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The simplicial complex of crossing-free chord &
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Enumerative properties

Theorem [Flajolet & Noy '99]
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Nearly-planar chord configurations

Crossing-free chord configurations have relevant enumerative and
structural properties

Enumerative/structural properties of nearly planar chord configurations?

hyperchord

matchings artitions . .
& P diagrams diagrams
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» at most k crossings
» no (k + 1)-crossings
» each chord crosses at most k others

» become crossing-free when removing at most k chords



Nearly-planar chord configurations

Crossing-free chord configurations have relevant enumerative and
structural properties

Enumerative/structural properties of nearly planar chord configurations?

. . hyperchord
matchings partitions . .
diagrams diagrams
Possible constraints... ... on the crossing graph
» at most k crossings edges
» no (k + 1)-crossings cliques
» each chord crosses at most k others degrees

» become crossing-free when removing at most k chords covers



A zoom on (k + 1)-crossing-free chord diagrams

chord diagrams with no k + 1 mutually crossing chords have a rich
combinatorial structure

Theorem [Jonsson '03]

The simplicial complex of (k + 1)-crossing-free chord diagrams is a sphere.

Maximal (k + 1)-crossing-free chord diagrams are k-triangulations

They can be decomposed into a complex of k-stars [P. & Santos '09]
N
% y § >
star decomposition flip

k-triangulations are counted by a Hankel determinant of Catalan numbers
[Jonsson '05]



Our results on configurations with k crossings
C family of configurations among

A A

hyprcord

matchings artitions . !
& P diagrams diagrams

C(n, m, k) = # confs with n vertices, m (hyper)chords, and k crossings
generating function Cy(x,y) = >_, oy [C(n, m, k)| x" y™



Our results on configurations with k crossings
C family of configurations among

hyprcord
diagrams diagrams

matchings partitions

Theorem (Rationality)

The generating function Cy(x, y) of configurations in C with exactly k
crossings is a rational function of the generating function Co(x,y) of
planar configurations in C and of the variables x and y.

partial results in [Bona, Partitions with k crossings, '00]



Our results on configurations with k crossings
C family of configurations among

hyprcord
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Theorem (Rationality)

The generating function Cy(x, y) of configurations in C with exactly k
crossings is a rational function of the generating function Co(x,y) of
planar configurations in C and of the variables x and y.

Theorem (Asymptotics)

For k > 1, the number of conf. in C with k crossings and n vertices is
[x" Ck(x,1) = An%p " (1+ o(1)),

n—oo

for certain constants N\, a, p € R depending on C and k.



Constants

Theorem (Asymptotics)

For k > 1, the number of conf. in C with k crossings and n vertices is
[x"] C(x,1) = An%p~"(1+0(1)),

n—oo

for certain constants \, o, p € R depending on C and k.
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Matchings with k crossings

M = {perfect matchings with endpoints on the unit circle}
All matchings are “rooted” and “up to deformation”

M(n, k) = number of matchings with n vertices and k crossings
generating function My (x) = >~y [M(n, k)| x"



Core matchings

Core of a matching M = submatching M* formed by all chords involved
in at least one crossing

There are only finitely many core matchings with k crossings



Core matching polynomial

1 ;
KMk(Xl,...,Xk): Z m H Xin'(K)

K k-core i€[k]
matching

ni(K) = # regions of the complement of K with / boundary arcs
n(K) =", ni(K) = # of vertices of K

i
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Computing core matching polynomials

Core matchings can be decomposed into connected matchings
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level of an arc o of M = graph distance between « and the leftmost arc
in the crossing graph of M



Computing core matching polynomials

Core matchings can be decomposed into connected matchings

Sk

ANAabigbhed44d4cd3122f23

level of an arc o of M = graph distance between « and the leftmost arc
in the crossing graph of M

To generate all possible connected matchings, start from a single arc and
add arcs one by one. If the last constructed arc (7, ) was at level £, then

(i) either add a new arc (u, v) in the current level ¢, with v > i and
crossing at least one arc at level £ — 1, and no arc at level < £/ —1

(ii) or add an new arc (u, v) at a new level £ 4+ 1 with u > 1 and
crossing at least one arc at level ¢ and no at level < ¢



Generating function of matchings with k crossings

Proposition

For k > 1, the generating function My (x) of the perfect matchings with
k crossings is given by

d X! difl -
EKM[( <X,' — m dxi_l (X MO(X) )>

My (x) = x

In particular, My(x) is a rational function of Mg(x) and x



Generating function of matchings with k crossings

Proposition
For k > 1, the generating function My (x) of the perfect matchings with
k crossings is given by

i—1
Mk(X) = KMk(X,' — (I'—].)[;("_l (XilMo(X))>

In particular, My (x) is a rational function of Mg(x) and x

AT

Choose a core matching with k crossings
Replace each region with i boundaries by a crossing-free matching with a
root and i — 1 additional marks

to obtain a rooted matching



Asymptotic analysis

d 1 Xi di—l i1 n;(K)
M) = x g D nK)H<(i1)!dx"1(X MO(X)))
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matching




Asymptotic analysis

d 1 X! di-t - n;i(K)
Mi() = xge 2 n(K)H<(;1)!dx"1(X' MO(X)))

K k-core i>1
matching

Mo (x) has two singularities around x = 1 and x = —
Denote X, = /1 — 2x around x = % then

1
.

Mo(x) = 2—-2V2X, +0(X,?)
iMo(X) = 2V2(2i = 3)1 X 1-2i L o (X 2-2;)
dx’ 1 X f 7

where (2i —3)!1:=(2/ —3)-(2/ —5)---3- 1.



Asymptotic analysis

d 1 Xi di—l i ni(K)
Mi(x) = Xdx KZ W,I:[l ((/1)' dxi—1 (x MO(X)))

k-core
matching
O(K) T (V221 =51\ " )2
ol Z 2n(K) H 4i-1(j —1)! Xy (1+0(X4)),
matening >t

where ¢(K) = >, 1(2i — 3)n;(K)



Asymptotic analysis

d 1 Xi di—l i ni(K)
i) = g X o (e (Mol

K k-core
matching

i ni(K) )
> 2i((?)ﬂ<f§2(f_51))!!l> X714 0(X4)),

i>1

where ¢(K) = > 1(2i — 3)n;(K) is maximized by the core matchings
with n(K) = 3k and ng(K) = 1:

pel=t PG



Asymptotic analysis

Proposition

For k > 1, the number of perfect matchings with k crossings and n = 2m
vertices is
(2k —3)!!

[*™] Mi(x) m—oo Dk—1 rk—1) m "2 47 (1 + o(1)),

where (2k —3)!1:=(2k —3) - (2k—=5)---3-1

Dominant core matchings maximize ¢(K) = >, ,(2i — 3)n;(K

£y



Probabilities core matchings
1

probabilities
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number of vertices



Extension to partitions

S = subset of N* distinct from {1}
PS = {partitions with parts of size in S}

crossing = two crossing chords that belong to distinct parts
PS(n, m, k) = # partitions with n vert., m parts, and k crossings
generating function P$(x,y) = Y, men [PE(n, m, k)| x" y™

n,me



Core partitions

Core of a partition P = subpartition P* formed by all parts involved in at
least one crossing

There are only finitely many core partitions with k crossings
Encoded in the core partition polynomial KP$ (x1, .. ., xk)



Generating function

Proposition

For k > 1, the generating function P (x,y) of partitions with k crossings
and where the size of each block belongs to S is
X di-1

d
3 = x—KP? ( xi ¢~ -
Pi(xy) ax K (X < (i — 1)l dxi—1

(x"—lpa'f(x,y)),y) .

If S is finite or ultimately periodic, then P$(x,y) is a rational function
of P§(x,y) and x.



Generating function

Proposition

For k > 1, the generating function P (x,y) of partitions with k crossings
and where the size of each block belongs to S is
X di-1

d
3 = x—KP? ( xi ¢~ -
Pi(xy) ax K (X < (i — 1)l dxi—1

(x"—lpa'f(x,y)),y) .

If S is finite or ultimately periodic, then P$(x,y) is a rational function
of P§(x,y) and x.

Two difficulties for the asymptotic:
» minimal singularity and singular behavior of P§(x, 1)

» characterize dominant k-core partitions



Difficulty 1: Singular behavior of P§(x, 1)

Proposition
For S # {1}, the generating function P§(x, 1) satisfies

P5(x,1) = Ols—ﬁswl—i +O(1—X>7
xX~ps pPs pPs

where ps, as and Bs are defined by

Z(S - )rs® =1, ps = s

S )
seS ZSES 578

3
2 s
as=1+Y 7s°, and fs= \J (Xses 575°)

seS

Singular behavior of generating functions defined by a smooth
implicit-function schema (Meir & Moon)

Yoses S(s —1)1s



Asymptotic analysis

Proposition

For k > 1, and S # {1}, the number of partitions with k crossings, n
vertices, and where the size of each block belongs to S is

wks)
[XTPE(x,1) = Asn = ps "(1+0(1)),
ged(S)|n

where 1(k,S) = maximum of ¢(K):= > .. ,(2i — 3) nj(K) and

g BN BEES) 5 75K I (ps"ﬁs (2 — 5)!!)""(’0
2“@4_1) s n(K) 21 (j — 1)!
d(K)=1(k,S)

i>1



Difficulty 2: Dominant k-core partitions
Only determined for specific instances:
» all partitions: § = N*
Proposition
For k > 1, the number of partitions with k crossings and n vertices is

1Py (x,1) = 23k—(12:!_r€/2“_ 1y 7 (L oD).

» g-uniform partitions: S = {q} and k = k’(q — 1)?

m 3 g’ \"
P (1) = AL mk 3 (()q1> (1+ o(1)).

m—»00 q— 1
» g-multiple partitions: S = gN and k = k’(q — 1)?

N* N K2 (q + 1)q+1
[x9™] PZ,(qil)z(x,l) = A'mF2 (qq

m— o0

)m(1 +o(1)).



Our results on configurations with k crossings
C family of configurations among

hyprcord
diagrams diagrams

matchings partitions

Theorem (Rationality)

The generating function Ck(x,y) of configurations in C with exactly k
crossings is a rational function of the generating function Co(x,y) of
planar configurations in C and of the variables x and y.

Theorem (Asymptotics)

For k > 1, the number of conf. in C with k crossings and n vertices is
[x"] Ck(x,1) = An%p~"(1+ o(1)),

n—o0

for certain constants A\, o, p € R depending on C and k.



