Shard polytopes

Séminaire AGATA, Montpellier Thursday December 10th, 2020

TWO CLASSICAL LATTICES AND POLYTOPES

<u>lattice</u> = partially ordered set L where any $X \subseteq L$ admits a <u>meet</u> $\bigwedge X$ and a join $\bigvee X$ <u>lattice congruence</u> = equivalence relation on L compatible with meets and joins

 $\frac{\text{lattice}}{\text{lattice}} = \text{partially ordered set } L \text{ where any } X \subseteq L \text{ admits a } \underline{\text{meet}} \land X \text{ and a } \underline{\text{join}} \lor X$ $\frac{\text{lattice congruence}}{\text{lattice congruence}} = \text{equivalence relation on } L \text{ compatible with meets and joins}$

 $\underline{\text{weak order}} = \text{permutations of } \mathfrak{S}_n$ ordered by inclusion of inversion sets $\frac{\text{Tamari lattice}}{\text{ordered by paths of right rotations}}$

 $\frac{\text{lattice}}{\text{lattice}} = \text{partially ordered set } L \text{ where any } X \subseteq L \text{ admits a } \underline{\text{meet}} \land X \text{ and a } \underline{\text{join}} \lor X$ $\frac{\text{lattice congruence}}{\text{lattice congruence}} = \text{equivalence relation on } L \text{ compatible with meets and joins}$

 $\frac{\text{weak order}}{\text{ordered by inclusion of inversion sets}}$

 $\frac{\text{Tamari lattice}}{\text{ordered by paths of right rotations}}$

 \mathbb{N}

right

A B

KΠ

rotation

٨Ŋ

۸۱۸

<u>lattice</u> = partially ordered set L where any $X \subseteq L$ admits a <u>meet</u> $\bigwedge X$ and a join $\bigvee X$ <u>lattice congruence</u> = equivalence relation on L compatible with meets and joins

<u>lattice</u> = partially ordered set L where any $X \subseteq L$ admits a <u>meet</u> $\bigwedge X$ and a join $\bigvee X$ <u>lattice congruence</u> = equivalence relation on L compatible with meets and joins

 $\underline{fan} = collection of polyhedral cones closed by faces and intersecting along faces$ polytope = convex hull of a finite set = intersection of finitely many affine half-space

 $\underline{fan} = collection of polyhedral cones closed by faces and intersecting along faces$ polytope = convex hull of a finite set = intersection of finitely many affine half-space

 $\underline{fan} = collection of polyhedral cones closed by faces and intersecting along faces$ <u>polytope</u> = convex hull of a finite set = intersection of finitely many affine half-space

 $\underline{fan} = collection of polyhedral cones closed by faces and intersecting along faces$ polytope = convex hull of a finite set = intersection of finitely many affine half-space

 $\underline{fan} = collection of polyhedral cones closed by faces and intersecting along faces$ polytope = convex hull of a finite set = intersection of finitely many affine half-space

quotient fan = $\mathbb{C}(T)$ obtained by glueing $\mathbb{C}(\sigma)$ for all σ in the same BST insertion fiber

 $\underline{fan} = collection of polyhedral cones closed by faces and intersecting along faces$ $<math>\underline{polytope} = convex hull of a finite set = intersection of finitely many affine half-space$

 $\underline{fan} = collection of polyhedral cones closed by faces and intersecting along faces$ $<math>\underline{polytope} = convex hull of a finite set = intersection of finitely many affine half-space$

 $\underline{fan} = collection of polyhedral cones closed by faces and intersecting along faces$ polytope = convex hull of a finite set = intersection of finitely many affine half-space

 $\underline{fan} = collection of polyhedral cones closed by faces and intersecting along faces$ polytope = convex hull of a finite set = intersection of finitely many affine half-space

 $\underline{fan} = collection of polyhedral cones closed by faces and intersecting along faces$ <u>polytope</u> = convex hull of a finite set = intersection of finitely many affine half-space

POLYWOOD

 $\underline{fan} = collection of polyhedral cones closed by faces and intersecting along faces$ polytope = convex hull of a finite set = intersection of finitely many affine half-space

QUOTIENT FANS AND QUOTIENTOPES

QUOTIENT FAN

 $\label{eq:lattice congruence} \frac{|\text{attice congruence}|}{x \equiv x' \text{ and } y \equiv y' \text{ implies } x \wedge y \equiv x' \wedge y' \text{ and } x \vee y \equiv x' \vee y'}$

 $\begin{array}{ll} \underline{\text{quotient fan}} \ \mathcal{F}_{\equiv} = \text{chambers are ob-}\\ \text{tained by glueing the chambers } \mathbb{C}(\sigma)\\ \text{of the permutations } \sigma \text{ in the same}\\ \text{congruence class of } \equiv & \text{Reading ('05)} \end{array}$

QUOTIENT FAN

 $\frac{\text{lattice congruence}}{x \equiv x' \text{ and } y \equiv y' \text{ implies } x \land y \equiv x' \land y' \text{ and } x \lor y \equiv x' \lor y' }$

 $\begin{array}{ll} \underline{\text{quotient fan}} \ \mathcal{F}_{\equiv} = \text{chambers are ob-}\\ \text{tained by glueing the chambers } \mathbb{C}(\sigma)\\ \text{of the permutations } \sigma \text{ in the same}\\ \text{congruence class of } \equiv & \text{Reading ('05)} \end{array}$

 $oldsymbol{W}_{\equiv}=$ walls of the quotient fan \mathcal{F}_{\equiv} Describe the possible sets of walls $oldsymbol{W}_{\equiv}$

QUOTIENT FAN

 $\underbrace{ \text{lattice congruence}}_{x \equiv x' \text{ and } y \equiv y' \text{ implies } x \land y \equiv x' \land y' \text{ and } x \lor y \equiv x' \lor y' }_{x \equiv x' \land y' \text{ and } x \lor y \equiv x' \lor y' }$

 $\begin{array}{ll} \underline{\text{quotient fan}} \ \mathcal{F}_{\equiv} = \text{chambers are obtained by glueing the chambers } \mathbb{C}(\sigma) \\ \text{of the permutations } \sigma \text{ in the same} \\ \text{congruence class of } \equiv & \text{Reading ('05)} \end{array}$

 $oldsymbol{W}_{\equiv}=$ walls of the quotient fan \mathcal{F}_{\equiv} Describe the possible sets of walls $oldsymbol{W}_{\equiv}$

ARCS AND SHARDS

ARCS AND SHARDS

ARCS AND SHARDS

Reading ('05)

The set of walls W_{\equiv} of the quotient fan \mathcal{F}_{\equiv} is a union of shards Σ_{\equiv}

FORCING

FORCING

SHARD IDEALS

SHARD IDEALS

QUOTIENTOPES

QUOTIENTOPES

QUOTIENTOPES

POLYWOOD
MINKOWSKI SUMS OF ASSOCIAHEDRA

MINKOWSKI SUMS OF QUOTIENTOPES

If the congruence \equiv is the intersection of the congruences $\equiv_1, \ldots, \equiv_k$, then the quotient fan \mathcal{F}_{\equiv} is the common refinement of the quotient fans $\mathcal{F}_{\equiv_1}, \ldots, \mathcal{F}_{\equiv_k}$, and a Minkowski sum of quotientopes for $\mathcal{F}_{\equiv_1}, \ldots, \mathcal{F}_{\equiv_k}$ is a quotientope for \mathcal{F}_{\equiv}

MINKOWSKI SUMS OF ASSOCIAHEDRA

If the congruence \equiv is the intersection of the congruences $\equiv_1, \ldots, \equiv_k$, then the quotient fan \mathcal{F}_{\equiv} is the common refinement of the quotient fans $\mathcal{F}_{\equiv_1}, \ldots, \mathcal{F}_{\equiv_k}$, and a Minkowski sum of quotientopes for $\mathcal{F}_{\equiv_1}, \ldots, \mathcal{F}_{\equiv_k}$ is a quotientope for \mathcal{F}_{\equiv}

Principal arc ideals are Cambrian congruences

MINKOWSKI SUMS OF ASSOCIAHEDRA

for a shard $\Sigma = \Sigma(a, b, A, B)$, define

- $\underline{\Sigma$ -matching = sequence $a \le a_1 < b_1 < \dots < a_k < b_k \le b$ where $\begin{cases} a_i \in \{a\} \cup A \\ b_i \in B \cup \{b\} \end{cases}$
- characteristic vector $\chi(M) = \sum_{i \in [k]} e_{a_i} e_{b_i}$

exm: for an up shard $(a, b,]a, b[, \varnothing)$, we get the standard simplex $\triangle_{[a,b]} - e_b$

```
shard polytope \mathbb{SP}(\Sigma) = \operatorname{conv} \{ \chi(M) \mid M \Sigma \text{-matching} \}
```

The normal fan of the shard polytope $\mathbb{SP}(\Sigma)$

- \bullet contains the shard Σ ,
- \bullet is contained in the union of the shards forcing Σ

shard polytope $\mathbb{SP}(\Sigma) = \operatorname{conv} \{ \chi(M) \mid M \Sigma \text{-matching} \}$

The normal fan of the shard polytope $\mathbb{SP}(\Sigma)$

- \bullet contains the shard Σ ,
- \bullet is contained in the union of the shards forcing Σ

For any lattice congruence \equiv , the quotient fan \mathcal{F}_{\equiv} is the normal fan of the Minkowski sum of the shard polytopes $\mathbb{SP}(\Sigma)$ for $\Sigma \in \Sigma_{\equiv}$ Padrol-P.-Ritter (20⁺)

shard polytope $\mathbb{SP}(\Sigma) = \operatorname{conv} \{ \chi(M) \mid M \Sigma \text{-matching} \}$

The normal fan of the shard polytope $\mathbb{SP}(\Sigma)$

- \bullet contains the shard Σ ,
- \bullet is contained in the union of the shards forcing Σ

For any lattice congruence \equiv , the quotient fan \mathcal{F}_{\equiv} is the normal fan of the Minkowski sum of the shard polytopes $\mathbb{SP}(\Sigma)$ for $\Sigma \in \Sigma_{\equiv}$ Padrol-P.-Ritter (20⁺)

SHARD POLYTOPES AND TYPE CONES

CHOOSING RIGHT-HAND-SIDES

CHOOSING RIGHT-HAND-SIDES

CHOOSING RIGHT-HAND-SIDES

When is \mathcal{F} the normal fan of \mathbb{P}_h ?

 $\mathcal{F} = \text{complete simplicial fan in } \mathbb{R}^n \text{ with } N \text{ rays}$ $\mathbf{G} = (N \times n)\text{-matrix whose rows are representatives of the rays of } \mathcal{F}$ for a height vector $\mathbf{h} \in \mathbb{R}^N_{>0}$, consider the polytope $\mathbb{P}_{\mathbf{h}} = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{G}\mathbf{x} \leq \mathbf{h}\}$

wall-crossing inequality for a wall $\mathbf{R} = \sum_{s \in \mathbf{R} \cup \{r, r'\}} \alpha_{\mathbf{R}, s} h_s > 0$ where • $\mathbf{r}, \mathbf{r'} = \text{rays}$ such that $\mathbf{R} \cup \{\mathbf{r}\}$ and $\mathbf{R} \cup \{\mathbf{r'}\}$ are chambers of \mathcal{F} • $\alpha_{\mathbf{R}, s} = \text{coeff.}$ of unique linear dependence $\sum_{s \in \mathbf{R} \cup \{r, r'\}} \alpha_{\mathbf{R}, s} s = 0$ with $\alpha_{\mathbf{R}, r} + \alpha_{\mathbf{R}, r'} = 2$

 $\mathcal{F} = \text{complete simplicial fan in } \mathbb{R}^n \text{ with } N \text{ rays}$ $\mathbf{G} = (N \times n)\text{-matrix whose rows are representatives of the rays of } \mathcal{F}$ for a height vector $\mathbf{h} \in \mathbb{R}^N_{>0}$, consider the polytope $\mathbb{P}_{\mathbf{h}} = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{G}\mathbf{x} \leq \mathbf{h}\}$

wall-crossing inequality for a wall $\mathbf{R} = \sum_{s \in \mathbf{R} \cup \{r, r'\}} \alpha_{\mathbf{R}, s} h_s > 0$ where • $\mathbf{r}, \mathbf{r'} = \text{rays}$ such that $\mathbf{R} \cup \{\mathbf{r}\}$ and $\mathbf{R} \cup \{\mathbf{r'}\}$ are chambers of \mathcal{F} • $\alpha_{\mathbf{R}, s} = \text{coeff.}$ of unique linear dependence $\sum_{s \in \mathbf{R} \cup \{r, r'\}} \alpha_{\mathbf{R}, s} s = 0$ with $\alpha_{\mathbf{R}, r} + \alpha_{\mathbf{R}, r'} = 2$

 ${\mathcal F}$ is the normal fan of $\mathbb{P}_h \iff h$ satisfies all wall-crossing inequalities of ${\mathcal F}$

TYPE CONE

 $\mathcal{F} = \text{complete simplicial fan in } \mathbb{R}^n \text{ with } N \text{ rays}$ $\mathbf{G} = (N \times n) \text{-matrix whose rows are representatives of the rays of } \mathcal{F}$

for a height vector $m{h} \in \mathbb{R}^N_{>0}$, consider the polytope $\mathbb{P}_{m{h}} = \{m{x} \in \mathbb{R}^n \mid m{G} m{x} \leq m{h}\}$

$$\underline{\text{type cone}} \ \mathbb{TC}(\mathcal{F}) = \text{realization space of } \mathcal{F} \qquad \qquad \text{McMullen ('73)} \\ = \left\{ \boldsymbol{h} \in \mathbb{R}^N \mid \mathcal{F} \text{ is the normal fan of } \mathbb{P}_{\boldsymbol{h}} \right\} \\ = \left\{ \boldsymbol{h} \in \mathbb{R}^N \mid \boldsymbol{h} \text{ satisfies all wall-crossing inequalities of } \mathcal{F} \right\}$$

TYPE CONE

 $\mathcal{F} = \text{complete simplicial fan in } \mathbb{R}^n$ with N rays

 $G = (N \times n)$ -matrix whose rows are representatives of the rays of \mathcal{F}

for a height vector $h \in \mathbb{R}^N_{>0}$, consider the polytope $\mathbb{P}_h = \{x \in \mathbb{R}^n \mid Gx \leq h\}$

$$\underline{\text{type cone}} \ \mathbb{TC}(\mathcal{F}) = \text{realization space of } \mathcal{F} \qquad \qquad \text{McMullen ('73)} \\ = \left\{ \boldsymbol{h} \in \mathbb{R}^N \mid \mathcal{F} \text{ is the normal fan of } \mathbb{P}_{\boldsymbol{h}} \right\} \\ = \left\{ \boldsymbol{h} \in \mathbb{R}^N \mid \boldsymbol{h} \text{ satisfies all wall-crossing inequalities of } \mathcal{F} \right\}$$

some properties of $\mathbb{TC}(\mathcal{F})$:

- $\mathbb{TC}(\mathcal{F})$ is an open cone
- $\mathbb{TC}(\mathcal{F})$ has lineality space $G \mathbb{R}^n$ (translations preserve normal fans)
- \bullet dimension of $\mathbb{TC}(\mathcal{F})/\boldsymbol{G}\,\mathbb{R}^n=N-n$

(dilations preserve normal fans)

TYPE CONE

 $\mathcal{F}=\mathsf{complete}\;\mathsf{simplicial}\;\mathsf{fan}\;\mathsf{in}\;\mathbb{R}^n\;\mathsf{with}\;N\;\mathsf{rays}$

 $oldsymbol{G} = (N imes n)$ -matrix whose rows are representatives of the rays of $\mathcal F$

for a height vector $h \in \mathbb{R}^N_{>0}$, consider the polytope $\mathbb{P}_h = \{ x \in \mathbb{R}^n \mid Gx \leq h \}$

$$\underline{\text{type cone}} \ \mathbb{TC}(\mathcal{F}) = \text{realization space of } \mathcal{F} \qquad \qquad \text{McMullen ('73)} \\ = \left\{ \boldsymbol{h} \in \mathbb{R}^N \mid \mathcal{F} \text{ is the normal fan of } \mathbb{P}_{\boldsymbol{h}} \right\} \\ = \left\{ \boldsymbol{h} \in \mathbb{R}^N \mid \boldsymbol{h} \text{ satisfies all wall-crossing inequalities of } \mathcal{F} \right\}$$

some properties of $\mathbb{TC}(\mathcal{F})$:

- \bullet closure of $\mathbb{TC}(\mathcal{F})=$ polytopes whose normal fan coarsens $\mathcal{F}=$ deformation cone
- \bullet Minkowski sums \longleftrightarrow positive linear combinations

SIMPLICIAL TYPE CONE

Assume that the type cone $\mathbb{TC}(\mathcal{F})$ is simplicial $\mathbf{K} = (N-n) \times N$ -matrix whose rows are inner normal vectors of the facets of $\mathbb{TC}(\mathcal{F}(\delta))$ All polytopal realizations of \mathcal{F} are affinely equivalent to

$$\mathbb{R}_{\boldsymbol{\ell}} = \left\{ \boldsymbol{z} \in \mathbb{R}^N \mid \boldsymbol{K} \boldsymbol{z} = \boldsymbol{\ell} \text{ and } \boldsymbol{z} \geq 0
ight\}$$

for any positive vector $\boldsymbol{\ell} \in \mathbb{R}^{N-n}_{>0}$

Padrol–Palu–P.–Plamondon ('19⁺)

Fundamental exms: g-vector fans of cluster-like complexes

closed type cone of braid fan = {deformed permutahedra} = {submodular functions}

 $\begin{array}{l} \underline{deformed \ permutahedron} = \text{polytope whose normal fan coarsens the braid fan} \\ \mathbb{D}efo(\boldsymbol{z}) = \left\{ \boldsymbol{x} \in \mathbb{R}^n \quad \big| \ \langle \ \mathbb{1} \mid \boldsymbol{x} \ \rangle = z_{[n]} \ \text{and} \ \langle \ \mathbb{1}_R \mid \boldsymbol{x} \ \rangle \geq z_R \ \text{for all} \ R \subseteq [n] \right\} \\ \text{for some vector } \boldsymbol{z} \in \mathbb{R}^{2^{[n]}} \ \text{such that} \ z_R + z_S \leq z_{R \cup S} + z_{R \cap S} \ \text{and} \ z_{\varnothing} = 0 \\ \\ \mathbb{P}ostnikov ('09) \quad \mathbb{P}ostnikov-\text{Reiner-Williams ('08)} \end{array}$

closed type cone of braid fan = {deformed permutahedra} = {submodular functions}

 $\begin{array}{l} \underline{deformed \ permutahedron} = \mathsf{polytope \ whose \ normal \ fan \ coarsens \ the \ braid \ fan \\ \mathbb{D}\mathsf{efo}(\boldsymbol{z}) = \left\{ \boldsymbol{x} \in \mathbb{R}^n_{\geq 0} \ \middle| \ \langle \ \mathbbm{1} \ \middle| \ \boldsymbol{x} \ \rangle = z_{[n]} \ \mathsf{and} \ \langle \ \mathbbm{1}_R \ \middle| \ \boldsymbol{x} \ \rangle \geq z_R \ \mathsf{for \ all} \ R \in \mathcal{J} \right\} \\ \\ \mathbf{for \ some \ vector} \ \boldsymbol{z} \in \mathbb{R}^{2^{[n]}} \ \mathsf{such \ that} \ z_R + z_S \leq z_{R \cup S} + z_{R \cap S} \ \mathsf{and} \ z_{\varnothing} = z_{\{i\}} = 0, \\ \\ \mathsf{where} \ \mathcal{J} = \left\{ J \subseteq [n] \ \middle| \ |J| \geq 2 \right\} \\ \end{array}$

Any deformed permutahedron is a Minkowski sum and difference of shard polytopes

$$\mathbb{D}efo(\boldsymbol{z}) = \sum_{J \in \mathcal{J}} y_J \Delta_J = \sum_{I \in \mathcal{J}} s_I \, \mathbb{S}\mathbb{P}(\Sigma_I)$$

with explicit (combinatorial) exchange matrices between the parameters s, y and z

OPEN QUESTIONS
QUOTIENTOPES FOR HYPERPLANE ARRANGEMENTS

 \mathcal{H} hyperplane arrangement in \mathbb{R}^n base region B = distinguished region of $\mathbb{R}^n \smallsetminus \mathcal{H}$ inversion set of a region C = set of hyperplanes of \mathcal{H} that separate B and Cposet of regions $\mathsf{PR}(\mathcal{H}, B) =$ regions of $\mathbb{R}^n \smallsetminus \mathcal{H}$ ordered by inclusion of inversion sets

Björner-Edelman-Ziegler ('90)

```
The poset of regions \mathsf{PR}(\mathcal{H}, B)
```

- is never a lattice when B is not a simplicial region
- \bullet is always a lattice when ${\cal H}$ is a simplicial arrangement

If $PR(\mathcal{H}, B)$ is a lattice, and \equiv is a congruence of $PR(\mathcal{H}, B)$, the cones obtained by glueing the regions of $\mathbb{R}^n \smallsetminus \mathcal{H}$ in the same congruence class form a complete fan \mathcal{F}_{\equiv} Reading ('05)

Is the quotient fan \mathcal{F}_{\equiv} always polytopal?

SHARDS FOR HYPERPLANE ARRANGEMENTS

 \underline{shard} = piece of hyperplane obtained after cutting all rank 2 subgroups shard poset = (pre)poset of forcing relations among shards

Reading ('03)

SHARDS FOR HYPERPLANE ARRANGEMENTS

 \underline{shard} = piece of hyperplane obtained after cutting all rank 2 subgroups shard poset = (pre)poset of forcing relations among shards

Reading ('03)

SHARDS FOR HYPERPLANE ARRANGEMENTS

 \underline{shard} = piece of hyperplane obtained after cutting all rank 2 subgroups shard poset = (pre)poset of forcing relations among shards

Reading ('03)

SHARD POLYTOPES FOR HYPERPLANE ARRANGEMENTS?

 \underline{shard} = piece of hyperplane obtained after cutting all rank 2 subgroups shard poset = (pre)poset of forcing relations among shards

```
shard polytope for a shard \Sigma = \operatorname{polytope} whose normal fan
```

- contains the shard Σ ,
- \bullet is contained in the union of the shards forcing Σ

Find shard polytopes for arbitrary hyperplane arrangement with a lattice of regions

SHARD POLYTOPES FOR HYPERPLANE ARRANGEMENTS?

 \underline{shard} = piece of hyperplane obtained after cutting all rank 2 subgroups shard poset = (pre)poset of forcing relations among shards

```
shard polytope for a shard \Sigma = polytope whose normal fan
```

- contains the shard Σ ,
- \bullet is contained in the union of the shards forcing Σ

Find shard polytopes for arbitrary hyperplane arrangement with a lattice of regions

If any shard Σ admits a shard polytope $\mathbb{SP}(\Sigma)$, then

- for any lattice congruence \equiv of $PR(\mathcal{H}, B)$, the quotient fan \mathcal{F}_{\equiv} is the normal of the Minkowski sum of the shard polytopes $\mathbb{SP}(\Sigma)$ for Σ in the shard ideal Σ_{\equiv}
- if the arrangement \mathcal{H} is simplicial, then the shard polytopes $\mathbb{SP}(\Sigma)$ form a basis for the type cone of the fan defined by \mathcal{H} (up to translation)

Padrol-P.-Ritter (20⁺)

SHARD POLYTOPES FOR HYPERPLANE ARRANGEMENTS?

 \underline{shard} = piece of hyperplane obtained after cutting all rank 2 subgroups shard poset = (pre)poset of forcing relations among shards

```
shard polytope for a shard \Sigma = polytope whose normal fan
```

- \bullet contains the shard Σ ,
- \bullet is contained in the union of the shards forcing Σ

Find shard polytopes for arbitrary hyperplane arrangement with a lattice of regions

For crystallographic arrangements, Newton polytopes of *F*-polynomials all seem to be shard polytopes, but some shards are missing...

