

Signaletic operads

F. HIVERT (Univ. Paris Saclay)

V. PILAUD (CNRS & École Polytechnique)

slides: http://www.lri.fr/~hivert/FPSAC20.pdf
preprint: https://arxiv.org/pdf/1906.02228.pdf

Recall the classical shuffle:

 $12 \sqcup 231 = \{12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312\}$

 $\underbrace{ \begin{array}{c} \underline{\mathsf{shuffle}} \\ \sigma_1 \dots \sigma_m \amalg \tau_1 \dots \tau_n \end{array} = \begin{array}{c} \sigma_1 \dots \sigma_m \prec \tau_1 \dots \tau_n \\ = \end{array} \underbrace{ \begin{array}{c} \sigma_1 \dots \sigma_m \prec \tau_1 \dots \tau_n \end{array}}_{\tau_1 \dots \tau_n} \\ \cup \\ \sigma_1 \dots \sigma_m \sqcup \tau_1 \dots \tau_n \end{array} \\ \underbrace{ \begin{array}{c} \sigma_1 \dots \sigma_m \sqcup \tau_1 \dots \tau_n \end{array}}_{\tau_1 \dots \tau_n} \\ \end{array}$

Dendriform relations:

 $a \prec (b \sqcup c) = (a \prec b) \prec c \qquad a \succ (b \succ c) = (a \sqcup b) \succ c$ $a \prec (b \prec c) + a \prec (b \succ c) = (a \prec b) \prec c \qquad a \succ (b \prec c) = (a \succ b) \prec c \qquad a \succ (b \succ c) = (a \prec b) \succ c + (a \succ b) \succ c$ $\overrightarrow{(\prec)} + \overrightarrow{(\prec)} = \overrightarrow{(\prec)} \qquad \overrightarrow{(\neg)} = \overrightarrow{(\neg)} = \overrightarrow{(\neg)} \qquad \overrightarrow{(\neg)} = \overrightarrow{(\neg$

OPERADS AND SYNTAX TREES

operad = algebraic structure abstracting a type of algebras

= graded vector space of <u>operations</u> $\mathcal{O} = \bigoplus_{p \ge 1} \mathcal{O}(p)$ with a <u>unit</u> $\mathbb{1} \in \mathcal{O}(1)$ and <u>partial compositions</u> $\circ_i : \mathcal{O}(p) \otimes \mathcal{O}(q) \to \mathcal{O}(p+q-1)$ for $p, q \ge 1$ and $i \in [p]$ such that for all $\mathfrak{p} \in \mathcal{O}(p), \mathfrak{q} \in \mathcal{O}(q), \mathfrak{r} \in \mathcal{O}(r)$:

(unitality)	$1\!\!1\circ_1\mathfrak{p}=\mathfrak{p}=\mathfrak{p}\circ_i1\!\!1$	for all $i \in [p]$,
(series composition)	$(\mathfrak{p} \circ_i \mathfrak{q}) \circ_{i+j-1} \mathfrak{r} = \mathfrak{p} \circ_i (\mathfrak{q} \circ_j \mathfrak{r})$	for all $i \in [p], j \in [q],$
(parallel composition)	$(\mathfrak{p} \circ_i \mathfrak{q}) \circ_{j+q-1} \mathfrak{r} = (\mathfrak{p} \circ_j \mathfrak{r}) \circ_i \mathfrak{q}$	for all $i < j \in [p]$.

Hilbert series =
$$\sum_{p\geq 1} \dim \mathcal{O}(p) t^p$$

 $\underline{\mathsf{free}\ \mathsf{operad}} = \mathsf{syntax}\ \mathsf{trees}\ \mathsf{on}\ \mathcal{O}(1)\ \mathsf{with}\ \mathsf{grafting}$

OPERADS AND SYNTAX TREES

 \underline{operad} = algebraic structure abstracting a type of algebras

= graded vector space of <u>operations</u> $\mathcal{O} = \bigoplus_{p \ge 1} \mathcal{O}(p)$ with a <u>unit</u> $\mathbb{1} \in \mathcal{O}(1)$ and <u>partial compositions</u> $\circ_i : \mathcal{O}(p) \otimes \mathcal{O}(q) \to \mathcal{O}(p+q-1)$ for $p, q \ge 1$ and $i \in [p]$ such that for all $\mathfrak{p} \in \mathcal{O}(p), \mathfrak{q} \in \mathcal{O}(q), \mathfrak{r} \in \mathcal{O}(r)$:

(unitality)	$\mathbbm{1}\circ_1\mathfrak{p}=\mathfrak{p}=\mathfrak{p}\circ_i\mathbbm{1}$	for all $i \in [p]$,
(series composition)	$(\mathfrak{p} \circ_i \mathfrak{q}) \circ_{i+j-1} \mathfrak{r} = \mathfrak{p} \circ_i (\mathfrak{q} \circ_j \mathfrak{r})$	for all $i \in [p], j \in [q],$
(parallel composition)	$(\mathfrak{p} \circ_i \mathfrak{q}) \circ_{j+q-1} \mathfrak{r} = (\mathfrak{p} \circ_j \mathfrak{r}) \circ_i \mathfrak{q}$	for all $i < j \in [p]$.

Hilbert series =
$$\sum_{p\geq 1} \dim \mathcal{O}(p) t^p$$

free operad = syntax trees on $\mathcal{O}(1)$ with grafting

Any operad is a quotient of the free operad compatible with grafting

<u>quadratic rewriting rule</u> = rewrites a syntax tree on two nodes into a linear combination of syntax trees on two nodes:

... used internally in a syntax tree:

normal form = unrewritable syntax tree

 $\underline{convergent rewriting system} = any syntax trees rewrites as a unique linear combination of normal forms$

KOSZUL DUALITY

 $\underline{\mathsf{Koszul operad}} = \operatorname{admits} a$ quadratic presentation whose relations can be oriented to obtain a convergent rewriting system

<u>Koszul dual</u> $\mathcal{O}^!$ = operad presented by relations given the orthogonal complement of the relations of \mathcal{O} for the scalar product defined by

$$\langle \mathfrak{a} \circ_i \mathfrak{b} | \mathfrak{c} \circ_j \mathfrak{d} \rangle = \begin{cases} 1 & \text{if } i = j = 1 \\ -1 & \text{if } i = j = 2 \\ 0 & \text{otherwise} \end{cases}$$

DEF. diassociative operad = quadratic operad over $\{\prec, \succ\}$ defined by:

KOSZUL DUALITY

 $\underline{\mathsf{Koszul operad}} = \operatorname{admits} a$ quadratic presentation whose relations can be oriented to obtain a convergent rewriting system

Koszul dual $\mathcal{O}^!$ = operad presented by relations given the orthogonal complement of the relations of \mathcal{O} for the scalar product defined by

$$\langle \mathfrak{a} \circ_i \mathfrak{b} | \mathfrak{c} \circ_j \mathfrak{d} \rangle = \begin{cases} 1 & \text{if } i = j = 1 \\ -1 & \text{if } i = j = 2 \\ 0 & \text{otherwise} \end{cases}$$

PROP. The Hilbert series of two Koszul dual Koszul operads \mathcal{O} and $\mathcal{O}^!$ are related by Lagrange inversion:

$$\mathcal{H}_{\mathcal{O}}(-\mathcal{H}_{\mathcal{O}^{!}}(-t)) = t$$

exm: dendriform and diassociative operads

$$\mathcal{H}_{\mathsf{Dend}}(t) = \sum_{p \ge 1} C_p t^p = \frac{1 - \sqrt{1 - 4t}}{2t} - 1 \quad \text{and} \quad \mathcal{H}_{\mathsf{Diass}}(t) = \sum_{p \ge 1} p t^p = \frac{t}{(1 - t)^2},$$

where $C_p = \frac{1}{p+1} \binom{2p}{p} = p$ -th Catalan number

SIGNALETIC INTERPRETATION OF DIASSOCIATIVE OPERAD

Signaletic interpretation

- a binary road
- \prec and \succ signals at each branching node
- a cyclist follows the signals

two signaletic trees are equivalent \iff the cyclist reaches the same destination

Hilbert series
$$\mathcal{H}_{\text{Diass}}(t) = \sum_{p \ge 1} p t^p = \frac{t}{(1-t)^2}$$

(in arity p, there are p possible destinations)

(*i*th cyclist follows leftmost remaining signal and erases it)

THM. Both parallel and series k-signaletic operads are quadratic and Koszul. Therefore, they admit a presentation by the quadratic parallel and series k-signaletic relations (same k-destination vector)

exm: series 2-signaletic relations

THM. Both parallel and series k-signaletic operads are quadratic and Koszul. Therefore, they admit a presentation by the quadratic parallel and series k-signaletic relations (same k-destination vector)

PROP. The Hilbert series of both parallel and series k-signaletic operads are

$$\mathcal{H}(t) = \sum_{p \ge 1} p^k t^p = \frac{1}{(1-t)^{k+1}} \sum_{p \ge 0} \left\langle {}^k_p \right\rangle t^p$$

where $\langle {}^k_p \rangle$ is the number of permutations of \mathfrak{S}_k with p descents (Eulerian numbers)

THM. Both parallel and series k-signaletic operads are quadratic and Koszul. Therefore, they admit a presentation by the quadratic parallel and series k-signaletic relations (same k-destination vector)

PROP. The Hilbert series of both parallel and series k-signaletic operads are

$$\mathcal{H}(t) = \sum_{p \ge 1} p^k t^p = \frac{1}{(1-t)^{k+1}} \sum_{p \ge 0} \left\langle {}_p^k \right\rangle t^p$$

where ${k \choose p}$ is the number of permutations of \mathfrak{S}_k with p descents (Eulerian numbers)

DEF. k-citelangis operad = Koszul dual of k-signaletic operad

CITELANGIS OPERADS : A COMBINATORIAL MODEL

d(n,p) =dimension of degree p component of k-citelangis operad =

$k \backslash p$	1	2	3	4	5	6	7	8	OEIS ref
1	1	2	5	14	42	132	429	1430	A000108
2	1	4	23	156	1162	9192	75819	644908	A007297
3	1	8	101	1544	26190	474144	8975229	175492664	A291536
4	1	16	431	14256	525682	20731488	855780699	36512549680	
5	1	32	1805	125984	9825222	820259712	71710602189	6481491238880	

CITELANGIS OPERADS : A COMBINATORIAL MODEL

d(n,p) =dimension of degree p component of k-citelangis operad =

k ackslash p	1	2	3	4	5	6	7	8	OEIS ref
1	1	2	5	14	42	132	429	1430	A000108
2	1	4	23	156	1162	9192	75819	644908	A007297
3	1	8	101	1544	26190	474144	8975229	175492664	A291536
4	1	16	431	14256	525682	20731488	855780699	36512549680	
5	1	32	1805	125984	9825222	820259712	71710602189	6481491238880	

DEF. A k-permutation is <u>fully</u> k-cuttable if its restriction to any interval (or equivalently any subset) of [n] of size at least 2 has a k-cut

exm: a 3-permutation of degree 5:355112122433445it has a 3-cut:XX112122433445its restriction to [1,2,3] also has a 3-cut:XX2122its restriction to [3,4,5] also has a 3-cut:XX2122The restriction to [1,2] also has a 3-cut:XX2122

CITELANGIS OPERADS : A COMBINATORIAL MODEL

d(n,p) =dimension of degree p component of k-citelangis operad =

k ackslash p	1	2	3	4	5	6	7	8	OEIS ref
1	1	2	5	14	42	132	429	1430	A000108
2	1	4	23	156	1162	9192	75819	644908	A007297
3	1	8	101	1544	26190	474144	8975229	175492664	A291536
4	1	16	431	14256	525682	20731488	855780699	36512549680	
5	1	32	1805	125984	9825222	820259712	71710602189	6481491238880	

DEF. A k-permutation is <u>fully</u> k-cuttable if its restriction to any interval (or equivalently any subset) of [n] of size at least 2 has a k-cut

THM. d(n, p) = number of fully k-cutable k-permutations of degree p

Idea: action on k-permutations + leading term