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Planar chord configurations
Structural properties
The simplicial complex of crossing-free chord
diagrams is the boundary complex of the
associahedron

Enumerative properties

Theorem [Flajolet & Noy ’99]
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Nearly-planar chord configurations
Crossing-free chord configurations have relevant enumerative and
structural properties

Enumerative/structural properties of nearly planar chord configurations?

matchings partitions chord
diagrams

hyperchord
diagrams

Possible constraints... ... on the crossing graph
I at most k crossings edges
I no (k + 1)-crossings cliques
I each chord crosses at most k others degrees
I become crossing-free when removing at most k chords covers
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A zoom on (k + 1)-crossing-free chord diagrams
chord diagrams with no k + 1 mutually crossing chords have a rich
combinatorial structure

Theorem [Jonsson ’03]

The simplicial complex of (k + 1)-crossing-free chord diagrams is a sphere.

Maximal (k + 1)-crossing-free chord diagrams are k-triangulations
They can be decomposed into a complex of k-stars [P. & Santos ’09]

star decomposition flip

k-triangulations are counted by a Hankel determinant of Catalan numbers
[Jonsson ’05]



Our results on configurations with k crossings
C family of configurations among

matchings partitions chord
diagrams

hyperchord
diagrams

C(n,m, k) = # confs with n vertices, m (hyper)chords, and k crossings
generating function Ck(x , y) =

∑
n,m∈N |C(n,m, k)| xn ym



Our results on configurations with k crossings
C family of configurations among

matchings partitions chord
diagrams

hyperchord
diagrams

Theorem (Rationality)

The generating function Ck(x , y) of configurations in C with exactly k
crossings is a rational function of the generating function C0(x , y) of
planar configurations in C and of the variables x and y.

partial results in [Bona, Partitions with k crossings, ’00]



Our results on configurations with k crossings
C family of configurations among

matchings partitions chord
diagrams

hyperchord
diagrams

Theorem (Rationality)

The generating function Ck(x , y) of configurations in C with exactly k
crossings is a rational function of the generating function C0(x , y) of
planar configurations in C and of the variables x and y.

Theorem (Asymptotics)

For k ≥ 1, the number of conf. in C with k crossings and n vertices is

[xn] Ck(x , 1) =
n→∞

Λ nα ρ−n (1 + o(1)),

for certain constants Λ, α, ρ ∈ R depending on C and k.



Constants

Theorem (Asymptotics)

For k ≥ 1, the number of conf. in C with k crossings and n vertices is

[xn] Ck(x , 1) =
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Λ nα ρ−n (1 + o(1)),

for certain constants Λ, α, ρ ∈ R depending on C and k.
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Matchings with k crossings
M = {perfect matchings with endpoints on the unit circle}
All matchings are “rooted” and “up to deformation”

M(n, k) = number of matchings with n vertices and k crossings
generating function Mk(x) =

∑
n∈N |M(n, k)| xn



Core matchings
Core of a matching M = submatching M? formed by all chords involved
in at least one crossing

There are only finitely many core matchings with k crossings



Core matching polynomial

KMk(x1, . . . , xk) =
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Computing core matching polynomials
Core matchings can be decomposed into connected matchings

level of an arc α of M = graph distance between α and the leftmost arc
in the crossing graph of M

To generate all possible connected matchings, start from a single arc and
add arcs one by one. If the last constructed arc (i , j) was at level `, then
(i) either add a new arc (u, v) in the current level `, with u > i and

crossing at least one arc at level `− 1, and no arc at level < `− 1
(ii) or add an new arc (u, v) at a new level `+ 1 with u > 1 and

crossing at least one arc at level ` and no at level < `
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Generating function of matchings with k crossings
Proposition
For k ≥ 1, the generating function Mk(x) of the perfect matchings with
k crossings is given by

Mk(x) = x
d
dx

KMk

(
xi ←

x i

(i − 1)!

d i−1

dx i−1

(
x i−1M0(x)

))
In particular, Mk(x) is a rational function of M0(x) and x

Choose a core matching with k crossings
Replace each region with i boundaries by a crossing-free matching with a
root and i − 1 additional marks
Reroot to obtain a rooted matching
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Asymptotic analysis
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where (2i − 3)!! := (2i − 3) · (2i − 5) · · · 3 · 1.
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is maximized by the core matchings
with n1(K ) = 3k and nk(K ) = 1:
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Asymptotic analysis

Proposition
For k ≥ 1, the number of perfect matchings with k crossings and n = 2m
vertices is

[x2m] Mk(x) =
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Probabilities core matchings
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Extension to partitions
S = subset of N∗ distinct from {1}
PS = {partitions with parts of size in S}

crossing = two crossing chords that belong to distinct parts
PS(n,m, k) = # partitions with n vert., m parts, and k crossings
generating function PSk (x , y) =

∑
n,m∈N |PS(n,m, k)| xn ym



Core partitions
Core of a partition P = subpartition P? formed by all parts involved in at
least one crossing

There are only finitely many core partitions with k crossings
Encoded in the core partition polynomial KPSk (x1, . . . , xk)



Generating function

Proposition
For k ≥ 1, the generating function PSk (x , y) of partitions with k crossings
and where the size of each block belongs to S is

PSk (x , y) = x
d
dx

KPSk

(
xi ←

x i

(i − 1)!

d i−1

dx i−1

(
x i−1PS0 (x , y)

)
, y
)
.

If S is finite or ultimately periodic, then PSk (x , y) is a rational function
of PS0 (x , y) and x.

Two difficulties for the asymptotic:
I minimal singularity and singular behavior of PS0 (x , 1)

I characterize dominant k-core partitions
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Difficulty 1: Singular behavior of PS0 (x , 1)

Proposition
For S 6= {1}, the generating function PS0 (x , 1) satisfies

PS0 (x , 1) =
x∼ρS
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Singular behavior of generating functions defined by a smooth
implicit-function schema (Meir & Moon)



Asymptotic analysis

Proposition
For k ≥ 1, and S 6= {1}, the number of partitions with k crossings, n
vertices, and where the size of each block belongs to S is
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Difficulty 2: Dominant k-core partitions
Only determined for specific instances:

I all partitions: S = N∗

Proposition
For k ≥ 1, the number of partitions with k crossings and n vertices is
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I q-uniform partitions: S = {q} and k = k ′(q − 1)2
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I q-multiple partitions: S = qN and k = k ′(q − 1)2
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