Analytic combinatorics of chord and hyperchord diagrams with k crossings

Vincent Pilaud Juanjo Rué
CNRS \& LIX,
École Polytechnique

AofA'14, Paris

Planar chord configurations

Structural properties
The simplicial complex of crossing-free chord diagrams is the boundary complex of the associahedron

Enumerative properties

Theorem

[Flajolet \& Noy '99]
\# chord configurations in the following families $\underset{n \rightarrow \infty}{\sim} \frac{\Lambda}{\sqrt{\pi}} n^{-3 / 2} \rho^{-n}$.

dissections

$$
\begin{array}{cc}
\rho^{-1} & 3+2 \sqrt{2} \\
\wedge & \frac{\sqrt{-140+99 \sqrt{2}}}{4}
\end{array}
$$

partitions
4

graphs
conn. graphs
trees
$\frac{27}{4}$

Nearly-planar chord configurations

Crossing-free chord configurations have relevant enumerative and structural properties
Enumerative/structural properties of nearly planar chord configurations?

Nearly-planar chord configurations

Crossing-free chord configurations have relevant enumerative and structural properties
Enumerative/structural properties of nearly planar chord configurations?

Possible constraints...

- at most k crossings
- no $(k+1)$-crossings
- each chord crosses at most k others
- become crossing-free when removing at most k chords

Nearly-planar chord configurations

Crossing-free chord configurations have relevant enumerative and structural properties
Enumerative/structural properties of nearly planar chord configurations?

matchings

partitions

chord
diagrams

hyperchord diagrams

Possible constraints...
... on the crossing graph

- at most k crossings
- no $(k+1)$-crossings
- each chord crosses at most k others edges
cliques degrees
- become crossing-free when removing at most k chords

A zoom on $(k+1)$-crossing-free chord diagrams

 chord diagrams with no $k+1$ mutually crossing chords have a rich combinatorial structure
Theorem

The simplicial complex of $(k+1)$-crossing-free chord diagrams is a sphere.
Maximal ($k+1$)-crossing-free chord diagrams are k-triangulations
They can be decomposed into a complex of k-stars

star decomposition

flip
k-triangulations are counted by a Hankel determinant of Catalan numbers

Our results on configurations with k crossings
\mathcal{C} family of configurations among

$\mathcal{C}(n, m, k)=\#$ confs with n vertices, m (hyper)chords, and k crossings generating function $\mathbf{C}_{k}(x, y)=\sum_{n, m \in \mathbb{N}}|\mathcal{C}(n, m, k)| x^{n} y^{m}$

Our results on configurations with k crossings
\mathcal{C} family of configurations among

Theorem (Rationality)

The generating function $\mathbf{C}_{k}(x, y)$ of configurations in \mathcal{C} with exactly k crossings is a rational function of the generating function $\mathbf{C}_{0}(x, y)$ of planar configurations in \mathcal{C} and of the variables x and y.
partial results in [Bona, Partitions with k crossings, '00]

Our results on configurations with k crossings
\mathcal{C} family of configurations among

Theorem (Rationality)
The generating function $\mathbf{C}_{k}(x, y)$ of configurations in \mathcal{C} with exactly k crossings is a rational function of the generating function $\mathbf{C}_{0}(x, y)$ of planar configurations in \mathcal{C} and of the variables x and y.

Theorem (Asymptotics)

For $k \geq 1$, the number of conf. in \mathcal{C} with k crossings and n vertices is

$$
\left[x^{n}\right] \mathbf{C}_{k}(x, 1) \underset{n \rightarrow \infty}{=} \wedge n^{\alpha} \rho^{-n}(1+o(1)),
$$

for certain constants $\Lambda, \alpha, \rho \in \mathbb{R}$ depending on \mathcal{C} and k.

Constants

Theorem (Asymptotics)

For $k \geq 1$, the number of conf. in \mathcal{C} with k crossings and n vertices is

$$
\left[x^{n}\right] \mathbf{C}_{k}(x, 1) \underset{n \rightarrow \infty}{=} \wedge n^{\alpha} \rho^{-n}(1+o(1)),
$$

for certain constants $\Lambda, \alpha, \rho \in \mathbb{R}$ depending on \mathcal{C} and k.

family	constant Λ	exp. α	sing. ρ^{-1}
matchings	$\frac{\sqrt{2}(2 k-3)!!}{4^{k-1} k!\Gamma\left(k-\frac{1}{2}\right)}$	$k-\frac{3}{2}$	2
partitions	$\frac{(2 k-3)!!}{2^{3 k-1} k!\Gamma\left(k-\frac{1}{2}\right)}$	$k-\frac{3}{2}$	4
chord diagrams	$\frac{(-2+3 \sqrt{2})^{3 k} \sqrt{-140+99 \sqrt{2}}(2 k-3)!!}{2^{3 k+1}(3-4 \sqrt{2})^{k-1} k!\Gamma\left(k-\frac{1}{2}\right)}$	$k-\frac{3}{2}$	$6+4 \sqrt{2}$
hyperchord diagrams	$\simeq \frac{1.034^{3 k} 0.003655(2 k-3)!!}{0.03078^{k-1} k!\Gamma\left(k-\frac{1}{2}\right)}$	$k-\frac{3}{2}$	$\simeq 64.97$

Matchings with k crossings

$\mathcal{M}=\{$ perfect matchings with endpoints on the unit circle $\}$ All matchings are "rooted" and "up to deformation"

$\mathcal{M}(n, k)=$ number of matchings with n vertices and k crossings generating function $\mathbf{M}_{k}(x)=\sum_{n \in \mathbb{N}}|\mathcal{M}(n, k)| x^{n}$

Core matchings

Core of a matching $M=$ submatching M^{\star} formed by all chords involved in at least one crossing

There are only finitely many core matchings with k crossings

Core matching polynomial

$$
\mathbf{K M}_{k}\left(x_{1}, \ldots, x_{k}\right)=\sum_{\substack{k-\text { core } \\ \text { matching }}} \frac{1}{n(K)} \prod_{i \in[k]} x_{i}^{n_{i}(K)}
$$

$n_{i}(K)=\#$ regions of the complement of K with i boundary arcs $n(K)=\sum_{i} n_{i}(K)=\#$ of vertices of K

$\mathbf{K M} \mathbf{M}_{3}\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{6} x_{1}{ }^{6}+\frac{3}{2} x_{1}{ }^{8}+\frac{3}{2} x_{1}{ }^{8} x_{2}{ }^{2}+3 x_{1}{ }^{8} x_{2}+\frac{1}{3} x_{1}{ }^{9} x_{3}$

Computing core matching polynomials

Core matchings can be decomposed into connected matchings

Computing core matching polynomials

Core matchings can be decomposed into connected matchings

level of an arc α of $M=$ graph distance between α and the leftmost arc in the crossing graph of M

Computing core matching polynomials

Core matchings can be decomposed into connected matchings

level of an arc α of $M=$ graph distance between α and the leftmost arc in the crossing graph of M

To generate all possible connected matchings, start from a single arc and add arcs one by one. If the last constructed arc (i, j) was at level ℓ, then
(i) either add a new arc (u, v) in the current level ℓ, with $u>i$ and crossing at least one arc at level $\ell-1$, and no arc at level $<\ell-1$
(ii) or add an new arc (u, v) at a new level $\ell+1$ with $u>1$ and crossing at least one arc at level ℓ and no at level $<\ell$

Generating function of matchings with k crossings

Proposition

For $k \geq 1$, the generating function $\mathbf{M}_{k}(x)$ of the perfect matchings with k crossings is given by

$$
\mathbf{M}_{k}(x)=x \frac{d}{d x} \mathbf{K} \mathbf{M}_{k}\left(x_{i} \leftarrow \frac{x^{i}}{(i-1)!} \frac{d^{i-1}}{d x^{i-1}}\left(x^{i-1} \mathbf{M}_{0}(x)\right)\right)
$$

In particular, $\mathbf{M}_{k}(x)$ is a rational function of $\mathbf{M}_{0}(x)$ and x

Generating function of matchings with k crossings

Proposition

For $k \geq 1$, the generating function $\mathbf{M}_{k}(x)$ of the perfect matchings with k crossings is given by

$$
\mathbf{M}_{k}(x)=x \frac{d}{d x} \mathbf{K M}_{k}\left(x_{i} \leftarrow \frac{x^{i}}{(i-1)!} \frac{d^{i-1}}{d x^{i-1}}\left(x^{i-1} \mathbf{M}_{0}(x)\right)\right)
$$

In particular, $\mathbf{M}_{k}(x)$ is a rational function of $\mathbf{M}_{0}(x)$ and x

Choose a core matching with k crossings
Replace each region with i boundaries by a crossing-free matching with a root and $i-1$ additional marks
Reroot to obtain a rooted matching

Asymptotic analysis

$$
\mathbf{M}_{k}(x)=x \frac{d}{d x} \sum_{\substack{k \text { k-core } \\ \text { matching }}} \frac{1}{n(K)} \prod_{i \geq 1}\left(\frac{x^{i}}{(i-1)!} \frac{d^{i-1}}{d x^{i-1}}\left(x^{i-1} \mathbf{M}_{0}(x)\right)\right)^{n_{i}(K)}
$$

Asymptotic analysis

$$
\mathbf{M}_{k}(x)=x \frac{d}{d x} \sum_{\substack{K-c o r e \\ \text { matching }}} \frac{1}{n(K)} \prod_{i \geq 1}\left(\frac{x^{i}}{(i-1)!} \frac{d^{i-1}}{d x^{i-1}}\left(x^{i-1} \mathbf{M}_{0}(x)\right)\right)^{n_{i}(K)}
$$

$\mathbf{M}_{0}(x)$ has two singularities around $x=\frac{1}{2}$ and $x=-\frac{1}{2}$.
Denote $X_{+}=\sqrt{1-2 x}$ around $x=\frac{1}{2}$, then

$$
\begin{gathered}
\mathrm{M}_{0}(x) \underset{x \sim \frac{1}{2}}{=} 2-2 \sqrt{2} X_{+}+O\left(X_{+}^{2}\right) \\
\frac{d^{i}}{d x^{i}} \mathbf{M}_{0}(x) \underset{x \sim \frac{1}{2}}{=} 2 \sqrt{2}(2 i-3)!!X_{+}^{1-2 i}+O\left(X_{+}^{2-2 i}\right),
\end{gathered}
$$

where $(2 i-3)!!:=(2 i-3) \cdot(2 i-5) \cdots 3 \cdot 1$.

Asymptotic analysis

$$
\begin{aligned}
\mathbf{M}_{k}(x) & =x \frac{d}{d x} \sum_{\substack{K-c o r e \\
\text { matching }}} \frac{1}{n(K)} \prod_{i \geq 1}\left(\frac{x^{i}}{(i-1)!} \frac{d^{i-1}}{d x^{i-1}}\left(x^{i-1} \mathbf{M}_{0}(x)\right)\right)^{n_{i}(K)} \\
& =\sum_{x \sim \frac{1}{2}} \frac{\phi(K)}{\substack{K-c o r e \\
\text { matching }}} \prod_{2(K)}\left(\frac{\sqrt{2}(2 i-5)!!}{4^{i-1}(i-1)!}\right)^{n_{i}(K)} X_{+}^{-\phi(K)-2}\left(1+O\left(X_{+}\right)\right),
\end{aligned}
$$

where $\phi(K)=\sum_{i>1}(2 i-3) n_{i}(K)$

Asymptotic analysis

$$
\begin{aligned}
\mathbf{M}_{k}(x) & =x \frac{d}{d x} \sum_{\substack{K-\text {-ore } \\
\text { matching }}} \frac{1}{n(K)} \prod_{i \geq 1}\left(\frac{x^{i}}{(i-1)!} \frac{d^{i-1}}{d x^{i-1}}\left(x^{i-1} \mathbf{M}_{0}(x)\right)\right)^{n_{i}(K)} \\
& =\sum_{x \sim \frac{1}{2}} \sum_{\substack{k-c o r e \\
\text { matching }}} \frac{\phi(K)}{2 n(K)} \prod_{i>1}\left(\frac{\sqrt{2}(2 i-5)!!!}{4^{i-1}(i-1)!}\right)^{n_{i}(K)} X_{+}^{-\phi(K)-2}\left(1+O\left(X_{+}\right)\right),
\end{aligned}
$$

where $\phi(K)=\sum_{i>1}(2 i-3) n_{i}(K)$ is maximized by the core matchings with $n_{1}(K)=3 k$ and $n_{k}(K)=1$:

Asymptotic analysis

Proposition

For $k \geq 1$, the number of perfect matchings with k crossings and $n=2 m$ vertices is

$$
\left[x^{2 m}\right] \mathbf{M}_{k}(x) \underset{m \rightarrow \infty}{=} \frac{(2 k-3)!!}{2^{k-1} k!\Gamma\left(k-\frac{1}{2}\right)} m^{k-\frac{3}{2}} 4^{m}(1+o(1)),
$$

where $(2 k-3)!!:=(2 k-3) \cdot(2 k-5) \cdots 3 \cdot 1$.

Dominant core matchings maximize $\phi(K)=\sum_{i>1}(2 i-3) n_{i}(K)$

Probabilities core matchings

Extension to partitions

$\mathcal{S}=$ subset of \mathbb{N}^{*} distinct from $\{1\}$
$\mathcal{P}^{\mathcal{S}}=\{$ partitions with parts of size in $\mathcal{S}\}$

crossing $=$ two crossing chords that belong to distinct parts $\mathcal{P}^{\mathcal{S}}(n, m, k)=$ \# partitions with n vert., m parts, and k crossings generating function $\mathbf{P}_{k}^{\mathcal{S}}(x, y)=\sum_{n, m \in \mathbb{N}}\left|\mathcal{P}^{\mathcal{S}}(n, m, k)\right| x^{n} y^{m}$

Core partitions

Core of a partition $P=$ subpartition P^{\star} formed by all parts involved in at least one crossing

There are only finitely many core partitions with k crossings Encoded in the core partition polynomial $\mathbf{K P}_{k}^{\mathcal{S}}\left(x_{1}, \ldots, x_{k}\right)$

Generating function

Proposition

For $k \geq 1$, the generating function $\mathbf{P}_{k}^{\mathcal{S}}(x, y)$ of partitions with k crossings and where the size of each block belongs to \mathcal{S} is

$$
\mathbf{P}_{k}^{\mathcal{S}}(x, y)=x \frac{d}{d x} \mathbf{K} \mathbf{P}_{k}^{\mathcal{S}}\left(x_{i} \leftarrow \frac{x^{i}}{(i-1)!} \frac{d^{i-1}}{d x^{i-1}}\left(x^{i-1} \mathbf{P}_{0}^{\mathcal{S}}(x, y)\right), y\right) .
$$

If \mathcal{S} is finite or ultimately periodic, then $\mathbf{P}_{k}^{\mathcal{S}}(x, y)$ is a rational function of $\mathbf{P}_{0}^{\mathcal{S}}(x, y)$ and x.

Generating function

Proposition

For $k \geq 1$, the generating function $\mathbf{P}_{k}^{\mathcal{S}}(x, y)$ of partitions with k crossings and where the size of each block belongs to \mathcal{S} is

$$
\mathbf{P}_{k}^{\mathcal{S}}(x, y)=x \frac{d}{d x} \mathbf{K} \mathbf{P}_{k}^{\mathcal{S}}\left(x_{i} \leftarrow \frac{x^{i}}{(i-1)!} \frac{d^{i-1}}{d x^{i-1}}\left(x^{i-1} \mathbf{P}_{0}^{\mathcal{S}}(x, y)\right), y\right) .
$$

If \mathcal{S} is finite or ultimately periodic, then $\mathbf{P}_{k}^{\mathcal{S}}(x, y)$ is a rational function of $\mathbf{P}_{0}^{\mathcal{S}}(x, y)$ and x.

Two difficulties for the asymptotic:

- minimal singularity and singular behavior of $\mathbf{P}_{0}^{\mathcal{S}}(x, 1)$
- characterize dominant k-core partitions

Difficulty 1: Singular behavior of $\mathrm{P}_{0}^{\mathcal{S}}(x, 1)$

Proposition

For $\mathcal{S} \neq\{1\}$, the generating function $\mathbf{P}_{0}^{\mathcal{S}}(x, 1)$ satisfies

$$
\mathbf{P}_{0}^{\mathcal{S}}(x, 1) \underset{x \sim \rho_{\mathcal{S}}}{=} \alpha_{\mathcal{S}}-\beta_{\mathcal{S}} \sqrt{1-\frac{x}{\rho_{\mathcal{S}}}}+O\left(1-\frac{x}{\rho_{\mathcal{S}}}\right)
$$

where $\rho_{\mathcal{S}}, \alpha_{\mathcal{S}}$ and $\beta_{\mathcal{S}}$ are defined by

$$
\begin{aligned}
& \sum_{s \in \mathcal{S}}(s-1) \tau_{\mathcal{S}}{ }^{s}=1, \quad \rho_{\mathcal{S}}:=\frac{\tau_{\mathcal{S}}}{\sum_{s \in \mathcal{S}} s \tau_{\mathcal{S}}{ }^{s}}, \\
& \alpha_{\mathcal{S}}:=1+\sum_{s \in \mathcal{S}} \tau_{\mathcal{S}}{ }^{s}, \quad \text { and } \quad \beta_{\mathcal{S}}:=\sqrt{\frac{2\left(\sum_{s \in \mathcal{S}} s \tau_{\mathcal{S}}\right)^{3}}{\sum_{s \in \mathcal{S}} s(s-1) \tau_{\mathcal{S}}^{s}}} .
\end{aligned}
$$

Singular behavior of generating functions defined by a smooth implicit-function schema (Meir \& Moon)

Asymptotic analysis

Proposition

For $k \geq 1$, and $\mathcal{S} \neq\{1\}$, the number of partitions with k crossings, n vertices, and where the size of each block belongs to \mathcal{S} is

$$
\left[x^{n}\right] \mathbf{P}_{k}^{\mathcal{S}}(x, 1) \underset{\substack{n \overrightarrow{ } \\ \operatorname{gcd}(\mathcal{S}) \mid n}}{=} \wedge_{\mathcal{S}} n^{\frac{\psi(k, \mathcal{S})}{2}} \rho_{\mathcal{S}}^{-n}(1+o(1)),
$$

where $\psi(k, \mathcal{S})=$ maximum of $\phi(K):=\sum_{i>1}(2 i-3) n_{i}(K)$ and

$$
\Lambda_{\mathcal{S}}:=\frac{\operatorname{gcd}(\mathcal{S}) \psi(k, \mathcal{S})}{2 \Gamma\left(\frac{\psi(k, \mathcal{S})}{2}+1\right)} \sum_{\substack{K \in \mathcal{P}^{\mathcal{S}} \\ \phi(K)=\psi(k, \mathcal{S})}} \frac{\tau_{\mathcal{S}}^{n_{1}(K)}}{n(K)} \prod_{i>1}\left(\frac{\rho_{\mathcal{S}}{ }^{i} \beta_{\mathcal{S}}(2 i-5)!!}{2^{i-1}(i-1)!}\right)^{n_{i}(K)} .
$$

Difficulty 2: Dominant k-core partitions

Only determined for specific instances:

- all partitions: $\mathcal{S}=\mathbb{N}^{*}$

Proposition

For $k \geq 1$, the number of partitions with k crossings and n vertices is

$$
\left[x^{n}\right] \mathbf{P}_{k}^{\mathbb{N}^{*}}(x, 1) \underset{n \rightarrow \infty}{=} \frac{(2 k-3)!!}{2^{3 k-1} k!\Gamma\left(k-\frac{1}{2}\right)} n^{k-\frac{3}{2}} 4^{n}(1+o(1)) .
$$

- q-uniform partitions: $\mathcal{S}=\{q\}$ and $k=k^{\prime}(q-1)^{2}$

$$
\left[x^{q m}\right] \mathbf{P}_{k^{\prime}(q-1)^{2}}^{\{q\}}(x, 1) \underset{m \rightarrow \infty}{=} \Lambda_{k^{\prime}}^{\{q\}} m^{k^{\prime}-\frac{3}{2}}\left(\frac{q^{q}}{(q-1)^{q-1}}\right)^{m}(1+o(1)) .
$$

- q-multiple partitions: $\mathcal{S}=q \mathbb{N}$ and $k=k^{\prime}(q-1)^{2}$

$$
\left[x^{q m}\right] \mathbf{P}_{k^{\prime}(q-1)^{2}}^{q \mathbb{N}^{*}}(x, 1) \underset{m \rightarrow \infty}{=} \Lambda_{k^{\prime}}^{q \mathbb{N}} m^{k^{\prime}-\frac{3}{2}}\left(\frac{(q+1)^{q+1}}{q^{q}}\right)^{m}(1+o(1)) .
$$

Our results on configurations with k crossings
\mathcal{C} family of configurations among

Theorem (Rationality)

The generating function $\mathbf{C}_{k}(x, y)$ of configurations in \mathcal{C} with exactly k crossings is a rational function of the generating function $\mathbf{C}_{0}(x, y)$ of planar configurations in \mathcal{C} and of the variables x and y.

Theorem (Asymptotics)

For $k \geq 1$, the number of conf. in \mathcal{C} with k crossings and n vertices is

$$
\left[x^{n}\right] \mathbf{C}_{k}(x, 1) \underset{n \rightarrow \infty}{=} \wedge n^{\alpha} \rho^{-n}(1+o(1)),
$$

for certain constants $\Lambda, \alpha, \rho \in \mathbb{R}$ depending on \mathcal{C} and k.

