

COMBINATORICS OF POLYTOPES POLYTOPES FROM COMBINATORICS

$$
\begin{aligned}
\text { polytope } & =\text { convex hull of a finite set of } \mathbb{R}^{d} \\
& =\text { bounded intersection of finitely many half-spaces }
\end{aligned}
$$ face $=$ intersection with a supporting hyperplane face lattice $=$ all the faces with their inclusion relations

Given a set of points, determine the face lattice of its convex hull.

Given (part of) a face lattice, is there a polytope which realizes it? In which dimension(s)?

POLYTOPALITY

A graph is d-polytopal if it is the graph of a d-dimensional polytope.

One of these graphs is polytopal. Can you guess which?

POLYTOPALITY

A graph is d-polytopal if it is the graph of a d-dimensional polytope.

One of these graphs is polytopal. Can you guess which?

POLYTOPALITY RANGE

The polytopality range of a graph is the set of dimensions in which it is polytopal.

Which dimension can have a polytope with this graph?

POLYTOPALITY RANGE

The polytopality range of a graph is the set of dimensions in which it is polytopal.

Which dimension can have a polytope with this graph?

POLYTOPALITY RANGE

The polytopality range of a graph is the set of dimensions in which it is polytopal.

Which dimension can have a polytope with this graph?

POLYTOPALITY OF GRAPHS

GENERAL POLYTOPES

THEOREM. 3-polytopal \Longleftrightarrow simple, planar and 3-connected.
E. Steinitz 1922

THEOREM. A d-polytopal graph satisfies the following properties:
Balinski's Theorem. G is d-connected.
M. Balinski 1961

Principal Subdivision Property. Every vertex of G is the principal vertex of a principal subdivision of K_{d+1} contained in G.
D. Barnette 1967

SIMPLE POLYTOPES

THEOREM. Two simple polytopes are combinatorially equivalent if and only if they have the same graph.

LEMMA. All induced 3 -, 4- and 5-cycles in the graph of a simple polytope are 2 -faces.

POLYTOPALITY OF GRAPHS

LEMMA. All induced 3-, 4- and 5-cycles in the graph of a simple polytope are 2-faces.

EXAMPLE. None of the graphs of the following family is polytopal:

CARTESIAN PRODUCTS OF GRAPHS

Cartesian product of polytopes: $P \times Q:=\{(p, q) \mid p \in P, q \in Q\}$.
Cartesian product of graphs: $\left\{\begin{array}{l}V(G \times H):=V(G) \times V(H), \\ E(G \times H):=(V(G) \times E(H)) \cup(E(G) \times V(H)) .\end{array}\right.$

REMARK. graph of $P \times Q=($ graph of $P) \times($ graph of $Q)$.
PROBLEM. Does the polytopality of $G \times H$ imply that of G and H ?

POLYTOPALITY AND CARTESIAN PRODUCTS

PROBLEM. Does the polytopality of $G \times H$ imply that of G and H ?

THEOREM. $G \times H$ simply polytopal $\Longleftrightarrow G$ and H simply polytopal.
THEOREM. The product of a d-polytopal graph by the graph of a regular subdivision of an e-polytope is $(d+e)$-polytopal.

J. Pfeifle, V. P. \& F. Santos, On polytopality of Cartesian products of graphs, 2010

POLYTOPALITY AND CARTESIAN PRODUCTS

THEOREM. The product of a d-polytopal graph by the graph of a regular subdivision of an e-polytope is $(d+e)$-polytopal.

EXAMPLE. The product of two domino graphs is polytopal.

J. Pfeifle, V. P. \& F. Santos, On polytopality of Cartesian products of graphs, 2010

POLYTOPALITY AND CARTESIAN PRODUCTS

THEOREM. The product of a d-polytopal graph by the graph of a regular subdivision of an e-polytope is $(d+e)$-polytopal.

EXAMPLE. Polytopal product of regular non-polytopal graphs.

J. Pfeifle, V. P. \& F. Santos, On polytopality of Cartesian products of graphs, 2010

SOME CHALLENGING EXAMPLES

THEOREM. The graph $K_{n, n} \times K_{2}$ is not polytopal for $n \geq 3$.
THEOREM. There is a unique combinatorial 3-dimensional manifold whose graph is $K_{3,3} \times K_{3}$. It is homeomorphic to $\mathbb{R} \mathbb{P}^{2} \times \mathbb{S}^{1}$.

A. Guedes de Oliveira, E. Kim, M. Noy, A. Padrol, J. Pfeifle \& V. P.

SOME CHALLENGING EXAMPLES

THEOREM. The graph $K_{n, n} \times K_{2}$ is not polytopal for $n \geq 3$.
THEOREM. There is a unique combinatorial 3-dimensional manifold whose graph is $K_{3,3} \times K_{3}$. It is homeomorphic to $\mathbb{R P}^{2} \times \mathbb{S}^{1}$.

A. Guedes de Oliveira, E. Kim, M. Noy, A. Padrol, J. Pfeifle \& V. P.

SOME CHALLENGING EXAMPLES

THEOREM. The graph $K_{n, n} \times K_{2}$ is not polytopal for $n \geq 3$.

THEOREM. There is a unique combinatorial 3-dimensional manifold whose graph is $K_{3,3} \times K_{3}$. It is homeomorphic to $\mathbb{R P}^{2} \times \mathbb{S}^{1}$.

PROBLEM. Is the product of two Petersen graphs the graph of a polytope?

This polytope could have dimension 4 or 5 .

PRODSIMPLICIAL NEIGHBORLY POLYTOPES

$k \geq 0$ and $\underline{n}:=\left(n_{1}, \ldots, n_{r}\right)$.
A polytope is (k, \underline{n})-prodsimplicial-neighborly if its k-skeleton is combinatorially equivalent to that of the product of simplices $\triangle_{\underline{n}}:=\triangle_{n_{1}} \times \cdots \times \triangle_{n_{r}}$.

EXAMPLE.
(i) neighborly polytopes arise when $r=1$.

For example, the cyclic polytope $C_{2 k+2}(n+1)$ is (k, n)-PSN.
(ii) neighborly cubical polytopes arise when $\underline{n}=(1,1, \ldots, 1)$.
M. Joswig \& G. Ziegler, Neighborly cubical polytopes, 2000

PROBLEM. What is the minimal dimension of a (k, n)-PSN polytope?

PRODSIMPLICIAL NEIGHBORLY POLYTOPES

$k \geq 0$ and $\underline{n}:=\left(n_{1}, \ldots, n_{r}\right)$.
A polytope is (k, \underline{n})-prodsimplicial-neighborly if its k-skeleton is combinatorially equivalent to that of the product of simplices $\triangle_{\underline{n}}:=\triangle_{n_{1}} \times \cdots \times \triangle_{n_{r}}$.

EXAMPLE.
(i) neighborly polytopes arise when $r=1$.

For example, the cyclic polytope $C_{2 k+2}(n+1)$ is (k, n)-PSN.
(ii) neighborly cubical polytopes arise when $\underline{n}=(1,1, \ldots, 1)$.
M. Joswig \& G. Ziegler, Neighborly cubical polytopes, 2000

$$
\text { PROBLEM. What is the minimal dimension of a }(k, n) \text {-PSN polytope? }
$$

A (k, \underline{n})-PSN polytope is (k, \underline{n})-projected-prodsimplicial-neighborly if it is a projection of a polytope combinatorially equivalent to $\triangle_{\underline{n}}$.

PROBLEM. What is the minimal dimension of a (k, n)-PPSN polytope?

PRODUCT OF CYCLIC POLYTOPES

$C_{d}(n):=\operatorname{conv}\left\{\mu_{d}\left(t_{i}\right) \mid i \in[n]\right\}$ the d-dimensional cyclic polytope with n vertices, where $\mu_{d}(t)=\left(t, t^{2}, \ldots, t^{d}\right)^{T}$ and $t_{1}, t_{2}, \ldots, t_{n} \in \mathbb{R}$ distinct.

PROPOSITION. Any subset of at most $\left\lfloor\frac{d}{2}\right\rfloor$ vertices of $C_{d}(n)$ forms a face of $C_{d}(n)$.

$F \subset[n]$ defines a facet of $C_{d}(n) \Longleftrightarrow|F|=d$ and all inner blocs are even.
The normal vector of this facet is given by the coefficients of the polytope

$$
\prod_{i \in F}\left(t-t_{i}\right)=\sum_{i=1}^{d} \gamma_{i}(F) t^{i}=\left(\begin{array}{c}
\gamma_{1}(F) \\
\vdots \\
\gamma_{d}(F)
\end{array}\right) \cdot\left(\begin{array}{c}
t^{1} \\
\vdots \\
t^{d}
\end{array}\right)+\gamma_{0}(F)
$$

PROPOSITION. Let $k \geq 0$ and $\underline{n}:=\left(n_{1}, \ldots, n_{r}\right)$. Let $I:=\left\{i \in[n] \mid n_{i} \geq 2 k+3\right\}$. The product

$$
\prod_{i \in I} C_{2 k+2}\left(n_{i}+1\right) \times \prod_{i \notin I} \triangle_{n_{i}}
$$

is a (k, \underline{n})-PPSN polytope of dimension $(2 k+2)|I|+\sum_{i \notin I} n_{i} \leq(2 k+2) r$.

MINKOWSKI SUM OF CYCLIC POLYTOPES

PROPOSITION. Let $k \geq 0$ and $\underline{n}:=\left(n_{1}, \ldots, n_{r}\right)$. Define

$$
v_{a_{1}, \ldots, a_{r}}:=\left(\begin{array}{c}
\sum_{i \in[r]} a_{i} \\
\sum_{i \in[r]} a_{i}^{2} \\
\vdots \\
\sum_{i \in[r]} a_{i}^{2 k+2 r}
\end{array}\right) \in \mathbb{R}^{2 k+2 r} .
$$

For any pairwise disjoint index sets $I_{1}, \ldots, I_{r} \subset \mathbb{R}$, with $\left|I_{i}\right|=n_{i}$ for all $i \in[r]$, the polytope conv $\left\{v_{a_{1}, \ldots, a_{r}} \mid\left(a_{1}, \ldots, a_{r}\right) \in I_{1} \times \cdots \times I_{r}\right\} \subset \mathbb{R}^{2 k+2 r}$ is a (k, \underline{n})-PPSN $(2 k+2 r)$-dimensional polytope.

MINKOWSKI SUM OF CYCLIC POLYTOPES

PROPOSITION. Let $k \geq 0$ and $\underline{n}:=\left(n_{1}, \ldots, n_{r}\right)$. Define

$$
w_{a_{1}, \ldots, a_{r}}:=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{r} \\
\sum_{i \in[r]} a_{i}^{2} \\
\vdots \\
\sum_{i \in[r]} a_{i}^{2 k+2}
\end{array}\right) \in \mathbb{R}^{2 k+r+1} .
$$

There exists pairwise disjoint index sets $I_{1}, \ldots, I_{r} \subset \mathbb{R}$, with $\left|I_{i}\right|=n_{i}$ for all $i \in[r]$, such that the polytope conv $\left\{w_{a_{1}, \ldots, a_{r}} \mid\left(a_{1}, \ldots, a_{r}\right) \in I_{1} \times \cdots \times I_{r}\right\} \subset \mathbb{R}^{2 k+r+1}$ is a (k, \underline{n})-PPSN $(2 k+r+1)$-dimensional polytope.

B. Matschke, J. Pfeifle \& V. P., Prodsimplicial neighborly polytopes, 2010

PRESERVING FACES UNDER PROJECTIONS

$n>d$.
$\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ the orthogonal projection on the first d coordinates.
$\tau: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-d}$ the dual projection on the last $n-d$ coordinates.
A proper face F of a polytope P is strictly preserved under π if:
(i) $\pi(F)$ is a face of $\pi(P)$,
(ii) F and $\pi(F)$ are combinatorially isomorphic, and
(iii) $\pi^{-1}(\pi(F))$ equals F.

PRESERVING FACES UNDER PROJECTIONS

$n>d$.
$\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ the orthogonal projection on the first d coordinates.
$\tau: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-d}$ the dual projection on the last $n-d$ coordinates.
Let F_{1}, \ldots, F_{m} be the facets of P. Let f_{i} be the normal vector of F_{i} and $g_{i}=\tau\left(f_{i}\right)$.
For any face F of P, let $\phi(F)=\left\{i \in[m] \mid F \subset F_{i}\right\}$. In other words, $F=\cap_{i \in \phi(F)} F_{i}$.
LEMMA. F face of P is strictly preserved $\Longleftrightarrow\left\{g_{i} \mid i \in \phi(F)\right\}$ is positively spanning.
N. Amenta \& G. Ziegler, Deformed products and maximal shadows of polytopes, 1999
G. Ziegler, Projected products of polytopes, 2004

DEFORMED PRODUCTS

P_{1}, \ldots, P_{r} simple polytopes, with facet description:

$$
P_{i}:=\left\{x \in \mathbb{R}^{n_{i}} \mid A_{i} x \leq b_{i}\right\}, \text { where } A_{i} \in \mathbb{R}^{m_{i} \times n_{i}} \text { and } b_{i} \in \mathbb{R}^{m_{i}} .
$$

The product $P:=P_{1} \times \cdots \times P_{r}$ has dimension $\sum_{i \in[r]} n_{i}$ and is defined by the $\sum_{i \in[r]} m_{i}$ inequalities:

$$
\left(\begin{array}{ccc}
A_{1} & & \\
& \ddots & \\
& & A_{r}
\end{array}\right) x \leq\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{r}
\end{array}\right) .
$$

THEOREM. (DEFORMED PRODUCT CONSTRUCTION)
For any matrix $A^{\sim}:=\left(\begin{array}{cccc}A_{1} & \star & \star \\ & \ddots & \star \\ & & A_{r}\end{array}\right)$ obtained by arbitrarily changing the 0 's above the diagonal blocs, there exists b^{\sim} such that the polytope defined by $A^{\sim} x \leq b^{\sim}$ is combinatorially equivalent to $P_{1} \times \cdots \times P_{r}$.

PROJECTED DEFORMED PRODUCTS

IDEA. Use your freedom on the upper part of the matrix A^{\sim} to obtain a polytope $P^{\sim}:=\left\{x \in \mathbb{R}^{\sum n_{i}} \mid A^{\sim} x \leq b^{\sim}\right\}$ such that:
(i) P^{\sim} is a deformed product combinatorially equivalent to $P:=P_{1} \times \cdots \times P_{r}$; and
(ii) the projection of P^{\sim} on the first d coordinates preserves its k-skeleton.

EXAMPLE. Let P_{1}, \ldots, P_{r} be r simple polytopes of respective dimension n_{i} and with m_{i} many facets. If $d=\sum_{i \in[t]} n_{i}$, then there exists a d-dimensional polytope whose k-skeleton is combinatorially equivalent to that of $P_{1} \times \cdots \times P_{r}$ provided

$$
k \leq \sum_{i \in[r]} n_{i}-\sum_{i \in[r]} m_{i}+\left\lfloor\frac{\sum_{i \in[t]} m_{i}-1}{2}\right\rfloor
$$

For improvements, see
B. Matschke, J. Pfeifle \& V. P., Prodsimplicial neighborly polytopes, 2010

SANYAL'S TOPOLOGICAL OBSTRUCTION METHOD

$n>d$.
$\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ the orthogonal projection on the first d coordinates.
$\tau: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-d}$ the dual projection on the last $n-d$ coordinates.
Let P be a simple full-dimensional polytope whose vertices are strictly preserved by π.
Let F_{1}, \ldots, F_{m} be the facets of P. Let f_{i} be the normal vector of F_{i} and $g_{i}=\tau\left(f_{i}\right)$.
For any face F of P, let $\phi(F)=\left\{i \in[m] \mid F \subset F_{i}\right\}$. In other words, $F=\cap_{i \in \phi(F)} F_{i}$.

LEMMA. The vector configuration $\left\{g_{i} \mid i \in[m]\right\}$ is the Gale transform of the vertex set $\left\{a_{i} \mid i \in[m]\right\}$ of a $(m-n+d-1)$-dimensional (simplicial) polytope Q.

A face F of P is strictly preserved by π
$\Longleftrightarrow\left\{g_{i} \mid i \in \phi(F)\right\}$ is positively spanning
$\Longleftrightarrow\left\{a_{i} \mid i \in[m] \backslash \phi(F)\right\}$ is a face of Q.

R. Sanyal, Topological obstructions for vertex numbers of Minkowski sums, 2009

SANYAL'S TOPOLOGICAL OBSTRUCTION METHOD

Projection preserving the k-skeleton of $\triangle_{\underline{n}}$
\longmapsto simplicial complex embeddable in a certain dimension (Gale duality)
\longmapsto topological obstruction (Sarkaria's criterion).

THEOREM. (Topological obstruction for low-dimensional skeleta)
Let $\underline{n}:=\left(n_{1}, \ldots, n_{r}\right)$ and $R:=\left\{i \in[r] \mid n_{i} \geq 2\right\}$. If $0 \leq k \leq \sum_{i \in R}\left\lfloor\frac{n_{i}-2}{2}\right\rfloor$, then the dimension of any (k, \underline{n})-PPSN polytope is at least $2 k+|R|+1$.

THEOREM. (Topological obstruction for high-dimensional skeleta)
Let $\underline{n}:=\left(n_{1}, \ldots, n_{r}\right)$. If $k \geq\left\lfloor\frac{1}{2} \sum_{i \in[r]} n_{i}\right\rfloor$, then any (k, \underline{n})-PPSN polytope is combinatorially equivalent to $\Delta_{\underline{n}}$.
B. Matschke, J. Pfeifle \& V. P., Prodsimplicial neighborly polytopes, 2010

THANK YOU

