GENTLE
A& ASSOCIAHEDRA

V. PILAUD
CNRS & LIX,
Ecole Poytechnique

P.-G. PLAMONDON

; ; Univ. Orsay



NON-KISSING COMPLEX




QUIVERS

quiver = oriented graph
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()1 = edges
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()y = vertices
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0 otherwise
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quiver = oriented graph
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0 otherwise
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Q = (Q, I) where I is an admissible ideal of KQ.

Complicated way to say that we forbid certain paths
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QUIVERS

bound quiver Q = (Q, I)
gentle quiver =
e forbidden paths all of length 2
e locally at each vertex, subgraph of




QUIVERS

® bound quiver Q = (Q, I)

gentle quiver =
e forbidden paths all of length 2
e locally at each vertex, subgraph of

Jad

6, blossoming quiver Q¥ = add blossoms to

complete each vertex to

.. X



STRINGS AND WALKS

" — €1 e
string o = ay ...q,

® ®
with oy € Qq,
o €k € {—1, 1}
0 @ 6 and t(&zk) = S( ng)

Q1




STRINGS AND WALKS

® ® string 0 = of'...q,
with a; € Qq,
>@<\} €L € {—1, 1}
0+£@ ® and t(a;f) = s(ay)))

substrings of o = {oz?...ozjj ]1§z‘§j—1§k}

bottom substring of ¢ = substring p of ¢ such that o either ends

or has an outgoing arrow at each endpoint of p
Yhot(0) = { bottom substrings of o }

top substring of 0 = substring p of o such that ¢ either ends

or has an incoming arrow at each endpoint of p
Yiop(0) = { top substrings of o }



STRINGS AND WALKS

" — €1 e
string o = ay ...q,

® ®
with oy € Qq,
o €k € {—1, 1}
0 @ 6 and t(&zk) = S( ng)

Q1

@
@ yo
walk w = maximal string in Q%

®

@)

®
< from blossoms to blossoms
() Y
‘?)\

¥
O—e[@j—eo

\
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STRINGS AND WALKS

]

string 0 = of'...q,
with oy € Qq,
€L € {—1, 1}
and t(ogf) = s(a;')

walk w = maximal string in Q%
from blossoms to blossoms



STRINGS AND WALKS

]

string 0 = of'...q,
with oy € Qq,
€L € {—1, 1}
and t(ogf) = s(a;')

walk w = maximal string in Q%
from blossoms to blossoms



NON-KISSING COMPLEX

@) ®
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Nl

walk w = maximal string in Q%

from blossoms to blossoms

0
o> \:%\2* O

w kisses w' if Yiop(w) N Xpet(w') # S
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NON-KISSING COMPLEX

walk w = maximal string in Q%

from blossoms to blossoms

0

o> C*]\ >
k

w kisses w' if Yiop(w) N Xpet(w') # S




NON-KISSING COMPLEX

walk w = maximal string in Q%
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NON-KISSING COMPLEX

walk w = maximal string in Q%
from blossoms to blossoms

[reduced]| non-kissing complex K () = simplicial complex with

e vertices = [bended| walks of @ (that are not self-kissing)
e faces = collections of pairwise non-kissing [bended]| walks of Q
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SIMPLICIAL ASSOCIAHEDRA ARE NON-KISSING COMPLEXES

[reduced] simplicial associahedron = simplicial complex with

e vertices = [internal] diagonals of an (n + 3)-gon
e faces = collections of pairwise non-crossing [internal] diagonals of the (n + 3)-gon
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[reduced| simplicial associahedron = simplicial complex with
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SIMPLICIAL ASSOCIAHEDRA ARE NON-KISSING COMPLEXES

[reduced| simplicial associahedron = simplicial complex with

e vertices = [internal] diagonals of an (n + 3)-gon

e faces = collections of pairwise non-crossing [internal] diagonals of the (n + 3)-gon

0
1
SN
diagonal
crossing
dissection
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et
2 3

[T

3 4
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walk
kissing
non-kissing face
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SIMPLICIAL ASSOCIAHEDRA ARE NON-KISSING COMPLEXES

[reduced| simplicial associahedron = simplicial complex with

e vertices = [internal] diagonals of an (n + 3)-gon
e faces = collections of pairwise non-crossing [internal] diagonals of the (n + 3)-gon

o
! ’ 1 2 3 4 5 6 7T
e S N S S T S S
[ o .%W o
: \/8 ) 3 e
o 2 3 4 5 6 7 8
92 e o
3 4. 5 0 7
diagonal R walk
crossing — kissing
dissection <y non-kissing face
simplicial associahedron —— non-kissing complex

McConville, Lattice structures of grid Tamari orders, 2017



SIMPLICIAL ASSOCIAHEDRA ARE NON-KISSING COMPLEXES

[reduced| simplicial associahedron = simplicial complex with

e vertices = [internal] diagonals of an (n + 3)-gon
e faces = collections of pairwise non-crossing [internal] diagonals of the (n + 3)-gon

(S e o
20 O O4
3 5
40 A\Oﬁ /./ 0607
5 60 //.Pj% %*/ 09
7 8

McConville, Lattice structures of grid Tamari orders, 2017



TWO FAMILIES OF NON-KISSING COMPLEXES
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o‘{:ﬂo

dissection subset of Z2



TWO FAMILIES OF NON-KISSING COMPLEXES

dissection

dissection quiver grid quiver



TWO FAMILIES OF NON-KISSING COMPLEXES

accordion 2457 subset of [n + m)|




TWO FAMILIES OF NON-KISSING COMPLEXES

crossing accordions

A
(V]
(o]

kissing walks kissing walks



TWO FAMILIES OF NON-KISSING COMPLEXES

accordion complex grid Tamari complex

Baryshnikov, On Stokes sets, 2001
Chapoton, Stokes posets and serpent nests, 2016
Garver — McConville, Oriented flip graphs and non-crossing tree partitions, 2017

Petersen — Pylyavskyy — Speyer, A non-crossing standard monomial theory, 2010
Santos — Stump — Welker, Non-crossing sets and the Grassmann-associahedron, 2017
McConville, Lattice structures of grid Tamari orders, 2017

Garver — McConville, Enumerative properties of grid-associahedra, 2017
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a € Qy
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DISTINGUISHED WALKS, ARROWS AND STRINGS

F' face of K. (Q)
a € @

F,={weF|acw}
A <, w countercurrent order at «

dw(a, F') = max._ F,
da(w, F) ={a € Q1 | w=dw(a, F)}

PROP. For any facet F' € K,(Q),
e each bended walk of F' contains 2 distinguished arrows in F' pointing opposite,
e each straight walk of F' contains 1 distinguished arrows in F' pointing as the walk.




DISTINGUISHED WALKS, ARROWS AND STRINGS

F face of K. (Q)
a € @

F,={weF|acw}
A <, w countercurrent order at «

dw(a, F') = max._ F,
da(w, F) ={a € Q1 | w=dw(a, F)}

PROP. For any facet F' € K,(Q),
e each bended walk of F' contains 2 distinguished arrows in F' pointing opposite,
e each straight walk of F' contains 1 distinguished arrows in F' pointing as the walk.

CORO. K,(Q) is pure of dimension Q.




FLIPS
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FLIPS

F facet of Kx(Q) (ie. maximal collection of pairwise non-kissing walks)

w € F we want to “flip”

{a, 6} = da(w, F)

o, 8 € Q) such that /o € I and §/5 € I ,

Sk



FLIPS

F facet of Kx(Q) (ie. maximal collection of pairwise non-kissing walks)

w € I we want to “flip”

{a,f} = da(w, F)

o, 8 € Q) such that /o € I and §/5 € I
p=dw(a, F) and v = dw(g, F')




F facet of Kx(Q) (ie. maximal collection of pairwise non-kissing walks)

w € I we want to “flip”

{a, B} = da(w, F)

o, 8 € Q) such that /o € I and §/5 € I
p=dw(a, F) and v = dw(g, F')

W= pl, v ovw, -]




FLIPS

is the only such walk.

" kisses w but no other walk of F'. Moreover, &’

PROP. w




FLIP GRAPH




NON-KISSING ASSOCIAHEDRA




SIMPLICIAL COMPLEX

simplicial complex = collection of subsets of X downward closed
exm:

[n] U [n u 123/ [123][123][123][123] 123][123] 123
(TCX|Viep], (i} ZT) 'Q,QQ’Q\O A
( -’L- -‘- -5)

N

a4

12][13 12



FANS

polyhedral cone = positive span of a finite set of R?

= intersection of finitely many linear half—spaces

fan = collection of polyhedral cones closed by faces

and where any two cones intersect along a face

simplicial fan = maximal cones generated by d rays




POLYTOPES

polytope = convex hull of a finite set of R?
= bounded intersection of finitely many affine half-spaces

7
e

face = intersection with a supporting hyperplane

face lattice = all the faces with their inclusion relations
| /Cf ./f) , ‘(

simple polytope = facets in general position = each vertex incident to d facets

\

9«'»




SIMPLICIAL COMPLEXES, FANS, AND POLYTOPES

/"‘h{('/v&\e‘w\
4 brerren
SO

o7

AN

%

P polytope, F face of P

normal cone of ' = positive span of the outer normal vectors of the facets containing [

normal fan of P = { normal cone of F' | F' face of P }

simple polytope = simplicial fan =  simplicial complex




G-VECTORS & C-VECTORS

multiplicity vector my of multiset V = {{vy,...,v,}} of Q9 = > e, € R
i€lm]

g-vector g(w) of a walk w

Mpeaks(w) — Mdeeps(w)

c-vector c(w € F') of a walk w in a non-kissing facet ' =

O

N3

S O B W N

00 0-—1
0 0 —1 O\

01 0
0—-120
I 0 1
00 0

g(F)

8(&], F) Mys(w,F)

0
0
0

0/

S T = W N~

o O =k = O O




G-VECTORS & C-VECTORS

multiplicity vector my of multiset V = {{vy,...,v,}} of Q9 = > e, € R
i€lm]

g-vector g(w) of a walk w Mpeaks(ew) — Meeps(w)

c-vector c(w € F') of a walk w in a non-kissing facet ' =

o o
O

NS 0 0 —1

0

0
1010
00-120
0
0

I 01
00 0

S O B W N

0 0 0—1\

8(&], F) mds(w,F)

0
0
0
0

0/

S T = W N~

o O =k = O O

PROP. For any non-kissing facet F', the sets of vectors

g(F)={gw)|weF} and c(F)={clwel)|welF}

form dual bases.




G-VECTOR FAN

THM. For any gentle quiver @, the collection of cones

o
OE. (o FE(Q) = {Rx0g(F) | F € C(Q)}

° forms a compl. simpl. fan, called g-vector fan of Q.

stereographic projection
from (1,1,1)







NON-KISSING ASSOCIAHEDRON

kissing number x(w,w’) = number of times w kisses '

kissing number kn(w) = Z/@'(w,w’) + k(W' w)

Cd/

THM. For a gentle quiver Q with finite non-kissing complex C.1 (@),
the two sets of R% given by

(i) the convex hull of the points

an clwe F),

wekl

for all non-kissing facets F' € C(Q),

(ii) the intersection of the halfspaces

H” (w) = {X c R@ ’ (glw)|x) < kn(w)} .

for all walks w of Q,

define the same polytope, whose normal fan is the g-vector fan F8.

(Q-associahedron and denote it by Asso.

We call it the




NON-KISSING ASSOCIAHEDRON




NON-KISSING ASSOCIAHEDRON VS ZONOTOPES

/ %?

~
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NON-KISSING LATTICE




NON-KISSING LATTICE

THM. For a gentle quiver Q with finite non-kissing complex C,(Q), the non-kissing
flip graph is the Hasse diagram of a congruence-uniform lattice.




LATTICE QUOTIENTS

lattice = poset (L, <) with a meet A and a join V

lattice congruence = equiv. rel. = on L which respects meets and joins
r=2 and y=14 — ctAy=2' ANy and zVy=2' VY

lattice quotient of L/= = lattice on equiv. classes of L under = where

e X <Y — dJreX, yeY, z<y

e X \NY = equiv.classof rAyforanyz e X andyeY

e XVY = equiv.classof zVyforanyz e X andyeY

circles
/‘\

polygons stars

\x/ crosses




EXM: TAMARI LATTICE AS LATTICE QUOTIENT OF WEAK ORDER

binary search tree insertion of 2751346

AR ﬁ(@\ X X X

6 4 6 3 4 6 1 3 4 6 1 345 6 1 345 67 112¥3%475'6°7



EXM: TAMARI LATTICE AS LATTICE QUOTIENT OF WEAK ORDER

binary search tree insertion of 2751346

AR \ \ \

6 4 6 34 6 1 34 6 1 3456 1 34567 ilzlilslely
4321
™,
3421 1231 4312 — T
S SN
3241]  [2431]  [3412]  [4213] 4132 5
3214 2341 3142 2413 4123 1432 a4 k& A
2314]  [3124]  [2143] |1342]  |1423 m/ A\
2134 1324 1243 A
1234 Al




BICLOSED SETS OF SEGMENTS

o, T oriented strings
concatenation g o 7 = {aow } a € (1 and oaTt string of Q}

closure S = U o1 0---00, = all strings obtained by concatenation
(eN of some strings of S
O1,...,00ES
closed < S =238 coclosed <« S9 =38 biclosed = closed and coclosed

NP QNP S g >

THM. For any gentle quiver () such that ;. (Q) is finite, the inclusion poset on biclosed
sets of strings of @ is a congruence-uniform lattice.

McConville, Lattice structures of grid Tamari orders, 2017
Garver — McConville, Oriented flip graphs and non-crossing tree partitions, 2017



NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

@) @)
@) @)
Te o
o) A .CV
) (g
. \. S .)\O
©) @) @)
S biclosed, v € 4
w(a, S) = walk constructed with the local rules:
Q cS €S Q
—r— G —<— —>—G——
——< D —_—( D——
. ¢S ¢ S e

McConville, Lattice structures of grid Tamari orders, 2017
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NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, v € 4
w(a, S) = walk constructed with the local rules:

Q cS c S Q
—y— D —<— —_——
— — —_—( —H—

. ¢S ¢ S e

McConville, Lattice structures of grid Tamari orders, 2017



NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

PROP. n(S) = {w(a,S) | a € @1} is a non-kissing facet.

McConville, Lattice structures of grid Tamari orders, 2017



EXM: BINARY SEARCH TREE INSERTION AGAIN

inversion set of 2751346
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inversion set of 2751346




NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

PROP. n(S) = {w(a,S) | a € @1} is a non-kissing facet.

THM. The map 7 defines a lattice morphism from biclosed sets to non-kissing facets.

McConville, Lattice structures of grid Tamari orders, 2017






NON-KISSING LATTICE

THM. For a gentle quiver ) with finite non-kissing complex C,(Q), the non-kissing

flip graph is the Hasse diagram of a congruence-uniform lattice.

Much more nice combinatorics:

e join-irreducible elements of £,,(Q) are in bijection with distinguishable strings
J)

e canonical join complex of £.(Q) is a generalization of non-crossing partitions

: !

$ 7 AN



SUMMARY

() gentle quiver

[reduced| non-kissing complex I () = simplicial complex with
e vertices = [bended| walks of @
e faces = collections of pairwise non-kissing [bended]| walks of @

THM. For a gentle quiver Q with finite C,; (@), the non-kissing flip graph is
e the 1-skeleton of a polytope,
e the Hasse diagram of a congruence-uniform lattice.
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