

POLYTOPES FROM COMBINATORICS

POLYTOPES \& COMBINATORICS

polytope $=$ convex hull of a finite set of \mathbb{R}^{d}
$=$ bounded intersection of finitely many half-spaces face $=$ intersection with a supporting hyperplane face lattice $=$ all the faces with their inclusion relations

Given a set of points, determine the face lattice of its convex hull.

Given a lattice, is there a polytope which realizes it?

PERMUTAHEDRON

PERMUTAHEDRON

PERMUTAHEDRON

ASSOCIAHEDRA

ASSOCIAHEDRON

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free sets of internal diagonals of a convex $(n+3)$-gon, ordered by reverse inclusion

VARIOUS ASSOCIAHEDRA

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free sets of internal diagonals of a convex $(n+3)$-gon, ordered by reverse inclusion

Lee ('89), Gel'fand-Kapranov-Zelevinski ('94), Billera-Filliman-Sturmfels ('90), ..., Ceballos-Santos-Ziegler ('11) Loday ('04), Hohlweg-Lange ('07), Hohlweg-Lange-Thomas ('12), P.-Santos ('12), P.-Stump ('12+), Lange-P. ('13+)

LODAY'S ASSOCIAHEDRON

Loday's associahedron $=\operatorname{conv}\{L(T) \mid T$ triangulation of the $(n+3)$-gon $\}$

$$
=\mathbb{H} \cap \bigcap_{\substack{\delta \text { diagonal } \\ \text { of the }(n+3) \text {-gon }}} \mathbf{H}^{\geq}(\delta)
$$

$$
L(T)=(\ell(T, j) \cdot r(T, j))_{j \in[n+1]} \quad \mathbf{H}^{\geq}(\delta)=\left\{\mathbf{x} \in \mathbb{R}^{n+1} \left\lvert\, \sum_{j \in B(\delta)} x_{j} \geq\binom{|B(\delta)|+1}{2}\right.\right\}
$$

LODAY'S ASSOCIAHEDRON

Loday, Realization of the Stasheff polytope ('04)

LODAY'S ASSOCIAHEDRON

Loday's associahedron $=\operatorname{conv}\{L(T) \mid T$ binary tree on $n+1$ nodes $\}$

$$
=\mathbb{H} \cap \bigcap_{\substack{I \text { interval } \\ \text { of }[n+1]}} \mathbf{H}^{\geq}(I)
$$

$$
L\left(T^{\prime}\right)-L(T) \in \mathbb{R}_{>0}\left(e_{i}-e_{j}\right)
$$

ASSOCIAHEDRON AND PERMUTAHEDRON

The associahedron is obtained from the permutahedron by removing facets

ASSOCIAHEDRON AND PERMUTAHEDRON

Relevant connections to combinatorial properties:

- the normal fan of $\operatorname{Perm}(n)$ refines that of Asso (P)
- it defines a surjection $\kappa: \mathfrak{S}_{n+1} \rightarrow$ \{triangulations $\}$ (connection to linear extensions and insertion in binary search trees)
- κ defines a lattice homomorphism from the weak order to the Tamari lattice

LODAY'S ASSOCIAHEDRON AND PERMUTAHEDRON

HOHLWEG \& LANGE'S ASSOCIAHEDRA

Can also replace Loday's $(n+3)$-gon by others. . .

... to obtain different realizations of the associahedron

Hohlweg-Lange, Realizations of the associahedron and cyclohedron ('07)

HOHLWEG \& LANGE'S ASSOCIAHEDRA

SPINES

Lange-P., Using spines to revisit a construction of the associahedron (' 13^{+})

Spines $=$ labeled and oriented dual binary trees

SPINES

Lange-P., Using spines to revisit a construction of the associahedron (' 13^{+})

REM. 1. Spines can be defined without their triangulations. . .

SPINES

Lange-P., Using spines to revisit a construction of the associahedron (' 13^{+})

REM. 1. Spines can be defined without their triangulations. . .
2. Alternative vertex description of Hohlweg-Lange's associahedra:
$\mathbf{a}(\mathrm{S})_{j}= \begin{cases}\mid\{\pi \text { maximal path in } \mathrm{S} \text { with } 2 \text { incoming arcs at } j\} \mid & \text { if } j \text { down } \\ n+2-\mid\{\pi \text { maximal path in } S \text { with } 2 \text { outgoing arcs at } j\} \mid & \text { if } j \text { up }\end{cases}$

SPINES

Lange-P., Using spines to revisit a construction of the associahedron ('13+)

REM. 1. Spines can be defined without their triangulations. . .
2. Alternative vertex description of Hohlweg-Lange's associahedra:
$\mathbf{a}(\mathrm{S})_{j}= \begin{cases}\mid\{\pi \text { path in } \mathrm{S} \text { not using the outgoing arc at } j\} \mid & \text { if } j \text { down } \\ n+2-\mid\{\pi \text { path in } S \text { not using the incomming arc at } j\} \mid & \text { if } j \text { up }\end{cases}$

GRAPH ASSOCIAHEDRA

NESTED COMPLEX AND GRAPH ASSOCIAHEDRON

G graph on ground set V
Tube on $V=$ connected induced subgraph of G
Compatible tubes $=$ nested, or disjoint and non-adjacent

Nested complex $\mathcal{N}(\mathrm{G})=$ simplicial complex of sets of pairwise compatible tubes $=$ clique complex of the compatibility relation on tubes

G -associahedron $=$ polytopal realization of the nested complex on G

EXM: NESTED COMPLEX

EXM: GRAPH ASSOCIAHEDRON

SPECIAL GRAPH ASSOCIAHEDRA

TWO QUESTIONS

Qu 1. Which graph associahedra can be realized by removahedra?

Lange-P., Which nestohedra are removahedra? (${ }^{\left(14^{+}\right)}$

Qu 2. Can we obtain distinct realizations of graph associahedra?

Yes for trees...

SIGNED TREE ASSOCIAHEDRON

SIGNED SPINES

T tree on the signed ground set $\mathrm{V}=\mathrm{V}^{-} \sqcup \mathrm{V}^{+}$(negative in white, positive in black)
Signed spine on $\mathrm{T}=$ directed and labeled tree S st
(i) the labels of the nodes of S form a partition of the signed ground set V
(ii) at a node of S labeled by $U=U^{-} \sqcup U^{+}$, the source label sets of the different incoming arcs are subsets of distinct connected components of $\mathrm{T} \backslash U^{-}$, while the sink label sets of the different outgoing arcs are subsets of distinct connected components of $\mathrm{T} \backslash U^{+}$

CONTRACTIONS AND SPINE COMPLEX

LEM. Contracting an arc in a signed spine on T leads to a new signed spine on T

LEM. Let S be a signed spine on T with a node labeled by a set U containing at least two elements. For any $u \in U$, there exists a signed spine on T whose nodes are labeled exactly as that of S , except that the label U is partitioned into $\{u\}$ and $U \backslash\{u\}$

CONTRACTIONS AND SPINE COMPLEX

LEM. Contracting an arc in a signed spine on T leads to a new signed spine on T

LEM. Let S be a signed spine on T with a node labeled by a set U containing at least two elements. For any $u \in U$, there exists a signed spine on T whose nodes are labeled exactly as that of S , except that the label U is partitioned into $\{u\}$ and $U \backslash\{u\}$

Signed spine complex $\mathcal{S}(\mathrm{T})=$ simplicial complex whose inclusion poset is isomorphic to the poset of edge contractions on the signed spines of T

CORO. The signed spine complex $\mathcal{S}(\mathrm{T})$ is a pure simplicial complex of rank $|\mathrm{V}|$

BRAID FAN

Braid arrangement on $\mathbb{R}^{\mathrm{V}}=$ collection of hyperplanes $\left\{\mathbf{x} \in \mathbb{R}^{\mathrm{V}} \mid x_{u}=x_{v}\right\}$ for $u \neq v \in \mathrm{~V}$ Braid fan $\mathcal{B F}=$ complete simplicial fan defined by the braid arrangement on

$$
\mathbb{H}:=\left\{\mathbf{x} \in \mathbb{R}^{\mathrm{V}} \left\lvert\, \sum_{v \in \mathrm{~V}} x_{v}=\binom{|\mathrm{V}|+1}{2}\right.\right\}
$$

SPINE FAN

For S spine on T , define $\mathrm{C}(\mathrm{S}):=\left\{\mathbf{x} \in \mathbb{H} \mid x_{u} \leq x_{v}\right.$, for all arcs $u \rightarrow v$ in S$\}$

THEO. The collection of cones $\mathcal{F}(\mathrm{T}):=\{\mathrm{C}(\mathrm{S}) \mid \mathrm{S} \in \mathcal{S}(\mathrm{T})\}$ defines a complete simplicial fan on \mathbb{H}, which we call the spine fan

CORO. For any signed tree T, the signed nested complex $\mathcal{N}(T)$ is a simplicial sphere

SIGNED TREE ASSOCIAHEDRON

Signed tree associahedron Asso(T) = convex polytope with
(i) a vertex $\mathbf{a}(\mathrm{S}) \in \mathbb{R}^{V}$ for each maximal signed spine $\mathrm{S} \in \mathcal{S}(\mathrm{T})$, with coordinates

$$
\mathbf{a}(\mathrm{S})_{v}= \begin{cases}\mid\left\{\pi \in \Pi(\mathrm{S}) \mid v \in \pi \text { and } r_{v} \notin \pi\right\} \mid & \text { if } v \in \mathrm{~V}^{-} \\ |\mathrm{V}|+1-\mid\left\{\pi \in \Pi(\mathrm{S}) \mid v \in \pi \text { and } r_{v} \notin \pi\right\} \mid & \text { if } v \in \mathrm{~V}^{+}\end{cases}
$$

where $r_{v}=$ unique incoming (resp. outgoing) arc when $v \in \mathrm{~V}^{-}$(resp. when $v \in \mathrm{~V}^{+}$) $\Pi(S)=$ set of all (undirected) paths in S, including the trivial paths
(ii) a facet defined by the half-space

$$
\mathbf{H}^{\geq}(B):=\left\{\mathbf{x} \in \mathbb{R}^{\mathrm{V}} \left\lvert\, \sum_{v \in B} x_{v} \geq\binom{|B|+1}{2}\right.\right\}
$$

for each signed building block $B \in \mathcal{B}(\mathrm{~T})$

EXM: VERTEX DESCRIPTION

EXM: FACET DESCRIPTION

MAIN RESULT

THM. The spine fan $\mathcal{F}(\mathrm{T})$ is the normal fan of the signed tree associahedron Asso(T), defined equivalently as
(i) the convex hull of the points

$$
\mathbf{a}(\mathrm{S})_{v}= \begin{cases}\mid\left\{\pi \in \Pi(\mathrm{S}) \mid v \in \pi \text { and } r_{v} \notin \pi\right\} \mid & \text { if } v \in \mathrm{~V}^{-} \\ |\mathrm{V}|+1-\mid\left\{\pi \in \Pi(\mathrm{S}) \mid v \in \pi \text { and } r_{v} \notin \pi\right\} \mid & \text { if } v \in \mathrm{~V}^{+}\end{cases}
$$

for all maximal signed spines $\mathrm{S} \in \mathcal{S}(\mathrm{T})$
(ii) the intersection of the hyperplane \mathbb{H} with the half-spaces

$$
\mathbf{H}^{\geq}(B):=\left\{\mathbf{x} \in \mathbb{R}^{\mathrm{V}} \left\lvert\, \sum_{v \in B} x_{v} \geq\binom{|B|+1}{2}\right.\right\}
$$

for all signed building blocks $B \in \mathcal{B}(\mathrm{~T})$

CORO. The signed tree associahedron Asso(T) realizes the signed nested complex $\mathcal{N}(\mathrm{T})$

SKETCH OF THE PROOF

STEP 1. We have

$$
\sum_{v \in \mathrm{~V}} \mathbf{a}(\mathrm{~S})_{v}=\binom{|\mathrm{V}|+1}{2} \quad \text { and } \quad \sum_{v \in \operatorname{sc}(r)} \mathbf{a}(\mathrm{S})_{v}=\binom{|\mathrm{sc}(r)|+1}{2}
$$

for any arc r of S . In other words, "each vertex $\mathbf{a}(\mathrm{S})$ belongs to the hyperplanes $\mathbf{H}^{=}(B)$ it is supposed to". Proof by double counting

SKETCH OF THE PROOF

STEP 1. We have

$$
\sum_{v \in \mathrm{~V}} \mathbf{a}(\mathrm{~S})_{v}=\binom{|\mathrm{V}|+1}{2} \quad \text { and } \quad \sum_{v \in \operatorname{sc}(r)} \mathbf{a}(\mathrm{S})_{v}=\binom{|\mathrm{sc}(r)|+1}{2}
$$

for any arc r of S . In other words, "each vertex $\mathbf{a}(\mathrm{S})$ belongs to the hyperplanes $\mathbf{H}^{=}(B)$ it is supposed to". Proof by double counting

STEP 2. If S and S^{\prime} are two adjacent maximal spines on T, such that S^{\prime} is obtained from S by flipping an arc joining node u to node v, then

$$
\mathbf{a}\left(S^{\prime}\right)-\mathbf{a}(S) \in \mathbb{R}_{>0} \cdot\left(e_{u}-e_{v}\right)
$$

$$
\mathbf{a}\left(\mathrm{S}^{\prime}\right)-\mathbf{a}(\mathrm{S})=(|U|+1) \cdot(|V|+1) \cdot\left(e_{u}-e_{v}\right)
$$

SKETCH OF THE PROOF

STEP 1. We have

$$
\sum_{v \in \mathrm{~V}} \mathbf{a}(\mathrm{~S})_{v}=\binom{|\mathrm{V}|+1}{2} \quad \text { and } \quad \sum_{v \in \operatorname{sc}(r)} \mathbf{a}(\mathrm{S})_{v}=\binom{|\mathrm{sc}(r)|+1}{2}
$$

for any arc r of S . In other words, "each vertex $\mathbf{a}(\mathrm{S})$ belongs to the hyperplanes $\mathbf{H}^{=}(B)$ it is supposed to". Proof by double counting

STEP 2. If S and S^{\prime} are two adjacent maximal spines on T, such that S^{\prime} is obtained from S by flipping an arc joining node u to node v, then

$$
\mathbf{a}\left(S^{\prime}\right)-\mathbf{a}(S) \in \mathbb{R}_{>0} \cdot\left(e_{u}-e_{v}\right)
$$

STEP 3. A general theorem concerning realizations of simplicial fan by polytopes In other words, a characterization of when is a simplicial fan regular

Hohlweg-Lange-Thomas, Permutahedra and generalized associahedra ('11) De Loera-Rambau-Santos, Triangulations: Structures for Algorithms and Applications ('10)

FURTHER GEOMETRIC PROPERTIES

PROP. The signed tree associahedron Asso(T) is sandwiched between the permutahedron $\operatorname{Perm}(\mathrm{V})$ and the parallelepiped $\operatorname{Para}(\mathrm{T})$

$$
\sum_{u \neq v \in \mathrm{~V}}\left[e_{u}, e_{v}\right]=\operatorname{Perm}(\mathrm{T}) \quad \subset \quad \operatorname{Asso}(\mathrm{T}) \quad \subset \quad \operatorname{Para}(\mathrm{T})=\sum_{u \leftarrow v \in \mathrm{~T}} \pi(u-v) \cdot\left[e_{u}, e_{v}\right]
$$

FURTHER GEOMETRIC PROPERTIES

PROP. The signed tree associahedron Asso(T) is sandwiched between the permutahedron $\operatorname{Perm}(\mathrm{V})$ and the parallelepiped $\operatorname{Para}(\mathrm{T})$

$$
\sum_{u \neq v \in \mathrm{~V}}\left[e_{u}, e_{v}\right]=\operatorname{Perm}(\mathrm{T}) \quad \subset \quad \operatorname{Asso}(\mathrm{T}) \quad \subset \quad \operatorname{Para}(\mathrm{T})=\sum_{u-v \in \mathrm{~T}} \pi(u-v) \cdot\left[e_{u}, e_{v}\right]
$$

Common vertices of Asso(T) and $\operatorname{Para}(\mathrm{T}) \equiv$ orientations of T which are spines on T Common vertices of Asso(T$)$ and Perm $(\mathrm{T}) \equiv$ linear orders on V which are spines on T \Rightarrow no common vertex of the three polytopes except if T is a signed path

FURTHER GEOMETRIC PROPERTIES

PROP. The signed tree associahedron Asso(T) is sandwiched between the permutahedron $\operatorname{Perm}(\mathrm{V})$ and the parallelepiped $\operatorname{Para}(\mathrm{T})$

$$
\sum_{u \neq v \in \mathrm{~V}}\left[e_{u}, e_{v}\right]=\operatorname{Perm}(\mathrm{T}) \quad \subset \quad \operatorname{Asso}(\mathrm{T}) \quad \subset \quad \operatorname{Para}(\mathrm{T})=\sum_{u-v \in \mathrm{~T}} \pi(u-v) \cdot\left[e_{u}, e_{v}\right]
$$

Common vertices of Asso(T) and $\operatorname{Para}(\mathrm{T}) \equiv$ orientations of T which are spines on T Common vertices of Asso(T$)$ and Perm $(\mathrm{T}) \equiv$ linear orders on V which are spines on T \Rightarrow no common vertex of the three polytopes except if T is a signed path

PROP. Asso(T) and Asso $\left(\mathrm{T}^{\prime}\right)$ isometric $\Longleftrightarrow \mathrm{T}$ and T^{\prime} isomorphic or anti-isomorphic, up to the sign of their leaves, ie. \exists bijection $\theta: \mathrm{V} \rightarrow \mathrm{V}^{\prime}$ st. $\forall u, v \in \mathrm{~V}$

- $u-v$ edge in $\mathrm{T} \Longleftrightarrow \theta(u)-\theta(v)$ edge in T^{\prime}
- if u is not a leaf of T, the signs of u and $\theta(u)$ coincide (resp. are opposite)

FURTHER GEOMETRIC PROPERTIES

PROP. The signed tree associahedron Asso(T) is sandwiched between the permutahedron $\operatorname{Perm}(\mathrm{V})$ and the parallelepiped Para(T)

$$
\sum_{u \neq v \in \mathrm{~V}}\left[e_{u}, e_{v}\right]=\operatorname{Perm}(\mathrm{T}) \quad \subset \quad \operatorname{Asso}(\mathrm{T}) \quad \subset \quad \operatorname{Para}(\mathrm{T})=\sum_{u-v \in \mathrm{~T}} \pi(u-v) \cdot\left[e_{u}, e_{v}\right]
$$

Common vertices of Asso(T) and $\operatorname{Para}(\mathrm{T}) \equiv$ orientations of T which are spines on T Common vertices of Asso(T$)$ and Perm $(\mathrm{T}) \equiv$ linear orders on V which are spines on T \Rightarrow no common vertex of the three polytopes except if T is a signed path

PROP. Asso(T) and Asso $\left(\mathrm{T}^{\prime}\right)$ isometric $\Longleftrightarrow \mathrm{T}$ and T^{\prime} isomorphic or anti-isomorphic, up to the sign of their leaves, ie. \exists bijection $\theta: \mathrm{V} \rightarrow \mathrm{V}^{\prime}$ st. $\forall u, v \in \mathrm{~V}$

- $u-v$ edge in $\mathrm{T} \Longleftrightarrow \theta(u)-\theta(v)$ edge in T^{\prime}
- if u is not a leaf of T, the signs of u and $\theta(u)$ coincide (resp. are opposite)

REM. The vertex barycenter of Asso(T) does not necessarily coincide with that of the permutahedron (but it lies on the linear span of the characteristic vectors of the orbits of V under the automorphism group of T)
arXiv:1309.5222

THANK YOU

