

MOTIVATION

Baryshnikov, On Stokes sets ('01)
Chapoton, Stokes posets and serpent nests ('16)
Garver-McConville, Oriented flip graphs and non-crossing tree partitions ('18)
Petersen-Pylyavskyy-Speyer, A non-crossing standard monomial theory ('10) Santos-Stump-Welker, Non-crossing sets and the Grassmann-assoc. ('17)
McConville, Lattice structures of grid Tamari orders ('17)

dissection

subset of \mathbb{Z}^{2}

subset of \mathbb{Z}^{2}
monotone path

subset of \mathbb{Z}^{2}
monotone path non-kissing complex

Baryshnikov, On Stokes sets ('01)
Chapoton, Stokes posets and serpent nests ('16)
Garver-McConville, Oriented flip graphs and non-crossing tree partitions ('18)

Petersen-Pylyavskyy-Speyer, A non-crossing standard monomial theory ('10) Santos-Stump-Welker, Non-crossing sets and the Grassmann-assoc. ('17) McConville, Lattice structures of grid Tamari orders ('17) Garver-McConville, Enumerative properties of grid-associahedra ('17+)

SIMPLICIAL ASSOCIAHEDRA ARE NON-KISSING COMPLEXES

simplicial associahedron = simplicial complex with

- vertices $=$ internal diagonals of an $(n+3)$-gon
- faces $=$ collections of pairwise non-crossing [internal] diagonals of the $(n+3)$-gon

SIMPLICIAL ASSOCIAHEDRA ARE NON-KISSING COMPLEXES

simplicial associahedron $=$ simplicial complex with

- vertices $=$ internal diagonals of an $(n+3)$-gon
- faces $=$ collections of pairwise non-crossing [internal] diagonals of the $(n+3)$-gon

SIMPLICIAL ASSOCIAHEDRA ARE NON-KISSING COMPLEXES

simplicial associahedron $=$ simplicial complex with

- vertices $=$ internal diagonals of an $(n+3)$-gon
- faces $=$ collections of pairwise non-crossing [internal] diagonals of the $(n+3)$-gon

SIMPLICIAL ASSOCIAHEDRA ARE NON-KISSING COMPLEXES

simplicial associahedron $=$ simplicial complex with

- vertices $=$ internal diagonals of an $(n+3)$-gon
- faces $=$ collections of pairwise non-crossing [internal] diagonals of the $(n+3)$-gon

SIMPLICIAL ASSOCIAHEDRA ARE NON-KISSING COMPLEXES

simplicial associahedron $=$ simplicial complex with

- vertices $=$ internal diagonals of an $(n+3)$-gon
- faces $=$ collections of pairwise non-crossing [internal] diagonals of the $(n+3)$-gon

McConville, Lattice structures of grid Tamari orders ('17)
simplicial associahedron $=$ simplicial complex with

- vertices $=$ internal diagonals of an $(n+3)$-gon
- faces $=$ collections of pairwise non-crossing [internal] diagonals of the $(n+3)$-gon

Show that non-crossing and non-kissing complexes coincide
To this end, generalize both:

non-crossing complex to dissections of surfaces

non-kissing complex to gentle quivers

Palu-P.-Plamondon, Non-kissing and non-crossing complexes for locally gentle algebras ('18+)

NON-CROSSING COMPLEX

Palu-P.-Plamondon, Non-kissing and non-crossing complexes for locally gentle algebras ('18+)

DUAL DISSECTIONS

$\mathcal{S}=$ orientable surface with or without boundaries
V and V^{*} two families of marked points
D and D^{*} two dual dissections of \mathcal{S}

DUAL DISSECTIONS

$\mathcal{S}=$ orientable surface with or without boundaries
V and V^{*} two families of marked points
D and D^{*} two dual dissections of \mathcal{S}
blossom vertices $=$ white vertices, alternating with $V \cup V^{*}$ along the boundary of \mathcal{S}

DUAL DISSECTIONS

$\mathcal{S}=$ orientable surface with or without boundaries
V and V^{*} two families of marked points
D and D^{*} two dual dissections of \mathcal{S}
blossom vertices $=$ white vertices, alternating with $V \cup V^{*}$ along the boundary of \mathcal{S} B-curve $=$ curve which at each endpoint either reaches a blossom point or infinitely circles around a puncture of \mathcal{S}

D-accordion $=B$-curve α such that whenever α meets a face f of D ,
(i) it enters crossing an edge a of f and leaves crossing an edge b of f
(ii) the two edges a and b of f crossed by α are consecutive along the boundary of f, (iii) α, a and b bound a disk inside f that does not contain f^{*}.

D-accordion complex $=$ simplicial complex of pairwise non-crossing sets of D-accordions

 two faces f^{*}, g^{*} of D^{*}, the marked points f and g lie on opposite sides of α in the union of f^{*} and g^{*} glued along a^{*}.

$\left(\mathrm{D}, \mathrm{D}^{*}\right)$-non-crossing complex $=\mathrm{D}$-accordion complex $=\mathrm{D}^{*}$-slalom complex

NON-KISSING COMPLEX

Palu-P.-Plamondon, Non-kissing complexes and τ-tilting for gentle alg. (' 17^{+}) Brüstle-Douville-Mousavand-Thomas-Yıldırım, On the combinatorics of gentle algebras ('17+)

GENTLE QUIVERS AND STRINGS

gentle quiver $\bar{Q}=$

- quiver $Q=$ oriented graph $\left(Q_{0}, Q_{1}, s, t\right)$
- relations $I=$ forbid certain paths where
- forbidden paths all of length 2
- locally at each vertex, subgraph of

gentle quiver $\bar{Q}=$
- quiver $Q=$ oriented graph $\left(Q_{0}, Q_{1}, s, t\right)$
- relations $I=$ forbid certain paths where
- forbidden paths all of length 2
- locally at each vertex, subgraph of
 string $\sigma=\alpha_{1}^{\varepsilon_{1}} \ldots \alpha_{\ell}^{\varepsilon_{\ell}}$ with $\alpha_{k} \in Q_{1}, \varepsilon_{k} \in\{-1,1\}$ such that
- $t\left(\alpha_{k}^{\varepsilon_{k}}\right)=s\left(\alpha_{k+1}^{\varepsilon_{k+1}}\right)$
- contains no factor π or π^{-1} for any path $\pi \in I$
- contains no $\alpha \alpha^{-1}$ or $\alpha^{-1} \alpha$ for any arrow $\alpha \in Q_{1}$

BLOSSOMING QUIVERS AND WALKS

KISSING

[reduced] non-kissing complex $\mathcal{N K}(\bar{Q})=$

- vertices $=$ [bending] walks in $\bar{Q}^{\text {* }}$ (that are not self-kissing)
- faces $=$ collections of pairwise non-kissing [bending] walks in \bar{Q}^{*}

NON-CROSSING VS NON-KISSING

Palu-P.-Plamondon, Non-kissing and non-crossing complexes for locally gentle algebras ('18+)
quiver \bar{Q}_{D} of a dissection $=$

- vertices $=$ edges of D (boundary edges are blossom vertices)
- arrows = two consecutive edges around a face of D
- relations $=$ three consecutive edges around a face of D

QUIVER OF A DISSECTION

quiver \bar{Q}_{D} of a dissection $=$

- vertices $=$ edges of D (boundary edges are blossom vertices)
- arrows = two consecutive edges around a face of D
- relations $=$ three consecutive edges around a face of D

surface $\mathcal{S}_{\bar{Q}}$ of quiver $\bar{Q}=$ surface obtained from the blossoming quiver \bar{Q}^{∞} as follows:
(i) for each arrow $\alpha \in Q_{1}^{\mathscr{*}}$, consider a lozenge
(ii) for any $\alpha, \beta \in Q_{1}^{8}$ with $t(\alpha)=s(\beta)$, proceed to the following identifications:
- if $\alpha \beta \in I$, then glue $E_{r}^{t}(\alpha)$ with $E_{r}^{s}(\beta)$,
- if $\alpha \beta \notin I$, then glue $E_{n r}^{t}(\alpha)$ with $E_{n r}^{s}(\beta)$.

PROP. The two previous constructions are inverse to each other and define bijections:

 pairs of dual dissections on a surface \longleftrightarrow gentle quivers

PROP. It defines isomorphisms between: non-crossing complex of dissections \longleftrightarrow non-kissing complex of gentle quiver

non-kissing complex $\mathcal{N} \mathcal{K}(\bar{Q})=$

- vertices $=$ walks in $\bar{Q}^{* 8}$ (that are not self-kissing)
- faces $=$ collections of pairwise non-kissing walks in \bar{Q}^{*}

... generalizing the associahedron

Flip graph

Associahedron
Tamari lattice

DISTINGUISHED ARROWS AND FLIPS

McConville, Lattice structures of grid Tamari orders ('17)
Palu-P.-Plamondon, Non-kissing complexes and τ-tilting for gentle alg. ('17+)

DISTINGUISHED WALKS, ARROWS AND STRINGS

F face of $\mathcal{N} \mathcal{K}(\bar{Q})$

$$
\begin{aligned}
& F \text { face of } \mathcal{N K}(\bar{Q}) \\
& \alpha \in Q_{1} \\
& F_{\alpha}=\{\omega \in F \mid \alpha \in \omega\}
\end{aligned}
$$

F face of $\mathcal{N K}(\bar{Q})$

$$
\alpha \in Q_{1}
$$

$$
F_{\alpha}=\{\omega \in F \mid \alpha \in \omega\}
$$

$\omega \prec_{\alpha} \omega^{\prime}$ countercurrent order at α

distinguished walk at α in $F=\mathrm{dw}(\alpha, F)=\max _{\prec_{\alpha}} F_{\alpha}$
distinguished arrows of ω in $F=\operatorname{da}(\omega, F)=\left\{\alpha \in Q_{1} \mid \omega=\operatorname{dw}(\alpha, F)\right\}$

distinguished walk at α in $F=\mathrm{dw}(\alpha, F)=\max _{\prec_{\alpha}} F_{\alpha}$
distinguished arrows of ω in $F=\operatorname{da}(\omega, F)=\left\{\alpha \in Q_{1} \mid \omega=\operatorname{dw}(\alpha, F)\right\}$
PROP. For any facet $F \in \mathcal{N K}(\bar{Q})$,

- each bending walk of F contains 2 distinguished arrows in F pointing opposite,
- each straight walk of F contains 1 distinguished arrows in F pointing as the walk.

distinguished walk at α in $F=\mathrm{dw}(\alpha, F)=\max _{\prec_{\alpha}} F_{\alpha}$
distinguished arrows of ω in $F=\operatorname{da}(\omega, F)=\left\{\alpha \in Q_{1} \mid \omega=\operatorname{dw}(\alpha, F)\right\}$
PROP. For any facet $F \in \mathcal{N K}(\bar{Q})$,
- each bending walk of F contains 2 distinguished arrows in F pointing opposite,
- each straight walk of F contains 1 distinguished arrows in F pointing as the walk.

CORO. $\mathcal{N K}(\bar{Q})$ is pure of dimension $\left|Q_{0}\right|$.

FLIPS

F facet of $\mathcal{N K}(\bar{Q})$ (ie. maximal collection of pairwise non-kissing walks)

FLIPS

F facet of $\mathcal{N K}(\bar{Q})$ (ie. maximal collection of pairwise non-kissing walks)
$\omega \in F$ we want to "flip"

FLIPS

F facet of $\mathcal{N K}(\bar{Q})$ (ie. maximal collection of pairwise non-kissing walks)
$\omega \in F$ we want to "flip"
$\{\alpha, \beta\}=\mathrm{da}(\omega, F)$

FLIPS

F facet of $\mathcal{N K}(\bar{Q})$ (ie. maximal collection of pairwise non-kissing walks)
$\omega \in F$ we want to "flip"
$\{\alpha, \beta\}=\mathrm{da}(\omega, F)$
$\alpha^{\prime}, \beta^{\prime} \in Q_{1}$ such that $\alpha^{\prime} \alpha \in I$ and $\beta^{\prime} \beta \in I$

FLIPS

F facet of $\mathcal{N K}(\bar{Q})$ (ie. maximal collection of pairwise non-kissing walks)
$\omega \in F$ we want to "flip"
$\{\alpha, \beta\}=\mathrm{da}(\omega, F)$
$\alpha^{\prime}, \beta^{\prime} \in Q_{1}$ such that $\alpha^{\prime} \alpha \in I$ and $\beta^{\prime} \beta \in I$
$\mu=\operatorname{dw}\left(\alpha^{\prime}, F\right)$ and $\nu=\operatorname{dw}\left(\beta^{\prime}, F\right)$
$\omega=\nu[\cdot, v] \sigma \mu[w, \cdot]$

FLIPS

F facet of $\mathcal{N K}(\bar{Q})$ (ie. maximal collection of pairwise non-kissing walks)
$\omega \in F$ we want to "flip"
$\{\alpha, \beta\}=\mathrm{da}(\omega, F)$
$\alpha^{\prime}, \beta^{\prime} \in Q_{1}$ such that $\alpha^{\prime} \alpha \in I$ and $\beta^{\prime} \beta \in I$
$\mu=\operatorname{dw}\left(\alpha^{\prime}, F\right)$ and $\nu=\operatorname{dw}\left(\beta^{\prime}, F\right)$
$\omega=\nu[\cdot, v] \sigma \mu[w, \cdot]$
$\omega^{\prime}=\mu[\cdot, v] \sigma \nu[w, \cdot]$

FLIPS

PROP. ω^{\prime} kisses ω but no other walk of F. Moreover, ω^{\prime} is the only such walk.

FLIPS

flip graph $=$

- vertices $=$ non-kissing facets
- edges $=$ flips

GENTLE ASSOCIAHEDRA

Manneville-P., Geometric realizations of the accordion complex ('17+) Hohlweg-P.-Stella, Polytopal realizations of finite type g-vector fans ('17 ${ }^{+}$) Palu-P.-Plamondon, Non-kissing complexes and τ-tilting for gentle alg. ('17+)
simplicial complex $=$ collection of subsets of X downward closed exm:

$$
\begin{aligned}
& X=[n] \cup \underline{[n]} \\
& \Delta=\{I \subseteq \bar{X} \mid \forall i \in[n], \quad\{i, \underline{i}\} \nsubseteq I\}
\end{aligned}
$$

polyhedral cone $=$ positive span of a finite set of \mathbb{R}^{d} $=$ intersection of finitely many linear half-spaces $\underline{f a n}=$ collection of polyhedral cones closed by faces and where any two cones intersect along a face

simplicial fan $=$ maximal cones generated by d rays

POLYTOPES

polytope $=$ convex hull of a finite set of \mathbb{R}^{d}
$=$ bounded intersection of finitely many affine half-spaces
face $=$ intersection with a supporting hyperplane face lattice $=$ all the faces with their inclusion relations

simple polytope $=$ facets in general position $=$ each vertex incident to d facets

P polytope, F face of P
normal cone of $F=$ positive span of the outer normal vectors of the facets containing F normal fan of $P=\{$ normal cone of $F \mid F$ face of $P\}$

G-VECTORS \& C-VECTORS

$\underline{\text { multiplicity vector }} \mathbf{m}_{V}$ of multiset $V=\left\{\left\{v_{1}, \ldots, v_{m}\right\}\right\}$ of $Q_{0}=\sum_{i \in[m]} \mathbf{e}_{v_{i}} \in \mathbb{R}^{Q_{0}}$ g-vector $\mathbf{g}(\omega)$ of a walk $\omega=\mathbf{m}_{\text {peaks }(\omega)}-\mathbf{m}_{\text {deeps }(\omega)}$
c-vector $\mathbf{c}(\omega \in F)$ of a walk ω in a non-kissing facet $F=\varepsilon(\omega, F) \mathbf{m}_{\mathrm{ds}(\omega, F)}$

G-VECTORS \& C-VECTORS

multiplicity vector \mathbf{m}_{V} of multiset $V=\left\{\left\{v_{1}, \ldots, v_{m}\right\}\right\}$ of $Q_{0}=\sum_{i \in[m]} \mathbf{e}_{v_{i}} \in \mathbb{R}^{Q_{0}}$ g-vector $\mathbf{g}(\omega)$ of a walk $\omega=\mathbf{m}_{\text {peaks }(\omega)}-\mathbf{m}_{\text {deeps }(\omega)}$
c-vector $\mathbf{c}(\omega \in F)$ of a walk ω in a non-kissing facet $F=\varepsilon(\omega, F) \mathbf{m}_{\mathrm{ds}(\omega, F)}$
(

PROP. For any non-kissing facet F, the sets of vectors

$$
\mathbf{g}(F):=\{\mathbf{g}(\omega) \mid \omega \in F\} \quad \text { and } \quad \mathbf{c}(F):=\{\mathbf{c}(\omega \in F) \mid \omega \in F\}
$$

form dual bases.
Palu-P.-Plamondon, Non-kissing complexes and τ-tilting for gentle algebras (' 17^{+})

G-VECTOR FAN

kissing number $\operatorname{kn}(\omega)=\sum_{\omega^{\prime}}$ number of times ω and ω^{\prime} kiss
THM. For a gentle quiver \bar{Q} with finite non-kissing complex $\mathcal{N K}(\bar{Q})$, the two sets of $\mathbb{R}^{Q_{0}}$ given by
(i) the convex hull of the points

$$
\mathbf{p}(F):=\sum_{\omega \in F} \mathrm{kn}(\omega) \mathbf{c}(\omega \in F),
$$

for all non-kissing facets $F \in \mathcal{N} \mathcal{K}(\bar{Q})$,
(ii) the intersection of the halfspaces

$$
\mathbf{H}^{\geq}(\omega):=\left\{\mathbf{x} \in \mathbb{R}^{Q_{0}} \mid\langle\mathbf{g}(\omega) \mid \mathbf{x}\rangle \leq \operatorname{kn}(\omega)\right\} .
$$

for all walks ω of \bar{Q},

define the same polytope, whose normal fan is the g-vector fan \mathcal{F}^{g}. We call it the \bar{Q}-associahedron and denote it by Asso.

Palu-P.-Plamondon, Non-kissing complexes and τ-tilting for gentle algebras (' 17^{+})

NON-KISSING LATTICE

McConville, Lattice structures of grid Tamari orders ('17) Palu-P.-Plamondon, Non-kissing complexes and τ-tilting for gentle alg. ('17+)

THM. For a gentle quiver \bar{Q} with finite non-kissing complex $\mathcal{N K}(\bar{Q})$, the non-kissing flip graph is the Hasse diagram of a congruence-uniform lattice.

Palu-P.-Plamondon, Non-kissing complexes and τ-tilting for gentle algebras ('17 ${ }^{+}$)
lattice $=$ poset (L, \leq) with a meet \wedge and a join \vee
lattice congruence $=$ equiv. rel. \equiv on L which respects meets and joins

$$
x \equiv x^{\prime} \quad \text { and } \quad y \equiv y^{\prime} \quad \Longrightarrow \quad x \wedge y \equiv x^{\prime} \wedge y^{\prime} \quad \text { and } \quad x \vee y \equiv x^{\prime} \vee y^{\prime}
$$

lattice quotient of $L / \equiv=$ lattice on equiv. classes of L under \equiv where
$\bullet X \leq Y \quad \Longleftrightarrow \quad \exists x \in X, y \in Y, \quad x \leq y$

- $X \wedge Y=$ equiv. class of $x \wedge y$ for any $x \in X$ and $y \in Y$
- $X \vee Y=$ equiv. class of $x \vee y$ for any $x \in X$ and $y \in Y$

EXM: TAMARI LATTICE AS LATTICE QUOTIENT OF WEAK ORDER

binary search tree insertion of 2751346

BICLOSED SETS OF STRINGS

σ, τ oriented strings
concatenation $\sigma \circ \tau=\left\{\sigma \alpha \tau \mid \alpha \in Q_{1}\right.$ and $\sigma \alpha \tau$ string of $\left.\bar{Q}\right\}$

$$
\text { closure } S^{\mathrm{cl}}=\bigcup_{\substack{\ell \in \mathbb{N} \\
\sigma_{1}, \ldots, \sigma_{\ell} \in S}} \sigma_{1} \circ \cdots \circ \sigma_{\ell}=\begin{aligned}
& \text { all strings obtained by concatenation } \\
& \text { of some strings of } S
\end{aligned}
$$

closed $\Longleftrightarrow S^{\mathrm{cl}}=S \quad$ coclosed $\Longleftrightarrow \bar{S}^{\mathrm{cl}}=\bar{S} \quad$ biclosed $=$ closed and coclosed

THM. For any gentle quiver \bar{Q} such that $\mathcal{N K}(\bar{Q})$ is finite, the inclusion poset on biclosed sets of strings of \bar{Q} is a congruence-uniform lattice.

McConville, Lattice structures of grid Tamari orders ('17) Garver-McConville, Oriented flip graphs and non-crossing tree partitions ('17+) Palu-P.-Plamondon, Non-kissing complexes and τ-tilting for gentle algebras ('17 ${ }^{+}$)

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_{1}$
$\omega(\alpha, S)=$ walk constructed with the local rules:

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_{1}$
$\omega(\alpha, S)=$ walk constructed with the local rules:

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_{1}$
$\omega(\alpha, S)=$ walk constructed with the local rules:

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_{1}$
$\omega(\alpha, S)=$ walk constructed with the local rules:

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_{1}$
$\omega(\alpha, S)=$ walk constructed with the local rules:

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_{1}$
$\omega(\alpha, S)=$ walk constructed with the local rules:

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_{1}$
$\omega(\alpha, S)=$ walk constructed with the local rules:

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_{1}$
$\omega(\alpha, S)=$ walk constructed with the local rules:

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_{1}$
$\omega(\alpha, S)=$ walk constructed with the local rules:

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_{1}$
$\omega(\alpha, S)=$ walk constructed with the local rules:

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_{1}$
$\omega(\alpha, S)=$ walk constructed with the local rules:

Surjection from biclosed sets of strings to non-kissing facets

PROP. $\eta(S):=\left\{\omega(\alpha, S) \mid \alpha \in Q_{1}\right\}$ is a non-kissing facet.
inversion set of 2751346

2

Surjection from biclosed sets of strings to non-kissing facets

PROP. $\eta(S):=\left\{\omega(\alpha, S) \mid \alpha \in Q_{1}\right\}$ is a non-kissing facet.

THM. The map η defines a lattice morphism from biclosed sets to non-kissing facets.

THM. For a gentle quiver \bar{Q} with finite non-kissing complex $\mathcal{N} \mathcal{K}(\bar{Q})$, the non-kissing flip graph is the Hasse diagram of a congruence-uniform lattice.

Palu-P.-Plamondon, Non-kissing complexes and τ-tilting for gentle algebras (' 17^{+})
Much more nice combinatorics:

- join-irreducible elements of $\mathcal{L}_{\mathrm{nk}}(\bar{Q})$ are in bijection with distinguishable strings
- canonical join complex of $\mathcal{L}_{\mathrm{nk}}(\bar{Q})$ is a generalization of non-crossing partitions

non-kissing complex $\mathcal{N} \mathcal{K}(\bar{Q})=$
- vertices $=$ walks in \bar{Q}^{*} (that are not self-kissing)
- faces $=$ collections of pairwise non-kissing walks in \bar{Q}^{*}

... generalizing the associahedron

Flip graph

Associahedron
Tamari lattice

