

# POLYTOPALITY AND CARTESIAN PRODUCTS

Vincent Pilaud (Université Paris 7)

#### COMBINATORICS OF POLYTOPES POLYTOPES FROM COMBINATORICS



Given a set of points, determine the face lattice of its convex hull.

Given (part of) a face lattice, is there a polytope which realizes it? In which dimension(s)?

#### POLYTOPALITY

A graph is *d*-polytopal if it is the graph of a *d*-dimensional polytope.



One of these graphs is polytopal. Can you guess which?

#### POLYTOPALITY

A graph is *d*-polytopal if it is the graph of a *d*-dimensional polytope.



One of these graphs is polytopal. Can you guess which?

#### POLYTOPALITY RANGE

The polytopality range of a graph is the set of dimensions in which it is polytopal.



Which dimension can have a polytope with this graph?

#### POLYTOPALITY RANGE

The polytopality range of a graph is the set of dimensions in which it is polytopal.



Which dimension can have a polytope with this graph?

#### POLYTOPALITY RANGE

The polytopality range of a graph is the set of dimensions in which it is polytopal.



Which dimension can have a polytope with this graph?

#### **GENERAL POLYTOPES**

THEOREM. 3-polytopal  $\iff$  simple, planar and 3-connected. E. Steinitz 1922

**THEOREM**. A *d*-polytopal graph satisfies the following properties:

Balinski's Theorem. G is d-connected.

Principal Subdivision Property. Every vertex of G is the principal vertex of a principal subdivision of  $K_{d+1}$  contained in G. D. Barnette 1967

M. Balinski 1961

#### SIMPLE POLYTOPES

THEOREM. Two simple polytopes are combinatorially equivalent if and only if they havethe same graph.R. Blind and P. Mani 1987, G. Kalai 1988

LEMMA. All induced 3-, 4- and 5-cycles in the graph of a simple polytope are 2-faces.

#### POLYTOPALITY OF GRAPHS

LEMMA. All induced 3-, 4- and 5-cycles in the graph of a simple polytope are 2-faces.

**EXAMPLE**. None of the graphs of the following family is polytopal:





#### CARTESIAN PRODUCTS OF GRAPHS

 $\begin{array}{l} \mbox{Cartesian product of polytopes: } P \times Q := \{(p,q) \mid p \in P, q \in Q\}. \\ \mbox{Cartesian product of graphs: } \\ \left\{ \begin{array}{l} V(G \times H) := V(G) \times V(H), \\ E(G \times H) := (V(G) \times E(H)) \cup (E(G) \times V(H)). \end{array} \right. \end{array} \right. \end{array}$ 



**REMARK**. graph of  $P \times Q = (\text{graph of } P) \times (\text{graph of } Q)$ .

**PROBLEM**. Does the polytopality of  $G \times H$  imply that of G and H?

#### POLYTOPALITY AND CARTESIAN PRODUCTS

**PROBLEM**. Does the polytopality of  $G \times H$  imply that of G and H?

**THEOREM**.  $G \times H$  simply polytopal  $\iff G$  and H simply polytopal.

THEOREM. The product of a d-polytopal graph by the graph of a regular subdivision of an e-polytope is (d + e)-polytopal.



J. Pfeifle, V. P. & F. Santos, On polytopality of Cartesian products of graphs, 2010

THEOREM. The product of a d-polytopal graph by the graph of a regular subdivision of an e-polytope is (d + e)-polytopal.

**EXAMPLE**. The product of two domino graphs is polytopal.



J. Pfeifle, V. P. & F. Santos, On polytopality of Cartesian products of graphs, 2010

THEOREM. The product of a d-polytopal graph by the graph of a regular subdivision of an e-polytope is (d + e)-polytopal.

**EXAMPLE**. Polytopal product of regular non-polytopal graphs.



J. Pfeifle, V. P. & F. Santos, On polytopality of Cartesian products of graphs, 2010

#### SOME CHALLENGING EXAMPLES

THEOREM. The graph  $K_{n,n} \times K_2$  is not polytopal for  $n \ge 3$ .

THEOREM. There is a unique combinatorial 3-dimensional manifold whose graph is  $K_{3,3} \times K_3$ . It is homeomorphic to  $\mathbb{RP}^2 \times \mathbb{S}^1$ .



A. Guedes de Oliveira, E. Kim, M. Noy, A. Padrol, J. Pfeifle & V. P.

#### SOME CHALLENGING EXAMPLES

THEOREM. The graph  $K_{n,n} \times K_2$  is not polytopal for  $n \ge 3$ .

THEOREM. There is a unique combinatorial 3-dimensional manifold whose graph is  $K_{3,3} \times K_3$ . It is homeomorphic to  $\mathbb{RP}^2 \times \mathbb{S}^1$ .



A. Guedes de Oliveira, E. Kim, M. Noy, A. Padrol, J. Pfeifle & V. P.

#### SOME CHALLENGING EXAMPLES

THEOREM. The graph  $K_{n,n} \times K_2$  is not polytopal for  $n \ge 3$ .

THEOREM. There is a unique combinatorial 3-dimensional manifold whose graph is  $K_{3,3} \times K_3$ . It is homeomorphic to  $\mathbb{RP}^2 \times \mathbb{S}^1$ .

**PROBLEM**. Is the product of two Petersen graphs the graph of a polytope?



This polytope could have dimension 4 or 5.

Prodsimplicial Neighborly Polytopes

Benjamin Matschke Julian Pfeifle

## PRODSIMPLICIAL NEIGHBORLY POLYTOPES

 $k \geq 0$  and  $\underline{n} := (n_1, ..., n_r)$ .

A polytope is  $(k, \underline{n})$ -prodsimplicial-neighborly if its k-skeleton is combinatorially equivalent to that of the product of simplices  $\Delta_{\underline{n}} := \Delta_{n_1} \times \cdots \times \Delta_{n_r}$ .

EXAMPLE.

(i) neighborly polytopes arise when r = 1. For example, the cyclic polytope  $C_{2k+2}(n+1)$  is (k, n)-PSN.

(ii) neighborly cubical polytopes arise when  $\underline{n} = (1, 1, ..., 1)$ .

M. Joswig & G. Ziegler, Neighborly cubical polytopes, 2000

**PROBLEM**. What is the minimal dimension of a (k, n)-PSN polytope?

## PRODSIMPLICIAL NEIGHBORLY POLYTOPES

 $k \geq 0$  and  $\underline{n} := (n_1, ..., n_r)$ .

A polytope is  $(k, \underline{n})$ -prodsimplicial-neighborly if its k-skeleton is combinatorially equivalent to that of the product of simplices  $\Delta_{\underline{n}} := \Delta_{n_1} \times \cdots \times \Delta_{n_r}$ .

EXAMPLE.

(i) neighborly polytopes arise when r = 1. For example, the cyclic polytope  $C_{2k+2}(n+1)$  is (k, n)-PSN.

(ii) neighborly cubical polytopes arise when  $\underline{n} = (1, 1, \dots, 1)$ .

M. Joswig & G. Ziegler, Neighborly cubical polytopes, 2000

**PROBLEM**. What is the minimal dimension of a (k, n)-PSN polytope?

A  $(k, \underline{n})$ -PSN polytope is  $(k, \underline{n})$ -projected-prodsimplicial-neighborly if it is a projection of a polytope combinatorially equivalent to  $\Delta_{\underline{n}}$ .

**PROBLEM**. What is the minimal dimension of a (k, n)-PPSN polytope?

 $C_d(n) := \operatorname{conv} \{ \mu_d(t_i) \mid i \in [n] \}$  the *d*-dimensional cyclic polytope with *n* vertices, where  $\mu_d(t) = (t, t^2, \dots, t^d)^T$  and  $t_1, t_2, \dots, t_n \in \mathbb{R}$  distinct.

**PROPOSITION**. Any subset of at most  $\left\lfloor \frac{d}{2} \right\rfloor$  vertices of  $C_d(n)$  forms a face of  $C_d(n)$ .

 $F \subset [n]$  defines a facet of  $C_d(n) \iff |F| = d$  and all inner blocs are even. The normal vector of this facet is given by the coefficients of the polytope

$$\prod_{i \in F} (t - t_i) = \sum_{i=1}^d \gamma_i(F) t^i = \begin{pmatrix} \gamma_1(F) \\ \vdots \\ \gamma_d(F) \end{pmatrix} \cdot \begin{pmatrix} t^1 \\ \vdots \\ t^d \end{pmatrix} + \gamma_0(F).$$

PROPOSITION. Let  $k \ge 0$  and  $\underline{n} := (n_1, ..., n_r)$ . Let  $I := \{i \in [n] \mid n_i \ge 2k + 3\}$ . The product

$$\prod_{i \in I} C_{2k+2}(n_i+1) \times \prod_{i \notin I} \Delta_{n_i}$$

is a  $(k, \underline{n})$ -PPSN polytope of dimension  $(2k+2)|I| + \sum_{i \notin I} n_i \leq (2k+2)r$ .

#### MINKOWSKI SUM OF CYCLIC POLYTOPES

**PROPOSITION.** Let  $k \ge 0$  and  $\underline{n} := (n_1, ..., n_r)$ . Define

$$v_{a_1,\ldots,a_r} := \begin{pmatrix} \sum_{i \in [r]} a_i \\ \sum_{i \in [r]} a_i^2 \\ \vdots \\ \sum_{i \in [r]} a_i^{2k+2r} \end{pmatrix} \in \mathbb{R}^{2k+2r}.$$

For any pairwise disjoint index sets  $I_1, \ldots, I_r \subset \mathbb{R}$ , with  $|I_i| = n_i$  for all  $i \in [r]$ , the polytope conv  $\{v_{a_1,\ldots,a_r} \mid (a_1,\ldots,a_r) \in I_1 \times \cdots \times I_r\} \subset \mathbb{R}^{2k+2r}$  is a  $(k,\underline{n})$ -PPSN (2k+2r)-dimensional polytope. PROPOSITION. Let  $k \ge 0$  and  $\underline{n} := (n_1, ..., n_r)$ . Define  $w_{a_1,...,a_r} := \begin{pmatrix} a_1 \\ \vdots \\ a_r \\ \sum_{i \in [r]} a_i^2 \\ \vdots \\ \sum_{i \in [r]} a_i^{2k+2} \end{pmatrix} \in \mathbb{R}^{2k+r+1}.$ 

There exists pairwise disjoint index sets  $I_1, \ldots, I_r \subset \mathbb{R}$ , with  $|I_i| = n_i$  for all  $i \in [r]$ , such that the polytope  $\operatorname{conv} \{w_{a_1,\ldots,a_r} \mid (a_1,\ldots,a_r) \in I_1 \times \cdots \times I_r\} \subset \mathbb{R}^{2k+r+1}$  is a  $(k,\underline{n})$ -PPSN (2k + r + 1)-dimensional polytope.

B. Matschke, J. Pfeifle & V. P., Prodsimplicial neighborly polytopes, 2010

## PRESERVING FACES UNDER PROJECTIONS

#### n > d.

 $\pi:\mathbb{R}^n\to\mathbb{R}^d$  the orthogonal projection on the first d coordinates.

 $\tau:\mathbb{R}^n\to\mathbb{R}^{n-d}$  the dual projection on the last n-d coordinates.

A proper face F of a polytope P is strictly preserved under  $\pi$  if:

(i)  $\pi(F)$  is a face of  $\pi(P)$ ,

(ii) F and  $\pi(F)$  are combinatorially isomorphic, and

(iii)  $\pi^{-1}(\pi(F))$  equals F.



## PRESERVING FACES UNDER PROJECTIONS

n > d.

 $\pi: \mathbb{R}^n \to \mathbb{R}^d$  the orthogonal projection on the first d coordinates.

 $\tau: \mathbb{R}^n \to \mathbb{R}^{n-d}$  the dual projection on the last n-d coordinates.

Let  $F_1, \ldots, F_m$  be the facets of P. Let  $f_i$  be the normal vector of  $F_i$  and  $g_i = \tau(f_i)$ . For any face F of P, let  $\phi(F) = \{i \in [m] \mid F \subset F_i\}$ . In other words,  $F = \bigcap_{i \in \phi(F)} F_i$ .

LEMMA. F face of P is strictly preserved  $\iff \{g_i \mid i \in \phi(F)\}$  is positively spanning.

N. Amenta & G. Ziegler, Deformed products and maximal shadows of polytopes, 1999 G. Ziegler, Projected products of polytopes, 2004



 $P_1, \ldots, P_r$  simple polytopes, with facet description:

$$P_i := \{x \in \mathbb{R}^{n_i} \mid A_i x \leq b_i\}, \text{ where } A_i \in \mathbb{R}^{m_i \times n_i} \text{ and } b_i \in \mathbb{R}^{m_i}.$$

The product  $P := P_1 \times \cdots \times P_r$  has dimension  $\sum_{i \in [r]} n_i$  and is defined by the  $\sum_{i \in [r]} m_i$  inequalities:

$$\begin{pmatrix} A_1 & & \\ & \ddots & \\ & & A_r \end{pmatrix} x \le \begin{pmatrix} b_1 \\ \vdots \\ b_r \end{pmatrix}$$

THEOREM. (DEFORMED PRODUCT CONSTRUCTION) For any matrix  $A^{\sim} := \begin{pmatrix} A_1 & \star & \star \\ & \ddots & \star \\ & & A_r \end{pmatrix}$  obtained by arbitrarily changing the 0's above the diagonal blocs, there exists  $b^{\sim}$  such that the polytope defined by  $A^{\sim}x \leq b^{\sim}$  is combinatorially equivalent to  $P_1 \times \cdots \times P_r$ .

N. Amenta & G. Ziegler, Deformed products and maximal shadows of polytopes, 1999

IDEA. Use your freedom on the upper part of the matrix  $A^{\sim}$  to obtain a polytope  $P^{\sim} := \{x \in \mathbb{R}^{\sum n_i} \mid A^{\sim}x \leq b^{\sim}\}$  such that:

(i)  $P^{\sim}$  is a deformed product combinatorially equivalent to  $P := P_1 \times \cdots \times P_r$ ; and (ii) the projection of  $P^{\sim}$  on the first d coordinates preserves its k-skeleton.

EXAMPLE. Let  $P_1, \ldots, P_r$  be r simple polytopes of respective dimension  $n_i$  and with  $m_i$  many facets. If  $d = \sum_{i \in [t]} n_i$ , then there exists a d-dimensional polytope whose k-skeleton is combinatorially equivalent to that of  $P_1 \times \cdots \times P_r$  provided

$$k \le \sum_{i \in [r]} n_i - \sum_{i \in [r]} m_i + \left\lfloor \frac{\sum_{i \in [t]} m_i - 1}{2} \right\rfloor$$

For improvements, see

B. Matschke, J. Pfeifle & V. P., Prodsimplicial neighborly polytopes, 2010

## SANYAL'S TOPOLOGICAL OBSTRUCTION METHOD

#### n > d.

 $\pi: \mathbb{R}^n \to \mathbb{R}^d$  the orthogonal projection on the first d coordinates.

 $\tau: \mathbb{R}^n \to \mathbb{R}^{n-d}$  the dual projection on the last n-d coordinates.

Let P be a simple full-dimensional polytope whose vertices are strictly preserved by  $\pi$ . Let  $F_1, \ldots, F_m$  be the facets of P. Let  $f_i$  be the normal vector of  $F_i$  and  $g_i = \tau(f_i)$ . For any face F of P, let  $\phi(F) = \{i \in [m] \mid F \subset F_i\}$ . In other words,  $F = \bigcap_{i \in \phi(F)} F_i$ .

LEMMA. The vector configuration  $\{g_i \mid i \in [m]\}$  is the Gale transform of the vertex set  $\{a_i \mid i \in [m]\}$  of a (m - n + d - 1)-dimensional (simplicial) polytope Q.

A face F of P is strictly preserved by  $\pi$   $\iff \{g_i \mid i \in \phi(F)\}$  is positively spanning  $\iff \{a_i \mid i \in [m] \smallsetminus \phi(F)\}$  is a face of Q.

R. Sanyal, Topological obstructions for vertex numbers of Minkowski sums, 2009

Projection preserving the k-skeleton of  $\triangle_{\underline{n}}$ 

- $\mapsto$  simplicial complex embeddable in a certain dimension (Gale duality)
- $\mapsto$  topological obstruction (Sarkaria's criterion).

THEOREM. (Topological obstruction for low-dimensional skeleta) Let  $\underline{n} := (n_1, \ldots, n_r)$  and  $R := \{i \in [r] \mid n_i \ge 2\}$ . If  $0 \le k \le \sum_{i \in R} \lfloor \frac{n_i - 2}{2} \rfloor$ , then the dimension of any  $(k, \underline{n})$ -PPSN polytope is at least 2k + |R| + 1.

THEOREM. (Topological obstruction for high-dimensional skeleta) Let  $\underline{n} := (n_1, \ldots, n_r)$ . If  $k \ge \left\lfloor \frac{1}{2} \sum_{i \in [r]} n_i \right\rfloor$ , then any  $(k, \underline{n})$ -PPSN polytope is combinatorially equivalent to  $\Delta_{\underline{n}}$ .

B. Matschke, J. Pfeifle & V. P., Prodsimplicial neighborly polytopes, 2010

#### THANK YOU