

Signaletic operads

F. HIVERT

(Univ. Paris Saclay)

V. PILAUD

(CNRS \& École Polytechnique)

\pm
slides: http://www.lri.fr/~hivert/FPSAC20.pdf preprint: https://arxiv.org/pdf/1906.02228.pdf

SHUFFLE PRODUCT AND DENDRIFORM CALCULUS

Recall the classical shuffle:
12 Ш $231=\{12453,14253,14523,14532,41253,41523,41532,45123,45132,45312\}$

> shuffle
dendriform operators

$$
\begin{aligned}
\sigma_{1} \ldots \sigma_{m} \amalg \tau_{1} \ldots \tau_{n} & =\sigma_{1} \ldots \sigma_{m} \prec \tau_{1} \ldots \tau_{n} \quad \cup \quad \sigma_{1} \ldots \sigma_{m} \succ \tau_{1} \ldots \tau_{n} \\
& =\sigma_{1}\left(\sigma_{2} \ldots \sigma_{m} \amalg \tau_{1} \ldots \tau_{n}\right) \quad \cup \quad \tau_{1}\left(\sigma_{1} \ldots \sigma_{m} \amalg \tau_{2} \ldots \tau_{n}\right)
\end{aligned}
$$

Dendriform relations:

$$
\begin{array}{rlrl}
a \prec(b \amalg c) & =(a \prec b) \prec c & & a \succ(b \succ c)= \\
a \prec(b \prec c)+a \prec(b \succ c) & =(a \prec b) \prec c & a \succ(b \prec c)=(a \succ b) \prec c & \\
a \succ(b \succ c)=(a \prec b) \succ c+(a \succ b) \succ c
\end{array}
$$

OPERADS AND SYNTAX TREES

operad $=$ algebraic structure abstracting a type of algebras
$=$ graded vector space of operations $\mathcal{O}=\oplus_{p \geq 1} \mathcal{O}(p)$ with a unit $\mathbb{1} \in \mathcal{O}(1)$ and partial compositions $\mathrm{o}_{i}: \mathcal{O}(p) \otimes \mathcal{O}(q) \rightarrow \mathcal{O}(p+q-1)$ for $p, q \geq 1$ and $i \in[p]$ such that for all $\mathfrak{p} \in \mathcal{O}(p), \mathfrak{q} \in \mathcal{O}(q), \mathfrak{r} \in \mathcal{O}(r)$:

(unitality)	$\mathbb{1} \circ_{1} \mathfrak{p}=\mathfrak{p}=\mathfrak{p} \circ_{i} \mathbb{1}$	for all $i \in[p]$,
(series composition)	$\left(\mathfrak{p} \circ_{i} \mathfrak{q}\right) \circ_{i+j-1} \mathfrak{r}=\mathfrak{p} \circ_{i}\left(\mathfrak{q} \circ_{j} \mathfrak{r}\right)$	for all $i \in[p], j \in[q]$,
(parallel composition)	$\left(\mathfrak{p} \circ_{i} \mathfrak{q}\right) \circ_{j+q-1} \mathfrak{r}=\left(\mathfrak{p} \circ_{j} \mathfrak{r}\right) \circ_{i} \mathfrak{q}$	for all $i<j \in[p]$.

Hilbert series $=\sum_{p \geq 1} \operatorname{dim} \mathcal{O}(p) t^{p}$
free operad $=$ syntax trees on $\mathcal{O}(1)$ with grafting

OPERADS AND SYNTAX TREES

operad $=$ algebraic structure abstracting a type of algebras
$=$ graded vector space of operations $\mathcal{O}=\oplus_{p \geq 1} \mathcal{O}(p)$ with a unit $\mathbb{1} \in \mathcal{O}(1)$ and partial compositions $\mathrm{o}_{i}: \mathcal{O}(p) \otimes \mathcal{O}(q) \rightarrow \mathcal{O}(p+q-1)$ for $p, q \geq 1$ and $i \in[p]$ such that for all $\mathfrak{p} \in \mathcal{O}(p), \mathfrak{q} \in \mathcal{O}(q), \mathfrak{r} \in \mathcal{O}(r)$:
(unitality)
(series composition)
(parallel composition)

$$
\mathbb{1} \circ_{1} \mathfrak{p}=\mathfrak{p}=\mathfrak{p} \circ_{i} \mathbb{1}
$$

$$
\left(\mathfrak{p} \circ_{i} \mathfrak{q}\right) \circ_{i+j-1} \mathfrak{r}=\mathfrak{p} \circ_{i}\left(\mathfrak{q} \circ_{j} \mathfrak{r}\right)
$$

$$
\left(\mathfrak{p} \circ_{i} \mathfrak{q}\right) \circ_{j+q-1} \mathfrak{r}=\left(\mathfrak{p} \circ_{j} \mathfrak{r}\right) \circ_{i} \mathfrak{q}
$$

for all $i \in[p]$, for all $i \in[p], j \in[q]$, for all $i<j \in[p]$.
$\underline{\text { Hilbert series }}=\sum_{p \geq 1} \operatorname{dim} \mathcal{O}(p) t^{p}$
free operad $=$ syntax trees on $\mathcal{O}(1)$ with grafting

series composition

parallel composition

OPERADS AND SYNTAX TREES

Any operad is a quotient of the free operad compatible with grafting quadratic rewriting rule $=$ rewrites a syntax tree on two nodes into a linear combination of syntax trees on two nodes:

... used internally in a syntax tree:

normal form $=$ unrewritable syntax tree
convergent rewriting system $=$ any syntax trees rewrites as a unique linear combination of normal forms

KOSZUL DUALITY

Koszul operad $=$ admits a quadratic presentation whose relations can be oriented to obtain a convergent rewriting system

Koszul dual $\mathcal{O}^{!}=$operad presented by relations given the orthogonal complement of the relations of \mathcal{O} for the scalar product defined by

$$
\left\langle\mathfrak{a} \circ_{i} \mathfrak{b} \mid \mathfrak{c} \circ_{j} \mathfrak{d}\right\rangle= \begin{cases}1 & \text { if } i=j=1 \\ -1 & \text { if } i=j=2 \\ 0 & \text { otherwise }\end{cases}
$$

DEF. dendriform operad $=$ quadratic operad over $\{\prec, \succ\}$ defined by:

DEF. diassociative operad $=$ quadratic operad over $\{\prec, \succ\}$ defined by:

$$
\begin{aligned}
& \begin{array}{c}
\begin{array}{l}
\succ \\
\succ \\
\succ \\
\succ
\end{array}=\begin{array}{l}
\succ \\
\succ
\end{array}
\end{array}
\end{aligned}
$$

KOSZUL DUALITY

Koszul operad $=$ admits a quadratic presentation whose relations can be oriented to obtain a convergent rewriting system

Koszul dual $\mathcal{O}^{!}=$operad presented by relations given the orthogonal complement of the relations of \mathcal{O} for the scalar product defined by

$$
\left\langle\mathfrak{a} \circ_{i} \mathfrak{b} \mid \mathfrak{c} \circ_{j} \mathfrak{d}\right\rangle= \begin{cases}1 & \text { if } i=j=1 \\ -1 & \text { if } i=j=2 \\ 0 & \text { otherwise }\end{cases}
$$

PROP. The Hilbert series of two Koszul dual Koszul operads \mathcal{O} and \mathcal{O} ! are related by Lagrange inversion:

$$
\mathcal{H}_{\mathcal{O}}\left(-\mathcal{H}_{\mathcal{O}^{!}}(-t)\right)=t
$$

exm: dendriform and diassociative operads

$$
\mathcal{H}_{\text {Dend }}(t)=\sum_{p \geq 1} C_{p} t^{p}=\frac{1-\sqrt{1-4 t}}{2 t}-1 \quad \text { and } \quad \mathcal{H}_{\text {Diass }}(t)=\sum_{p \geq 1} p t^{p}=\frac{t}{(1-t)^{2}},
$$

where $C_{p}=\frac{1}{p+1}\binom{2 p}{p}=p$-th Catalan number

SIGNALETIC INTERPRETATION OF DIASSOCIATIVE OPERAD

DEF. diassociative operad $=$ quadratic operad over $\{\prec, \succ\}$ defined by:

Signaletic interpretation

- a binary road
- \prec and \succ signals at each branching node
- a cyclist follows the signals
two signaletic trees are equivalent the cyclist reaches the same destination

Hilbert series $\mathcal{H}_{\text {Diass }}(t)=\sum_{p \geq 1} p t^{p}=\frac{t}{(1-t)^{2}}$
(in arity p, there are p possible destinations)

SIGNALETIC OPERADS

k-Signaletic operad

- a binary road
- signals in $\{\prec, \succ\}^{k}$ on nodes
- k cyclists follow the signals...

k-signaletic trees are equivalent \Longleftrightarrow the cyclists reach the same destinations (same destination vector)

(i th cyclist follows leftmost remaining signal and erases it)

SIGNALETIC OPERADS

THM. Both parallel and series k-signaletic operads are quadratic and Koszul.
Therefore, they admit a presentation by the quadratic parallel and series k-signaletic relations (same k-destination vector)
exm: series 2-signaletic relations

SIGNALETIC OPERADS

THM. Both parallel and series k-signaletic operads are quadratic and Koszul.
Therefore, they admit a presentation by the quadratic parallel and series k-signaletic relations (same k-destination vector)

PROP. The Hilbert series of both parallel and series k-signaletic operads are

$$
\mathcal{H}(t)=\sum_{p \geq 1} p^{k} t^{p}=\frac{1}{(1-t)^{k+1}} \sum_{p \geq 0}\left\langle\begin{array}{l}
k \\
p
\end{array} t^{p}\right.
$$

where $\left\langle\begin{array}{l}k \\ p\end{array}\right\rangle$ is the number of permutations of \mathfrak{S}_{k} with p descents (Eulerian numbers)

SIGNALETIC OPERADS

THM. Both parallel and series k-signaletic operads are quadratic and Koszul.
Therefore, they admit a presentation by the quadratic parallel and series k-signaletic relations (same k-destination vector)

PROP. The Hilbert series of both parallel and series k-signaletic operads are

$$
\mathcal{H}(t)=\sum_{p \geq 1} p^{k} t^{p}=\frac{1}{(1-t)^{k+1}} \sum_{p \geq 0}\left\langle\begin{array}{l}
k \\
p
\end{array}\right\rangle t^{p}
$$

where $\left\langle\begin{array}{l}k \\ p\end{array}\right\rangle$ is the number of permutations of \mathfrak{S}_{k} with p descents (Eulerian numbers)

DEF. k-citelangis operad $=$ Koszul dual of k-signaletic operad

CITELANGIS OPERADS : A COMBINATORIAL MODEL

$d(n, p)=$ dimension of degree p component of k-citelangis operad $=$

$k \backslash p$	1	2	3	4	5	6	7	8	OEIS ref
1	1	2	5	14	42	132	429	1430	A000108
2	1	4	23	156	1162	9192	75819	644908	A007297
3	1	8	101	1544	26190	474144	8975229	175492664	A291536
4	1	16	431	14256	525682	20731488	855780699	36512549680	-
5	1	32	1805	125984	9825222	820259712	71710602189	6481491238880	-

CITELANGIS OPERADS ：A COMBINATORIAL MODEL

$d(n, p)=$ dimension of degree p component of k－citelangis operad $=$

$k \backslash p$	1	2	3	4	5	6	7	8	OEIS ref
1	1	2	5	14	42	132	429	1430	A000108
2	1	4	23	156	1162	9192	75819	644908	A007297
3	1	8	101	1544	26190	474144	8975229	175492664	A291536
4	1	16	431	14256	525682	20731488	855780699	36512549680	-
5	1	32	1805	125984	9825222	820259712	71710602189	6481491238880	-

DEF．A k－permutation is fully k－cuttable if its restriction to any interval（or equivalently any subset）of $[n]$ of size at least 2 has a k－cut
exm：a 3 －permutation of degree 5 ：
it has a 3 －cut：
its restriction to $[1,2,3]$ also has a 3 －cut：
its restriction to $[3,4,5]$ also has a 3 －cut：
The restriction to $[1,2]$ also has a 3 －cut：

355112122433445
女 W $5112122 \mid 433445$
＊不2122｜33
女 鸟 $43344 \mid 5$
स $\mathbb{A} \mathbb{A} 1 \mid 22$

CITELANGIS OPERADS : A COMBINATORIAL MODEL

$d(n, p)=$ dimension of degree p component of k-citelangis operad $=$

$k \backslash p$	1	2	3	4	5	6	7	8	OEIS ref
1	1	2	5	14	42	132	429	1430	A000108
2	1	4	23	156	1162	9192	75819	644908	A007297
3	1	8	101	1544	26190	474144	8975229	175492664	A291536
4	1	16	431	14256	525682	20731488	855780699	36512549680	-
5	1	32	1805	125984	9825222	820259712	71710602189	6481491238880	-

DEF. A k-permutation is fully k-cuttable if its restriction to any interval (or equivalently any subset) of $[n]$ of size at least 2 has a k-cut

THM. $d(n, p)=$ number of fully k-cutable k-permutations of degree p
Idea: action on k-permutations + leading term

