

NON-KISSING COMPLEX

quiver $=$ oriented graph
(loops and multiple edges allowed)
$Q=\left(Q_{0}, Q_{1}, s, t\right)$
$Q_{0}=$ vertices
$Q_{1}=$ edges
$s, t: Q_{1} \rightarrow Q_{0}$ source and target maps

QUIVERS

$$
\text { quiver }=\text { oriented graph }
$$

(loops and multiple edges allowed)
$Q=\left(Q_{0}, Q_{1}, s, t\right)$
$Q_{0}=$ vertices
$Q_{1}=$ edges
$s, t: Q_{1} \rightarrow Q_{0}$ source and target maps
path $=\alpha_{1} \ldots \alpha_{\ell}$ with $\alpha_{k} \in Q_{1}$ and $t\left(\alpha_{k}\right)=s\left(\alpha_{k+1}\right)$
path algebra $\mathbb{K} Q=\left\langle e_{\pi}\right| \pi$ path of $\left.Q\right\rangle$ with concatenation product

$$
e_{\alpha_{1} \ldots \alpha_{\ell}} \cdot e_{\beta_{1} \ldots \beta_{k}}= \begin{cases}e_{\alpha_{1} \ldots \alpha_{\ell} \beta_{1} \ldots \beta_{k}} & \text { if } t\left(\alpha_{\ell}\right)=s\left(\beta_{1}\right) \\ 0 & \text { otherwise }\end{cases}
$$

QUIVERS

$$
\text { quiver }=\text { oriented graph }
$$

(loops and multiple edges allowed)
$Q=\left(Q_{0}, Q_{1}, s, t\right)$
$Q_{0}=$ vertices
$Q_{1}=$ edges
$s, t: Q_{1} \rightarrow Q_{0}$ source and target maps
path $=\alpha_{1} \ldots \alpha_{\ell}$ with $\alpha_{k} \in Q_{1}$ and $t\left(\alpha_{k}\right)=s\left(\alpha_{k+1}\right)$
path algebra $\mathbb{K} Q=\left\langle e_{\pi}\right| \pi$ path of $\left.Q\right\rangle$ with concatenation product

$$
e_{\alpha_{1} \ldots \alpha_{\ell}} \cdot e_{\beta_{1} \ldots \beta_{k}}= \begin{cases}e_{\alpha_{1} \ldots \alpha_{\ell} \beta_{1} \ldots \beta_{k}} & \text { if } t\left(\alpha_{\ell}\right)=s\left(\beta_{1}\right) \\ 0 & \text { otherwise }\end{cases}
$$

QUIVERS

quiver $=$ oriented graph
(loops and multiple edges allowed)
$Q=\left(Q_{0}, Q_{1}, s, t\right)$
$Q_{0}=$ vertices
$Q_{1}=$ edges
$s, t: Q_{1} \rightarrow Q_{0}$ source and target maps
path $=\alpha_{1} \ldots \alpha_{\ell}$ with $\alpha_{k} \in Q_{1}$ and $t\left(\alpha_{k}\right)=s\left(\alpha_{k+1}\right)$
path algebra $\mathbb{K} Q=\left\langle e_{\pi}\right| \pi$ path of $\left.Q\right\rangle$ with concatenation product

$$
e_{\alpha_{1} \ldots \alpha_{\ell}} \cdot e_{\beta_{1} \ldots \beta_{k}}= \begin{cases}e_{\alpha_{1} \ldots \alpha_{\ell} \beta_{1} \ldots \beta_{k}} & \text { if } t\left(\alpha_{\ell}\right)=s\left(\beta_{1}\right) \\ 0 & \text { otherwise }\end{cases}
$$

bound quiver $=$ quiver with relations
$\bar{Q}=(Q, I)$ where I is an admissible ideal of $\mathbb{K} Q$.
Complicated way to say that we forbid certain paths

QUIVERS

quiver $=$ oriented graph
(loops and multiple edges allowed)
$Q=\left(Q_{0}, Q_{1}, s, t\right)$
$Q_{0}=$ vertices
$Q_{1}=$ edges
$s, t: Q_{1} \rightarrow Q_{0}$ source and target maps
path $=\alpha_{1} \ldots \alpha_{\ell}$ with $\alpha_{k} \in Q_{1}$ and $t\left(\alpha_{k}\right)=s\left(\alpha_{k+1}\right)$
path algebra $\mathbb{K} Q=\left\langle e_{\pi}\right| \pi$ path of $\left.Q\right\rangle$ with concatenation product

$$
e_{\alpha_{1} \ldots \alpha_{\ell}} \cdot e_{\beta_{1} \ldots \beta_{k}}= \begin{cases}e_{\alpha_{1} \ldots \alpha_{\ell} \beta_{1} \ldots \beta_{k}} & \text { if } t\left(\alpha_{\ell}\right)=s\left(\beta_{1}\right) \\ 0 & \text { otherwise }\end{cases}
$$

bound quiver $=$ quiver with relations
$\bar{Q}=(Q, I)$ where I is an admissible ideal of $\mathbb{K} Q$.
Complicated way to say that we forbid certain paths

QUIVERS

quiver $=$ oriented graph
(loops and multiple edges allowed)
$Q=\left(Q_{0}, Q_{1}, s, t\right)$
$Q_{0}=$ vertices
$Q_{1}=$ edges
$s, t: Q_{1} \rightarrow Q_{0}$ source and target maps
path $=\alpha_{1} \ldots \alpha_{\ell}$ with $\alpha_{k} \in Q_{1}$ and $t\left(\alpha_{k}\right)=s\left(\alpha_{k+1}\right)$
path algebra $\mathbb{K} Q=\left\langle e_{\pi}\right| \pi$ path of $\left.Q\right\rangle$ with concatenation product

$$
e_{\alpha_{1} \ldots \alpha_{\ell}} \cdot e_{\beta_{1} \ldots \beta_{k}}= \begin{cases}e_{\alpha_{1} \ldots \alpha_{\ell} \beta_{1} \ldots \beta_{k}} & \text { if } t\left(\alpha_{\ell}\right)=s\left(\beta_{1}\right) \\ 0 & \text { otherwise }\end{cases}
$$

bound quiver $=$ quiver with relations
$\bar{Q}=(Q, I)$ where I is an admissible ideal of $\mathbb{K} Q$.
Complicated way to say that we forbid certain paths

QUIVERS

bound quiver $\bar{Q}=(Q, I)$
gentle quiver $=$

- forbidden paths all of length 2
- locally at each vertex, subgraph of

QUIVERS

bound quiver $\bar{Q}=(Q, I)$
gentle quiver $=$

- forbidden paths all of length 2
- locally at each vertex, subgraph of

blossoming quiver $\bar{Q}^{*}=$ add blossoms to complete each vertex to

STRINGS AND WALKS

$$
\begin{aligned}
\text { string } \sigma= & \alpha_{1}^{\varepsilon_{1}} \ldots \alpha_{\ell}^{\varepsilon_{\ell}} \\
& \text { with } \alpha_{k} \in Q_{1} \\
& \quad \varepsilon_{k} \in\{-1,1\} \\
& \text { and } t\left(\alpha_{k}^{\varepsilon_{k}}\right)=s\left(\alpha_{k+1}^{\varepsilon_{k+1}}\right)
\end{aligned}
$$

STRINGS AND WALKS

$$
\begin{aligned}
\text { string } \sigma= & \alpha_{1}^{\varepsilon_{1}} \ldots \alpha_{\ell}^{\varepsilon_{\ell}} \\
& \text { with } \alpha_{k} \in Q_{1} \\
& \varepsilon_{k} \in\{-1,1\} \\
& \text { and } t\left(\alpha_{k}^{\varepsilon_{k}}\right)=s\left(\alpha_{k+1}^{\varepsilon_{k+1}}\right)
\end{aligned}
$$

substrings of $\sigma=\left\{\alpha_{i}^{\varepsilon_{i}} \ldots \alpha_{j}^{\varepsilon_{j}} \mid 1 \leq i \leq j-1 \leq k\right\}$
bottom substring of $\sigma=$ substring ρ of σ such that σ either ends or has an outgoing arrow at each endpoint of ρ $\Sigma_{\text {bot }}(\sigma)=\{$ bottom substrings of $\sigma\}$
top substring of $\sigma=$ substring ρ of σ such that σ either ends or has an incoming arrow at each endpoint of ρ $\Sigma_{\text {top }}(\sigma)=\{$ top substrings of $\sigma\}$

STRINGS AND WALKS

$$
\begin{aligned}
\text { string } \sigma= & \alpha_{1}^{\varepsilon_{1}} \ldots \alpha_{\ell}^{\varepsilon_{\ell}} \\
& \text { with } \alpha_{k} \in Q_{1} \\
& \varepsilon_{k} \in\{-1,1\} \\
& \text { and } t\left(\alpha_{k}^{\varepsilon_{k}}\right)=s\left(\alpha_{k+1}^{\varepsilon_{k+1}}\right)
\end{aligned}
$$

walk $\omega=$ maximal string in Q^{*} from blossoms to blossoms

STRINGS AND WALKS

$$
\begin{aligned}
\text { string } \sigma= & \alpha_{1}^{\varepsilon_{1}} \ldots \alpha_{\ell}^{\varepsilon_{\ell}} \\
& \text { with } \alpha_{k} \in Q_{1} \\
& \varepsilon_{k} \in\{-1,1\} \\
& \text { and } t\left(\alpha_{k}^{\varepsilon_{k}}\right)=s\left(\alpha_{k+1}^{\varepsilon_{k+1}}\right)
\end{aligned}
$$

walk $\omega=$ maximal string in $Q^{\text {\% }}$ from blossoms to blossoms

STRINGS AND WALKS

$$
\begin{aligned}
\text { string } \sigma= & \alpha_{1}^{\varepsilon_{1}} \ldots \alpha_{\ell}^{\varepsilon_{\ell}} \\
& \text { with } \alpha_{k} \in Q_{1} \\
& \varepsilon_{k} \in\{-1,1\} \\
& \text { and } t\left(\alpha_{k}^{\varepsilon_{k}}\right)=s\left(\alpha_{k+1}^{\varepsilon_{k+1}}\right)
\end{aligned}
$$

walk $\omega=$ maximal string in $Q^{\text {\% }}$ from blossoms to blossoms

NON-KISSING COMPLEX

walk $\omega=$ maximal string in Q^{8} from blossoms to blossoms
ω kisses ω^{\prime} if $\Sigma_{\text {top }}(\omega) \cap \Sigma_{\text {bot }}\left(\omega^{\prime}\right) \neq \varnothing$

NON-KISSING COMPLEX

walk $\omega=$ maximal string in Q^{*} from blossoms to blossoms
ω kisses ω^{\prime} if $\Sigma_{\text {top }}(\omega) \cap \Sigma_{\text {bot }}\left(\omega^{\prime}\right) \neq \varnothing$

NON-KISSING COMPLEX

walk $\omega=$ maximal string in Q^{*} from blossoms to blossoms

$$
\omega \text { kisses } \omega^{\prime} \text { if } \Sigma_{\text {top }}(\omega) \cap \Sigma_{\text {bot }}\left(\omega^{\prime}\right) \neq \varnothing
$$

NON-KISSING COMPLEX

walk $\omega=$ maximal string in Q^{*} from blossoms to blossoms
ω kisses ω^{\prime} if $\Sigma_{\text {top }}(\omega) \cap \Sigma_{\text {bot }}\left(\omega^{\prime}\right) \neq \varnothing$

NON-KISSING COMPLEX

walk $\omega=$ maximal string in Q^{*} from blossoms to blossoms
ω kisses ω^{\prime} if $\Sigma_{\text {top }}(\omega) \cap \Sigma_{\text {bot }}\left(\omega^{\prime}\right) \neq \varnothing$

[reduced] non-kissing complex $\mathcal{K}_{n k}(\bar{Q})=$ simplicial complex with

- vertices $=$ [bended] walks of \bar{Q} (that are not self-kissing)
- faces $=$ collections of pairwise non-kissing [bended] walks of \bar{Q}

REDUCED NON-KISSING COMPLEX

SIMPLICIAL ASSOCIAHEDRA ARE NON-KISSING COMPLEXES

[reduced] simplicial associahedron $=$ simplicial complex with

- vertices $=$ [internal] diagonals of an $(n+3)$-gon
- faces $=$ collections of pairwise non-crossing [internal] diagonals of the $(n+3)$-gon

SIMPLICIAL ASSOCIAHEDRA ARE NON-KISSING COMPLEXES

[reduced] simplicial associahedron $=$ simplicial complex with

- vertices $=$ [internal] diagonals of an $(n+3)$-gon
- faces $=$ collections of pairwise non-crossing [internal] diagonals of the $(n+3)$-gon

SIMPLICIAL ASSOCIAHEDRA ARE NON-KISSING COMPLEXES

[reduced] simplicial associahedron $=$ simplicial complex with

- vertices $=$ [internal] diagonals of an $(n+3)$-gon
- faces $=$ collections of pairwise non-crossing [internal] diagonals of the $(n+3)$-gon
0^{\bullet}

SIMPLICIAL ASSOCIAHEDRA ARE NON-KISSING COMPLEXES

[reduced] simplicial associahedron $=$ simplicial complex with

- vertices $=$ [internal] diagonals of an $(n+3)$-gon
- faces $=$ collections of pairwise non-crossing [internal] diagonals of the $(n+3)$-gon

9

diagonal crossing

SIMPLICIAL ASSOCIAHEDRA ARE NON-KISSING COMPLEXES

[reduced] simplicial associahedron $=$ simplicial complex with

- vertices $=$ [internal] diagonals of an $(n+3)$-gon
- faces $=$ collections of pairwise non-crossing [internal] diagonals of the $(n+3)$-gon

9

diagonal crossing dissection

SIMPLICIAL ASSOCIAHEDRA ARE NON-KISSING COMPLEXES

[reduced] simplicial associahedron $=$ simplicial complex with

- vertices $=$ [internal] diagonals of an $(n+3)$-gon
- faces $=$ collections of pairwise non-crossing [internal] diagonals of the $(n+3)$-gon

$\stackrel{\bullet}{9}$

diagonal crossing dissection
simplicial associahedron

SIMPLICIAL ASSOCIAHEDRA ARE NON-KISSING COMPLEXES

[reduced] simplicial associahedron $=$ simplicial complex with

- vertices $=$ [internal] diagonals of an $(n+3)$-gon
- faces $=$ collections of pairwise non-crossing [internal] diagonals of the $(n+3)$-gon

dissection

subset of \mathbb{Z}^{2}

TWO FAMILIES OF NON-KISSING COMPLEXES

dissection

subset of \mathbb{Z}^{2}

TWO FAMILIES OF NON-KISSING COMPLEXES

dissection

dissection quiver

subset of \mathbb{Z}^{2}

grid quiver

TWO FAMILIES OF NON-KISSING COMPLEXES

accordion

walk

2457 subset of $[n+m]$

walk

TWO FAMILIES OF NON-KISSING COMPLEXES

crossing accordions

kissing walks

crossing subsets of $[n+m]$

kissing walks

TWO FAMILIES OF NON-KISSING COMPLEXES

Baryshnikov, On Stokes sets, 2001
Chapoton, Stokes posets and serpent nests, 2016
Garver - McConville, Oriented flip graphs and non-crossing tree partitions, 2017

Petersen - Pylyavskyy - Speyer, A non-crossing standard monomial theory, 2010
Santos - Stump - Welker, Non-crossing sets and the Grassmann-associahedron, 2017
McConville, Lattice structures of grid Tamari orders, 2017
Garver - McConville, Enumerative properties of grid-associahedra, 2017

DISTINGUISHED WALKS, ARROWS AND STRINGS

$$
\begin{aligned}
& F \text { face of } \mathcal{K}_{\mathrm{nk}}(\bar{Q}) \\
& \alpha \in Q_{1} \\
& F_{\alpha}=\{\omega \in F \mid \alpha \in \omega\} \\
& \lambda \prec_{\alpha} \omega \text { countercurrent order at } \alpha \\
& \operatorname{dw}(\alpha, F)=\max _{\prec_{\alpha}} F_{\alpha} \\
& \operatorname{da}(\omega, F)=\left\{\alpha \in Q_{1} \mid \omega=\operatorname{dw}(\alpha, F)\right\}
\end{aligned}
$$

PROP. For any facet $F \in \mathcal{K}_{\mathrm{nk}}(\bar{Q})$,

- each bended walk of F contains 2 distinguished arrows in F pointing opposite,
- each straight walk of F contains 1 distinguished arrows in F pointing as the walk.

DISTINGUISHED WALKS, ARROWS AND STRINGS

$$
\begin{aligned}
& F \text { face of } \mathcal{K}_{\mathrm{nk}}(\bar{Q}) \\
& \alpha \in Q_{1} \\
& F_{\alpha}=\{\omega \in F \mid \alpha \in \omega\} \\
& \lambda \prec_{\alpha} \omega \text { countercurrent order at } \alpha \\
& \operatorname{dw}(\alpha, F)=\max _{\prec_{\alpha}} F_{\alpha} \\
& \operatorname{da}(\omega, F)=\left\{\alpha \in Q_{1} \mid \omega=\operatorname{dw}(\alpha, F)\right\}
\end{aligned}
$$

PROP. For any facet $F \in \mathcal{K}_{\mathrm{nk}}(\bar{Q})$,

- each bended walk of F contains 2 distinguished arrows in F pointing opposite,
- each straight walk of F contains 1 distinguished arrows in F pointing as the walk.

CORO. $\mathcal{K}_{\mathrm{nk}}(\bar{Q})$ is pure of dimension $\left|Q_{0}\right|$.

FLIPS

F facet of $\mathcal{K}_{\mathrm{nk}}(\bar{Q})$ (ie. maximal collection of pairwise non-kissing walks)

FLIPS

F facet of $\mathcal{K}_{\mathrm{nk}}(\bar{Q})$ (ie. maximal collection of pairwise non-kissing walks) $\omega \in F$ we want to "flip"

FLIPS

F facet of $\mathcal{K}_{\text {nk }}(\bar{Q})$ (ie. maximal collection of pairwise non-kissing walks)
$\omega \in F$ we want to "flip"
$\{\alpha, \beta\}=\operatorname{da}(\omega, F)$

FLIPS

F facet of $\mathcal{K}_{\mathrm{nk}}(\bar{Q})$ (ie. maximal collection of pairwise non-kissing walks)
$\omega \in F$ we want to "flip"
$\{\alpha, \beta\}=\mathrm{da}(\omega, F)$
$\alpha^{\prime}, \beta^{\prime} \in Q_{1}$ such that $\alpha^{\prime} \alpha \in I$ and $\beta^{\prime} \beta \in I$

FLIPS

F facet of $\mathcal{K}_{\mathrm{nk}}(\bar{Q})$ (ie. maximal collection of pairwise non-kissing walks)
$\omega \in F$ we want to "flip"
$\{\alpha, \beta\}=\mathrm{da}(\omega, F)$
$\alpha^{\prime}, \beta^{\prime} \in Q_{1}$ such that $\alpha^{\prime} \alpha \in I$ and $\beta^{\prime} \beta \in I$
$\mu=\operatorname{dw}(\alpha, F)$ and $\nu=\operatorname{dw}(\beta, F)$

FLIPS

F facet of $\mathcal{K}_{\text {nk }}(\bar{Q})$ (ie. maximal collection of pairwise non-kissing walks)
$\omega \in F$ we want to "flip"
$\{\alpha, \beta\}=\mathrm{da}(\omega, F)$
$\alpha^{\prime}, \beta^{\prime} \in Q_{1}$ such that $\alpha^{\prime} \alpha \in I$ and $\beta^{\prime} \beta \in I$
$\mu=\mathrm{dw}(\alpha, F)$ and $\nu=\mathrm{dw}(\beta, F)$
$\omega^{\prime}=\mu[\cdot, v] \sigma \nu[w, \cdot]$

FLIPS

PROP. ω^{\prime} kisses ω but no other walk of F. Moreover, ω^{\prime} is the only such walk.

FLIP GRAPH

NON-KISSING ASSOCIAHEDRA

SIMPLICIAL COMPLEX

simplicial complex $=$ collection of subsets of X downward closed exm:

$$
\begin{aligned}
& X=[n] \cup \underline{[n]} \\
& \Delta=\{I \subseteq \bar{X} \mid \forall i \in[n], \quad\{i, \underline{i}\} \nsubseteq I\}
\end{aligned}
$$

FANS

polyhedral cone $=$ positive span of a finite set of \mathbb{R}^{d}
$=$ intersection of finitely many linear half-spaces $\underline{f a n}=$ collection of polyhedral cones closed by faces and where any two cones intersect along a face

simplicial fan $=$ maximal cones generated by d rays

POLYTOPES

polytope $=$ convex hull of a finite set of \mathbb{R}^{d}
= bounded intersection of finitely many affine half-spaces
face $=$ intersection with a supporting hyperplane face lattice $=$ all the faces with their inclusion relations

simple polytope $=$ facets in general position $=$ each vertex incident to d facets

SIMPLICIAL COMPLEXES, FANS, AND POLYTOPES

P polytope, F face of P
normal cone of $F=$ positive span of the outer normal vectors of the facets containing F normal fan of $P=\{$ normal cone of $F \mid F$ face of $P\}$

G-VECTORS \& C-VECTORS

$\underline{\text { multiplicity vector }} \mathbf{m}_{V}$ of multiset $V=\left\{\left\{v_{1}, \ldots, v_{m}\right\}\right\}$ of $Q_{0}=\sum_{i \in[m]} \mathbf{e}_{v_{i}} \in \mathbb{R}^{Q_{0}}$ g-vector $\mathbf{g}(\omega)$ of a walk $\omega=\mathbf{m}_{\text {peaks }(\omega)}-\mathbf{m}_{\text {deeps }(\omega)}$ c-vector $\mathbf{c}(\omega \in F)$ of a walk ω in a non-kissing facet $F=\varepsilon(\omega, F) \mathbf{m}_{\mathrm{ds}(\omega, F)}$

G-VECTORS \& C-VECTORS

$\underline{\text { multiplicity vector }} \mathbf{m}_{V}$ of multiset $V=\left\{\left\{v_{1}, \ldots, v_{m}\right\}\right\}$ of $Q_{0}=\sum_{i \in[m]} \mathbf{e}_{v_{i}} \in \mathbb{R}^{Q_{0}}$ g-vector $\mathbf{g}(\omega)$ of a walk $\omega=\mathbf{m}_{\text {peaks }(\omega)}-\mathbf{m}_{\text {deeps }(\omega)}$
c-vector $\mathbf{c}(\omega \in F)$ of a walk ω in a non-kissing facet $F=\varepsilon(\omega, F) \mathbf{m}_{\mathrm{ds}(\omega, F)}$

1
2
3
4
5
6 $\left(\begin{array}{ccccccc}0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
1
2
3
4
5
6
6 $\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

PROP. For any non-kissing facet F, the sets of vectors

$$
\mathbf{g}(F):=\{\mathbf{g}(\omega) \mid \omega \in F\} \quad \text { and } \quad \mathbf{c}(F):=\{\mathbf{c}(\omega \in F) \mid \omega \in F\}
$$

form dual bases.

G-VECTOR FAN

stereographic projection from $(1,1,1)$

G-VECTOR FAN

NON-KISSING ASSOCIAHEDRON

kissing number $\kappa\left(\omega, \omega^{\prime}\right)=$ number of times ω kisses ω^{\prime} kissing number $\operatorname{kn}(\omega)=\sum_{\omega^{\prime}} \kappa\left(\omega, \omega^{\prime}\right)+\kappa\left(\omega^{\prime}, \omega\right)$

THM. For a gentle quiver \bar{Q} with finite non-kissing complex $\mathcal{C}_{\mathrm{nk}}(\bar{Q})$, the two sets of $\mathbb{R}^{Q_{0}}$ given by
(i) the convex hull of the points

$$
\mathbf{p}(F):=\sum_{\omega \in F} \mathrm{kn}(\omega) \mathbf{c}(\omega \in F)
$$

for all non-kissing facets $F \in \mathcal{C}_{\mathrm{nk}}(\bar{Q})$,
(ii) the intersection of the halfspaces

$$
\mathbf{H}^{\geq}(\omega):=\left\{\mathbf{x} \in \mathbb{R}^{Q_{0}} \mid\langle\mathbf{g}(\omega) \mid \mathbf{x}\rangle \leq \operatorname{kn}(\omega)\right\}
$$

for all walks ω of \bar{Q},

define the same polytope, whose normal fan is the g-vector fan \mathcal{F}^{g}. We call it the \bar{Q}-associahedron and denote it by Asso.

NON-KISSING ASSOCIAHEDRON

NON-KISSING LATTICE

NON-KISSING LATTICE

THM. For a gentle quiver \bar{Q} with finite non-kissing complex $\mathcal{C}_{\mathrm{nk}}(\bar{Q})$, the non-kissing flip graph is the Hasse diagram of a congruence-uniform lattice.

LATTICE QUOTIENTS

lattice $=$ poset (L, \leq) with a meet \wedge and a join \vee
lattice congruence $=$ equiv. rel. \equiv on L which respects meets and joins

$$
x \equiv x^{\prime} \quad \text { and } \quad y \equiv y^{\prime} \quad \Longrightarrow \quad x \wedge y \equiv x^{\prime} \wedge y^{\prime} \quad \text { and } \quad x \vee y \equiv x^{\prime} \vee y^{\prime}
$$

lattice quotient of $L / \equiv=$ lattice on equiv. classes of L under \equiv where

- $X \leq Y \quad \Longleftrightarrow \quad \exists x \in X, y \in Y, \quad x \leq y$
- $X \wedge Y=$ equiv. class of $x \wedge y$ for any $x \in X$ and $y \in Y$
- $X \vee Y=$ equiv. class of $x \vee y$ for any $x \in X$ and $y \in Y$

EXM: TAMARI LATTICE AS LATTICE QUOTIENT OF WEAK ORDER

binary search tree insertion of 2751346

EXM: TAMARI LATTICE AS LATTICE QUOTIENT OF WEAK ORDER
binary search tree insertion of 2751346

\&

BICLOSED SETS OF SEGMENTS

σ, τ oriented strings
concatenation $\sigma \circ \tau=\left\{\sigma \alpha \tau \mid \alpha \in Q_{1}\right.$ and $\sigma \alpha \tau$ string of $\left.\bar{Q}\right\}$

$$
\text { closure } S^{\mathrm{cl}}=\bigcup_{\substack{\ell \in \mathbb{N} \\
\sigma_{1}, \ldots, \sigma_{\ell} \in S}} \sigma_{1} \circ \cdots \circ \sigma_{\ell}=\begin{aligned}
& \text { all strings obtained by concatenation } \\
& \text { of some strings of } S
\end{aligned}
$$

closed $\Longleftrightarrow S^{\text {cl }}=S \quad$ coclosed $\Longleftrightarrow \bar{S}^{\text {cl }}=\bar{S} \quad$ biclosed $=$ closed and coclosed

THM. For any gentle quiver \bar{Q} such that $\mathcal{K}_{\mathrm{nk}}(\bar{Q})$ is finite, the inclusion poset on biclosed sets of strings of \bar{Q} is a congruence-uniform lattice.

NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_{1}$
$\omega(\alpha, S)=$ walk constructed with the local rules:

McConville, Lattice structures of grid Tamari orders, 2017

NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_{1}$
$\omega(\alpha, S)=$ walk constructed with the local rules:

McConville, Lattice structures of grid Tamari orders, 2017

NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_{1}$
$\omega(\alpha, S)=$ walk constructed with the local rules:

McConville, Lattice structures of grid Tamari orders, 2017

NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_{1}$
$\omega(\alpha, S)=$ walk constructed with the local rules:

McConville, Lattice structures of grid Tamari orders, 2017

NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_{1}$
$\omega(\alpha, S)=$ walk constructed with the local rules:

McConville, Lattice structures of grid Tamari orders, 2017

NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_{1}$
$\omega(\alpha, S)=$ walk constructed with the local rules:

McConville, Lattice structures of grid Tamari orders, 2017

NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_{1}$
$\omega(\alpha, S)=$ walk constructed with the local rules:

McConville, Lattice structures of grid Tamari orders, 2017

NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_{1}$
$\omega(\alpha, S)=$ walk constructed with the local rules:

McConville, Lattice structures of grid Tamari orders, 2017

NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_{1}$
$\omega(\alpha, S)=$ walk constructed with the local rules:

McConville, Lattice structures of grid Tamari orders, 2017

NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_{1}$
$\omega(\alpha, S)=$ walk constructed with the local rules:

McConville, Lattice structures of grid Tamari orders, 2017

NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, $\alpha \in Q_{1}$
$\omega(\alpha, S)=$ walk constructed with the local rules:

McConville, Lattice structures of grid Tamari orders, 2017

NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

$$
\text { PROP. } \eta(S):=\left\{\omega(\alpha, S) \mid \alpha \in Q_{1}\right\} \text { is a non-kissing facet. }
$$

EXM: BINARY SEARCH TREE INSERTION AGAIN

inversion set of 2751346

EXM: BINARY SEARCH TREE INSERTION AGAIN

inversion set of 2751346

EXM: BINARY SEARCH TREE INSERTION AGAIN

inversion set of 2751346

2

NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

$$
\text { PROP. } \eta(S):=\left\{\omega(\alpha, S) \mid \alpha \in Q_{1}\right\} \text { is a non-kissing facet. }
$$

THM. The map η defines a lattice morphism from biclosed sets to non-kissing facets.

NON-KISSING LATTICE

NON-KISSING LATTICE

THM. For a gentle quiver \bar{Q} with finite non-kissing complex $\mathcal{C}_{\mathrm{nk}}(\bar{Q})$, the non-kissing flip graph is the Hasse diagram of a congruence-uniform lattice.

Much more nice combinatorics:

- join-irreducible elements of $\mathcal{L}_{\mathrm{nk}}(\bar{Q})$ are in bijection with distinguishable strings
- canonical join complex of $\mathcal{L}_{\text {nk }}(\bar{Q})$ is a generalization of non-crossing partitions

SUMMARY

\bar{Q} gentle quiver
[reduced] non-kissing complex $\mathcal{K}_{\mathrm{nk}}(\bar{Q})=$ simplicial complex with

- vertices $=$ [bended] walks of \bar{Q}
- faces $=$ collections of pairwise non-kissing [bended] walks of \bar{Q}

THM. For a gentle quiver \bar{Q} with finite $\mathcal{C}_{\mathrm{nk}}(\bar{Q})$, the non-kissing flip graph is

- the 1-skeleton of a polytope,
- the Hasse diagram of a congruence-uniform lattice.

