Multi-triangulations as complexes of star polygons

Vincent Pilaud (École Normale Supérieure)
\& Francisco Santos (Universidad de Cantabria)
Brussels, March 2008

Definitions

MULTI-TRIANGULATIONS

Let k and n be two integers with $n \geq 2 k+1$.
Let V_{n} be the set of vertices of a convex n-gon..
Let E_{n} be the set of the edges of the complete graph on V_{n}.
Two edges $[a, b]$ and $[c, d]$ cross if the corresponding open segments $] a, b[$ and $] c, d[$ intersect.
An ℓ-crossing is a subset of E_{n} of ℓ mutually intersecting edges.
A k-triangulation of the n-gon is a maximal subset of E_{n} without $(k+1)$-crossing.

Remarks \& EXAMPLES

The length of an edge $[a, b]$ is

$$
\ell([a, b])=\min (|\llbracket a, b \llbracket|,|\llbracket b, a \llbracket|) .
$$

The only edges that may appear in a $(k+1)$-crossing are those of length $>k$.

Remarks \& ExAmples

The length of an edge $[a, b]$ is

$$
\ell([a, b])=\min (|\llbracket a, b \llbracket|,|\llbracket b, a \llbracket|) .
$$

The only edges that may appear in a $(k+1)$-crossing are those of length $>k$.

We say that $[a, b]$ is a
(i) k-relevant edge if $\ell(\{a, b\})>k$;
(ii) k-boundary edge if $\ell(\{a, b\})=k$;
(iii) k-irrelevant edge if $\ell(\{a, b\})<k$.

REMARKS \& EXAMPLES

The length of an edge $[a, b]$ is

$$
\ell([a, b])=\min (|\llbracket a, b \llbracket|,|\llbracket b, a \llbracket|) .
$$

The only edges that may appear in a $(k+1)$-crossing are those of length $>k$.

We say that $[a, b]$ is a
(i) k-relevant edge if $\ell(\{a, b\})>k$;
(ii) k-boundary edge if $\ell(\{a, b\})=k$;
(iii) k-irrelevant edge if $\ell(\{a, b\})<k$.

Any k-triangulation of the n-gon contains all the
k-irrelevant and the k-boundary edges of E_{n}.

Remarks \& ExAmples

A general construction

$n=2 k+1$
The complete graph $K_{2 k+1}$ is the unique k-triangulation of the $(2 k+1)$-gon.
$n=2 k+2$
All k-triangulations of the $(2 k+2)$-gon are obtained by suppression of a long diagonal of the complete graph $K_{2 k+2}$.

REMARKS \& EXAMPLES

$$
n=2 k+3
$$

There are 14 2-triangulations of the heptagon :

There are 303 -triangulations of the nonagon :

Vincent Pilaud ■ Multi-triangulations as complexes of star polygons

REMARKS \& EXAMPLES

Vincent Pilaud ■ Multi-triangulations as complexes of star polygons

Already known results

Théorème.

1. A k-triangulation of the n-gon contains $k(2 n-2 k-1)$ edges.
[NAK], [DKM]
2. Any relevant edge can be flipped and the graph of flips is connected. [NAK], [JON]
3. There exists a deletion/insertion operation that transforms a k-triangulation of the $(n+1)$-gon into a k-triangution of the n-gon and reciprocaly.
4. The k-triangulations of the n-gon are counted by a Catalan determinant : $\operatorname{det}\left(C_{n-i-j}\right)_{i, j \leq k}$. [JON]
5 . If $n \geq 2 k+3$, any k-triangulation of the n-gon has at least $2 k$ ears.
V. Capoyleas \& J. Pach, A Turán-type theorem on chords of a convex polygon, 1992 T. NAKAMIGAWA, A generalization of diagonal flips in a convex polygon, 2000
A. Dress, J. Koolen \& V. Moulton, On line arrangements in the hyperbolic plane, 2002
J. Jonsson, Generalized triangulations and diagonal-free subsets of stack polyominoes, 2005

Already known results

Théorème.

1. A k-triangulation of the n-gon contains $k(2 n-2 k-1)$ edges.
2. Any relevant edge can be flipped and the graph of flips is connected.
3. There exists a deletion/insertion operation that transforms a k-triangulation of the $(n+1)$-gon into a k-triangution of the n-gon and reciprocaly.
4. The k-triangulations of the n-gon are counted by a Catalan determinant : $\operatorname{det}\left(C_{n-i-j}\right)_{i, j \leq k}$. [JON]

5 . If $n \geq 2 k+3$, any k-triangulation of the n-gon has at least $2 k$ ears.
Two remarks.

- undirect proofs :

- generalisation of triangles?

k-STARS

Let $s_{0}, \ldots, s_{2 k}$ be $2 k+1$ points of the unit circle in counterclockwise order.
We say that the polygon

- whose vertices are $s_{0}, \ldots, s_{2 k}$,
- and whose edges are $\left[s_{0}, s_{k}\right],\left[s_{1}, s_{1+k}\right], \ldots,\left[s_{k}, s_{2 k}\right],\left[s_{k+1}, s_{0}\right], \ldots,\left[s_{2 k}, s_{k-1}\right]$
is a k-star.

AngLES

An angle of a subset F of E_{n} is a couple

$$
\angle(u, v, w)=([u, v],[v, w])
$$

of edges of F such that
$-u \prec v \prec w$ (for the counterclockwise order),

- for all $t \in \llbracket w, u \rrbracket$, the edge $\{v, t\}$ is not in F.

v is the vertex of the angle $\angle(u, v, w)=(\{u, v\},\{v, w\})$.

For all $t \in \llbracket w, u \rrbracket$, the edge $\{v, t\}$ is a bisector of $\angle(u, v, w)$.

An angle $\angle(u, v, w)$ is k-relevant if its edges are both either k-relevant, or k-boundary.

Results

k-TRIANGULATIONS $=$ COMPLEXES DE k-STARS

Theorem.

Let T be a k-triangulation.
Any angle of a k-star of T is a k-relevant angle of T.
Reciprocaly, any k-relevant angle of T is contained in a k-star of T.

k-TRIANGULATIONS $=$ COMPLEXES DE k-STARS

Corollary.

Let e be an edge of a k-triangulation T. Then

1. if e is a k-relevant edge, it belongs to exactly two k-stars of T,
2. if e is a k-boundary edge, it belongs to exactly one k-star of T,
3. if e is a k-irrelevant edge, it does not belong to any k-star of T.

Common bisector

Theorem.

Every pair of k-stars of a k-triangulation have a unique common bisector.

Proposition.

Let T be a k-triangulation. Any edge which is not in T is the common bisector of a unique pair of k-stars of T.

Corollary.
Any k-triangulation of the n-gon contains exactly $n-2 k k$-stars and thus $k(2 n-2 k-1)$ edges.

Flips

Theorem.

Let T be a k-triangulation of the n-gon. Let e be an edge of T. Let R and S be the two k-stars of T containing e. Let f be the common bisector of R and S.

Then T and $T \triangle\{e, f\}$ are the only two k-triangulations of the n-gon containing $T \backslash\{e\}$.

The k-triangulation $T \triangle\{e, f\}$ is obtained by flipping the edge e in the k-triangulation f.

Flips

Let $G_{n, k}$ be the graph of flips of the set of k-triangulations of the n-gon.

Theorem.

The graph $G_{n, k}$ is connected, regular of degree $k(n-2 k-1)$, and its diameter is at most $2 k(n-2 k-1)$.

Remark.

(i) if $n>8 k^{3}+4 k^{2}$, the bound on the diameter can be improved to be $2 n k-\left(8 k^{2}+2 k\right)$. [NAK]
(ii) for $k=1$, this bound is optimal.
D.D. Sleator, r.e. Tarjan \& W.P. Thurston,

Rotation distance, triangulations and hyperbolic geometry, 1988
For $k>1$ and $n>4 k$, we only know that the diameter is at least $k(n-2 k-1)$.

k-EARS \& k-COLORABLE k-TRIANGULATIONS

Let assume here that $n>2 k+3$.
A k-ear is an edge of length $k+1$.
We say that a k-star is internal if it does not contain any k-boundary edge.

Proposition.

The number of k-ears of a k-triangulation T equals the number of internal k-stars plus $2 k$.
In particular, T contains at least $2 k k$-ears.

k-EARS \& k-COLORABLE k-TRIANGULATIONS

We say that a k-triangulation is k-colorable if there exists a coloration with k color of its k-relevant edges such that there is no monochromatic crossing.

A k-accordion of E_{n} is a set

$$
Z=\left\{\left[a_{i}, b_{i}\right] \mid 1 \leq i \leq n-2 k-1\right\}
$$

of $n-2 k-1$ edges such that
$-b_{1}=a_{1}+k+1$
$-\left[a_{i}, b_{i}\right] \in\left\{\left[a_{i-1}, b_{i-1}+1\right],\left[a_{i-1}-1, b_{i-1}\right]\right\}$, for all i.

Proposition.

Let T be a k-triangulation, with $k>1$. The following assertions are equivalent
(i) T is k-colorable;
(ii) T contains exactly $2 k k$-ears;
(iii) T has no internal k-star;
(iv) the set of k-relevant edges of T is the disjoint union of $k k$-accordions.

FLATTENING A k-STAR/INFLATTING A k-CROSSING

Theorem.

There is a bijection between
(i) the set of k-triangulations of the $(n+1)$-gon with a marked boundary edge, and
(ii) the set of k-triangulations of the n-gone with a marked k-crossing with k consecutives vertices.

FLATTENING A k-STAR/INFLATTING A k-CROSSING

Theorem.

There is a bijection between
(i) the set of k-triangulations of the $(n+1)$-gon with a marked boundary edge, and
(ii) the set of k-triangulations of the n-gone with a marked k-crossing with k consecutives vertices.

Further topics and open questions

Multi-Dyck Paths

Theorem.

The number of k-triangulations of the n-gon is

$$
\operatorname{det}\left(C_{n-i-j}\right)_{1 \leq i, j \leq k}=\left|\left(\begin{array}{ccccc}
C_{n-2} & C_{n-3} & \ldots & C_{n-k} & C_{n-k-1} \\
C_{n-3} & C_{n-4} & \ldots & C_{n-k-1} & C_{n-k-2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
C_{n-k-1} & C_{n-k-2} & \ldots & C_{n-2 k+1} & C_{n-2 k}
\end{array}\right)\right|, \quad \text { where } \quad C_{m}=\frac{1}{m+1}\binom{2 m}{m}
$$

Multi-Dyck Paths

Theorem.

The number of k-triangulations of the n-gon is
$\operatorname{det}\left(C_{n-i-j}\right)_{1 \leq i, j \leq k}=\left|\left(\begin{array}{ccccc}C_{n-2} & C_{n-3} & \ldots & C_{n-k} & C_{n-k-1} \\ C_{n-3} & C_{n-4} & \ldots & C_{n-k-1} & C_{n-k-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ C_{n-k-1} & C_{n-k-2} & \ldots & C_{n-2 k+1} & C_{n-2 k}\end{array}\right)\right|, \quad$ where $\quad C_{m}=\frac{1}{m+1}\binom{2 m}{m}$.

A Dyck path of semi-length ℓ is a lattice path using north steps $N=(0,1)$ and east steps $E=(1,0)$ starting from $(0,0)$ and ending at (ℓ, ℓ), and such that it never goes below the diagonal $y=x$.

The set of Dyck paths of semi-length $n-2$ is in bijection with the set of triangulations of the n-gon.

Multi-Dyck Paths

Theorem.

The number of k-triangulations of the n-gon is
$\operatorname{det}\left(C_{n-i-j}\right)_{1 \leq i, j \leq k}=\left|\left(\begin{array}{ccccc}C_{n-2} & C_{n-3} & \ldots & C_{n-k} & C_{n-k-1} \\ C_{n-3} & C_{n-4} & \ldots & C_{n-k-1} & C_{n-k-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ C_{n-k-1} & C_{n-k-2} & \ldots & C_{n-2 k+1} & C_{n-2 k}\end{array}\right)\right|, \quad$ where $\quad C_{m}=\frac{1}{m+1}\binom{2 m}{m}$.

A Dyck path of semi-length ℓ is a lattice path using north steps $N=(0,1)$ and east steps $E=(1,0)$ starting from $(0,0)$ and ending at (ℓ, ℓ), and such that it never goes below the diagonal $y=x$.

A k-Dyck path of semi-length ℓ is a k-tuple $\left(d_{1}, \ldots, d_{k}\right)$ of Dyck
 paths of semi-length ℓ such that each d_{i} never goes above d_{i-1}, for $2 \leq i \leq k$.

Multi-Dyck Paths

Theorem.

The number of k-triangulations of the n-gon is
$\operatorname{det}\left(C_{n-i-j}\right)_{1 \leq i, j \leq k}=\left|\left(\begin{array}{ccccc}C_{n-2} & C_{n-3} & \ldots & C_{n-k} & C_{n-k-1} \\ C_{n-3} & C_{n-4} & \ldots & C_{n-k-1} & C_{n-k-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ C_{n-k-1} & C_{n-k-2} & \ldots & C_{n-2 k+1} & C_{n-2 k}\end{array}\right)\right|, \quad$ where $\quad C_{m}=\frac{1}{m+1}\binom{2 m}{m}$.

Theorem.
The number of k-Dyck paths of semi-length $n-2 k$ is $\operatorname{det}\left(C_{n-i-j}\right)_{1 \leq i, j \leq k}$. Enumeration of certain Youg tableaux with bounded height, 1986

We have explicit bijections only when $k=1$ and $k=2$.
S. Elizalde, A bijection between 2-triangulations and pairs of non-crossing Dyck paths, 2006

Rigidity

A graph $G=(V, E)$, embedded in \mathbb{R}^{d}, is said to be rigid if any continuous movement of its vertices that preserves all edges lengths is an isometry of \mathbb{R}^{d}.

A triangulation is a minimally rigid graph of the plane.

Rigidity

A graph $G=(V, E)$, embedded in \mathbb{R}^{d}, is said to be rigid if any continuous movement of its vertices that preserves all edges lengths is an isometry of \mathbb{R}^{d}.

A triangulation is a minimally rigid graph of the plane.

Conjecture.

A k-triangulation is a minimally rigid graph in dimension $2 k$.

Two remarks.

- k-triangulations have $2 k$-Laman property.
- we have a proof for $k=2$.

Multi-ASSOCIAHEDRON

Let $\Delta_{n, k}$ be the complex of all subsets of k-relevant edges of E_{n} that do not contain any $(k+1)$ crossing.

When $k=1$, this complex is known to be the boundary complex of the associahedron.
C. LEE, The associahedron and triangulations of an n-gon, 1989

Multi-ASSOCIAHEDRON

Let $\Delta_{n, k}$ be the complex of all subsets of k-relevant edges of E_{n} that do not contain any $(k+1)$ crossing.

When $k=1$, this complex is known to be the boundary complex of the associahedron.

$$
\text { C. Lee, The associahedron and triangulations of an } n \text {-gon, } 1989
$$

When $k \geq 2$, we only know that $\Delta_{n, k}$ is topologically a sphere.

Conjecture.

There exists a simple polytope of dimension $k(n-2 k-1)$ with boundary complex $\Delta_{n, k}$.

Remark. area of stars and rigidity can help.
l. Billera, P. Filliman \& B. Sturmfels, Constructions and complexity of secondary polytopes, 1990
G. Rote, F. Santos \& I. Streinu,

Expansive motions and the polytope of pointed pseudo-triangulaitons, 2003

Surfaces

Let T be a k-triangulation of the n-gon.
The polygonal complex $\mathcal{C}(T)$ associated to T is a polygonal decomposition of an orientable surface with boundary $\mathcal{S}_{n, k}$.

The genus of $\mathcal{S}_{n, k}$ is $g_{n, k}=\frac{1}{2}(2-f+e-v-b)=\frac{1}{2}\left(2-n+k+k n-2 k^{2}-\operatorname{gcd}(n, k)\right)$.

Surfaces

Flips define a morphism between
(i) the fundamental group $\pi_{n, k}$ of the graph of flips $G_{n, k}$ (i.e. the set of loops in $G_{n, k}$, up to homotopy), and
(ii) the mapping class group $\mathcal{M}_{n, k}$ of the surface $\mathcal{S}_{n, k}$ (i.e. the set of diffeomorphisms of the surface $\mathcal{S}_{n, k}$ into itself that preserve the orientation and that fixe the boundary of $\mathcal{S}_{n, k}$, up to isotopy).

Conclusion

Conclusion

Vincent Pilaud ■ Multi-triangulations as complexes of star polygons

CONCLUSION

Vincent Pilaud ■ Multi-triangulations as complexes of star polygons

CONCLUSION

Vincent Pilaud ■ Multi-triangulations as complexes of star polygons

Multi-triangulations as complexes of star polygons Vincent Pilaud \& Francisco Santos
arXiv : 0706.3121v2

