

Vincent PILAUD (CNRS & Ecole Polytechnique)

Viviane PONS (LRI, Univ. Orsay)

MOTIVATION

COMBINATORICS

permutree = directed (bottom to top) and labeled (bijectively by [n]) tree such that

permutree = directed (bottom to top) and labeled (bijectively by [n]) tree such that

increasing tree = directed and labeled tree such that labels increase along arcs

permutree = directed (bottom to top) and labeled (bijectively by [n]) tree such that

increasing tree = directed and labeled tree such that labels increase along arcs leveled permutree = directed tree with a permutree labeling and an increasing labeling

SPECIAL PERMUTREES

Examples.	decorat	tion δ		permutrees		
	$\mathbf{\Phi}^n$		\longleftrightarrow	permuta	tions of [n	
	\mathbf{O}^n		\longleftrightarrow	standard bina	trees	
	$\{oldsymbol{ \diamondsuit}, oldsymbol{ \diamondsuit}\}^n$		\longleftrightarrow	Cambr	rian trees	
	\bigotimes^{γ}	n	\longleftrightarrow	binary :	sequences	
7 6 4 4 4 3 5 2 2 2 1 2 2 1	$ \begin{array}{c} $			7 6 5 4 3 2 1 1 2 4		

REMARKS

- the first and last decorations do not really matter
- \otimes vertices \longleftrightarrow product

REMARKS

- the first and last decorations do not really matter
- \otimes vertices \longleftrightarrow product
- horizontal and vertical symmetrees

PERMUTREES AND TREEANGULATIONS

permutrees are dual to $\{2, 3, 4\}$ -angulations of polygons

permutree correspondence = decorated permutation \mapsto leveled permutree

Exm: decorated permutation $\overline{2751346}$

permutree correspondence = decorated permutation \mapsto leveled permutree

Exm: decorated permutation $\overline{2751346}$

permutree correspondence = decorated permutation \mapsto leveled permutree

Exm: decorated permutation $\overline{2751346}$

permutree correspondence = decorated permutation \mapsto leveled permutree Exm: decorated permutation $\overline{2751346}$

permutree correspondence = decorated permutation \mapsto leveled permutree Exm: decorated permutation $\overline{2751346}$

PROP. bijection decorated permutations \longleftrightarrow leveled permutrees

 $\mathbf{P}(\tau) = \mathbf{P}$ -symbol of τ = permutree produced by permutree correspondence $\mathbf{Q}(\tau) = \mathbf{Q}$ -symbol of τ = increasing tree produced by permutree correspondence (analogy to Robinson-Schensted algorithm)

$$\label{eq:produced} \begin{split} \mathbf{P}(\tau) &= \mathbf{P}\text{-symbol of } \tau = \text{permutree produced by permutree correspondence} \\ \mathbf{Q}(\tau) &= \mathbf{Q}\text{-symbol of } \tau = \text{increasing tree produced by permutree correspondence} \end{split}$$

PROP. permutree congruence class labeled by permutree T $\{\tau \in \mathfrak{S}^{\delta} \mid \mathbf{P}(\tau) = T\} = \{\text{linear extensions of } T\}$

CORRESPONDENCE FOR SPECIAL DECORATIONS

PERMUTREE CONGRUENCE

 δ -permutree congruence = transitive closure of the rewriting rules

$$UacVbW \equiv_{\delta} UcaVbW \quad \text{if } a < b < c \text{ and } \delta_b \in \{ \bigotimes, \bigotimes \}$$
$$UbVacW \equiv_{\delta} UbVcaW \quad \text{if } a < b < c \text{ and } \delta_b \in \{ \bigotimes, \bigotimes \}$$

where a, b, c are elements of [n] while U, V, W are words on [n]

PROP. $\tau \equiv_{\delta} \tau' \iff \mathbf{P}(\tau) = \mathbf{P}(\tau')$

PERMUTREE CONGRUENCE

 δ -permutree congruence = transitive closure of the rewriting rules

 $UacVbW \equiv_{\delta} UcaVbW \quad \text{if } a < b < c \text{ and } \delta_b \in \{ \bigotimes, \bigotimes \}$ $UbVacW \equiv_{\delta} UbVcaW \quad \text{if } a < b < c \text{ and } \delta_b \in \{ \bigotimes, \bigotimes \}$

where a, b, c are elements of [n] while U, V, W are words on [n]

PROP. $\tau \equiv_{\delta} \tau' \iff \mathbf{P}(\tau) = \mathbf{P}(\tau')$

PROP. Permutree classes are intervals of the weak order minimums avoid b - ca with $\delta_b \in \{\emptyset, \bigotimes\}$ and ca - b with $\delta_b \in \{\emptyset, \bigotimes\}$ maximums avoid b - ac with $\delta_b \in \{\emptyset, \bigotimes\}$ and ac - b with $\delta_b \in \{\bigotimes, \bigotimes\}$.

> Reading, *Cambrian lattices* ('06) P.-Pons, *Permutrees* ('16⁺)

NUMEROLOGY

PROP. The generating tree \mathcal{T}_{δ} only depends on the positions of \oplus and \otimes

NUMEROLOGY

PROP.	The number $\mathbf{C}(\delta, g)$	$g)$ of δ -trees with g free gaps	 is given by
		$\int \mathbb{1}_{g>2} \cdot (g-1) \cdot \mathbf{C}(\delta', g-1)$	$if\;\delta_n = {\bf \Phi}$
	$\mathbf{C}(\delta,g)= \cdot$	$ \mathbb{1}_{g \geq 2} \cdot \sum_{q' \geq q-1} \mathbf{C}(\delta', g') $	if $\delta_n = oldsymbol{\heartsuit}$ or $oldsymbol{\bigotimes}$
		$\left(\mathbb{1}_{g=2} \cdot \sum_{g' \ge 2}^{S-S} g' \cdot \mathbf{C}(\delta', g')\right)$	$if\;\delta_n = \boldsymbol{\bigotimes}$

ROTATIONS AND PERMUTREE LATTICES

Rotation operation preserves permutrees:

ROTATIONS AND PERMUTREE LATTICES

Rotation operation preserves permutrees:

ROTATIONS AND PERMUTREE LATTICES

Rotation operation preserves permutrees:

increasing rotation = rotation of edge $i \rightarrow j$ where i < j

PROP. The transitive closure of the increasing rotation graph is the permutree lattice P defines a lattice homomorphism from weak order to permutree lattice

ROTATIONS AND CAMBRIAN LATTICES

Reading, *Cambrian lattices* ('06) P.-Pons, *Permutrees* ('16⁺)

DECORATION REFINEMENTS

 δ refines δ' when $\delta_i \preccurlyeq \delta'_i$ for all $i \in [n]$ for the order $\Phi \preccurlyeq \Theta, \Theta \preccurlyeq \Theta$

PROP. When δ refines δ' , the δ -permutree congruence classes refine the δ -permutree congruence classes refine: $\sigma \equiv_{\delta} \tau \Longrightarrow \sigma \equiv_{\delta'} \tau$ It defines a surjection $\Psi_{\delta}^{\delta'}$ from the δ -permutrees to δ' -permutrees

DECORATION REFINEMENTS

Example: Binary search tree insertion

3

4

6

DECORATION REFINEMENTS

Example: Binary search tree insertion with cisors and elastics

3

4

GEOMETRY

SIMPLICIAL COMPLEX

simplicial complex = collection of subsets of X downward closed

exm:

$$X = [n] \cup [n]$$

$$\Delta = \{I \subseteq X \mid \forall i \in [n], \ \{i, i\} \not\subseteq I\}$$

FANS

simplicial fan = maximal cones generated by d rays

POLYTOPES

simple polytope = facets in general position = each vertex incident to d facets

SIMPLICIAL COMPLEXES, FANS, AND POLYTOPES

P polytope, F face of Pnormal cone of F = positive span of the outer normal vectors of the facets containing Fnormal fan of P = { normal cone of F | F face of P }

simple polytope \implies simplicial fan \implies simplicial complex

PERMUTAHEDRON

PERMUTAHEDRON

$$= \operatorname{conv} \left\{ (\sigma(1), \dots, \sigma(n)) \mid \sigma \in \Sigma_n \right\}$$
$$= \mathbb{H} \bigcap_{\varnothing \neq J \subsetneq [n]} \left\{ \mathbf{x} \in \mathbb{R}^n \mid \sum_{j \in J} x_j \ge \binom{|J|+1}{2} \right\}$$

connections to

- weak order
- reduced expressions
- braid moves
- cosets of the symmetric group

COXETER ARRANGEMENT

ASSOCIAHEDRON

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free sets of internal diagonals of a convex (n + 2)-gon, ordered by reverse inclusion

VARIOUS ASSOCIAHEDRA

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free sets of internal diagonals of a convex (n + 2)-gon, ordered by reverse inclusion

(Pictures by Ceballos-Santos-Ziegler)

Lee ('89), Gel'fand-Kapranov-Zelevinski ('94), Billera-Filliman-Sturmfels ('90), ..., Ceballos-Santos-Ziegler ('11) Loday ('04), Hohlweg-Lange ('07), Hohlweg-Lange-Thomas ('12), P.-Santos ('12), P.-Stump ('12⁺), Lange-P. ('13⁺)

LODAY'S ASSOCIAHEDRON

$$A(n) := \operatorname{conv} \{ \mathbf{L}(\mathbf{T}) \mid \mathbf{T} \text{ binary tree} \} = \mathbb{H} \cap \bigcap_{1 \le i \le j \le n} \mathbf{H}^{\ge}(i, j)$$
$$\mathbf{L}(\mathbf{T}) := \left[\ell(\mathbf{T}, i) \cdot r(\mathbf{T}, i) \right]_{i \in [n]} \qquad \mathbf{H}^{\ge}(i, j) := \left\{ \mathbf{x} \in \mathbb{R}^n \mid \sum_{i \le k \le j} x_i \ge \binom{j - i + 2}{2} \right\}$$

Loday, *Realization of the Stasheff polytope* ('04)

LODAY'S ASSOCIAHEDRON

$$\begin{split} \mathbf{A}(n) &:= \operatorname{conv} \left\{ \mathbf{L}(\mathbf{T}) \mid \mathbf{T} \text{ binary tree} \right\} = \mathbb{H} \cap \bigcap_{1 \le i \le j \le n} \mathbf{H}^{\ge}(i, j) \\ \mathbf{L}(\mathbf{T}) &:= \left[\ell(\mathbf{T}, i) \cdot r(\mathbf{T}, i) \right]_{i \in [n]} \qquad \mathbf{H}^{\ge}(i, j) \coloneqq \left\{ \mathbf{x} \in \mathbb{R}^n \mid \sum_{i \le k \le j} x_i \ge \binom{j - i + 2}{2} \right\} \end{split}$$

Loday, *Realization of the Stasheff polytope* ('04)

LODAY'S ASSOCIAHEDRON

A(n) obtained by deleting inequalities in facet description of the permutahedron normal cone of L(T) in $A(n) = \{ \mathbf{x} \in \mathbb{H} \mid x_i < x_j \text{ for all } i \to j \text{ in } T \}$ $= \bigcup_{\sigma^{-1} \in \mathcal{L}(T)} \text{ normal cone of } \sigma \text{ in } \mathbb{P}(n)$

© Carsten Lange

Loday's Associahedron

PERMUTREE FAN

For a permutree $\ensuremath{\mathrm{T}}$, define

$$C^{\diamond}(T) \coloneqq \{ \mathbf{x} \in \mathbb{H} \mid x_i \le x_j \text{ for any } i \to j \text{ in } T \} \\ = \mathbb{1} + \operatorname{cone} \left\{ \sum_{j \in J} |I| \mathbf{e}_j - \sum_{i \in I} |J| \mathbf{e}_i \ \middle| \text{ for all edge cuts } (I \parallel J) \text{ in } T) \right\}$$

THM. For any $\delta \in \{\Phi, \otimes, \otimes, \otimes\}^n$, the collection of cones $\{C^{\diamond}(T) \mid T \ \delta$ -permutree} together with all their faces define a complete simplicial fan, the δ -permutree fan $\mathcal{F}(\delta)$ P.-Pons, Permutrees ('16⁺)

Examples.	decoration δ		permutree fan $\mathcal{F}(\delta)$
	$igodot \mathbf{D}^n$	\longleftrightarrow	braid fan
	\mathbf{O}^n	\longleftrightarrow	binary tree fan
	$\{oldsymbol{ (b) } , oldsymbol{ (b) } \}^n$	\longleftrightarrow	Cambrian fan
	\bigotimes^n	\longleftrightarrow	fan of the arrangement
			$\{x_i = x_{i+1} \mid i \in [n-1]\}$

PERMUTREEHEDRA

THM. The permutree fan $\mathcal{F}(\delta)$ is the normal fan of the permutreehedron $\mathbb{P}\mathbb{T}(\delta)$, defined equivalently as

(i) the convex hull of the points

$$\mathbf{a}(\mathbf{T})_{i} = \begin{cases} d+1 & \text{if } \delta_{i} = \mathbf{O}, \\ (\underline{\ell}+1)(\underline{r}+1) & \text{if } \delta_{i} = \mathbf{O}, \\ (d+1) - \overline{\ell}\overline{r} & \text{if } \delta_{i} = \mathbf{O}, \\ (\underline{\ell}+1)(\underline{r}+1) - \overline{\ell}\overline{r} & \text{if } \delta_{i} = \mathbf{O}, \end{cases}$$

for all $\delta\text{-}\mathsf{permutrees}\ \mathrm{T}$

(ii) the intersection of the hyperplane $\mathbb H$ with the half-spaces

$$\mathbf{H}^{\geq}(I) \coloneqq \left\{ \mathbf{x} \in \mathbb{R}^n \ \middle| \ \sum_{i \in I} x_i \ge \binom{|I|+1}{2} \right\}$$

for all edge cuts $(I \parallel J)$ of all $\delta\text{-permutrees}$

P.-Pons, *Permutrees* ('16⁺)

PERMUTREEHEDRA

PROP. $U := (n, n - 1, ..., 2, 1) - (1, 2, ..., n - 1, n) = \sum_{i \in [n]} (n + 1 - 2i) \mathbf{e}_i$ graph of $\mathbb{PT}(\delta)$ oriented by U = Hasse diagram of the δ -permutree lattice

PROP. refinement $\delta \preccurlyeq \delta' \implies \text{inclusion } \mathbb{PT}(\delta) \subset \mathbb{PT}(\delta')$

MATRIOCHKA PERMUTREEHEDRA

PROP. $U := (n, n - 1, ..., 2, 1) - (1, 2, ..., n - 1, n) = \sum_{i \in [n]} (n + 1 - 2i) \mathbf{e}_i$ graph of $\mathbb{PT}(\delta)$ oriented by U = Hasse diagram of the δ -permutree lattice

PROP. refinement $\delta \preccurlyeq \delta' \implies \text{inclusion } \mathbb{PT}(\delta) \subset \mathbb{PT}(\delta')$

PROP. Assume $\delta_1 = \delta_n \neq \Phi$ and let n_1, \ldots, n_k = sizes of the blocks of consecutive Φ $\mathbb{PT}(\delta)$ has $\sum_i (2^{n_i+1}-1)$ pairs of parallel facets

PROP. $U := (n, n - 1, ..., 2, 1) - (1, 2, ..., n - 1, n) = \sum_{i \in [n]} (n + 1 - 2i) \mathbf{e}_i$ graph of $\mathbb{PT}(\delta)$ oriented by U = Hasse diagram of the δ -permutree lattice

PROP. refinement $\delta \preccurlyeq \delta' \implies \text{inclusion } \mathbb{PT}(\delta) \subset \mathbb{PT}(\delta')$

PROP. Assume $\delta_1 = \delta_n \neq \Phi$ and let n_1, \ldots, n_k = sizes of the blocks of consecutive Φ $\mathbb{PT}(\delta)$ has $\sum_i (2^{n_i+1}-1)$ pairs of parallel facets

PROP. $U := (n, n - 1, ..., 2, 1) - (1, 2, ..., n - 1, n) = \sum_{i \in [n]} (n + 1 - 2i) \mathbf{e}_i$ graph of $\mathbb{PT}(\delta)$ oriented by U = Hasse diagram of the δ -permutree lattice

PROP. refinement $\delta \preccurlyeq \delta' \implies \text{inclusion } \mathbb{PT}(\delta) \subset \mathbb{PT}(\delta')$

PROP. Assume $\delta_1 = \delta_n \neq \Phi$ and let n_1, \ldots, n_k = sizes of the blocks of consecutive Φ $\mathbb{PT}(\delta)$ has $\sum_i (2^{n_i+1}-1)$ pairs of parallel facets

PROP. For $\delta \preccurlyeq \delta'$, a δ -permutree T and a δ' -permutree T', the following are equivalent:

- \bullet the vertex ${\bf a}(T)$ of $\mathbb{P}\mathbb{T}(\delta)$ coincides with the vertex ${\bf a}(T')$ of $\mathbb{P}\mathbb{T}(\delta')$
- the normal cone $C^{\diamond}(T)$ of $\mathbb{P}T(\delta)$ coincides with the normal cone $C^{\diamond}(T')$ of $\mathbb{P}T(\delta')$
- the fiber of T' under the surjection $\Psi_{\delta}^{\delta'}$ is the singleton $(\Psi_{\delta}^{\delta'})^{-1}(T') = \{T\}$
- $\bullet\ T$ and T' have the same linear extensions
- $\bullet\ T$ and T' coincide up to empty ancestors or descendants

PROP. $U := (n, n - 1, ..., 2, 1) - (1, 2, ..., n - 1, n) = \sum_{i \in [n]} (n + 1 - 2i) \mathbf{e}_i$ graph of $\mathbb{PT}(\delta)$ oriented by U = Hasse diagram of the δ -permutree lattice

PROP. refinement $\delta \preccurlyeq \delta' \implies \text{inclusion } \mathbb{PT}(\delta) \subset \mathbb{PT}(\delta')$

PROP. Assume $\delta_1 = \delta_n \neq \Phi$ and let n_1, \ldots, n_k = sizes of the blocks of consecutive Φ $\mathbb{PT}(\delta)$ has $\sum_i (2^{n_i+1}-1)$ pairs of parallel facets

PROP. For $\delta \preccurlyeq \delta'$, a δ -permutree T and a δ' -permutree T', the following are equivalent: • the vertex $\mathbf{a}(T)$ of $\mathbb{PT}(\delta)$ coincides with the vertex $\mathbf{a}(T')$ of $\mathbb{PT}(\delta')$

• T and T' have the same linear extensions

PROP. $\delta, \delta' \in \mathbf{O} \cdot \{\mathbf{O}, \mathbf{O}, \mathbf{O}, \mathbf{O}\}^{n-2} \cdot \mathbf{O}$ let I_1, \ldots, I_p and $I'_1, \ldots, I'_{p'}$ be the blocks of consecutive \mathbf{O} in δ and δ' The isometries between the two permutreehedra $\mathbb{PT}(\delta)$ and $\mathbb{PT}(\delta')$ are given by $(\mathfrak{S}_{I_1} \times \cdots \times \mathfrak{S}_{I_p}) \circ \langle \text{vertical and horizontal symmetry} \rangle \circ (\mathfrak{S}_{I'_1} \times \cdots \times \mathfrak{S}_{I'_{p'}})$

EXTENSIONS

• Schröder permutrees

EXTENSIONS

• Schröder permutrees

 \bullet arbitrary finite Coxeter groups somewhere between the $W\mbox{-}{\rm permutahedron}$ and the $W\mbox{-}{\rm associahedron}$

EXTENSIONS

• Schröder permutrees

 \bullet arbitrary finite Coxeter groups somewhere between the $W\mbox{-}{\rm permutahedron}$ and the $W\mbox{-}{\rm associahedron}$

• non-crossing arc diagrams passing a limited number of walls

