Multi-triangulations as complexes of star polygons

Vincent Pilaud (École Normale Supérieure) & Francisco Santos (Universidad de Cantabria)

Brussels, March 2008

DEFINITIONS

Multi-triangulations

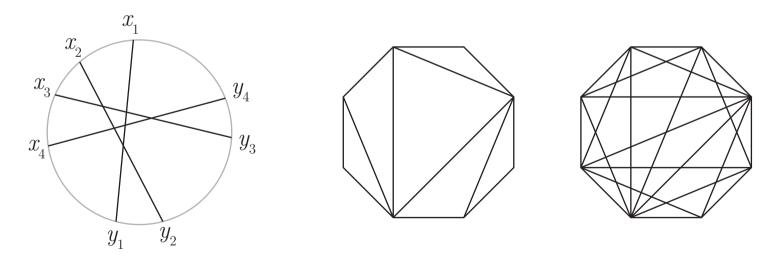
Let k and n be two integers with $n \ge 2k + 1$.

Let V_n be the set of vertices of a convex *n*-gon..

Let E_n be the set of the edges of the complete graph on V_n .

Two edges [a, b] and [c, d] cross if the corresponding open segments]a, b[and]c, d[intersect. An ℓ -crossing is a subset of E_n of ℓ mutually intersecting edges.

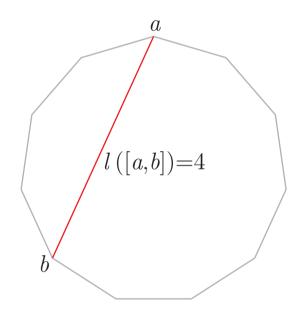
A k-triangulation of the n-gon is a maximal subset of E_n without (k + 1)-crossing.



The length of an edge [a, b] is

 $\ell([a,b]) = \min(|[\![a,b[\![]],|[\![b,a[\![]]]).$

The only edges that may appear in a (k + 1)-crossing are those of length > k.



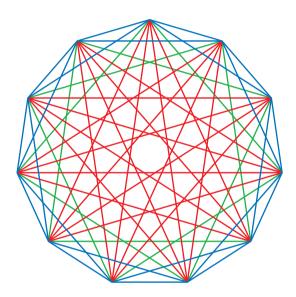
The length of an edge [a, b] is

 $\ell([a,b]) = \min(|[\![a,b[\![]],|[\![b,a[\![]]).$

The only edges that may appear in a (k + 1)-crossing are those of length > k.

We say that [a, b] is a

- (i) k-relevant edge if $\ell(\{a, b\}) > k$;
- (ii) k-boundary edge if $\ell(\{a, b\}) = k$;
- (iii) k-irrelevant edge if $\ell(\{a, b\}) < k$.



The length of an edge [a, b] is

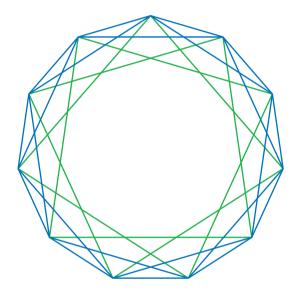
 $\ell([a,b]) = \min(|[\![a,b[\![]],|[\![b,a[\![]]]).$

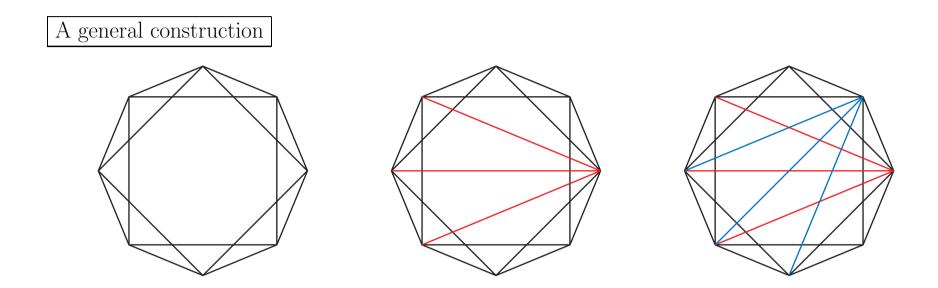
The only edges that may appear in a (k + 1)-crossing are those of length > k.

We say that [a, b] is a

- (i) k-relevant edge if $\ell(\{a, b\}) > k$;
- (ii) *k*-boundary edge if $\ell(\{a, b\}) = k$;
- (iii) k-irrelevant edge if $\ell(\{a, b\}) < k$.

Any k-triangulation of the n-gon contains all the k-irrelevant and the k-boundary edges of E_n .





n = 2k + 1

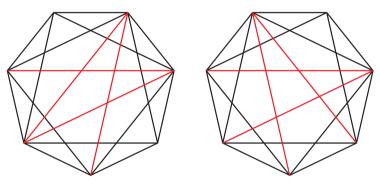
The complete graph K_{2k+1} is the unique k-triangulation of the (2k+1)-gon.

n = 2k + 2

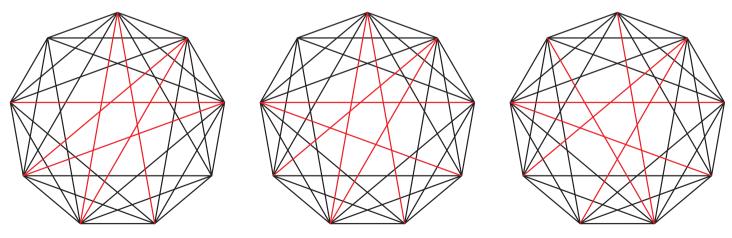
All k-triangulations of the (2k + 2)-gon are obtained by suppression of a long diagonal of the complete graph K_{2k+2} .

n = 2k + 3

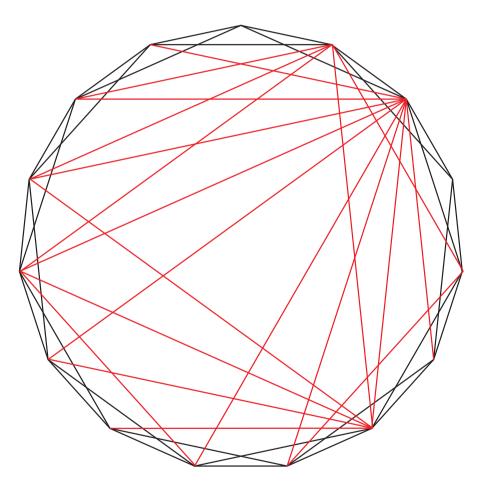
There are 14 2-triangulations of the heptagon :



There are 30 3-triangulations of the nonagon :



Remarks & examples



ALREADY KNOWN RESULTS

THÉORÈME.

- 1. A k-triangulation of the n-gon contains k(2n 2k 1) edges. [NAK], [DKM]
- 2. Any relevant edge can be flipped and the graph of flips is connected.
- 3. There exists a deletion/insertion operation that transforms a k-triangulation of the (n+1)-gon into a k-triangution of the n-gon and reciprocaly. [NAK], [JON]
- 4. The k-triangulations of the n-gon are counted by a Catalan determinant : $\det(C_{n-i-j})_{i,j \leq k}$. [JON]
- 5. If $n \ge 2k + 3$, any k-triangulation of the n-gon has at least 2k ears. [NAK]

V. CAPOYLEAS & J. PACH, A Turán-type theorem on chords of a convex polygon, 1992
T. NAKAMIGAWA, A generalization of diagonal flips in a convex polygon, 2000
A. DRESS, J. KOOLEN & V. MOULTON, On line arrangements in the hyperbolic plane, 2002
J. JONSSON, Generalized triangulations and diagonal-free subsets of stack polyominoes, 2005

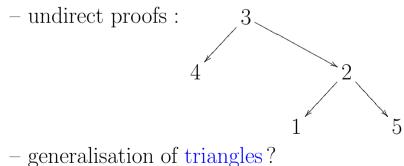
[NAK], [JON]

ALREADY KNOWN RESULTS

THÉORÈME.

- 1. A k-triangulation of the n-gon contains k(2n 2k 1) edges. [NAK], [DKM]
- 2. Any relevant edge can be flipped and the graph of flips is connected.
- 3. There exists a deletion/insertion operation that transforms a k-triangulation of the (n+1)-gon into a k-triangution of the n-gon and reciprocaly. [NAK], [JON]
- 4. The k-triangulations of the n-gon are counted by a Catalan determinant : $\det(C_{n-i-j})_{i,j \leq k}$. [JON]
- 5. If $n \ge 2k + 3$, any k-triangulation of the n-gon has at least 2k ears. [NAK]

Two remarks.



[NAK], [JON]

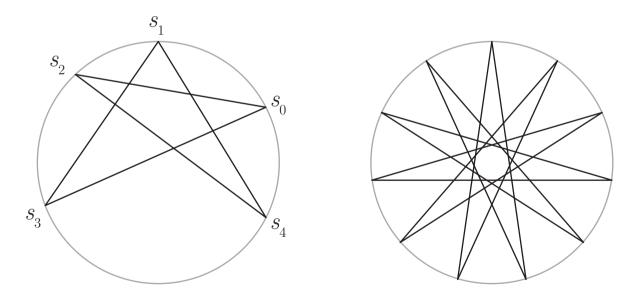
k-stars

Let s_0, \ldots, s_{2k} be 2k + 1 points of the unit circle in counterclockwise order.

We say that the polygon

- whose vertices are s_0, \ldots, s_{2k} ,

- and whose edges are $[s_0, s_k], [s_1, s_{1+k}], \dots, [s_k, s_{2k}], [s_{k+1}, s_0], \dots, [s_{2k}, s_{k-1}]$ is a *k*-star.



ANGLES

An angle of a subset F of E_n is a couple

$$\angle(u,v,w) = ([u,v],[v,w])$$

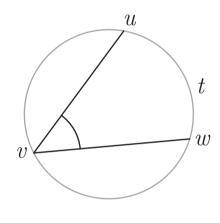
of edges of F such that

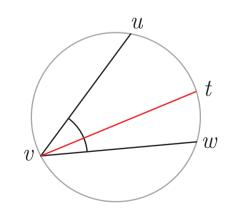
 $- u \prec v \prec w$ (for the counterclockwise order), - for all t ∈ $\llbracket w, u \rrbracket$, the edge $\{v, t\}$ is not in F.

v is the vertex of the angle $\angle(u, v, w) = (\{u, v\}, \{v, w\}).$

For all $t \in \llbracket w, u \rrbracket$, the edge $\{v, t\}$ is a bisector of $\angle (u, v, w)$.

An angle $\angle(u, v, w)$ is *k*-relevant if its edges are both either *k*-relevant, or *k*-boundary.





RESULTS

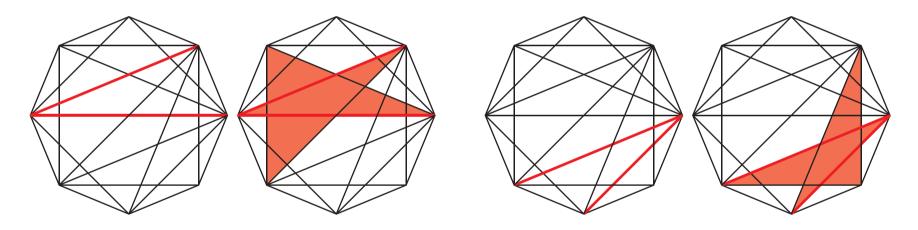
k-TRIANGULATIONS = COMPLEXES DE k-STARS

THEOREM.

Let T be a k-triangulation.

Any angle of a k-star of T is a k-relevant angle of T.

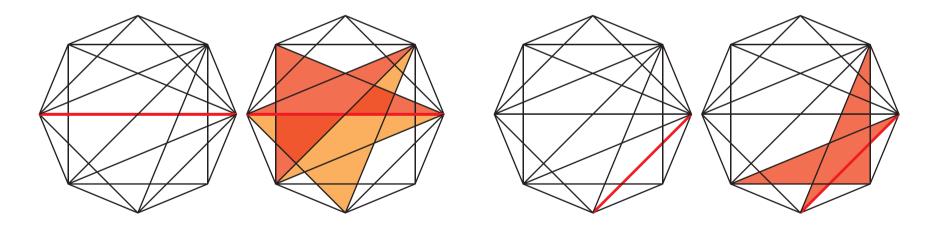
Reciprocaly, any k-relevant angle of T is contained in a k-star of T.



k-TRIANGULATIONS = COMPLEXES DE k-STARS

COROLLARY.

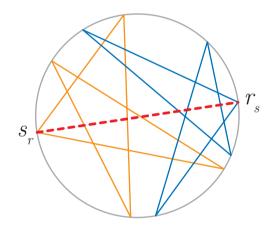
- Let e be an edge of a k-triangulation T. Then
- 1. if e is a k-relevant edge, it belongs to exactly two k-stars of T,
- 2. if e is a k-boundary edge, it belongs to exactly one k-star of T,
- 3. if e is a k-irrelevant edge, it does not belong to any k-star of T.



COMMON BISECTOR

THEOREM.

Every pair of k-stars of a k-triangulation have a unique common bisector.



PROPOSITION.

Let T be a k-triangulation. Any edge which is not in T is the common bisector of a unique pair of k-stars of T.

COROLLARY.

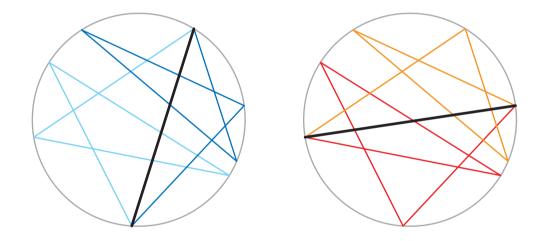
Any k-triangulation of the n-gon contains exactly n - 2k k-stars and thus k(2n - 2k - 1) edges.

FLIPS

THEOREM.

Let T be a k-triangulation of the n-gon. Let e be an edge of T. Let R and S be the two k-stars of T containing e. Let f be the common bisector of R and S.

Then T and $T \triangle \{e, f\}$ are the only two k-triangulations of the n-gon containing $T \setminus \{e\}$.



The k-triangulation $T \triangle \{e, f\}$ is obtained by flipping the edge e in the k-triangulation f.

FLIPS

Let $G_{n,k}$ be the graph of flips of the set of k-triangulations of the n-gon.

THEOREM.

The graph $G_{n,k}$ is connected, regular of degree k(n - 2k - 1), and its diameter is at most 2k(n - 2k - 1).

Remark.

(i) if $n > 8k^3 + 4k^2$, the bound on the diameter can be improved to be $2nk - (8k^2 + 2k)$. [NAK] (ii) for k = 1, this bound is optimal.

> D.D. SLEATOR, R.E. TARJAN & W.P. THURSTON, Rotation distance, triangulations and hyperbolic geometry, 1988

For k > 1 and n > 4k, we only know that the diameter is at least k(n - 2k - 1).

k-EARS & k-COLORABLE k-TRIANGULATIONS

Let assume here that n > 2k + 3.

A *k*-ear is an edge of length k + 1.

We say that a k-star is internal if it does not contain any k-boundary edge.

PROPOSITION.

The number of k-ears of a k-triangulation T equals the number of internal k-stars plus 2k. In particular, T contains at least 2k k-ears.

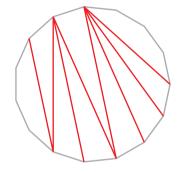
k-EARS & k-COLORABLE k-TRIANGULATIONS

We say that a k-triangulation is k-colorable if there exists a coloration with k color of its k-relevant edges such that there is no monochromatic crossing.

A *k*-accordion of E_n is a set

$$Z = \{ [a_i, b_i] \mid 1 \le i \le n - 2k - 1 \}$$

of
$$n - 2k - 1$$
 edges such that
 $-b_1 = a_1 + k + 1$
 $-[a_i, b_i] \in \{[a_{i-1}, b_{i-1} + 1], [a_{i-1} - 1, b_{i-1}]\}$, for all i .



PROPOSITION.

Let T be a k-triangulation, with k > 1. The following assertions are equivalent

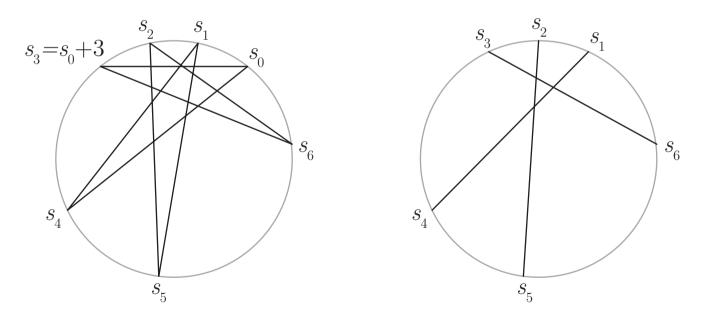
- (i) T is k-colorable;
- (ii) T contains exactly 2k k-ears;
- (iii) T has no internal k-star;
- (iv) the set of k-relevant edges of T is the disjoint union of k k-accordions.

FLATTENING A k-STAR/INFLATTING A k-CROSSING

THEOREM.

There is a bijection between

- (i) the set of k-triangulations of the (n + 1)-gon with a marked boundary edge, and
- (ii) the set of k-triangulations of the n-gone with a marked k-crossing with k consecutives vertices.

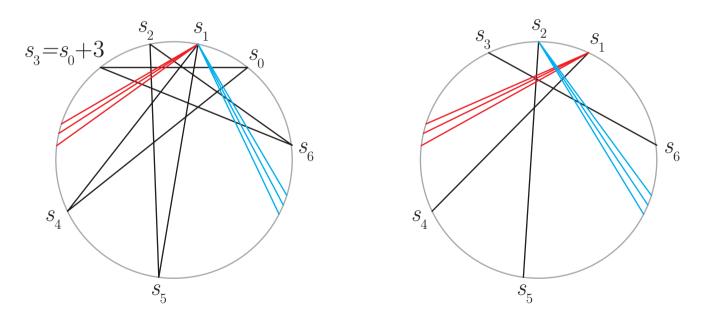


FLATTENING A k-STAR/INFLATTING A k-CROSSING

THEOREM.

There is a bijection between

- (i) the set of k-triangulations of the (n + 1)-gon with a marked boundary edge, and
- (ii) the set of k-triangulations of the n-gone with a marked k-crossing with k consecutives vertices.



FURTHER TOPICS AND OPEN QUESTIONS

MULTI-DYCK PATHS

THEOREM.

[Jon]

The number of k-triangulations of the n-gon is

$$\det(C_{n-i-j})_{1 \le i,j \le k} = \left| \begin{pmatrix} C_{n-2} & C_{n-3} & \dots & C_{n-k} & C_{n-k-1} \\ C_{n-3} & C_{n-4} & \dots & C_{n-k-1} & C_{n-k-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ C_{n-k-1} & C_{n-k-2} & \dots & C_{n-2k+1} & C_{n-2k} \end{pmatrix} \right|, \quad \text{where} \quad C_m = \frac{1}{m+1} \binom{2m}{m},$$

Multi-Dyck Paths

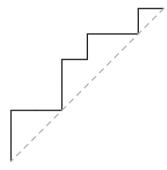
THEOREM.

The number of k-triangulations of the n-gon is

$$\det(C_{n-i-j})_{1\leq i,j\leq k} = \left| \begin{pmatrix} C_{n-2} & C_{n-3} & \dots & C_{n-k} & C_{n-k-1} \\ C_{n-3} & C_{n-4} & \dots & C_{n-k-1} & C_{n-k-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ C_{n-k-1} & C_{n-k-2} & \dots & C_{n-2k+1} & C_{n-2k} \end{pmatrix} \right|, \quad \text{where} \quad C_m = \frac{1}{m+1} \binom{2m}{m}.$$

A Dyck path of semi-length ℓ is a lattice path using north steps N = (0, 1) and east steps E = (1, 0) starting from (0, 0) and ending at (ℓ, ℓ) , and such that it never goes below the diagonal y = x.

The set of Dyck paths of semi-length n-2 is in bijection with the set of triangulations of the *n*-gon.



[JON]

Multi-Dyck Paths

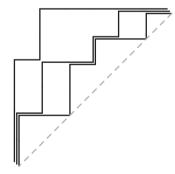
THEOREM.

The number of k-triangulations of the n-gon is

$$\det(C_{n-i-j})_{1 \le i,j \le k} = \left| \begin{pmatrix} C_{n-2} & C_{n-3} & \dots & C_{n-k} & C_{n-k-1} \\ C_{n-3} & C_{n-4} & \dots & C_{n-k-1} & C_{n-k-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ C_{n-k-1} & C_{n-k-2} & \dots & C_{n-2k+1} & C_{n-2k} \end{pmatrix} \right|, \quad \text{where} \quad C_m = \frac{1}{m+1} \binom{2m}{m}$$

A Dyck path of semi-length ℓ is a lattice path using north steps N = (0, 1) and east steps E = (1, 0) starting from (0, 0) and ending at (ℓ, ℓ) , and such that it never goes below the diagonal y = x.

A *k*-Dyck path of semi-length ℓ is a *k*-tuple (d_1, \ldots, d_k) of Dyck paths of semi-length ℓ such that each d_i never goes above d_{i-1} , for $2 \leq i \leq k$.



[JON]

Multi-Dyck Paths

THEOREM.

[JON]

The number of k-triangulations of the n-gon is

$$\det(C_{n-i-j})_{1 \le i,j \le k} = \left| \begin{pmatrix} C_{n-2} & C_{n-3} & \dots & C_{n-k} & C_{n-k-1} \\ C_{n-3} & C_{n-4} & \dots & C_{n-k-1} & C_{n-k-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ C_{n-k-1} & C_{n-k-2} & \dots & C_{n-2k+1} & C_{n-2k} \end{pmatrix} \right|, \quad \text{where} \quad C_m = \frac{1}{m+1} \binom{2m}{m}$$

THEOREM.

The number of k-Dyck paths of semi-length n - 2k is $\det(C_{n-i-j})_{1 \le i,j \le k}$.

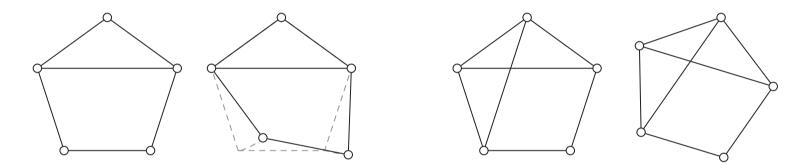
M. DESAINTE-CATHERINE & G. VIENNOT, Enumeration of certain Youg tableaux with bounded height, 1986

We have explicit bijections only when k = 1 and k = 2.

S. ELIZALDE, A bijection between 2-triangulations and pairs of non-crossing Dyck paths, 2006

RIGIDITY

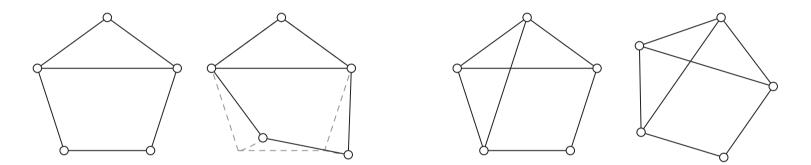
A graph G = (V, E), embedded in \mathbb{R}^d , is said to be rigid if any continuous movement of its vertices that preserves all edges lengths is an isometry of \mathbb{R}^d .



A triangulation is a minimally rigid graph of the plane.

RIGIDITY

A graph G = (V, E), embedded in \mathbb{R}^d , is said to be rigid if any continuous movement of its vertices that preserves all edges lengths is an isometry of \mathbb{R}^d .



A triangulation is a minimally rigid graph of the plane.

CONJECTURE.

A k-triangulation is a minimally rigid graph in dimension 2k.

Two remarks.

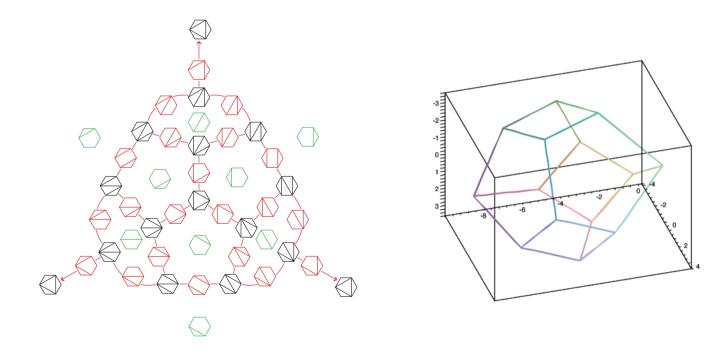
- -k-triangulations have 2k-Laman property.
- we have a proof for k = 2.

Multi-associahedron

Let $\Delta_{n,k}$ be the complex of all subsets of k-relevant edges of E_n that do not contain any (k + 1)crossing.

When k = 1, this complex is known to be the boundary complex of the associahedron.

C. LEE, The associahedron and triangulations of an n-gon, 1989



Multi-associahedron

Let $\Delta_{n,k}$ be the complex of all subsets of k-relevant edges of E_n that do not contain any (k + 1)crossing.

When k = 1, this complex is known to be the boundary complex of the associahedron.

C. LEE, The associahedron and triangulations of an n-gon, 1989

When $k \ge 2$, we only know that $\Delta_{n,k}$ is topologically a sphere . [JON]

CONJECTURE.

There exists a simple polytope of dimension k(n-2k-1) with boundary complex $\Delta_{n,k}$.

Remark. area of stars and rigidity can help.

L. BILLERA, P. FILLIMAN & B. STURMFELS, Constructions and complexity of secondary polytopes, 1990

G. ROTE, F. SANTOS & I. STREINU, Expansive motions and the polytope of pointed pseudo-triangulaitons, 2003

Vincent Pilaud
Multi-triangulations as complexes of star polygons

SURFACES

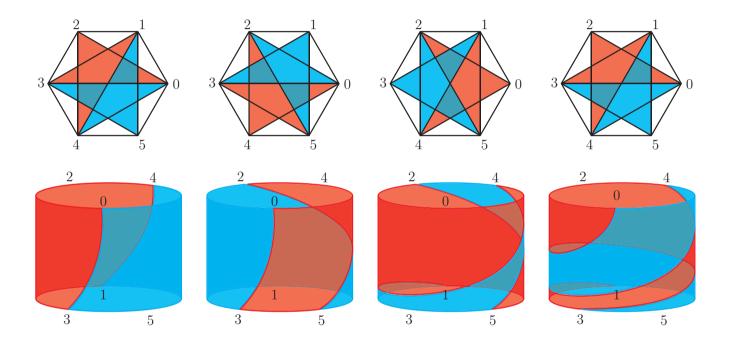
Let T be a k-triangulation of the n-gon.

The polygonal complex C(T) associated to T is a polygonal decomposition of an orientable surface with boundary $S_{n,k}$.



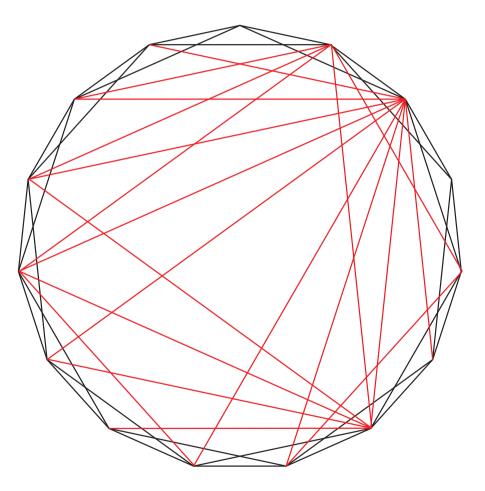
The genus of $S_{n,k}$ is $g_{n,k} = \frac{1}{2}(2 - f + e - v - b) = \frac{1}{2}(2 - n + k + kn - 2k^2 - \gcd(n,k)).$

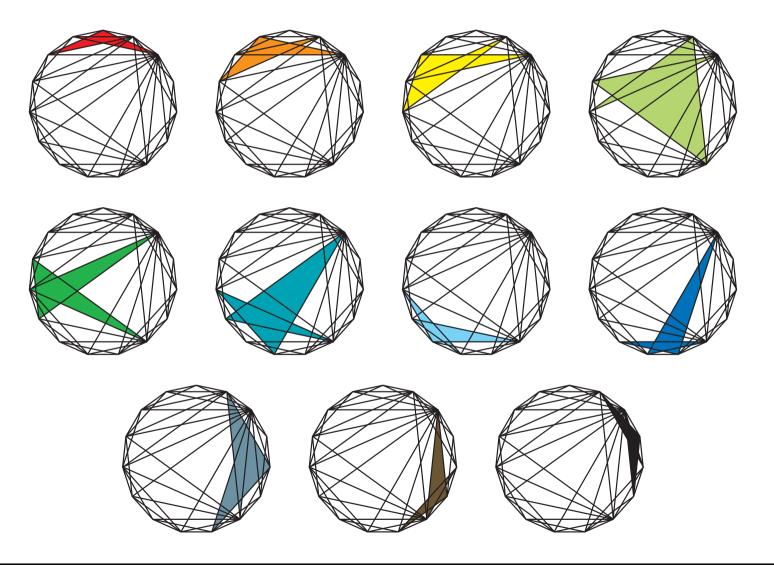
SURFACES

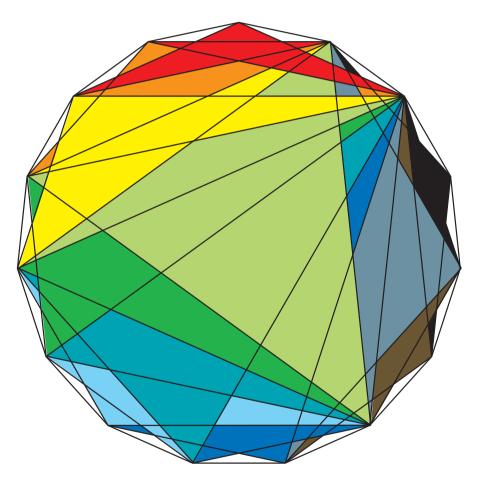


Flips define a morphism between

- (i) the fundamental group $\pi_{n,k}$ of the graph of flips $G_{n,k}$ (*i.e.* the set of loops in $G_{n,k}$, up to homotopy), and
- (ii) the mapping class group $\mathcal{M}_{n,k}$ of the surface $\mathcal{S}_{n,k}$ (*i.e.* the set of diffeomorphisms of the surface $\mathcal{S}_{n,k}$ into itself that preserve the orientation and that fixe the boundary of $\mathcal{S}_{n,k}$, up to isotopy).







Multi-triangulations as complexes of star polygons Vincent Pilaud & Francisco Santos arXiv : 0706.3121v2