GENTLE ASSOCIAHEDRA

Y. PALU Univ. Amiens

V. PILAUD CNRS & LIX, École Poytechnique

P.-G. PLAMONDON Univ. Orsay

<u>quiver</u> = oriented graph
(loops and multiple edges allowed)

$$Q = (Q_0, Q_1, s, t)$$

$$Q_0 = \text{vertices}$$

$$Q_1 = \text{edges}$$

$$s, t : Q_1 \to Q_0 \text{ source and target maps}$$

quiver = oriented graph
(loops and multiple edges allowed)

$$Q = (Q_0, Q_1, s, t)$$

$$Q_0 = \text{vertices}$$

$$Q_1 = \text{edges}$$

$$s, t : Q_1 \to Q_0 \text{ source and target maps}$$

 $\begin{array}{l} \underline{\mathsf{path}} = \alpha_1 \dots \alpha_\ell \text{ with } \alpha_k \in Q_1 \text{ and } t(\alpha_k) = s(\alpha_{k+1}) \\ \\ \underline{\mathsf{path algebra}} \ \mathbb{K}Q = \ \langle e_\pi \mid \pi \text{ path of } Q \rangle \text{ with concatenation product} \\ \\ e_{\alpha_1 \dots \alpha_\ell} \cdot e_{\beta_1 \dots \beta_k} = \begin{cases} e_{\alpha_1 \dots \alpha_\ell \beta_1 \dots \beta_k} & \text{if } t(\alpha_\ell) = s(\beta_1) \\ 0 & \text{otherwise} \end{cases} \end{array}$

quiver = oriented graph
(loops and multiple edges allowed)

$$Q = (Q_0, Q_1, s, t)$$

$$Q_0 = \text{vertices}$$

$$Q_1 = \text{edges}$$

$$s, t : Q_1 \to Q_0 \text{ source and target maps}$$

 $\begin{array}{l} \underline{\mathsf{path}} = \alpha_1 \dots \alpha_\ell \text{ with } \alpha_k \in Q_1 \text{ and } t(\alpha_k) = s(\alpha_{k+1}) \\ \\ \underline{\mathsf{path algebra}} \ \mathbb{K}Q = \ \langle e_\pi \mid \pi \text{ path of } Q \rangle \text{ with concatenation product} \\ \\ e_{\alpha_1 \dots \alpha_\ell} \cdot e_{\beta_1 \dots \beta_k} = \begin{cases} e_{\alpha_1 \dots \alpha_\ell \beta_1 \dots \beta_k} & \text{if } t(\alpha_\ell) = s(\beta_1) \\ 0 & \text{otherwise} \end{cases} \end{array}$

quiver = oriented graph
(loops and multiple edges allowed)

$$Q = (Q_0, Q_1, s, t)$$

$$Q_0 = \text{vertices}$$

$$Q_1 = \text{edges}$$

$$s, t : Q_1 \to Q_0 \text{ source and target maps}$$

 $\begin{array}{l} \underline{\mathsf{path}} = \alpha_1 \dots \alpha_\ell \text{ with } \alpha_k \in Q_1 \text{ and } t(\alpha_k) = s(\alpha_{k+1}) \\ \\ \underline{\mathsf{path}} \text{ algebra } \mathbb{K}Q = \ \langle e_\pi \mid \pi \text{ path of } Q \rangle \text{ with concatenation product} \\ \\ e_{\alpha_1 \dots \alpha_\ell} \cdot e_{\beta_1 \dots \beta_k} = \begin{cases} e_{\alpha_1 \dots \alpha_\ell \beta_1 \dots \beta_k} & \text{if } t(\alpha_\ell) = s(\beta_1) \\ 0 & \text{otherwise} \end{cases} \end{array}$

bound quiver = quiver with relations $\overline{Q} = (Q, I)$ where I is an admissible ideal of $\mathbb{K}Q$.

Complicated way to say that we forbid certain paths

quiver = oriented graph
(loops and multiple edges allowed)

$$Q = (Q_0, Q_1, s, t)$$

$$Q_0 = \text{vertices}$$

$$Q_1 = \text{edges}$$

$$s, t : Q_1 \to Q_0 \text{ source and target maps}$$

 $\begin{array}{l} \underline{\mathsf{path}} = \alpha_1 \dots \alpha_\ell \text{ with } \alpha_k \in Q_1 \text{ and } t(\alpha_k) = s(\alpha_{k+1}) \\ \\ \underline{\mathsf{path}} \text{ algebra } \mathbb{K}Q = \ \langle e_\pi \mid \pi \text{ path of } Q \rangle \text{ with concatenation product} \\ \\ e_{\alpha_1 \dots \alpha_\ell} \cdot e_{\beta_1 \dots \beta_k} = \begin{cases} e_{\alpha_1 \dots \alpha_\ell \beta_1 \dots \beta_k} & \text{if } t(\alpha_\ell) = s(\beta_1) \\ 0 & \text{otherwise} \end{cases} \end{array}$

bound quiver = quiver with relations $\overline{Q} = (Q, I)$ where I is an admissible ideal of $\mathbb{K}Q$.

Complicated way to say that we forbid certain paths

quiver = oriented graph
(loops and multiple edges allowed)

$$Q = (Q_0, Q_1, s, t)$$

$$Q_0 = \text{vertices}$$

$$Q_1 = \text{edges}$$

$$s, t : Q_1 \to Q_0 \text{ source and target maps}$$

 $\begin{array}{l} \underline{\mathsf{path}} = \alpha_1 \dots \alpha_\ell \text{ with } \alpha_k \in Q_1 \text{ and } t(\alpha_k) = s(\alpha_{k+1}) \\ \\ \underline{\mathsf{path}} \text{ algebra } \mathbb{K}Q = \ \langle e_\pi \mid \pi \text{ path of } Q \rangle \text{ with concatenation product} \\ \\ e_{\alpha_1 \dots \alpha_\ell} \cdot e_{\beta_1 \dots \beta_k} = \begin{cases} e_{\alpha_1 \dots \alpha_\ell \beta_1 \dots \beta_k} & \text{if } t(\alpha_\ell) = s(\beta_1) \\ 0 & \text{otherwise} \end{cases} \end{array}$

bound quiver = quiver with relations $\overline{Q} = (Q, I)$ where I is an admissible ideal of $\mathbb{K}Q$.

Complicated way to say that we forbid certain paths

bound quiver $\bar{Q} = (Q, I)$ gentle quiver =

- \bullet forbidden paths all of length 2
- locally at each vertex, subgraph of

$$\begin{array}{ll} \mbox{string } \sigma = & \alpha_1^{\varepsilon_1} \dots \alpha_\ell^{\varepsilon_\ell} \\ & \mbox{with } \alpha_k \in Q_1, \\ & \varepsilon_k \in \{-1, 1\} \\ & \mbox{and } t(\alpha_k^{\varepsilon_k}) = s(\alpha_{k+1}^{\varepsilon_{k+1}}) \end{array}$$

$$\begin{array}{ll} \underline{\text{string}} \ \sigma = & \alpha_1^{\varepsilon_1} \dots \alpha_\ell^{\varepsilon_\ell} \\ & \text{with} \ \alpha_k \in Q_1, \\ & \varepsilon_k \in \{-1, 1\} \\ & \text{and} \ t(\alpha_k^{\varepsilon_k}) = s(\alpha_{k+1}^{\varepsilon_{k+1}}) \end{array}$$

substrings of
$$\sigma = \left\{ \alpha_i^{\varepsilon_i} \dots \alpha_j^{\varepsilon_j} \mid 1 \le i \le j - 1 \le k \right\}$$

bottom substring of σ = substring ρ of σ such that σ either ends or has an outgoing arrow at each endpoint of ρ $\Sigma_{\text{bot}}(\sigma) = \{ \text{ bottom substrings of } \sigma \}$

top substring of σ = substring ρ of σ such that σ either ends or has an incoming arrow at each endpoint of ρ $\Sigma_{top}(\sigma) = \{ \text{ top substrings of } \sigma \}$

$$\begin{array}{ll} \underline{\text{string}} \ \sigma = & \alpha_1^{\varepsilon_1} \dots \alpha_{\ell}^{\varepsilon_{\ell}} \\ & \text{with} \ \alpha_k \in Q_1, \\ & \varepsilon_k \in \{-1, 1\} \\ & \text{and} \ t(\alpha_k^{\varepsilon_k}) = s(\alpha_{k+1}^{\varepsilon_{k+1}}) \end{array}$$

 $\underline{\mathsf{walk}} \ \omega = \ \mathrm{maximal \ string \ in} \ Q^{\ensuremath{\mathfrak{R}}} \\ \mathrm{from \ blossoms \ to \ blossoms}$

$$\begin{array}{ll} \underline{\text{string}} \ \sigma = & \alpha_1^{\varepsilon_1} \dots \alpha_\ell^{\varepsilon_\ell} \\ & \text{with } \alpha_k \in Q_1, \\ & \varepsilon_k \in \{-1, 1\} \\ & \text{and } t(\alpha_k^{\varepsilon_k}) = s(\alpha_{k+1}^{\varepsilon_{k+1}}) \end{array} \end{array}$$

 $\underline{\mathsf{walk}} \ \omega = \ \mathrm{maximal \ string \ in} \ Q^{\ensuremath{\mathfrak{R}}} \\ \mathrm{from \ blossoms \ to \ blossoms}$

$$\begin{array}{ll} \underline{\text{string}} \ \sigma = & \alpha_1^{\varepsilon_1} \dots \alpha_{\ell}^{\varepsilon_{\ell}} \\ & \text{with } \alpha_k \in Q_1, \\ & \varepsilon_k \in \{-1, 1\} \\ & \text{and } t(\alpha_k^{\varepsilon_k}) = s(\alpha_{k+1}^{\varepsilon_{k+1}}) \end{array} \end{array}$$

 $\underline{\mathsf{walk}} \ \omega = \ \mathrm{maximal \ string \ in} \ Q^{\ensuremath{\mathfrak{R}}} \\ \mathrm{from \ blossoms \ to \ blossoms}$

walk $\omega = \max$ maximal string in $Q^{\mbox{\scriptsize \$}}$ from blossoms to blossoms

 $\omega \text{ kisses } \omega' \text{ if } \Sigma_{top}(\omega) \cap \Sigma_{bot}(\omega') \neq \emptyset$

walk $\omega = \max$ maximal string in $Q^{\mbox{\scriptsize \$}}$ from blossoms to blossoms

 $\omega \text{ kisses } \omega' \text{ if } \Sigma_{top}(\omega) \cap \Sigma_{bot}(\omega') \neq \emptyset$

walk $\omega = \max$ maximal string in $Q^{\mbox{\scriptsize \$}}$ from blossoms to blossoms

 ω kisses ω' if $\Sigma_{top}(\omega) \cap \Sigma_{bot}(\omega') \neq \emptyset$

walk $\omega = \max$ maximal string in $Q^{\mbox{\scriptsize \$}}$ from blossoms to blossoms

 $\omega \text{ kisses } \omega' \text{ if } \Sigma_{top}(\omega) \cap \Sigma_{bot}(\omega') \neq \emptyset$

walk $\omega = \max$ maximal string in $Q^{\mbox{\scriptsize \%}}$ from blossoms to blossoms

 $\omega \text{ kisses } \omega' \text{ if } \Sigma_{top}(\omega) \cap \Sigma_{bot}(\omega') \neq \emptyset$

[reduced] non-kissing complex $\mathcal{K}_{nk}(\bar{Q}) =$ simplicial complex with

- vertices = [bended] walks of \overline{Q} (that are not self-kissing)
- faces = collections of pairwise non-kissing [bended] walks of \bar{Q}

REDUCED NON-KISSING COMPLEX

- vertices = [internal] diagonals of an (n+3)-gon
- faces = collections of pairwise non-crossing [internal] diagonals of the (n+3)-gon

- vertices = [internal] diagonals of an (n+3)-gon
- faces = collections of pairwise non-crossing [internal] diagonals of the (n+3)-gon

- vertices = [internal] diagonals of an (n+3)-gon
- faces = collections of pairwise non-crossing [internal] diagonals of the (n+3)-gon

- vertices = [internal] diagonals of an (n+3)-gon
- faces = collections of pairwise non-crossing [internal] diagonals of the (n + 3)-gon

- vertices = [internal] diagonals of an (n+3)-gon
- faces = collections of pairwise non-crossing [internal] diagonals of the (n+3)-gon

[reduced] <u>simplicial associahedron</u> = simplicial complex with

- vertices = [internal] diagonals of an (n+3)-gon
- faces = collections of pairwise non-crossing [internal] diagonals of the (n+3)-gon

McConville, Lattice structures of grid Tamari orders, 2017

[reduced] **simplicial associahedron** = simplicial complex with

- vertices = [internal] diagonals of an (n+3)-gon
- faces = collections of pairwise non-crossing [internal] diagonals of the (n+3)-gon

McConville, Lattice structures of grid Tamari orders, 2017

subset of \mathbb{Z}^2

dissection quiver

grid quiver

walk

walk

kissing walks

kissing walks

Baryshnikov, On Stokes sets, 2001 Chapoton, Stokes posets and serpent nests, 2016 Garver – McConville, Oriented flip graphs and non-crossing tree partitions, 2017

> Petersen – Pylyavskyy – Speyer, A non-crossing standard monomial theory, 2010 Santos – Stump – Welker, Non-crossing sets and the Grassmann-associahedron, 2017 McConville, Lattice structures of grid Tamari orders, 2017 Garver – McConville, Enumerative properties of grid-associahedra, 2017

DISTINGUISHED WALKS, ARROWS AND STRINGS

 $F \text{ face of } \mathcal{K}_{\mathrm{nk}}(\bar{Q})$ $\alpha \in Q_1$

DISTINGUISHED WALKS, ARROWS AND STRINGS

 $F \text{ face of } \mathcal{K}_{nk}(\bar{Q})$ $\alpha \in Q_1$ $F_{\alpha} = \{ \omega \in F \mid \alpha \in \omega \}$ $\lambda \prec_{\alpha} \omega \text{ countercurrent order at } \alpha$
DISTINGUISHED WALKS, ARROWS AND STRINGS

$$F \text{ face of } \mathcal{K}_{nk}(\overline{Q})$$

$$\alpha \in Q_1$$

$$F_{\alpha} = \{ \omega \in F \mid \alpha \in \omega \}$$

$$\lambda \prec_{\alpha} \omega \text{ countercurrent order at } \alpha$$

$$dw(\alpha, F) = \max_{\prec_{\alpha}} F_{\alpha}$$
$$da(\omega, F) = \{\alpha \in Q_1 \mid \omega = dw(\alpha, F)\}$$

DISTINGUISHED WALKS, ARROWS AND STRINGS

$$F \text{ face of } \mathcal{K}_{nk}(\bar{Q})$$

$$\alpha \in Q_1$$

$$F_{\alpha} = \{ \omega \in F \mid \alpha \in \omega \}$$

$$\lambda \prec_{\alpha} \omega \text{ countercurrent order at } \alpha$$

$$dw(\alpha, F) = \max_{\prec_{\alpha}} F_{\alpha}$$

$$da(\omega, F) = \{ \alpha \in Q_1 \mid \omega = dw(\alpha, F) \}$$

PROP. For any facet $F \in \mathcal{K}_{nk}(\overline{Q})$,

- each bended walk of F contains 2 distinguished arrows in F pointing opposite,
- each straight walk of F contains 1 distinguished arrows in F pointing as the walk.

DISTINGUISHED WALKS, ARROWS AND STRINGS

$$F \text{ face of } \mathcal{K}_{nk}(\bar{Q})$$

$$\alpha \in Q_1$$

$$F_{\alpha} = \{ \omega \in F \mid \alpha \in \omega \}$$

$$\lambda \prec_{\alpha} \omega \text{ countercurrent order at } \alpha$$

$$dw(\alpha, F) = \max_{\prec_{\alpha}} F_{\alpha}$$

$$da(\omega, F) = \{ \alpha \in Q_1 \mid \omega = dw(\alpha, F) \}$$

PROP. For any facet $F \in \mathcal{K}_{nk}(\overline{Q})$,

- each bended walk of F contains 2 distinguished arrows in F pointing opposite,
- each straight walk of F contains 1 distinguished arrows in F pointing as the walk.

CORO. $\mathcal{K}_{nk}(\bar{Q})$ is pure of dimension $|Q_0|$.

F facet of $\mathcal{K}_{\mathrm{nk}}(ar{Q})$ (ie. maximal collection of pairwise non-kissing walks)

F facet of $\mathcal{K}_{nk}(\overline{Q})$ (ie. maximal collection of pairwise non-kissing walks) $\omega \in F$ we want to "flip"

 $F \text{ facet of } \mathcal{K}_{nk}(\bar{Q}) \text{ (ie. maximal collection of pairwise non-kissing walks)} \\ \omega \in F \text{ we want to "flip"} \\ \{\alpha, \beta\} = da(\omega, F)$

F facet of $\mathcal{K}_{nk}(\bar{Q})$ (ie. maximal collection of pairwise non-kissing walks) $\omega \in F$ we want to "flip" $\{\alpha, \beta\} = da(\omega, F)$ $\alpha', \beta' \in Q_1$ such that $\alpha' \alpha \in I$ and $\beta' \beta \in I$

 $F \text{ facet of } \mathcal{K}_{nk}(\bar{Q}) \text{ (ie. maximal collection of pairwise non-kissing walks)} \\ \omega \in F \text{ we want to "flip"} \\ \{\alpha, \beta\} = da(\omega, F) \\ \alpha', \beta' \in Q_1 \text{ such that } \alpha' \alpha \in I \text{ and } \beta' \beta \in I \\ \mu = dw(\alpha, F) \text{ and } \nu = dw(\beta, F)$

 $F \text{ facet of } \mathcal{K}_{nk}(\bar{Q}) \text{ (ie. maximal collection of pairwise non-kissing walks)} \\ \omega \in F \text{ we want to "flip"} \\ \{\alpha, \beta\} = da(\omega, F) \\ \alpha', \beta' \in Q_1 \text{ such that } \alpha' \alpha \in I \text{ and } \beta' \beta \in I \\ \mu = dw(\alpha, F) \text{ and } \nu = dw(\beta, F) \\ \omega' = \mu[\cdot, v] \sigma \nu[w, \cdot]$

PROP. ω' kisses ω but no other walk of F. Moreover, ω' is the only such walk.

FLIP GRAPH

NON-KISSING ASSOCIAHEDRA

SIMPLICIAL COMPLEX

simplicial complex = collection of subsets of X downward closed

exm:

$$X = [n] \cup [n]$$

$$\Delta = \{I \subseteq \overline{X} \mid \forall i \in [n], \ \{i, \underline{i}\} \not\subseteq I\}$$

FANS

 $\begin{array}{l} \label{eq:polyhedral cone} {\sf polyhedral cone} = {\sf positive span of a finite set of } \mathbb{R}^d \\ = {\sf intersection of finitely many linear half-spaces} \end{array}$

fan = collection of polyhedral cones closed by faces and where any two cones intersect along a face

simplicial fan = maximal cones generated by d rays

POLYTOPES

simple polytope = facets in general position = each vertex incident to d facets

SIMPLICIAL COMPLEXES, FANS, AND POLYTOPES

P polytope, F face of P<u>normal cone</u> of F = positive span of the outer normal vectors of the facets containing F<u>normal fan</u> of P = { normal cone of $F \mid F$ face of P }

simple polytope \implies simplicial fan \implies simplicial complex

$G\operatorname{-}\mathsf{VECTORS}$ & $C\operatorname{-}\mathsf{VECTORS}$

 $\begin{array}{lll} \underline{\text{multiplicity vector}} & \mathbf{m}_V \text{ of multiset } V = \{\{v_1, \ldots, v_m\}\} \text{ of } Q_0 &= \sum_{i \in [m]} \mathbf{e}_{v_i} \in \mathbb{R}^{Q_0} \\ \\ \underline{\mathbf{g}\text{-vector}} & \mathbf{g}(\omega) \text{ of a walk } \omega &= \mathbf{m}_{\text{peaks}(\omega)} - \mathbf{m}_{\text{deeps}(\omega)} \\ \\ \mathbf{c}\text{-vector } & \mathbf{c}(\omega \in F) \text{ of a walk } \omega \text{ in a non-kissing facet } F &= \varepsilon(\omega, F) \mathbf{m}_{\text{ds}(\omega, F)} \end{array}$

$G\operatorname{-}\mathsf{VECTORS}$ & $C\operatorname{-}\mathsf{VECTORS}$

 $\begin{array}{lll} \underline{\text{multiplicity vector }} \mathbf{m}_V \text{ of multiset } V = \{\{v_1, \ldots, v_m\}\} \text{ of } Q_0 &= \sum_{i \in [m]} \mathbf{e}_{v_i} \in \mathbb{R}^{Q_0} \\ \underline{\mathbf{g}}\text{-vector } \mathbf{g}(\omega) \text{ of a walk } \omega &= \mathbf{m}_{\text{peaks}(\omega)} - \mathbf{m}_{\text{deeps}(\omega)} \\ \mathbf{c}\text{-vector } \mathbf{c}(\omega \in F) \text{ of a walk } \omega \text{ in a non-kissing facet } F &= \varepsilon(\omega, F) \mathbf{m}_{\text{ds}(\omega, F)} \end{array}$

PROP. For any non-kissing facet F, the sets of vectors $\mathbf{g}(F) \coloneqq \{\mathbf{g}(\omega) \mid \omega \in F\}$ and $\mathbf{c}(F) \coloneqq \{\mathbf{c}(\omega \in F) \mid \omega \in F\}$ form dual bases.

$G\operatorname{-}\mathsf{VECTOR}\,\mathsf{FAN}$

G-VECTOR FAN

NON-KISSING ASSOCIAHEDRON

 $\underline{ \text{kissing number}}_{\omega} \frac{\kappa(\omega, \omega')}{\kappa(\omega)} = \begin{array}{c} \text{number of times } \omega \text{ kisses } \omega' \\ \kappa(\omega, \omega') + \kappa(\omega', \omega) \end{array}$

THM. For a gentle quiver \overline{Q} with finite non-kissing complex $C_{nk}(\overline{Q})$, the two sets of \mathbb{R}^{Q_0} given by

(i) the convex hull of the points

$$\mathbf{p}(F) \coloneqq \sum_{\omega \in F} \mathsf{kn}(\omega) \, \mathbf{c}(\omega \in F),$$

for all non-kissing facets $F\in\mathcal{C}_{\mathrm{nk}}(ar{Q})$,

(ii) the intersection of the halfspaces

$$\mathbf{H}^{\geq}(\omega) \coloneqq \left\{ \mathbf{x} \in \mathbb{R}^{Q_0} \mid \langle \mathbf{g}(\omega) \mid \mathbf{x} \rangle \leq \mathsf{kn}(\omega) \right\}$$

for all walks ω of \bar{Q} ,

define the same polytope, whose normal fan is the g-vector fan \mathcal{F}^{g} . We call it the \overline{Q} -associahedron and denote it by Asso.

NON-KISSING LATTICE

NON-KISSING LATTICE

THM. For a gentle quiver \bar{Q} with finite non-kissing complex $C_{nk}(\bar{Q})$, the non-kissing flip graph is the Hasse diagram of a congruence-uniform lattice.

LATTICE QUOTIENTS

<u>lattice</u> = poset (L, \leq) with a meet \land and a join \lor

lattice congruence = equiv. rel. \equiv on L which respects meets and joins

$$x \equiv x'$$
 and $y \equiv y'$ \implies $x \wedge y \equiv x' \wedge y'$ and $x \vee y \equiv x' \vee y'$

lattice quotient of L/\equiv = lattice on equiv. classes of L under \equiv where

- $X \le Y \quad \iff \quad \exists x \in X, \ y \in Y, \quad x \le y$
- $X \wedge Y$ = equiv. class of $x \wedge y$ for any $x \in X$ and $y \in Y$
- $X \lor Y =$ equiv. class of $x \lor y$ for any $x \in X$ and $y \in Y$

EXM: TAMARI LATTICE AS LATTICE QUOTIENT OF WEAK ORDER

EXM: TAMARI LATTICE AS LATTICE QUOTIENT OF WEAK ORDER

THM. For any gentle quiver \bar{Q} such that $\mathcal{K}_{nk}(\bar{Q})$ is finite, the inclusion poset on biclosed sets of strings of \bar{Q} is a congruence-uniform lattice.

McConville, Lattice structures of grid Tamari orders, 2017 Garver – McConville, Oriented flip graphs and non-crossing tree partitions, 2017

Surjection from biclosed sets of strings to non-kissing facets

 $S \text{ biclosed, } \alpha \in Q_1$ $\omega(\alpha, S) = \text{walk constructed with the local rules:}$ $\alpha \in S$ $\in S$ α

///

7///

 α

McConville, Lattice structures of grid Tamari orders, 2017

Surjection from biclosed sets of strings to non-kissing facets

 $S \text{ biclosed, } \alpha \in Q_1$ $\omega(\alpha, S) = \text{walk constructed with the local rules:}$ $\alpha \in S \qquad \in S \qquad \alpha$

///

7///

 α

McConville, Lattice structures of grid Tamari orders, 2017

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_1$ $\omega(\alpha, S) =$ walk constructed with the local rules: $\alpha \in S \qquad \in S \qquad \alpha$

7///

 α

McConville, Lattice structures of grid Tamari orders, 2017

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_1$ $\omega(\alpha, S) =$ walk constructed with the local rules: $\alpha \in S \qquad \in S \qquad \alpha$

7///

 α

McConville, Lattice structures of grid Tamari orders, 2017

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_1$ $\omega(\alpha, S) =$ walk constructed with the local rules: $\alpha \in S \qquad \in S \qquad \alpha$

7///

 α

McConville, Lattice structures of grid Tamari orders, 2017

Surjection from biclosed sets of strings to non-kissing facets

///

7///

 α

McConville, Lattice structures of grid Tamari orders, 2017

Surjection from biclosed sets of strings to non-kissing facets

7///

 α

McConville, Lattice structures of grid Tamari orders, 2017
Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_1$ $\omega(\alpha, S) =$ walk constructed with the local rules: $\alpha \in S \qquad \in S \qquad \alpha$

7///

 α

 $\notin S$

McConville, Lattice structures of grid Tamari orders, 2017

Surjection from biclosed sets of strings to non-kissing facets

///

7///

 α

 $\notin S$

McConville, Lattice structures of grid Tamari orders, 2017

Surjection from biclosed sets of strings to non-kissing facets

///

7///

 α

 $\notin S$

McConville, Lattice structures of grid Tamari orders, 2017

Surjection from biclosed sets of strings to non-kissing facets

 $S \text{ biclosed, } \alpha \in Q_1$ $\omega(\alpha, S) = \text{walk constructed with the local rules:}$ $\alpha \in S \qquad \in S \qquad \alpha$

///

7///

 α

 $\notin S$

McConville, Lattice structures of grid Tamari orders, 2017

Surjection from biclosed sets of strings to non-kissing facets

PROP. $\eta(S) := \{ \omega(\alpha, S) \mid \alpha \in Q_1 \}$ is a non-kissing facet.

McConville, Lattice structures of grid Tamari orders, 2017

inversion set of 2751346

inversion set of 2751346

inversion set of 2751346

2

Surjection from biclosed sets of strings to non-kissing facets

PROP. $\eta(S) := \{ \omega(\alpha, S) \mid \alpha \in Q_1 \}$ is a non-kissing facet.

THM. The map η defines a lattice morphism from biclosed sets to non-kissing facets.

McConville, Lattice structures of grid Tamari orders, 2017

NON-KISSING LATTICE

NON-KISSING LATTICE

THM. For a gentle quiver \bar{Q} with finite non-kissing complex $C_{nk}(\bar{Q})$, the non-kissing flip graph is the Hasse diagram of a congruence-uniform lattice.

Much more nice combinatorics:

- join-irreducible elements of $\mathcal{L}_{nk}(\bar{Q})$ are in bijection with distinguishable strings
- canonical join complex of $\mathcal{L}_{nk}(\bar{Q})$ is a generalization of non-crossing partitions

SUMMARY

 \bar{Q} gentle quiver

[reduced] non-kissing complex $\mathcal{K}_{nk}(\bar{Q}) =$ simplicial complex with

- vertices = [bended] walks of \bar{Q}
- ullet faces = collections of pairwise non-kissing [bended] walks of \bar{Q}

THM. For a gentle quiver \bar{Q} with finite $\mathcal{C}_{nk}(\bar{Q})$, the non-kissing flip graph is

- the 1-skeleton of a polytope,
- the Hasse diagram of a congruence-uniform lattice.

