−1(i)]i∈[n]

∣∣ σ ∈ Sn

}
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closed type cone of braid fan = {deformed permutahedra} = {submodular functions}



EXM: SUBMODULAR FUNCTIONS
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1423

1243 1234
2134

1324

4123

4132

2314
3124

2143

2413

4213

2431

4231

2341

braid fan = permutahedron =

C(σ) =
{
x ∈ Rn

∣∣ xσ(1) ≤ · · · ≤ xσ(n)
}

conv
{
[σ−1(i)]i∈[n]

∣∣ σ ∈ Sn

}
deformed permutahedron = polytope whose normal fan coarsens the braid fan

Defo(z) =
{
x ∈ Rn

∣∣ 〈 11 | x 〉 = z[n] and 〈 11R | x 〉 ≥ zR for all R⊆ [n]
}

for some vector z ∈ R2[n] such that zR + zS ≤ zR∪S + zR∩S and z∅ = 0

Postnikov (’09) Postnikov–Reiner–Williams (’08)
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F = complete simplicial fan in Rn with N rays

G = (N × n)-matrix whose rows are representatives of the rays of F
K = (N − n)×N -matrix that spans the left kernel of G (ie. KG = 0)
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Classical affine transformation on polytopes:

Ph = {x ∈ Rn | Gx ≤ h} −→ Qh =
{
z ∈ RN

∣∣ z ≥ 0 and Kz = Kh
}

x 7−→ z = h−Gx
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SIMPLICIAL TYPE CONE

F = complete simplicial fan in Rn with N rays

G = (N × n)-matrix whose rows are representatives of the rays of F
K = (N − n)×N -matrix that spans the left kernel of G (ie. KG = 0)

Classical affine transformation on polytopes:

Ph = {x ∈ Rn | Gx ≤ h} −→ Qh =
{
z ∈ RN

∣∣ z ≥ 0 and Kz = Kh
}

x 7−→ z = h−Gx

All polytopal realizations of F are affinely equivalent to

Qh =
{
z ∈ RN

∣∣ z ≥ 0 and Kz = Kh
}

for any h in the type cone TC(F).

Assume that the type cone TC(F) is simplicial.

K = (N−n)×N -matrix whose rows are inner normal vectors of the facets of TC(F).
All polytopal realizations of F are affinely equivalent to

R` =
{
z ∈ RN

∣∣ z ≥ 0 and Kz = `
}

for any positive vector ` ∈ RN−n
>0 . Padrol–Palu–P.–Plamondon (’19+)



TYPE CONES OF G-VECTOR FANS



SYLVESTER FAN AND CLASSICAL ASSOCIAHEDRON

sylvester fan = associahedron =

C(T ) = {x ∈ Rn | xi ≤ xj if i→ j in T} conv
{
[`(T, i) · r(T, i)]i∈[n]

∣∣ T binary tree
}

Shnider–Sternberg (’93)

Loday (’04)



SYLVESTER FAN AND CLASSICAL ASSOCIAHEDRON

sylvester fan associahedron

chambers ←→ triangulations vertices ←→ triangulations
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SYLVESTER FAN AND CLASSICAL ASSOCIAHEDRON

sylvester fan associahedron

chambers ←→ triangulations vertices ←→ triangulations

rays ←→ internal diagonals facets ←→ internal diagonals

exch. rays ←→ pairs crossing diagonals



SYLVESTER FAN AND CLASSICAL ASSOCIAHEDRON

wall crossing inequalities =
b

d

c

a

for all 0 ≤ a < b < c < d ≤ n + 2,

z(a,c) + z(b,d) − z(b,c) − z(a,d) > 0

facet defining inequalities =
a

b+1
b

a –1
for all 1 ≤ a < b ≤ n + 1,

z(a−1,b) + z(a,b+1) − z(a,b) − z(a−1,b+1) > 0

=⇒ simplicial type cone

(# facets =
(
n+1
2

)
= n(n+3)

2 −n = N −n)

Let X(n) = {(a, b) | 0 ≤ a < b ≤ n + 2} and Y (n) = {(a, b) | 1 ≤ a < b ≤ n− 1}.
For any ` ∈ RY (n)

>0 , the polytope{
z ∈ RX(n)

∣∣∣∣ z ≥ 0, z(0,n+2) = 0 and z(a,a+1) = 0 for all 0 ≤ a ≤ n + 1

z(a−1,b) + z(a,b+1) − z(a,b) − z(a−1,b+1) = `(a,b) for all (a, b) ∈ Y (n)

}
is an associahedron. Arkani-Hamed–Bai–He–Yan (’18)



G-VECTOR FANS AND GENERALIZED ASSOCIAHEDRA

B◦ = finite type exchange matrix (acyclic or not, simply-laced or not)

A(B◦) = cluster algebra with principal coefficients and initial exchange matrix B◦
F(B◦) = g-vector fan of A(B◦)

Exm: stereographic projections of type A3 and C3 cyclic g-vector fans

 0 −1 1

1 0 −1
−1 1 0

  0 −1 2

1 0 −2
−1 1 0





G-VECTOR FANS AND GENERALIZED ASSOCIAHEDRA

B◦ = finite type exchange matrix (acyclic or not, simply-laced or not)

A(B◦) = cluster algebra with principal coefficients and initial exchange matrix B◦
F(B◦) = g-vector fan of A(B◦)

E
x1+x2+x3
x2x3

x3 C
x1+x2+x3
x1x3

x1 A

x1+x2
x3 F

x1+x3
x2 B

x2+x3
x1 D

x1+x2
x3 F

x1+x3
x2

x1 A
x1+x2+x3
x1x2

x2 E
x1+x2+x3
x2x3

mesh mutation = mutation (B,X)→ (B′, X ′) with X r {x} = X ′r {x′}
such that bxy ≥ 0 for all y ∈ X

initial mesh mutation = ends at an initial cluster variable x′

facets of type cone of F(B◦) = g-vector dependences of non-initial mesh mutations

=⇒ simplicial type cone

(# non-initial mesh mutations = # cluster variables − # initial cluster variables)



G-VECTOR FANS AND GENERALIZED ASSOCIAHEDRA

B◦ = finite type exchange matrix (acyclic or not, simply-laced or not)

A(B◦) = cluster algebra with principal coefficients and initial exchange matrix B◦
F(B◦) = g-vector fan of A(B◦)

E
x1+x2+x3
x2x3

x3 C
x1+x2+x3
x1x3

x1 A

x1+x2
x3 F

x1+x3
x2 B

x2+x3
x1 D

x1+x2
x3 F

x1+x3
x2

x1 A
x1+x2+x3
x1x2

x2 E
x1+x2+x3
x2x3

V(B◦) = {cluster variables}.
M(B◦) = {(x, x′) exchangeable by a non-initial mesh mutation}.
For any ` ∈ RM(B◦)

>0 , the polytope{
z ∈ RV(B◦)

∣∣∣∣ z ≥ 0 and zx + zx′ −
∑
y

αx,x′(y)zy = `x,x′ for all (x, x′) ∈M(B◦)

}
is a generalized associahedron.

x
αx,x′ = |bx,y| if y ∈ X and 0 otherwise

Bazier-Matte–Douville–Mousavand–Thomas–Yıldırım (’18+)

Padrol–Palu–P.–Plamondon (’19+)



SIMPLICIAL TYPE CONE

Assume that the type cone TC(F) is simplicial.

K = (N−n)×N -matrix whose rows are inner normal vectors of the facets of TC(F).
All polytopal realizations of F are affinely equivalent to

R` =
{
z ∈ RN

∣∣ z ≥ 0 and Kz = `
}

for any positive vector ` ∈ RN−n
>0 . Padrol–Palu–P.–Plamondon (’19+)

Fundamental exms: g-vector fans of cluster-like complexes

 0−1 1
1 0−1
−1 1 0



x1

x2

x3
x2+x3
x1

x1+x3
x2

x1+x2
x3

x1+x2+x3
x1x3

x1+x2+x3
x1x2

x1+x2+x3
x2x3

sylvester fans finite type g-vector fans finite gentle fans

wrt any seed (acyclic or not) for brick and 2-acyclic quivers
Arkani-Hamed–Bai–He–Yan (’18) BMDMTY (’18+) Palu–P.–Plamondon (’18)


