

Vincent PILAUD

CNRS - LIX, École Polytechnique

REDUCED EXPRESSIONS & SUBWORD COMPLEXES

REDUCED EXPRESSIONS

 $\mathfrak{S}_n = \mathsf{symmetric} \; \mathsf{group}$

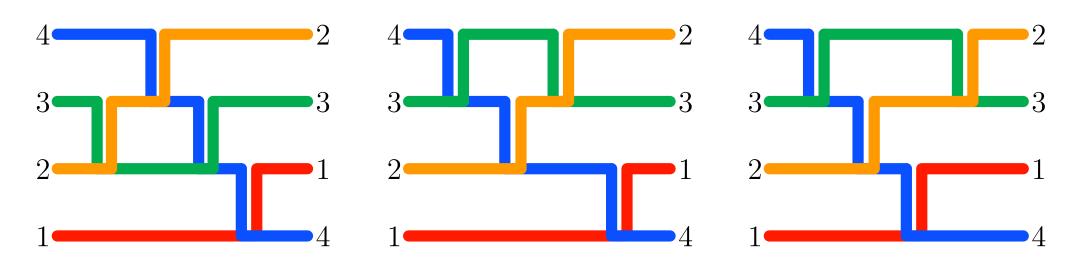
$$S = \{\tau_i \mid i \in n-1\}$$
 set of simple transpositions $\tau_i = (i \ i+1)$

ho permutation of \mathfrak{S}_n

reduced expression of $\rho = \text{minimal length expression } \rho = s_1 \cdots s_\ell \text{ with } s_i \in S$

Count and enumerate reduced expressions of ρ

Example.
$$\rho = [4, 1, 3, 2] = \tau_2 \ \tau_3 \ \tau_2 \ \tau_1 = \tau_3 \ \tau_2 \ \tau_3 \ \tau_1 = \tau_3 \ \tau_2 \ \tau_1 \ \tau_3$$



REDUCED EXPRESSIONS

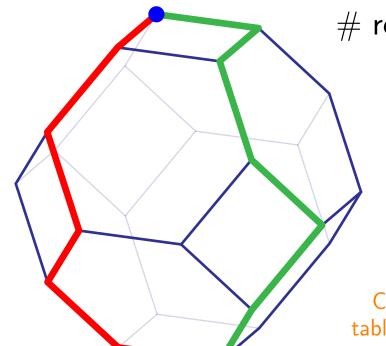
 $\mathfrak{S}_n = \mathsf{symmetric} \; \mathsf{group}$

$$S = \{\tau_i \mid i \in n-1\}$$
 set of simple transpositions $\tau_i = (i \ i+1)$

ho permutation of \mathfrak{S}_n

reduced expression of $\rho = \text{minimal length expression } \rho = s_1 \cdots s_\ell \text{ with } s_i \in S$

Count and enumerate reduced expressions of ρ



reduced expressions of $w_{\circ} =$

$$\frac{\binom{n}{2}!}{1^{n-1}2^{n-2}\cdots(2n-3)^1}$$

Stanley.

On the number of reduced decompositions of elements of Coxeter groups. 1984

Edelmann & Greene.

Combinatorial correspondences for Young tableaux, balanced tableaux, and maximal chains in the Bruhat order of \mathfrak{S}_n . 1984

REDUCED EXPRESSIONS AS SUBWORDS

 $\mathfrak{S}_n = \operatorname{symmetric} \operatorname{group} S = \{ \tau_i \mid i \in n-1 \}$ set of simple transpositions $\tau_i = (i \mid i+1)$ ρ permutation of \mathfrak{S}_n $Q = q_1 \, q_2 \, \cdots \, q_m$ word on the alphabet S

Enumerate subwords of ${\mathbb Q}$ which are reduced expressions for ρ

Example.
$$\rho = [4, 1, 3, 2] = \tau_2 \ \tau_3 \ \tau_2 \ \tau_1 = \tau_3 \ \tau_2 \ \tau_3 \ \tau_1 = \tau_3 \ \tau_2 \ \tau_1 \ \tau_3 \ Q = \tau_2 \ \tau_3 \ \tau_1 \ \tau_3 \ \tau_2 \ \tau_1 \ \tau_2 \ \tau_3 \ \tau_1$$

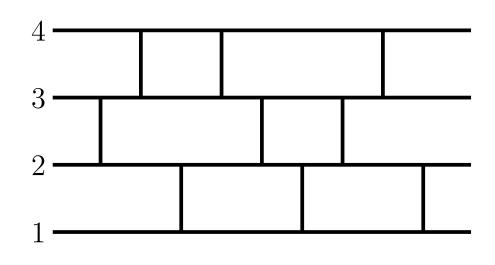
Possible subwords:

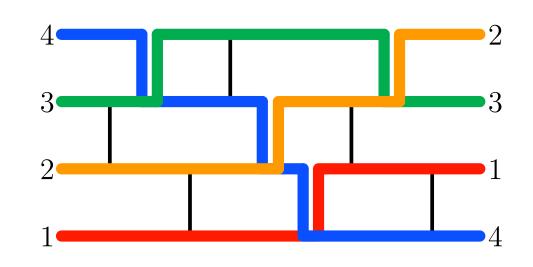
REDUCED EXPRESSIONS AS SUBWORDS

 $\mathfrak{S}_n = \operatorname{symmetric} \operatorname{group} S = \{ \tau_i \mid i \in n-1 \}$ set of simple transpositions $\tau_i = (i \mid i+1)$ ρ permutation of \mathfrak{S}_n $Q = q_1 \, q_2 \, \cdots \, q_m$ word on the alphabet S

Enumerate subwords of $\mathbb Q$ which are reduced expressions for ρ

Example.
$$\rho = [4, 1, 3, 2] = \tau_2 \ \tau_3 \ \tau_2 \ \tau_1 = \tau_3 \ \tau_2 \ \tau_3 \ \tau_1 = \tau_3 \ \tau_2 \ \tau_1 \ \tau_3 \ Q = \tau_2 \ \tau_3 \ \tau_1 \ \tau_3 \ \tau_2 \ \tau_1 \ \tau_2 \ \tau_3 \ \tau_1$$

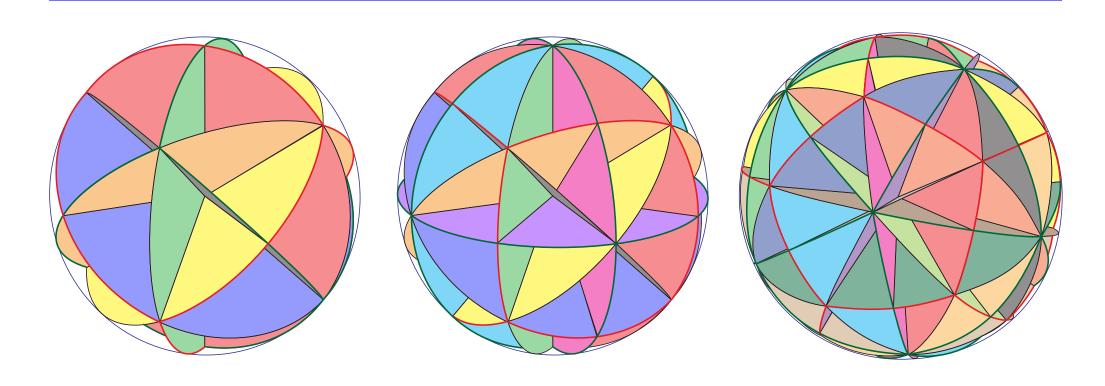




GENERALIZATION TO COXETER GROUPS

W= finite Coxeter group S= simple system of generators for W ρ element of W $Q=q_1\,q_2\,\cdots\,q_m$ word on the alphabet S

Enumerate subwords of $\mathbb Q$ which are reduced expressions for ρ



SUBWORD COMPLEX

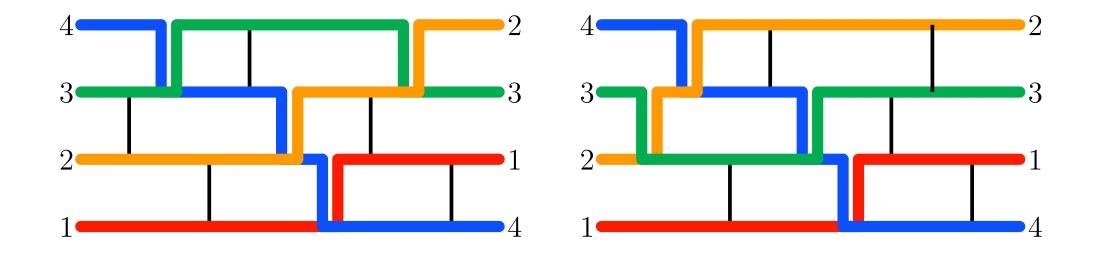
 $\mathfrak{S}_n = \operatorname{symmetric} \operatorname{group} S = \{ \tau_i \mid i \in n-1 \}$ set of simple transpositions $\tau_i = (i \mid i+1)$ ρ permutation of \mathfrak{S}_n $Q = q_1 \, q_2 \, \cdots \, q_m$ word on the alphabet S

Subword complex $\mathcal{SC}(Q, \rho) = \text{simplicial complex with}$

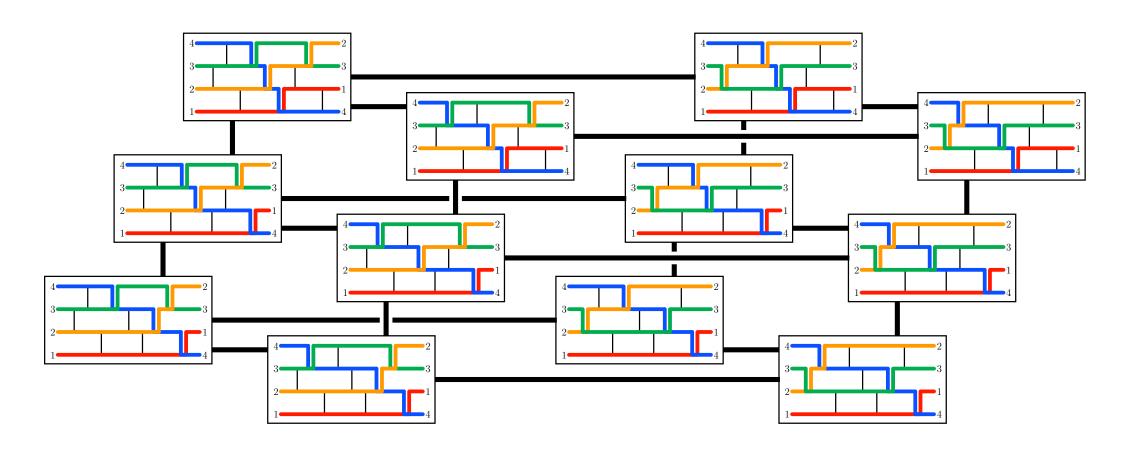
- \bullet vertices = [m] = positions in the word Q
- ullet facets $= \mathcal{F}(Q, \rho) =$ complements in [m] of position sets of reduced expressions of ρ in Q

Knutson & Miller. Subword complexes in Coxeter groups. 2004.

flip = two subwords of Q which differ at precisely two positions



FLIP



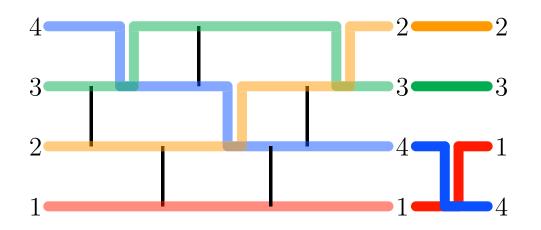
The flip graph is connected

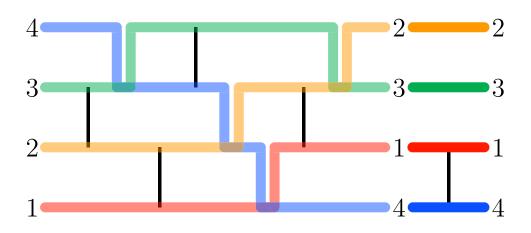
GOAL: Find a natural spanning tree of the flip graph

INDUCTIVE STRUCTURE

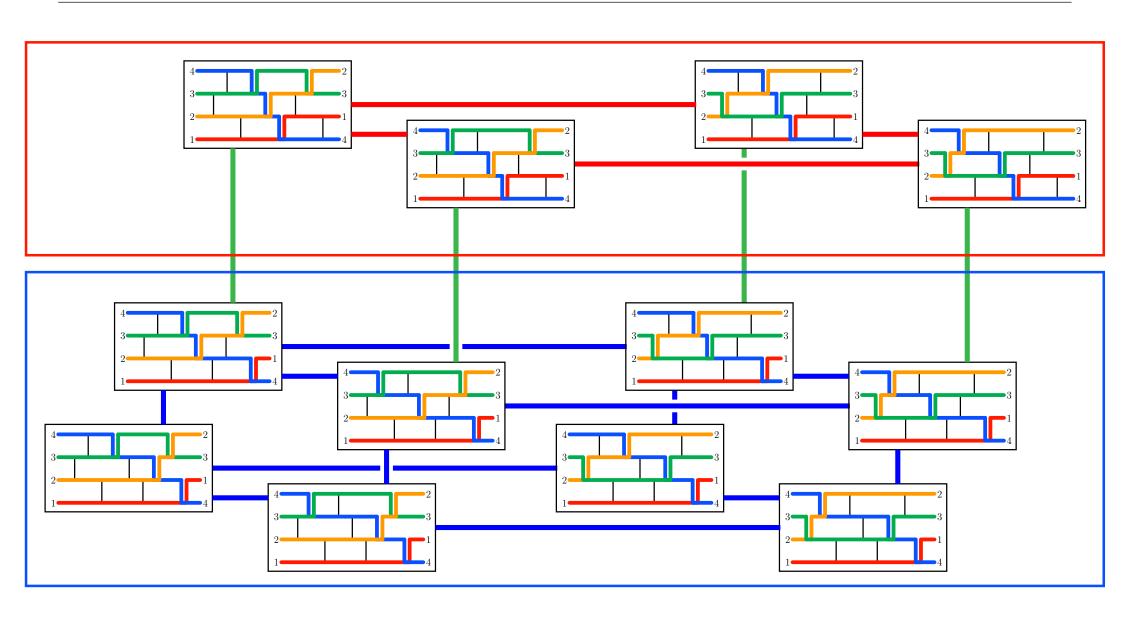
 $Q = q_1 q_2 \cdots q_{m-1} q_m$ and $Q_{\dashv} = q_1 q_2 \cdots q_{m-1}$ $\mathcal{F}(Q, \rho) = \text{facets of } \mathcal{SC}(Q, \rho) = \text{complements of reduced expressions of } \rho \text{ in } Q$

$$\mathcal{F}(Q, \rho) = \mathcal{F}(Q_{\dashv}, \rho q_m) \sqcup (\mathcal{F}(Q_{\dashv}, \rho) \star m)$$





INDUCTIVE STRUCTURE

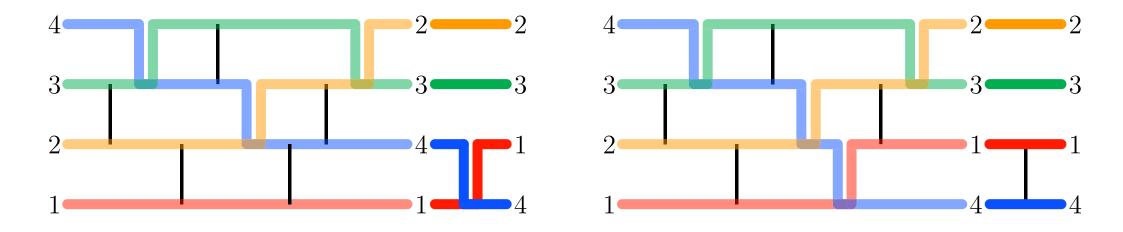


$$\mathcal{F}(Q, \rho) = \mathcal{F}(Q_{\dashv}, \rho q_m) \sqcup (\mathcal{F}(Q_{\dashv}, \rho) \star m)$$

INDUCTIVE STRUCTURE

 $Q = q_1 q_2 \cdots q_{m-1} q_m$ and $Q_{\dashv} = q_1 q_2 \cdots q_{m-1}$ $\mathcal{F}(Q, \rho) = \text{facets of } \mathcal{SC}(Q, \rho) = \text{complements of reduced expressions of } \rho \text{ in } Q$

$$\mathcal{F}(\mathbf{Q}, \rho) = \begin{cases} \mathcal{F}(\mathbf{Q}_{\dashv}, \rho q_m) & \text{if } \rho \not\prec \mathbf{Q}_{\dashv} \\ \mathcal{F}(\mathbf{Q}_{\dashv}, \rho) \star m & \text{if } \ell(\rho q_m) > \ell(\rho) \\ \mathcal{F}(\mathbf{Q}_{\dashv}, \rho q_m) \; \sqcup \; \left(\mathcal{F}(\mathbf{Q}_{\dashv}, \rho) \star m\right) & \text{otherwise} \end{cases}$$



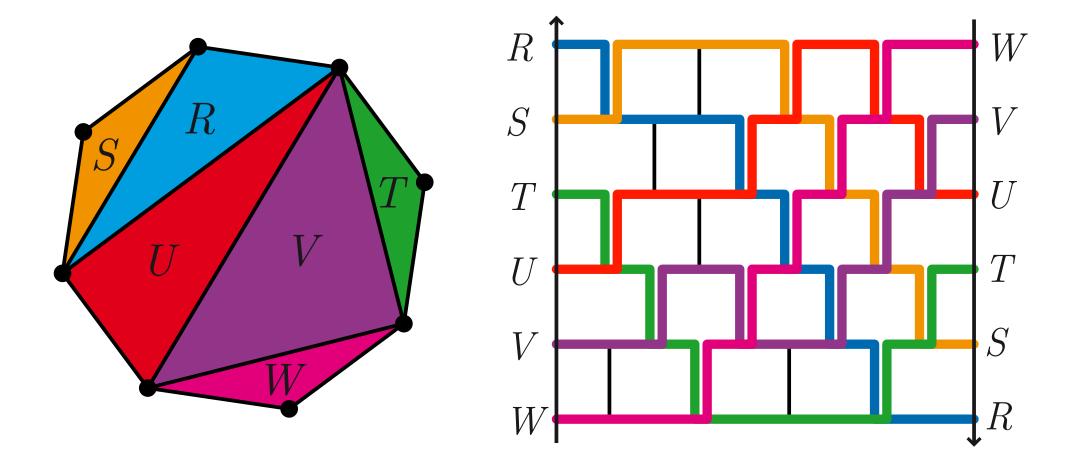
 \Rightarrow Inductive enumeration of $\mathcal{F}(\mathrm{Q},
ho)$ with complexity $O(m^2n)$ per facet

COMBINATORIAL MODELS FOR GEOMETRIC GRAPHS

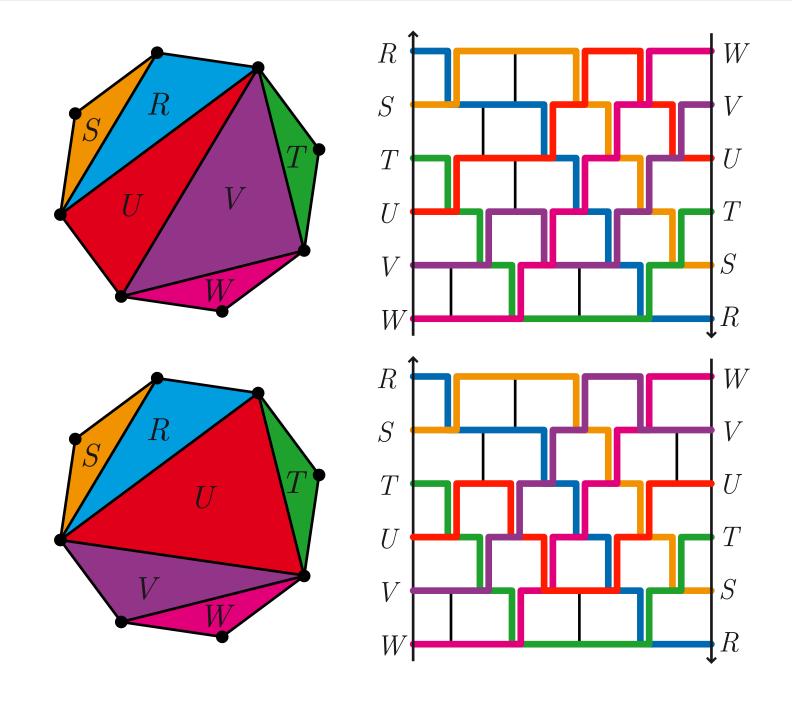
TRIANGULATIONS AND REDUCED EXPRESSIONS

bijection between

- ullet triangulations of a convex (n+2)-gon
- subwords of the odd-even word $Q = \left(\prod_{i \in \left[\frac{n}{2}\right]} \tau_{2i+1} \cdot \prod_{i \in \left[\frac{n}{2}\right]} \tau_{2i}\right)^{\frac{n}{2}}$ which are reduced expressions for the longest element $w_{\circ} = [n, n-1, \dots, 2, 1]$

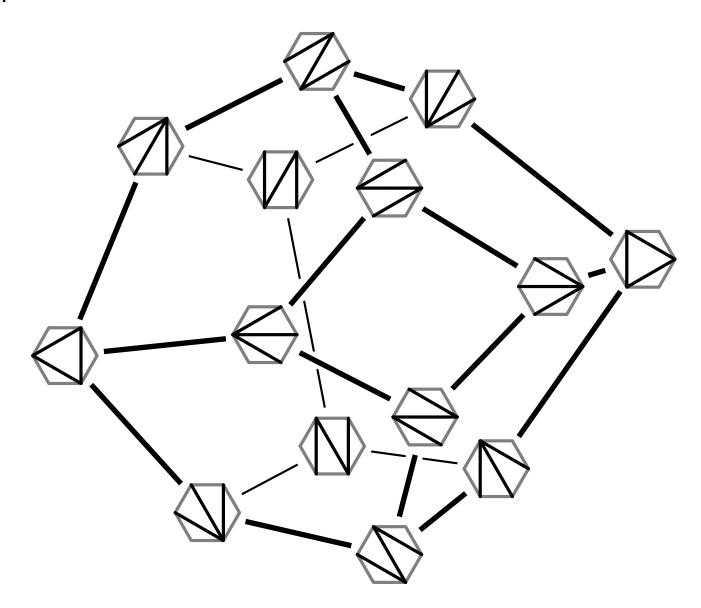


FLIP IN TRIANGULATIONS



ASSOCIAHEDRON

The flip graph is the 1-skeleton of the associahedron



COMBINATORIAL MODELS FOR GEOMETRIC GRAPHS

triangulations multitriangulations pseudotriangulations pseudotriangulations of convex polygons, of convex polygons, of point sets in of sets of disjoint convex bodies. general position,

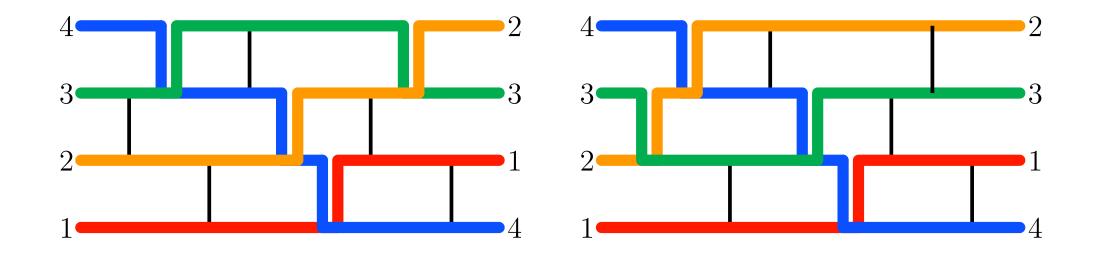
P. & Pocchiola, Pseudotriangulations, multitriangulations, and primitive sorting networks, 2012.

Stump, A new perspective on multitriangulations, 2011.

GREEDY FLIP ALGORITHM

INCREASING FLIPS & GREEDY FACET

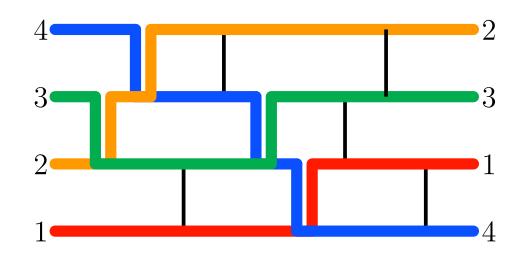
increasing flip = flip from I to J with $I \setminus i = J \setminus j$ and i < j



The increasing flip graph is acyclic, connected, and has a unique sink

greedy facet $G(Q, \rho)$ = unique sink of the increasing flip graph = lexicographically maximal facet of $\mathcal{SC}(Q, \rho)$

TWO GREEDY PROCEDURES TO COMPUTE THE GREEDY FACET



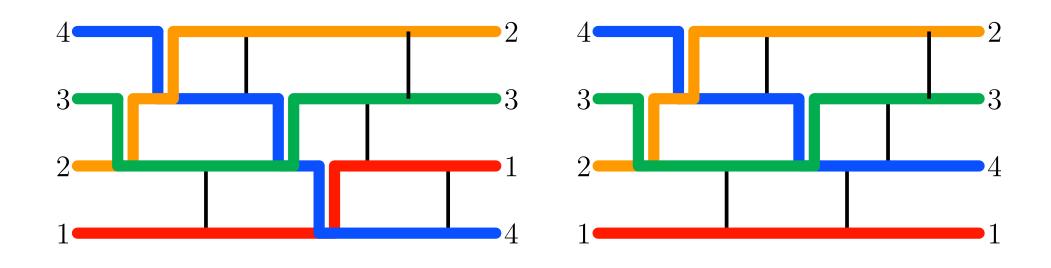
The greedy facet $G(Q, \rho)$ can be constructed inductively from $G(\varepsilon, e) = \emptyset$ using the following formulas:

$$\begin{split} \mathsf{G}(\mathbf{Q},\rho) &= \begin{cases} \mathsf{G}(\mathbf{Q}_{\dashv},\rho) \cup m & \text{if } \rho \prec \mathbf{Q}_{\dashv} \\ \mathsf{G}(\mathbf{Q}_{\dashv},\rho q_m) & \text{otherwise} \end{cases} \\ \mathsf{G}(\mathbf{Q},\rho) &= \begin{cases} \mathsf{G}(\mathbf{Q}_{\vdash},q_1\rho)^{\rightarrow} & \text{if } \ell(q_1\rho) < \ell(\rho) \\ 1 \cup \mathsf{G}(\mathbf{Q}_{\vdash},\rho)^{\rightarrow} & \text{otherwise} \end{cases} \end{split}$$

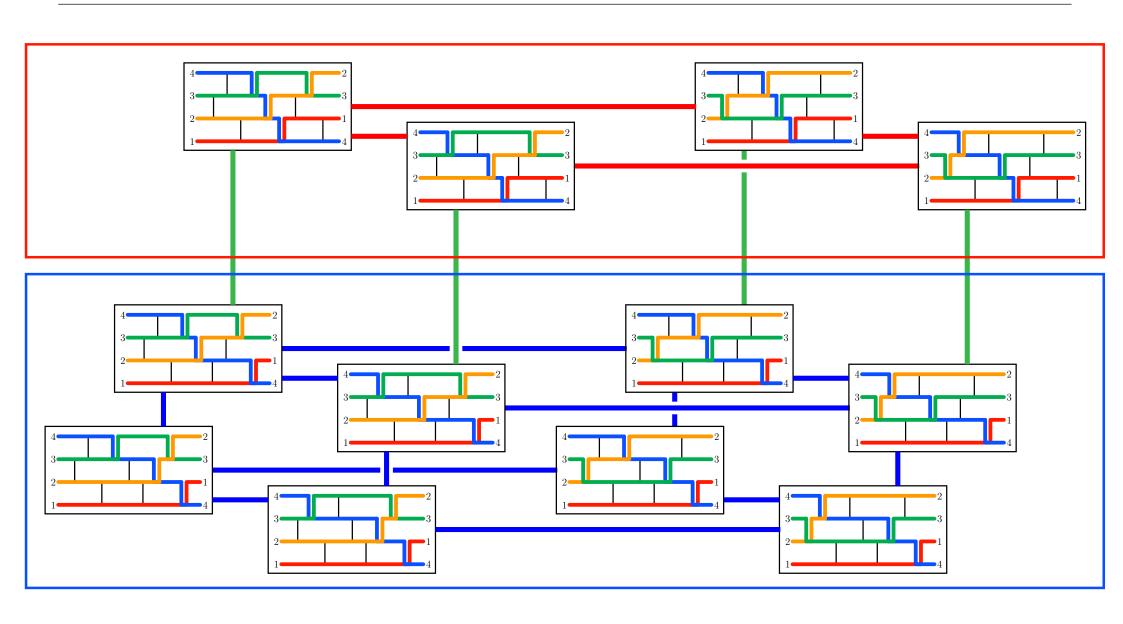
where $Q_{\dashv} = q_1 \, q_2 \, \cdots \, q_{m-1}$, $Q_{\vdash} = q_2 \, \cdots \, q_{m-1} \, q_m$ and $X^{\rightarrow} = \{x+1 \mid x \in X\}$

GREEDY FLIP PROPERTY

If m is a flippable element of $G(Q, \rho)$, then $G(Q_{\dashv}, \rho q_m)$ is obtained from $G(Q, \rho)$ flipping m

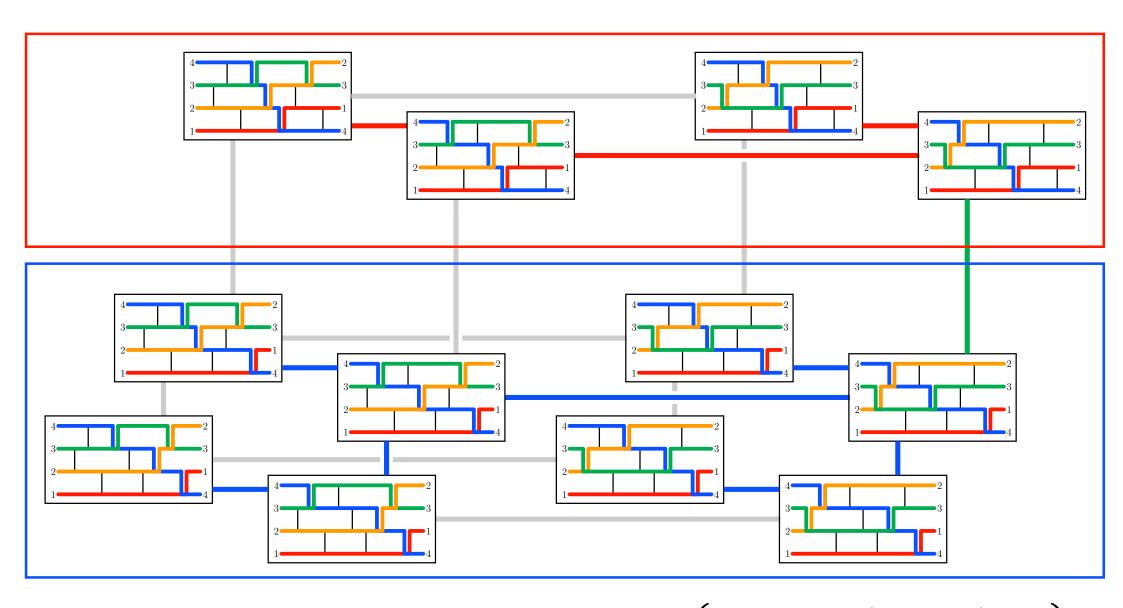


GREEDY FLIP TREE — INDUCTIVE DEFINITION



$$\mathcal{F}(Q, \rho) = \mathcal{F}(Q_{\dashv}, \rho q_m) \sqcup (\mathcal{F}(Q_{\dashv}, \rho) \star m)$$

GREEDY FLIP TREE — INDUCTIVE DEFINITION



$$\mathcal{G}(\mathbf{Q},\rho) \ = \ \mathcal{G}(\mathbf{Q}_\dashv,\rho q_m) \ \sqcup \ \left(\frac{\mathcal{G}(\mathbf{Q}_\dashv,\rho)}{\mathcal{G}(\mathbf{Q}_\dashv,\rho)} \star m \right) \ \sqcup \ \left\{ \begin{array}{l} \text{arc from } \mathsf{G}(\mathbf{Q}_\dashv,\rho q_m) \ \mathsf{to} \\ \mathsf{G}(\mathbf{Q},\rho) = \mathsf{G}(\mathbf{Q}_\dashv,\rho) \cup m \end{array} \right\}$$

GREEDY FLIP TREE — INDUCTIVE DEFINITION

Inductive structure of the facets $\mathcal{F}(Q, \rho)$ of the subword complex $\mathcal{SC}(Q, \rho)$:

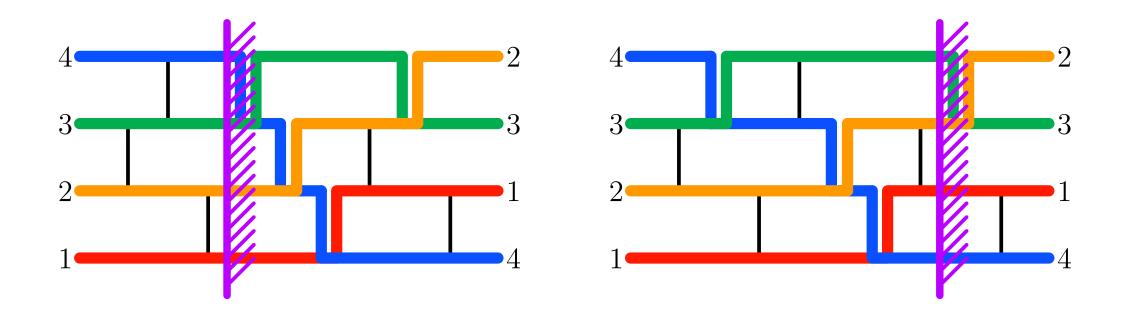
$$\mathcal{F}(\mathbf{Q}, \rho) = \begin{cases} \mathcal{F}(\mathbf{Q}_{\dashv}, \rho q_{m}) & \text{if } \rho \not\prec \mathbf{Q}_{\dashv} \\ \mathcal{F}(\mathbf{Q}_{\dashv}, \rho) \star m & \text{if } \ell(\rho q_{m}) > \ell(\rho) \\ \mathcal{F}(\mathbf{Q}_{\dashv}, \rho q_{m}) \sqcup \left(\mathcal{F}(\mathbf{Q}_{\dashv}, \rho) \star m\right) & \text{otherwise} \end{cases}$$

Inductive definition of the greedy flip tree $\mathcal{G}(\mathbb{Q}, \rho)$:

$$\mathcal{G}(\mathbf{Q}, \rho) = \begin{cases} \mathcal{G}(\mathbf{Q}_{\dashv}, \rho q_{m}) & \text{if } \rho \not\prec \mathbf{Q}_{\dashv} \\ \mathcal{G}(\mathbf{Q}_{\dashv}, \rho) \star m & \text{if } \ell(\rho q_{m}) > \ell(\rho) \\ \mathcal{G}(\mathbf{Q}_{\dashv}, \rho q_{m}) \; \sqcup \; \left(\mathcal{G}(\mathbf{Q}_{\dashv}, \rho) \star m\right) & \text{otherwise} \\ \mathsf{G}(\mathbf{Q}, \rho) = \mathsf{G}(\mathbf{Q}_{\dashv}, \rho) \; \cup \; m \end{cases}$$

GREEDY FLIP TREE — DIRECT DEFINITION

 $\mathsf{g}(I) = \mathsf{greedy\ index\ of\ a\ facet\ } I \in \mathcal{F}(\mathbf{Q},\rho) = \mathsf{last\ position\ } x \in [m] \mathsf{\ such\ that\ } I \cap [x] = \mathsf{G}(q_1 \cdots q_x,\sigma_{[x] \smallsetminus I})$

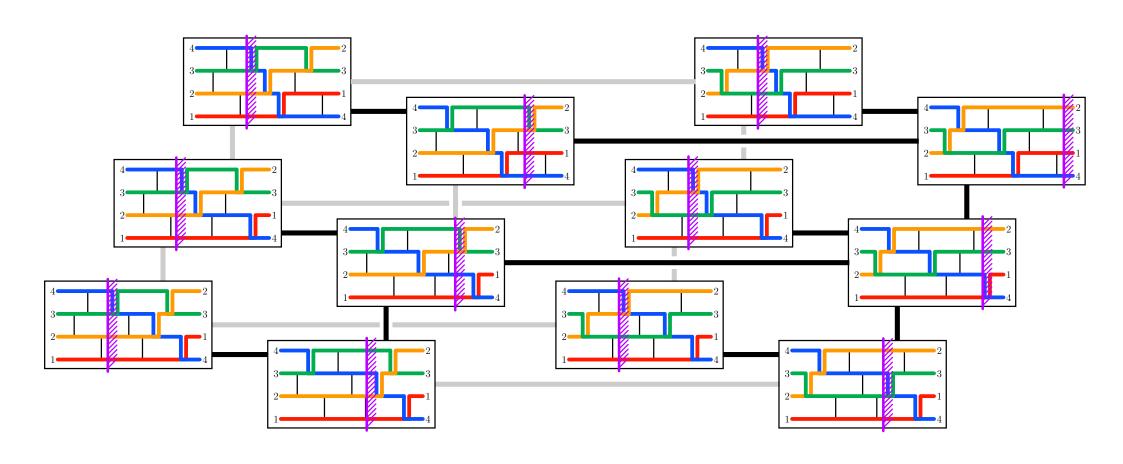


If $I, J \in \mathcal{F}(\mathbf{Q}, \rho)$ with $I \setminus i = J \setminus j$ and $i < j \le \mathsf{g}(J)$, then $\mathsf{g}(I) = j - 1$

GREEDY FLIP TREE — DIRECT DEFINITION

The greedy flip tree $\mathcal{G}(Q, \rho)$ has

- ullet nodes $= \mathcal{F}(Q, \rho) =$ complements of reduced expressions of ρ in Q
- ullet arcs = flip (I,J) such that $I \setminus i = J \setminus j$ with $i < j \leq \mathsf{g}(J)$.

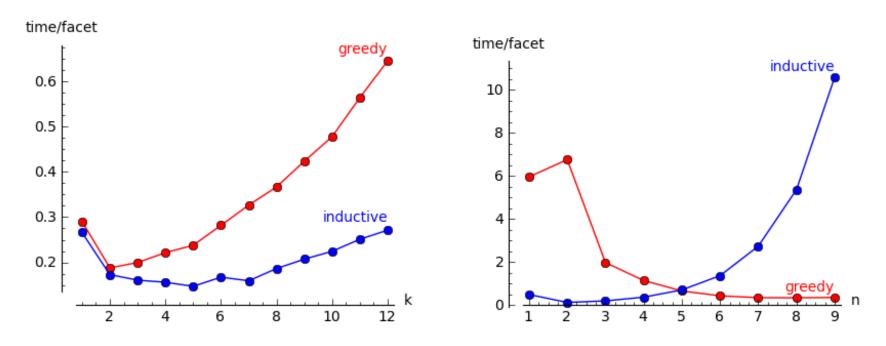


GREEDY FLIP ALGORITHM

Greedy Flip Algorithm = Depth first search generation on the greedy flip tree Preorder traversal provides an iterator on the reduced expressions of ρ in Q

Working space in O(mn) Running time in $O(m^2n)$ per facet $\ \longrightarrow \$ similar to the inductive algorithm

Implemented in Sage (Stump's combinat patch on subword complexes) Experimental time comparison to generate the k-triangulations of the n-gon:



Thank you