

Univ. Orsay

MOTIVATION

- Baryshnikov, On Stokes sets ('01)
- Chapoton, Stokes posets and serpent nests ('16)
- Garver-McConville, Oriented flip graphs and non-crossing tree partitions ('18)
- Petersen-Pylyavskyy-Speyer, A non-crossing standard monomial theory ('10)
 - Santos-Stump-Welker, Non-crossing sets and the Grassmann-assoc. ('17)
 - McConville, Lattice structures of grid Tamari orders ('17)

dissection accordion

subset of \mathbb{Z}^2 monotone path

dissection accordion non-crossing complex

subset of \mathbb{Z}^2 monotone path non-kissing complex

dissection accordion non-crossing complex

subset of \mathbb{Z}^2 monotone path non-kissing complex

Baryshnikov, On Stokes sets ('01) Chapoton, Stokes posets and serpent nests ('16) Garver-McConville, Oriented flip graphs and non-crossing tree partitions ('18)

Petersen-Pylyavskyy-Speyer, A non-crossing standard monomial theory ('10) Santos-Stump-Welker, Non-crossing sets and the Grassmann-assoc. ('17) McConville, Lattice structures of grid Tamari orders ('17) Garver-McConville, Enumerative properties of grid-associahedra ('17⁺)

- \bullet vertices = internal diagonals of an (n+3)-gon
- \bullet faces = collections of pairwise non-crossing [internal] diagonals of the (n+3)-gon

- \bullet vertices = internal diagonals of an (n+3)-gon
- faces = collections of pairwise non-crossing [internal] diagonals of the (n+3)-gon

- \bullet vertices = internal diagonals of an (n+3)-gon
- \bullet faces = collections of pairwise non-crossing [internal] diagonals of the (n+3)-gon

- \bullet vertices = internal diagonals of an (n+3)-gon
- \bullet faces = collections of pairwise non-crossing [internal] diagonals of the (n+3)-gon

simplicial associahedron = simplicial complex with

- vertices = internal diagonals of an (n+3)-gon
- faces = collections of pairwise non-crossing [internal] diagonals of the (n+3)-gon

McConville, Lattice structures of grid Tamari orders ('17)

- \bullet vertices = internal diagonals of an (n+3)-gon
- faces = collections of pairwise non-crossing [internal] diagonals of the (n + 3)-gon

FIRST HALF OF THE TALK

Show that non-crossing and non-kissing complexes <u>coincide</u>
To this end, generalize both:

non-crossing complex to dissections of surfaces

non-kissing complex to gentle quivers

Palu-P.-Plamondon, Non-kissing and non-crossing complexes for locally gentle algebras ('18⁺)

NON-CROSSING COMPLEX

Palu-P.-Plamondon, Non-kissing and non-crossing complexes for locally gentle algebras ('18⁺)

DUAL DISSECTIONS

- $\mathcal{S}=$ orientable surface with or without boundaries
- V and V^* two families of marked points
- $\mathbb D$ and $\mathbb D^*$ two dual dissections of $\mathcal S$

DUAL DISSECTIONS

- $\mathcal{S} = \text{orientable surface with or without boundaries}$
- V and V^* two families of marked points
- $\mathbb D$ and $\mathbb D^*$ two dual dissections of $\mathcal S$

blossom vertices = white vertices, alternating with $V \cup V^*$ along the boundary of S

DUAL DISSECTIONS

- S =orientable surface with or without boundaries
- V and V^* two families of marked points
- $\mathbb D$ and $\mathbb D^*$ two dual dissections of $\mathcal S$

blossom vertices = white vertices, alternating with $V \cup V^*$ along the boundary of S $\underline{B\text{-curve}} = \text{curve which at each endpoint either reaches a blossom point or infinitely circles}$ around a puncture of S

ACCORDIONS

- \mathbb{D} -accordion = B-curve α such that whenever α meets a face f of \mathbb{D} ,
 - (i) it enters crossing an edge a of f and leaves crossing an edge b of f
 - (ii) the two edges a and b of f crossed by α are consecutive along the boundary of f,
- (iii) α , a and b bound a disk inside f that does not contain f^* .

 $\overline{\mathbb{D}}$ -accordion complex = simplicial complex of pairwise non-crossing sets of $\overline{\mathbb{D}}$ -accordions

SLALOMS

 $\underline{\mathbb{D}^*\text{-slalom}} = B\text{-curve } \alpha \text{ of } \overline{\mathcal{S}} \text{ such that, whenever } \alpha \text{ crosses an edge } a^* \text{ of } \underline{\mathbb{D}^*} \text{ contained in two faces } f^*, g^* \text{ of } \underline{\mathbb{D}^*}, \text{ the marked points } f \text{ and } g \text{ lie on opposite sides of } \alpha \text{ in the union of } f^* \text{ and } g^* \text{ glued along } a^*.$

 D^* -slalom complex = simplicial complex of pairwise non-crossing sets of D^* -slaloms

D-ACCORDIONS = D*-SLALOMS

 (D, D^*) -non-crossing complex = D-accordion complex = D^* -slalom complex

NON-KISSING COMPLEX

Palu–P.–Plamondon, Non-kissing complexes and τ -tilting for gentle alg. ('17⁺) Brüstle–Douville–Mousavand–Thomas–Yıldırım, On the combinatorics of gentle algebras ('17⁺)

GENTLE QUIVERS AND STRINGS

gentle quiver $\bar{Q}=$

- quiver Q = oriented graph (Q_0, Q_1, s, t)
- ullet relations I= forbid certain paths

where

- \bullet forbidden paths all of length 2
- locally at each vertex, subgraph of

GENTLE QUIVERS AND STRINGS

$\text{gentle quiver } \bar{Q} =$

- quiver Q =oriented graph (Q_0, Q_1, s, t)
- ullet relations I= forbid certain paths

where

- forbidden paths all of length 2
- locally at each vertex, subgraph of

string
$$\sigma = \alpha_1^{\varepsilon_1} \dots \alpha_\ell^{\varepsilon_\ell}$$
 with $\alpha_k \in Q_1$, $\varepsilon_k \in \{-1, 1\}$ such that

- $\bullet \ t(\alpha_k^{\varepsilon_k}) = s(\alpha_{k+1}^{\varepsilon_{k+1}})$
- ullet contains no factor π or π^{-1} for any path $\pi \in I$
- ullet contains no $lpha lpha^{-1}$ or $lpha^{-1} lpha$ for any arrow $lpha \in Q_1$

BLOSSOMING QUIVERS AND WALKS

 $\frac{\text{blossoming quiver }}{\text{add blossoms to complete each vertex to}} = \underbrace{}$

BLOSSOMING QUIVERS AND WALKS

NON-KISSING COMPLEX

[reduced] non-kissing complex $\mathcal{NK}(\bar{Q}) =$

- vertices = [bending] walks in \bar{Q}^{*} (that are not self-kissing)
- \bullet faces = collections of pairwise non-kissing [bending] walks in $\bar{Q}^{\mbox{\scriptsize \$}}$

NON-CROSSING VS NON-KISSING

Palu-P.-Plamondon, Non-kissing and non-crossing complexes for locally gentle algebras ('18⁺)

QUIVER OF A DISSECTION

quiver $ar{Q}_{ m D}$ of a dissection =

- vertices = edges of D (boundary edges are blossom vertices)
- ullet arrows = two consecutive edges around a face of D
- \bullet relations = three consecutive edges around a face of D

QUIVER OF A DISSECTION

quiver $ar{Q}_{ m D}$ of a dissection =

- ullet vertices = edges of D (boundary edges are blossom vertices)
- ullet arrows = two consecutive edges around a face of D
- ullet relations = three consecutive edges around a face of D

SURFACE OF A GENTLE QUIVER

surface $S_{\bar{Q}}$ of quiver $\bar{Q}=$ surface obtained from the blossoming quiver \bar{Q}^{\circledast} as follows:

- (i) for each arrow $\alpha \in Q_1^{\mbox{\scriptsize \$}}$, consider a lozenge
- (ii) for any $\alpha, \beta \in Q_1^{\Re}$ with $t(\alpha) = s(\beta)$, proceed to the following identifications:
 - \bullet if $\alpha\beta\in I$, then glue $E^t_r(\alpha)$ with $E^s_r(\beta)$,
 - if $\alpha\beta \notin I$, then glue $E^t_{nr}(\alpha)$ with $E^s_{nr}(\beta)$.

NON-CROSSING VS NON-KISSING

PROP. The two previous constructions are inverse to each other and define bijections: pairs of dual dissections on a surface \longleftrightarrow gentle quivers

PROP. It defines isomorphisms between: non-crossing complex of dissections \longleftrightarrow non-kissing complex of gentle quiver

SECOND HALF OF THE TALK

non-kissing complex $\mathcal{NK}(\bar{Q}) =$

- vertices = walks in \bar{Q}^{*} (that are not self-kissing)
- \bullet faces = collections of pairwise non-kissing walks in $\bar{Q}^{\mbox{\scriptsize{\$\!\!\!\!/}}}$

... generalizing the associahedron

DISTINGUISHED ARROWS AND FLIPS

DISTINGUISHED WALKS, ARROWS AND STRINGS

F face of $\mathcal{NK}(ar{Q})$

DISTINGUISHED WALKS, ARROWS AND STRINGS

F face of $\mathcal{NK}(\bar{Q})$

$$\frac{\alpha}{\alpha} \in Q_1$$

$$F_{\alpha} = \{ \omega \in F \mid \alpha \in \omega \}$$

F face of $\mathcal{NK}(\bar{Q})$

 $\frac{\alpha}{\alpha} \in Q_1$ $F_{\alpha} = \{ \omega \in F \mid \alpha \in \omega \}$

 $\omega \prec_{\alpha} \omega'$ countercurrent order at α

F face of $\mathcal{NK}(\bar{Q})$

$$\frac{\alpha}{\alpha} \in Q_1$$
$$F_{\alpha} = \{ \omega \in F \mid \alpha \in \omega \}$$

 $\omega \prec_{\alpha} \omega'$ countercurrent order at α

distinguished walk at α in $F = dw(\alpha, F) = \max_{\prec_{\alpha}} F_{\alpha}$ distinguished arrows of ω in $F = da(\omega, F) = {\alpha \in Q_1 \mid \omega = dw(\alpha, F)}$

F face of $\mathcal{NK}(\bar{Q})$

$$\frac{\alpha}{\alpha} \in Q_1$$
$$F_{\alpha} = \{ \omega \in F \mid \alpha \in \omega \}$$

 $\omega \prec_{\alpha} \omega'$ countercurrent order at α

distinguished walk at α in $F = dw(\alpha, F) = \max_{\prec_{\alpha}} F_{\alpha}$ distinguished arrows of ω in $F = da(\omega, F) = {\alpha \in Q_1 \mid \omega = dw(\alpha, F)}$

PROP. For any facet $F \in \mathcal{NK}(\bar{Q})$,

- ullet each bending walk of F contains 2 distinguished arrows in F pointing opposite,
- ullet each straight walk of F contains 1 distinguished arrows in F pointing as the walk.

F face of $\mathcal{NK}(\bar{Q})$

$$\alpha \in Q_1$$

$$F_{\alpha} = \{ \omega \in F \mid \alpha \in \omega \}$$

 $\omega \prec_{\alpha} \omega'$ countercurrent order at α

distinguished walk at α in $F = dw(\alpha, F) = \max_{\prec_{\alpha}} F_{\alpha}$ distinguished arrows of ω in $F = da(\omega, F) = {\alpha \in Q_1 \mid \omega = dw(\alpha, F)}$

PROP. For any facet $F \in \mathcal{NK}(\bar{Q})$,

- ullet each bending walk of F contains 2 distinguished arrows in F pointing opposite,
- ullet each straight walk of F contains 1 distinguished arrows in F pointing as the walk.

CORO. $\mathcal{NK}(\bar{Q})$ is pure of dimension $|Q_0|$.

F facet of $\mathcal{NK}(\bar{Q})$ (ie. maximal collection of pairwise non-kissing walks)

F facet of $\mathcal{NK}(\bar{Q})$ (ie. maximal collection of pairwise non-kissing walks) $\pmb{\omega} \in F$ we want to "flip"

F facet of $\mathcal{NK}(\bar{Q})$ (ie. maximal collection of pairwise non-kissing walks) $\omega \in F$ we want to "flip" $\{\alpha,\beta\} = \mathsf{da}(\omega,F)$

F facet of $\mathcal{NK}(\bar{Q})$ (ie. maximal collection of pairwise non-kissing walks) $\pmb{\omega} \in F$ we want to "flip"

$$\{\alpha,\beta\}=\mathsf{da}(\omega,F)$$

 $\alpha', \beta' \in Q_1$ such that $\alpha' \alpha \in I$ and $\beta' \beta \in I$

F facet of $\mathcal{NK}(\bar{Q})$ (ie. maximal collection of pairwise non-kissing walks) $\omega \in F$ we want to "flip"

$$\{\alpha,\beta\}=\operatorname{da}(\omega,F)$$

 $\alpha', \beta' \in Q_1$ such that $\alpha'\alpha \in I$ and $\beta'\beta \in I$ $\mu = \operatorname{dw}(\alpha', F)$ and $\nu = \operatorname{dw}(\beta', F)$ $\omega = \nu[\cdot, v] \sigma \mu[w, \cdot]$

F facet of $\mathcal{NK}(\bar{Q})$ (ie. maximal collection of pairwise non-kissing walks) $\pmb{\omega} \in F$ we want to "flip"

$$\{\alpha,\beta\} = \mathsf{da}(\omega,F)$$

$$\alpha',\beta' \in Q_1 \text{ such that } \alpha'\alpha \in I \text{ and } \beta'\beta \in I$$

$$\mu = \mathsf{dw}(\alpha',F) \text{ and } \nu = \mathsf{dw}(\beta',F)$$

$$\omega = \nu[\cdot, v] \sigma \mu[w, \cdot]$$

$$\omega' = \mu[\cdot, v] \sigma \nu[w, \cdot]$$

PROP. ω' kisses ω but no other walk of F. Moreover, ω' is the only such walk.

flip graph =

- vertices = non-kissing facets
- \bullet edges = flips

GENTLE ASSOCIAHEDRA

Manneville–P., Geometric realizations of the accordion complex ('17⁺) Hohlweg–P.–Stella, Polytopal realizations of finite type g-vector fans ('17⁺) Palu–P.–Plamondon, Non-kissing complexes and τ -tilting for gentle alg. ('17⁺)

SIMPLICIAL COMPLEX

 $\underline{\mathsf{simplicial}}\ \mathsf{complex} = \mathsf{collection}\ \mathsf{of}\ \mathsf{subsets}\ \mathsf{of}\ X\ \mathsf{downward}\ \mathsf{closed}$

exm:

$$X = [n] \cup [n]$$

$$\Delta = \{ I \subseteq \overline{X} \mid \forall i \in [n], \ \{i, \underline{i}\} \not\subseteq I \}$$

FANS

polyhedral cone = positive span of a finite set of \mathbb{R}^d

= intersection of finitely many linear half-spaces

 $\underline{\underline{\mathsf{fan}}} = \mathsf{collection}$ of polyhedral cones closed by faces and where any two cones intersect along a face

simplicial fan = maximal cones generated by d rays

POLYTOPES

polytope = convex hull of a finite set of \mathbb{R}^d

= bounded intersection of finitely many affine half-spaces

 $\underline{\text{face}} = \text{intersection with a supporting hyperplane}$ face lattice = all the faces with their inclusion relations

simple polytope = facets in general position = each vertex incident to d facets

SIMPLICIAL COMPLEXES, FANS, AND POLYTOPES

P polytope, F face of P normal cone of F = positive span of the outer normal vectors of the facets containing F normal fan of P = { normal cone of $F \mid F$ face of P }

simple polytope \implies simplicial fan \implies simplicial complex

G-VECTORS & C-VECTORS

G-VECTORS & C-VECTORS

multiplicity vector \mathbf{m}_V of multiset $V = \{\{v_1, \dots, v_m\}\}$ of $Q_0 = \sum_{i \in [m]} \mathbf{e}_{v_i} \in \mathbb{R}^{Q_0}$ $\mathbf{g}\text{-vector } \mathbf{g}(\omega)$ of a walk $\omega = \mathbf{m}_{\mathsf{peaks}(\omega)} - \mathbf{m}_{\mathsf{deeps}(\omega)}$ $\mathbf{c}\text{-vector } \mathbf{c}(\omega \in F)$ of a walk ω in a non-kissing facet $F = \varepsilon(\omega, F) \mathbf{m}_{\mathsf{ds}(\omega, F)}$

PROP. For any non-kissing facet F, the sets of vectors

$$\mathbf{g}(F) := \{ \mathbf{g}(\omega) \mid \omega \in F \}$$
 and $\mathbf{c}(F) := \{ \mathbf{c}(\omega \in F) \mid \omega \in F \}$

form dual bases.

Palu–P.–Plamondon, Non-kissing complexes and τ -tilting for gentle algebras ('17⁺)

G-VECTOR FAN

NON-KISSING ASSOCIAHEDRON

 $\underline{\mathsf{kissing\ number}\ \mathsf{kn}}(\omega) \ = \ \sum_{\omega'} \ \mathsf{number\ of\ times}\ \omega \ \mathsf{and}\ \omega' \ \mathsf{kiss}$

THM. For a gentle quiver \bar{Q} with finite non-kissing complex $\mathcal{NK}(\bar{Q})$,

the two sets of \mathbb{R}^{Q_0} given by

(i) the convex hull of the points

$$\mathbf{p}(F) \coloneqq \sum_{\omega \in F} \mathsf{kn}(\omega) \, \mathbf{c}(\omega \in F),$$

for all non-kissing facets $F \in \mathcal{NK}(\bar{Q})$,

(ii) the intersection of the halfspaces

$$\mathbf{H}^{\geq}(\omega) := \left\{ \mathbf{x} \in \mathbb{R}^{Q_0} \mid \langle \ \mathbf{g}(\omega) \mid \mathbf{x} \ \rangle \leq \mathsf{kn}(\omega) \right\}.$$

for all walks ω of \bar{Q} ,

define the same polytope, whose normal fan is the g-vector fan \mathcal{F}^g . We call it the \bar{Q} -associahedron and denote it by Asso.

Palu–P.–Plamondon, Non-kissing complexes and τ -tilting for gentle algebras ('17⁺)

NON-KISSING LATTICE

NON-KISSING LATTICE

LATTICE QUOTIENTS

lattice = poset (L, \leq) with a meet \wedge and a join \vee

lattice congruence = equiv. rel. \equiv on L which respects meets and joins

$$x \equiv x'$$
 and $y \equiv y'$ \Longrightarrow $x \land y \equiv x' \land y'$ and $x \lor y \equiv x' \lor y'$

lattice quotient of L/\equiv = lattice on equiv. classes of L under \equiv where

- $\bullet X \leq Y \iff \exists x \in X, \ y \in Y, \quad x \leq y$
- $\bullet X \wedge Y = \text{equiv. class of } x \wedge y \text{ for any } x \in X \text{ and } y \in Y$
- $ullet X \lor Y = \text{equiv. class of } x \lor y \text{ for any } x \in X \text{ and } y \in Y$

EXM: TAMARI LATTICE AS LATTICE QUOTIENT OF WEAK ORDER

binary search tree insertion of 2751346

NON-KISSING LATTICE

BICLOSED SETS OF STRINGS

 σ, τ oriented strings

concatenation $\sigma \circ \tau = \{ \sigma \alpha \tau \mid \alpha \in Q_1 \text{ and } \sigma \alpha \tau \text{ string of } \bar{Q} \}$

closure $S^{\mathrm{cl}} = \bigcup \sigma_1 \circ \cdots \circ \sigma_\ell = \text{ all strings obtained by concatenation}$ of some strings of S

closed
$$\iff$$
 $S^{\mathrm{cl}} = S$

closed
$$\iff$$
 $S^{\mathrm{cl}} = S$ coclosed \iff $\bar{S}^{\mathrm{cl}} = \bar{S}$

biclosed = closed and coclosed

THM. For any gentle quiver \bar{Q} such that $\mathcal{NK}(\bar{Q})$ is finite, the inclusion poset on biclosed sets of strings of \bar{Q} is a congruence-uniform lattice.

> McConville, Lattice structures of grid Tamari orders ('17) Garver–McConville, Oriented flip graphs and non-crossing tree partitions ('17⁺) Palu–P.–Plamondon, Non-kissing complexes and τ -tilting for gentle algebras ('17⁺)

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_1$

 $\omega(\alpha,S)=$ walk constructed with the local rules:

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_1$

 $\omega(\alpha,S)=$ walk constructed with the local rules:

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_1$

 $\omega(\alpha,S)=$ walk constructed with the local rules:

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_1$

 $\omega(\alpha,S)=$ walk constructed with the local rules:

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_1$

 $\omega(\alpha,S)=$ walk constructed with the local rules:

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_1$

 $\omega(\alpha,S)=$ walk constructed with the local rules:

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_1$

 $\omega(\alpha,S)=$ walk constructed with the local rules:

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_1$

 $\omega(\alpha,S)=$ walk constructed with the local rules:

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_1$

 $\omega(\alpha,S)=$ walk constructed with the local rules:

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_1$

 $\omega(\alpha,S)=$ walk constructed with the local rules:

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_1$

 $\omega(\alpha,S)=$ walk constructed with the local rules:

Surjection from biclosed sets of strings to non-kissing facets

PROP. $\eta(S) := \{\omega(\alpha, S) \mid \alpha \in Q_1\}$ is a non-kissing facet.

EXM: BINARY SEARCH TREE INSERTION AGAIN

inversion set of 2751346

Surjection from biclosed sets of strings to non-kissing facets

PROP. $\eta(S) := \{\omega(\alpha, S) \mid \alpha \in Q_1\}$ is a non-kissing facet.

THM. The map η defines a lattice morphism from biclosed sets to non-kissing facets.

NON-KISSING LATTICE

NON-KISSING LATTICE

THM. For a gentle quiver \bar{Q} with finite non-kissing complex $\mathcal{NK}(\bar{Q})$, the non-kissing flip graph is the Hasse diagram of a congruence-uniform lattice.

Palu-P.-Plamondon, Non-kissing complexes and τ -tilting for gentle algebras ('17⁺)

Much more nice combinatorics:

- ullet join-irreducible elements of $\mathcal{L}_{
 m nk}(ar Q)$ are in bijection with distinguishable strings
- ullet canonical join complex of $\mathcal{L}_{\mathrm{nk}}(ar{Q})$ is a generalization of non-crossing partitions

SUMMARY

non-kissing complex $\mathcal{NK}(\bar{Q}) =$

- ullet vertices = walks in $\bar{Q}^{\mbox{\scriptsize \$}}$ (that are not self-kissing)
- \bullet faces = collections of pairwise non-kissing walks in $\bar{Q}^{\mbox{\scriptsize \$}}$

... generalizing the associahedron

