Shard polytopes

A. PADROL V. PILAUD J.RITTER

(Sorbonne Université) (CNRS & Ecole Polytechnique) (Ecole Polytechnique)

@O

Q@Q - o

Séminaire AGATA, Montpellier
Thursday December 10th, 2020

slides available at: http://www.lix.polytechnique.fr/“pilaud/documents/presentations/shardPolytopes.pdf
preprint available at: http://www.arxiv.org/abs/2007.01008


http://www.lix.polytechnique.fr/~pilaud/documents/presentations/shardPolytopes.pdf
http://www.arxiv.org/abs/2007.01008

WO CLASSICAL LA

ICES AND POLY

OPES




LATTICES: WEAK ORDER AND TAMARI LATTICE

lattice = partially ordered set L where any X C L admits a meet A X and a join \/X
lattice congruence = equivalence relation on L compatible with meets and joins
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polyhedral cone = positive span of a finite set of R"

= intersection of finitely many linear half-space

fan = collection of polyhedral cones closed by faces "' £ .a“»"
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POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

polytope = convex hull of a finite set of R”
= bounded intersection of finitely many affine half-spaces

face = intersection with a supporting hyperplane ///‘\\\

face lattice — all the faces with their inclusion relations /?‘,éi,’/""‘\“?&‘\
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POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

face I of polytope IP
normal cone of I' = positive span of the outer normal vectors of the facets containing It
normal fan of P = { normal cone of I' | I’ face of P }
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fan = collection of polyhedral cones closed by faces and intersecting along faces
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fan = collection of polyhedral cones closed by faces and intersecting along faces
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POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

fan = collection of polyhedral cones closed by faces and intersecting along faces
polytope = convex hull of a finite set = intersection of finitely many affine half-space
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POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

RORWIOOD




outsidahedra_perm2asso2cube_penche_framed_fast_bothWays_cropped.mov
Media File (video/quicktime)


POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

fan = collection of polyhedral cones closed by faces and intersecting along faces

polytope = convex hull of a finite set = intersection of finitely many affine half-space
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QUOTIENT FANS AND QUOTIENTOPES




QUOTIENT FAN

lattice congruence = equivalence relation on L compatible with meets and joins:

r=2andy=y implieszcAy=2"ANy andzVy=2'"Vy

quotient fan /-~ = chambers are ob-

tained by glueing the chambers C(o)
of the permutations o in the same

congruence class of = Reading ('05) %\
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ARCS AND SHARDS

arc (a,b,A,B) with 1 <a<b<nand AUDB =a,b| ° W )
shard X(a,b, A, B) = {wER”‘xa <z, =xp < ay for all EAandb’EB}
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ARCS AND SHARDS

arc (a,b,A,B) with 1 <a<b<nand AUDB =a,b| QWQQ
shard >(a,b, A, B) = {a: c R" ‘ Ty < x,=xp < axy foralla’ € Aand V' € B}




ARCS AND SHARDS

arc (a,b,A,B) with 1 <a<b<nand AUDB =a,b| QWQO

shardZab {wER”‘xa <z, =xp < ay for all EAandb’EB}
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The set of walls W- of the quotient fan F- is a union of shards Y— Reading ('05)




FORCING

Y(a,b, A, B) forces X(c,d,C, D
c<a<b<dand A C C and

Reading ('15)
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BCD




FORCING

>(a,b, A, B) forces X(c,d,C, D) =
c<a<b<dand ACCand BCD

Reading ('15)

TFAE for a set of shards X:
e there is a congruence = with ¥ = X_
e X is an upper ideal in forcing order




SHARD IDEALS

shard ideal = upper ideal in forcing order
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SHARD IDEALS

shard ideal = upper ideal in forcing order
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QUOTIENTOPES

quotientope = polytope whose normal fan is F-
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QUOTIENTOPES

quotientope = polytope whose normal fan is F-
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quotientope = polytope whose normal fan is 7=
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MINKOWSKI SUMS OF ASSOCIAHEDRA




INTERSECTIONS OF CONGRUENCES

If the congruence = is the intersection of the congruences =1, ...,=;,

then the quotient fan F= is the common refinement of the quotient fans 7—,, ...
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INTERSECTIONS OF CONGRUENCES

If the congruence = is the intersection of the congruences =1, ..., =,
then the quotient fan F= is the common refinement of the quotient fans 7=, ..., 7=,
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INTERSECTIONS OF CONGRUENCES

If the congruence = is the intersection of the congruences =1, ..., =,
then the quotient fan F= is the common refinement of the quotient fans 7=, ..., 7=,
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Normal fan of IP + Q = common refinement of normal fans of P and Q)




MINKOWSKI SUMS OF QUOTIENTOPES

If the congruence = is the intersection of the congruences =y, ..., =y,
then the quotient fan F= is the common refinement of the quotient fans 7=, ..., F=,,
and a Minkowski sum of quotientopes for F—,, ..., F=, is a quotientope for F=




MINKOWSKI SUMS OF ASSOCIAHEDRA

If the congruence = is the intersection of the congruences =1, ...,=;,
then the quotient fan F= is the common refinement of the quotient fans 7=, ..., F=,,
and a Minkowski sum of quotientopes for F—,, ..., F=, is a quotientope for F=

Principal arc ideals are Cambrian congruences

Any quotient fan is realized by a Minkowski sum of (low dim.) associahedra

Padrol-P.-Ritter ('207)




MINKOWSKI SUMS OF ASSOCIAHEDRA

quotientope = polytope whose normal fan is 7=
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SHARD POLYTOPES




SHARD POLYTOPES

for a shard > = ¥(a,b, A, B), define

. a; € {a} UA
e >-matching = sequence a < a; < b; < - -+ < a; < by < b where
b € BU {b}
o characteristic vector x(M) =} ;. €4, — €y,
shard polytope SP(¥) = conv {X(M) ‘ M Z—matching}
( 7 =0 for all j € [n] ~ [a,0] )
0<zy<1 foralld UA
_ iR < zy < or a a/E{a} >
—1<ay <0 foralld € BU{b}
\ 0<> ;zi <1 forall j € [n] )
®:.0
o
®0- -

N\

exm: for an up shard (a,b,]a,b|, ), we get the standard simplex A, ;) — e




SHARD POLYTOPES

shard polytope SPP(Y) = conv {X(M) ‘ M Z—matching}

The normal fan of the shard polytope SIP(Y)
e contains the shard X,

e is contained in the union of the shards forcing ¥
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SHARD POLYTOPES

shard polytope SPP(Y) = conv {X(M) ‘ M Z—matching}

The normal fan of the shard polytope SIP(Y)
e contains the shard X,
e is contained in the union of the shards forcing ¥

For any lattice congruence =, the quotient fan F= is the normal fan of the Minkowski
sum of the shard polytopes SIP(Y) for ¥ € ¥_ Padrol-P-Ritter (207)
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SHARD POLYTOPES

shard polytope SPP(Y) = conv {X(M) ‘ M Z—matching}

The normal fan of the shard polytope SIP(Y)
e contains the shard X,
e is contained in the union of the shards forcing ¥

For any lattice congruence =, the quotient fan F= is the normal fan of the Minkowski
sum of the shard polytopes SIP(Y) for ¥ € ¥_ Padrol-P-Ritter (207)
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SHARD POLYTOPES AND TYPE CONES




CHOOSING RIGHT-HAND-SIDES

F = complete simplicial fan in R"” with N rays
G = (N x n)-matrix whose rows are representatives of the rays of F
for a height vector h € RY,, consider the polytope Py, = {x € R" | Gz < h}
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G = (N x n)-matrix whose rows are representatives of the rays of F
for a height vector h € RY,, consider the polytope Py, = {x € R" | Gz < h}
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When is F the normal fan of P,?



WALL-CROSSING INEQUALITIES

F = complete simplicial fan in R"” with N rays
G = (N x n)-matrix whose rows are representatives of the rays of F
for a helght vector h € RY, consider the polytope P, = {x € R" | Gz < h}
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WALL-CROSSING INEQUALITIES

F = complete simplicial fan in R"” with N rays
G = (N x n)-matrix whose rows are representatives of the rays of F
for a height vector h € RY, consider the polytope P, = {x ¢ R" | Gz < h}
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wall-crossing inequality for a wall R = Z arshs >0 where
seRU{rr'}
e .7’ = rays such that RU {r} and RU {r'} are chambers of F
e ap s = coeff. of unique linear dependence Z arpss=0with ag, +ag, =2
seRU{r r'}
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e .7’ = rays such that RU {r} and RU {r'} are chambers of F
e ap s = coeff. of unique linear dependence Z arpss=0with ag, +ag, =2
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F is the normal fan of IP;, <= h satisfies all wall-crossing inequalities of F




WALL-CROSSING INEQUALITIES

F = complete simplicial fan in R"” with N rays
G = (N x n)-matrix whose rows are representatives of the rays of F
for a height vector h € RY,, consider the polytope Py, = {x € R" | Gz < h}

A
|
|

A

wall-crossing inequalities:

wall 1 :
wall 2 :
wall 3 :
wall 4 :

wall 5 :

ho + hs > 0
hi+ hs > ho
ho + ha > hs
hs + hs > hy
hi+hy >0
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TYPE CONE

F = complete simplicial fan in R"” with N rays

G = (N x n)-matrix whose rows are representatives of the rays of F

for a height vector h € RY, consider the polytope P, = {x ¢ R" | Gz < h}

>01

type cone TC(F) =

realization space of F
{h c RV ! F is the normal fan of IPh}

McMullen ('73)

— {h c RN | h satisfies all wall-crossing inequalities of ]-"}




TYPE CONE

F = complete simplicial fan in R"” with N rays
G = (N x n)-matrix whose rows are representatives of the rays of F
for a height vector h € RY, consider the polytope P, = {x ¢ R" | Gz < h}

>01

type cone TC(F) = realization space of F McMullen ('73)
— {h c RV | F is the normal fan of IPh}
— {h c RN | h satisfies all wall-crossing inequalities of ]-"}

3 2
4 \ > 1
5
some properties of TC(F):
e T'C(F) is an open cone (dilations preserve normal fans)
e T'C(F) has lineality space GR" (translations preserve normal fans)

e dimension of TC(F)/GR" = N —n



TYPE CONE

F = complete simplicial fan in R"” with N rays
G = (N x n)-matrix whose rows are representatives of the rays of F
for a height vector h € RY, consider the polytope P, = {x ¢ R" | Gz < h}

>01

type cone TC(F) = realization space of F McMullen ('73)
— {h c RV | F is the normal fan of IPh}
— {h c RN | h satisfies all wall-crossing inequalities of ]-"}

3 2
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some properties of TC(F):
e closure of TC(F) = polytopes whose normal fan coarsens F = deformation cone
e Minkowski sums +— positive linear combinations



SIMPLICIAL TYPE CONE

Assume that the type cone T'C(F) is simplicial
K = (N —n)x N-matrix whose rows are inner normal vectors of the facets of TC(F(§))
All polytopal realizations of F are affinely equivalent to

Rg:{ze]RN‘Kz:EandzZO}

for any positive vector £ € RY ™" Padrol-Palu—P.—Plamondon ('19+)

Fundamental exms: g-vector fans of cluster-like complexes

T1+x9+73 T1+2To+13
T9T3 173

0-1 1
T1t+x2+73 1 0-1
120 ~1 10

sylvester fans finite type g-vector fans finite gentle fans

wrt any seed (acyclic or not)  for brick and 2-acyclic quivers
Arkani-Hamed—Bai—-He—Yan ('18) BMDMTY ('18%) Palu—P.—Plamondon ('18)



SUBMODULAR FUNCTIONS

3421

4321\3421

7
431331\ 3412

4132 Vau "4

closed type cone of braid fan = {deformed permutahedra} = {submodular functions}

deformed permutahedron = polytope whose normal fan coarsens the braid fan

IDefo(z):{a:ER" ’ (1| )=z and <ﬂ3\m>223forallR§[n]}

[n]
for some vector z € R?" such that zp + 29 < 2pus + 2png and zg = 0
Postnikov ('09)  Postnikov—Reiner-Williams ('08)




SUBMODULAR FUNCTIONS

3421

4321\3421

7
431331\ 3412

4132 Vau "4

closed type cone of braid fan = {deformed permutahedra} = {submodular functions}

deformed permutahedron = polytope whose normal fan coarsens the braid fan

IDefo(z):{meRgO’ (IL|x)=2zpand (Lg|x)>zpforall Re T}

for some vector z € R2" such that zp+ 25 < zpus + Zrns and zg = 2z = 0,
where J = {J C [n] | |J| > 2} Postnikov ('09)  Postnikov—Reiner-Williams ('08)




SUBMODULAR FUNCTIONS

diagonal
rectangulation
polytope SP(e=—o -

associahedron
— Assq3

associahedron
Asso3

SP(m) = - @0 T fu—

permutahedron
Perm,

dmTC(F)=N-n=6—-2=14



SUBMODULAR FUNCTIONS
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SUBMODULAR FUNCTIONS

eO-
SP(e=o0 ) =\

all quotientopes of PS ('18)
are Minkowski sums of
scaled shard polytopes

Padrol-P.-Ritter (207)




SUBMODULAR FUNCTIONS

all quotientopes of PS ('18)
are Minkowski sums of
scaled shard polytopes

shard polytopes are
Minkowski indecomposable

(thus rays of the type cone)

= Newton polytopes F-polyn.
= brick polytope summands

Padrol-P.-Ritter (20*)




SUBMODULAR FUNCTIONS

shard polytopes are

SP(e=o ) =\ Minkowski indecomposable
(thus rays of the type cone)

all quotientopes of PS ('18)
are Minkowski sums of

= Newton polytopes F-polyn.

scaled shard polytopes = brick polytope summands
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Any deformed permutahedron is a Minkowski sum and difference of shard polytopes

Defo(z) = » y; ;= s1SP(S))
JeJg Ieg
with explicit (combinatorial) exchange matrices between the parameters s, y and z




OPEN QUESTIONS




QUOTIENTOPES FOR HYPERPLANE ARRANGEMENTS

H hyperplane arrangement in R”

base region B = distinguished region of R" \\. H

inversion set of a region C' = set of hyperplanes of H that separate B and C

poset of regions PR(H, B) = regions of R" \. H ordered by inclusion of inversion sets

The poset of regions PR(H, B)
e is never a lattice when B is not a simplicial region
e is always a lattice when H is a simplicial arrangement

Bjorner-Edelman-Ziegler ('90)

If PR(H, B) is a lattice, and = is a congruence of PR(?, B), the cones obtained by
glueing the regions of R"” . H in the same congruence class form a complete fan JF-

Reading ('05)

Is the quotient fan F- always polytopal?




SHARDS FOR HYPERPLANE ARRANGEMENTS

shard = piece of hyperplane obtained after cutting all rank 2 subgroups

shard poset = (pre)poset of forcing relations among shards

N
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shard = piece of hyperplane obtained after cutting all rank 2 subgroups

shard poset = (pre)poset of forcing relations among shards

Reading ('03)



SHARD POLYTOPES FOR HYPERPLANE ARRANGEMENTS?

shard = piece of hyperplane obtained after cutting all rank 2 subgroups

shard poset = (pre)poset of forcing relations among shards

shard polytope for a shard > = polytope whose normal fan

e contains the shard Y,
e is contained in the union of the shards forcing ¥

Find shard polytopes for arbitrary hyperplane arrangement with a lattice of regions




SHARD POLYTOPES FOR HYPERPLANE ARRANGEMENTS?

shard = piece of hyperplane obtained after cutting all rank 2 subgroups

shard poset = (pre)poset of forcing relations among shards

shard polytope for a shard > = polytope whose normal fan

e contains the shard Y,
e is contained in the union of the shards forcing ¥

Find shard polytopes for arbitrary hyperplane arrangement with a lattice of regions

If any shard > admits a shard polytope 5IP(X), then

e for any lattice congruence = of PR(H, B), the quotient fan F= is the normal of the
Minkowski sum of the shard polytopes $IP(X) for 3 in the shard ideal ¥—

e if the arrangement H is simplicial, then the shard polytopes SIP(X) form a basis for
the type cone of the fan defined by H (up to translation)
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SHARD POLYTOPES FOR HYPERPLANE ARRANGEMENTS?

shard = piece of hyperplane obtained after cutting all rank 2 subgroups

shard poset = (pre)poset of forcing relations among shards

shard polytope for a shard > = polytope whose normal fan
e contains the shard Y,
e is contained in the union of the shards forcing ¥

Find shard polytopes for arbitrary hyperplane arrangement with a lattice of regions

1 011

01
101 101
For crystallographic arrangements,
Newton polytopes of F-polynomials i
all seem to be shard polytopes, 110 110

but some shards are missing... /_\ m
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