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POLYTOPES FROM COMBINATORICS



POLYTOPES & COMBINATORICS

polytope = convex hull of a finite set of Rd

= bounded intersection of finitely many half-spaces

face = intersection with a supporting hyperplane

face lattice = all the faces with their inclusion relations

Given a set of points, determine the face lattice of its convex hull.

Given a lattice, is there a polytope which realizes it?



PERMUTAHEDRON
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Permutohedron Perm(n)

= conv {(σ(1), . . . , σ(n + 1)) | σ ∈ Σn+1}
= H ∩

⋂
∅6=J([n+1]

H≥(J)



PERMUTAHEDRON
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Permutohedron Perm(n)

= conv {(σ(1), . . . , σ(n + 1)) | σ ∈ Σn+1}
= H ∩

⋂
∅6=J([n+1]

H≥(J)

k-faces of Perm(n)
≡ ordered partitions of [n + 1]

into n + 1− k parts

≡ surjections from [n + 1]

to [n + 1− k]
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Permutohedron Perm(n)

= conv {(σ(1), . . . , σ(n + 1)) | σ ∈ Σn+1}
= H ∩

⋂
∅6=J([n+1]

H≥(J)

k-faces of Perm(n)
≡ ordered partitions of [n + 1]

into n + 1− k parts

≡ surjections from [n + 1]

to [n + 1− k]

connections to

• inversion sets

• weak order

• reduced expressions

• braid moves

• cosets of the symmetric group



ASSOCIAHEDRA



ASSOCIAHEDRON

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free

sets of internal diagonals of a convex (n + 3)-gon, ordered by reverse inclusion

vertices ↔ triangulations

edges ↔ flips

faces ↔ dissections

vertices ↔ binary trees

edges ↔ rotations

faces ↔ Schröder trees



VARIOUS ASSOCIAHEDRA

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free

sets of internal diagonals of a convex (n + 3)-gon, ordered by reverse inclusion

(Pictures by Ceballos-Santos-Ziegler)

Lee (’89), Gel’fand-Kapranov-Zelevinski (’94), Billera-Filliman-Sturmfels (’90), . . . , Ceballos-Santos-Ziegler (’11)

Loday (’04), Hohlweg-Lange (’07), Hohlweg-Lange-Thomas (’12), P.-Santos (’12), P.-Stump (’12+), Lange-P. (’13+)



LODAY’S ASSOCIAHEDRON

Loday’s associahedron = conv {L(T ) | T triangulation of the (n + 3)-gon}
= H ∩

⋂
δ diagonal

of the (n+3)-gon

H≥(δ)

i

j

k

`(T, j)

r(T, j)

δ

B(δ)

L(T ) =
(
`(T, j) · r(T, j)

)
j∈[n+1]

H≥(δ) =

{
x ∈ Rn+1

∣∣∣∣ ∑
j∈B(δ)

xj ≥
(
|B(δ)| + 1

2

)}

Loday, Realization of the Stasheff polytope (’04)



LODAY’S ASSOCIAHEDRON

Loday’s associahedron = conv {L(T ) | T binary tree on n + 1 nodes}
= H ∩

⋂
I interval
of [n+1]

H≥(I)

i

j

k
i∗

j∗

`(T, j)

r(T, j)

i

j

k

i∗ j∗

`(T ′, j) r(T ′, j)

L(T ′)− L(T ) ∈ R>0(ei − ej)

Loday, Realization of the Stasheff polytope (’04)



LODAY’S ASSOCIAHEDRON

Loday’s associahedron = conv {L(T ) | T binary tree on n + 1 nodes}
= H ∩

⋂
I interval
of [n+1]

H≥(I)

i∗

j∗

`(T, j)

r(T, j)

i∗ j∗

`(T ′, j) r(T ′, j)

L(T ′)− L(T ) ∈ R>0(ei − ej)

Loday, Realization of the Stasheff polytope (’04)



ASSOCIAHEDRON AND PERMUTAHEDRON

The associahedron is obtained from the permutahedron by removing facets



ASSOCIAHEDRON AND PERMUTAHEDRON

Relevant connections to combinatorial properties:

• the normal fan of Perm(n) refines that of Asso(P )

• it defines a surjection κ : Sn+1 → {triangulations} (connection to linear extensions

and insertion in binary search trees)

• κ defines a lattice homomorphism from the weak order to the Tamari lattice



LODAY’S ASSOCIAHEDRON AND PERMUTAHEDRON
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HOHLWEG & LANGE’S ASSOCIAHEDRA

Can also replace Loday’s (n + 3)-gon by others. . .

4

321

0 + + + 4

321

0 – – –4

3

21

0 + + – 4

3

2

1

0 + – +

. . . to obtain different realizations of the associahedron

Hohlweg-Lange, Realizations of the associahedron and cyclohedron (’07)



HOHLWEG & LANGE’S ASSOCIAHEDRA

Asso(P ) = conv {HL(T ) | T triangulation of P} = H ∩
⋂

δ diagonal of P

H≥(δ)

i

j

k

`(T, j)

r(T, j)

δ

B(δ)

HL(T )j =

{
`(T, j) · r(T, j) if j down

n + 2− `(T, j) · r(T, j) if j up
H≥(δ) =

{
x

∣∣∣∣ ∑
j∈B(δ)

xj ≥
(
|B(δ)| + 1

2

)}
Hohlweg-Lange, Realizations of the associahedron and cyclohedron (’07)



SPINES

Lange-P., Using spines to revisit a construction of the associahedron (’13+)
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Spines = labeled and oriented dual binary trees



SPINES

Lange-P., Using spines to revisit a construction of the associahedron (’13+)
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REM. 1. Spines can be defined without their triangulations. . .
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SPINES

Lange-P., Using spines to revisit a construction of the associahedron (’13+)
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REM. 1. Spines can be defined without their triangulations. . .

2. Alternative vertex description of Hohlweg-Lange’s associahedra:

a(S)j =

{
|{π maximal path in S with 2 incoming arcs at j}| if j down

n + 2− |{π maximal path in S with 2 outgoing arcs at j}| if j up



SPINES

Lange-P., Using spines to revisit a construction of the associahedron (’13+)
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REM. 1. Spines can be defined without their triangulations. . .

2. Alternative vertex description of Hohlweg-Lange’s associahedra:

a(S)j =

{
|{π path in S not using the outgoing arc at j}| if j down

n + 2− |{π path in S not using the incomming arc at j}| if j up



GRAPH ASSOCIAHEDRA



NESTED COMPLEX AND GRAPH ASSOCIAHEDRON

G graph on ground set V

Tube on V = connected induced subgraph of G

Compatible tubes = nested, or disjoint and non-adjacent

2 3
1

0

8 4 9
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6 7

2 3
1

0

8 4 9

5

6 7

Nested complex N (G) = simplicial complex of sets of pairwise compatible tubes

= clique complex of the compatibility relation on tubes

G-associahedron = polytopal realization of the nested complex on G

Carr-Devadoss, Coxeter complexes and graph associahedra (’06)



EXM: NESTED COMPLEX



EXM: GRAPH ASSOCIAHEDRON



SPECIAL GRAPH ASSOCIAHEDRA

Path associahedron Cycle associahedron Complete graph associahedron

= associahedron = cyclohedron = permutahedron
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TWO QUESTIONS

Qu 1. Which graph associahedra can be realized by removahedra?

Lange-P., Which nestohedra are removahedra? (’14+)

Qu 2. Can we obtain distinct realizations of graph associahedra?

Yes for trees. . .
P., Signed tree associahedra (’13+)



SIGNED TREE ASSOCIAHEDRON



SIGNED SPINES

T tree on the signed ground set V = V− t V+ (negative in white, positive in black)

Signed spine on T = directed and labeled tree S st

(i) the labels of the nodes of S form a partition of the signed ground set V

(ii) at a node of S labeled by U = U−tU+, the source label sets of the different incoming

arcs are subsets of distinct connected components of TrU−, while the sink label sets

of the different outgoing arcs are subsets of distinct connected components of TrU+
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CONTRACTIONS AND SPINE COMPLEX

LEM. Contracting an arc in a signed spine on T leads to a new signed spine on T

LEM. Let S be a signed spine on T with a node labeled by a set U containing at least

two elements. For any u ∈ U , there exists a signed spine on T whose nodes are labeled

exactly as that of S, except that the label U is partitioned into {u} and U r {u}
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CONTRACTIONS AND SPINE COMPLEX

LEM. Contracting an arc in a signed spine on T leads to a new signed spine on T

LEM. Let S be a signed spine on T with a node labeled by a set U containing at least

two elements. For any u ∈ U , there exists a signed spine on T whose nodes are labeled

exactly as that of S, except that the label U is partitioned into {u} and U r {u}

Signed spine complex S(T) = simplicial complex whose inclusion poset is isomorphic to

the poset of edge contractions on the signed spines of T

CORO. The signed spine complex S(T) is a pure simplicial complex of rank |V|



BRAID FAN

Braid arrangement on RV = collection of hyperplanes
{
x ∈ RV

∣∣ xu = xv
}

for u 6= v ∈ V

Braid fan BF = complete simplicial fan defined by the braid arrangement on

H :=

{
x ∈ RV

∣∣∣∣ ∑
v∈V

xv =

(
|V| + 1

2

)}



SPINE FAN

For S spine on T, define C(S) := {x ∈ H | xu ≤ xv, for all arcs u→ v in S}
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THEO. The collection of cones F(T) := {C(S) | S ∈ S(T)} defines a complete simplicial

fan on H, which we call the spine fan

CORO. For any signed tree T, the signed nested complex N (T) is a simplicial sphere



SIGNED TREE ASSOCIAHEDRON

Signed tree associahedron Asso(T) = convex polytope with

(i) a vertex a(S) ∈ RV for each maximal signed spine S ∈ S(T), with coordinates

a(S)v =

{∣∣ {π ∈ Π(S) | v ∈ π and rv /∈ π}
∣∣ if v ∈ V−

|V| + 1−
∣∣ {π ∈ Π(S) | v ∈ π and rv /∈ π}

∣∣ if v ∈ V+

where rv = unique incoming (resp. outgoing) arc when v ∈ V− (resp. when v ∈ V+)

Π(S) = set of all (undirected) paths in S, including the trivial paths

(ii) a facet defined by the half-space

H≥(B) :=

{
x ∈ RV

∣∣∣∣ ∑
v∈B

xv ≥
(
|B| + 1

2

)}
for each signed building block B ∈ B(T)



EXM: VERTEX DESCRIPTION
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EXM: FACET DESCRIPTION
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MAIN RESULT

THM. The spine fan F(T) is the normal fan of the signed tree associahedron Asso(T),

defined equivalently as

(i) the convex hull of the points

a(S)v =

{∣∣ {π ∈ Π(S) | v ∈ π and rv /∈ π}
∣∣ if v ∈ V−

|V| + 1−
∣∣ {π ∈ Π(S) | v ∈ π and rv /∈ π}

∣∣ if v ∈ V+

for all maximal signed spines S ∈ S(T)

(ii) the intersection of the hyperplane H with the half-spaces

H≥(B) :=

{
x ∈ RV

∣∣∣∣ ∑
v∈B

xv ≥
(
|B| + 1

2

)}
for all signed building blocks B ∈ B(T)

CORO. The signed tree associahedron Asso(T) realizes the signed nested complex N (T)



SKETCH OF THE PROOF

STEP 1. We have∑
v∈V

a(S)v =

(
|V| + 1

2

)
and

∑
v∈sc(r)

a(S)v =

(
|sc(r)| + 1

2

)
for any arc r of S. In other words,“each vertex a(S) belongs to the hyperplanes H=(B)

it is supposed to”. Proof by double counting



SKETCH OF THE PROOF

STEP 1. We have∑
v∈V

a(S)v =

(
|V| + 1

2

)
and

∑
v∈sc(r)

a(S)v =

(
|sc(r)| + 1

2

)
for any arc r of S. In other words,“each vertex a(S) belongs to the hyperplanes H=(B)

it is supposed to”. Proof by double counting

STEP 2. If S and S′ are two adjacent maximal spines on T, such that S′ is obtained

from S by flipping an arc joining node u to node v, then

a(S′)− a(S) ∈ R>0 · (eu − ev)

o

Vi

U

u vr

U

V i

u
o

vr'

a(S′)− a(S) = (|U | + 1) · (|V | + 1) · (eu − ev)



SKETCH OF THE PROOF

STEP 1. We have∑
v∈V

a(S)v =

(
|V| + 1

2

)
and

∑
v∈sc(r)

a(S)v =

(
|sc(r)| + 1

2

)
for any arc r of S. In other words,“each vertex a(S) belongs to the hyperplanes H=(B)

it is supposed to”. Proof by double counting

STEP 2. If S and S′ are two adjacent maximal spines on T, such that S′ is obtained

from S by flipping an arc joining node u to node v, then

a(S′)− a(S) ∈ R>0 · (eu − ev)

STEP 3. A general theorem concerning realizations of simplicial fan by polytopes

In other words, a characterization of when is a simplicial fan regular

Hohlweg-Lange-Thomas, Permutahedra and generalized associahedra (’11)

De Loera-Rambau-Santos, Triangulations: Structures for Algorithms and Applications (’10)



FURTHER GEOMETRIC PROPERTIES

PROP. The signed tree associahedron Asso(T) is sandwiched between the permutahe-

dron Perm(V) and the parallelepiped Para(T)∑
u6=v∈V

[eu, ev] = Perm(T) ⊂ Asso(T) ⊂ Para(T) =
∑
u−v∈T

π(u − v) · [eu, ev]



FURTHER GEOMETRIC PROPERTIES

PROP. The signed tree associahedron Asso(T) is sandwiched between the permutahe-

dron Perm(V) and the parallelepiped Para(T)∑
u6=v∈V

[eu, ev] = Perm(T) ⊂ Asso(T) ⊂ Para(T) =
∑
u−v∈T

π(u − v) · [eu, ev]

Common vertices of Asso(T) and Para(T) ≡ orientations of T which are spines on T

Common vertices of Asso(T) and Perm(T) ≡ linear orders on V which are spines on T

⇒ no common vertex of the three polytopes except if T is a signed path



FURTHER GEOMETRIC PROPERTIES

PROP. The signed tree associahedron Asso(T) is sandwiched between the permutahe-

dron Perm(V) and the parallelepiped Para(T)∑
u6=v∈V

[eu, ev] = Perm(T) ⊂ Asso(T) ⊂ Para(T) =
∑
u−v∈T

π(u − v) · [eu, ev]

Common vertices of Asso(T) and Para(T) ≡ orientations of T which are spines on T

Common vertices of Asso(T) and Perm(T) ≡ linear orders on V which are spines on T

⇒ no common vertex of the three polytopes except if T is a signed path

PROP. Asso(T) and Asso(T′) isometric ⇐⇒ T and T′ isomorphic or anti-isomorphic,

up to the sign of their leaves, ie. ∃ bijection θ : V→ V′ st. ∀u, v ∈ V

• u−v edge in T ⇐⇒ θ(u)−θ(v) edge in T′

• if u is not a leaf of T, the signs of u and θ(u) coincide (resp. are opposite)



FURTHER GEOMETRIC PROPERTIES

PROP. The signed tree associahedron Asso(T) is sandwiched between the permutahe-

dron Perm(V) and the parallelepiped Para(T)∑
u6=v∈V

[eu, ev] = Perm(T) ⊂ Asso(T) ⊂ Para(T) =
∑
u−v∈T

π(u − v) · [eu, ev]

Common vertices of Asso(T) and Para(T) ≡ orientations of T which are spines on T

Common vertices of Asso(T) and Perm(T) ≡ linear orders on V which are spines on T

⇒ no common vertex of the three polytopes except if T is a signed path

PROP. Asso(T) and Asso(T′) isometric ⇐⇒ T and T′ isomorphic or anti-isomorphic,

up to the sign of their leaves, ie. ∃ bijection θ : V→ V′ st. ∀u, v ∈ V

• u−v edge in T ⇐⇒ θ(u)−θ(v) edge in T′

• if u is not a leaf of T, the signs of u and θ(u) coincide (resp. are opposite)

REM. The vertex barycenter of Asso(T) does not necessarily coincide with that of the

permutahedron (but it lies on the linear span of the characteristic vectors of the orbits

of V under the automorphism group of T)
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