Deformed permutahedra, quotientopes, and beyond

V. PILAUD (CNRS & LIX, École Polytechnique \longrightarrow Universitat de Barcelona)

slides: http://www.lix.polytechnique.fr/~pilaud/documents/presentations/freehedra.pdf
related papers: arXiv:2305.08471 — arXiv:1711.05353 — arXiv:2007.01008 — arXiv:2201.06896 — arXiv:2307.05940

PERMUTAHEDRA & ASSOCIAHEDRA

P.-Santos-Ziegler ('23)

lattice = partially ordered set L where any $X \subseteq L$ admits a meet $\bigwedge X$ and a join $\bigvee X$

<u>weak order</u> = permutations of [n]ordered by paths of simple transpositions $\frac{\text{Tamari lattice}}{\text{ordered by paths of right rotations}}$

lattice = partially ordered set L where any $X \subseteq L$ admits a meet $\bigwedge X$ and a join $\bigvee X$

<u>weak order</u> = permutations of [n]ordered by paths of simple transpositions $\frac{\text{Tamari lattice}}{\text{ordered by paths of right rotations}}$

lattice = partially ordered set L where any $X \subseteq L$ admits a meet $\bigwedge X$ and a join $\bigvee X$

<u>weak order</u> = permutations of [n]ordered by paths of simple transpositions $\frac{\text{Tamari lattice}}{\text{ordered by paths of right rotations}}$

<u>sylvester congruence</u> = equivalence classes are sets of linear extensions of binary trees = equivalence classes are fibers of BST insertion

= rewriting rule $UacVbW \equiv_{sylv} UcaVbW$ with a < b < c

lattice = partially ordered set L where any $X \subseteq L$ admits a meet $\bigwedge X$ and a join $\bigvee X$

<u>weak order</u> = permutations of [n]ordered by paths of simple transpositions $\frac{\text{Tamari lattice}}{\text{ordered by paths of right rotations}}$

 \mathbb{N}

<u>sylvester congruence</u> = equivalence classes are sets of linear extensions of binary trees = equivalence classes are fibers of BST insertion

- = equivalence classes are fibers of BST insertion
- = rewriting rule $UacVbW \equiv_{sylv} UcaVbW$ with a < b < c

lattice = partially ordered set L where any $X \subseteq L$ admits a meet $\bigwedge X$ and a join $\bigvee X$

<u>weak order</u> = permutations of [n]ordered by paths of simple transpositions $\frac{\text{Tamari lattice}}{\text{ordered by paths of right rotations}}$

 $\begin{array}{l} \hline \text{lattice congruence} = \text{equivalence relation} \equiv \text{which respects meets and joins} \\ x \equiv x' \text{ and } y \equiv y' \Longrightarrow x \land y \equiv x' \land y' \text{ and } x \lor y \equiv x' \lor y' \\ \hline \text{quotient lattice} = \text{lattice on classes with } X \leq Y \iff \exists x \in X, \ y \in Y, x \leq y \end{array}$

<u>polyhedral cone</u> = positive span of a finite set of vectors = intersection of a finite set of linear half-spaces

 $\underline{fan} =$ collection of polyhedral cones closed by faces and where any two cones intersect along a face

fan = collection of polyhedral cones closed by faces and intersecting along faces

fan = collection of polyhedral cones closed by faces and intersecting along faces

fan = collection of polyhedral cones closed by faces and intersecting along faces

quotient fan = $\mathbb{C}(T)$ is obtained by glueing $\mathbb{C}(\sigma)$ for all linear extensions σ of T

 $\frac{\text{polytope}}{\text{=}} \text{ convex hull of a finite set of points} \\ = \text{ bounded intersection of a finite set of affine half-spaces} \\ \frac{\text{face}}{\text{face}} \text{ = intersection with a supporting hyperplane} \\ \frac{\text{face}}{\text{face}} \text{ all the faces with their inclusion relations} \\ \hline \end{tabular}$

polytope = convex hull of a finite set of points

= bounded intersection of a finite set of affine half-spaces

polytope = convex hull of a finite set of points

= bounded intersection of a finite set of affine half-spaces

<u>polytope</u> = convex hull of a finite set of points

= bounded intersection of a finite set of affine half-spaces

POLYWODD

LATTICES – FANS – POLYTOPES

permutahedron $\mathbb{P}erm(n)$ associahedron Asso(n) \implies braid fan \implies Sylvester fan

face \mathbb{F} of polytope \mathbb{P} <u>normal cone</u> of \mathbb{F} = positive span of the outer normal vectors of the facets containing \mathbb{F} <u>normal fan</u> of $\mathbb{P} = \{$ normal cone of $\mathbb{F} \mid \mathbb{F}$ face of $\mathbb{P} \}$

LATTICES – FANS – POLYTOPES

permutahedron $\mathbb{P}erm(n)$

 \implies braid fan

 \implies weak order on permutations

associahedron Asso(n)

 \implies Sylvester fan

 \implies Tamari lattice on binary trees

HOPF ALGEBRAS: MALVENUTO-REUTENAUER & LODAY-RONCO

 $\frac{\text{product}}{\text{coproduct}} = \text{linear map} \cdot : V \otimes V \to V = \text{a tool to combine two elements (glue)}$ $\frac{\text{coproduct}}{\text{Hopf algebra}} = (V, \cdot, \Delta) \text{ such that } \Delta(a \cdot b) = \Delta(a) \cdot \Delta(b)$

Two operations on permutations:

$$\begin{array}{ll} & \underline{\mathsf{Malvenuto}-\mathsf{Reutenauer}} & \supseteq & \underline{\mathsf{Loday}-\mathsf{Ronco}} \\ \text{vector space} & \langle \ \mathbb{F}_{\sigma} \mid \sigma \ \mathsf{permutation of any size} \rangle & & \langle \ \mathbb{P}_{T} \mid T \ \mathsf{binary tree of any size} \rangle \\ \text{product} & & \mathbb{F}_{\rho} \cdot \mathbb{F}_{\sigma} = \sum_{\tau \in \rho \sqcup \sigma} \mathbb{F}_{\tau} = \sum_{\rho \setminus \sigma \leq \tau \leq \rho/\sigma} \mathbb{F}_{\tau} & & \mathbb{P}_{R} \cdot \mathbb{P}_{S} = \sum_{R \setminus S \leq \tau \leq R/S} \mathbb{P}_{T} \\ \text{coproduct} & & \Delta(\mathbb{F}_{\tau}) = \sum_{\tau \in \rho \star \sigma} \mathbb{F}_{\rho} \otimes \mathbb{F}_{\sigma} & & \Delta(\mathbb{P}_{T}) = \sum_{\substack{R_{1} \cdots R_{k} \mid |S \ i \in [k]}} (\prod_{i \in [k]} \mathbb{P}_{R_{i}}) \otimes \mathbb{P}_{S} \end{array}$$

<u>Hopf subalgebra</u> = define $\mathbb{P}_T = \sum_{\tau} \mathbb{F}_{\tau}$ over all permutations τ in the BST fiber of T

OPEN PROBLEM: COMPUTING SHORTEST ROTATION PATHS

REM. The diameter of the permutahedron $\operatorname{Perm}(n)$ is $\binom{n}{2}$. The simple transposition distance between two permutations σ, τ of [n] is the number of inversions in $\sigma\tau^{-1}$.

THM. The diameter of the associahedron Asso(n) is precisely 2n - 6 when n > 10. Sleator-Tarjan-Thurston ('88) — Dehornov ('10) — Pournin ('14)

QU. Is it polynomial to determine the rotation distance between two binary trees?

Hanke–Ottmann–Schuierer ('96)

The flip distance problem is NP-complete on

- triangulations of polygons with holes
- triangulations of planar point sets

Lubiw–Pathak ('12) — Aichholzer–Mulzer–Pilz ('12)

QUOTIENTOPES

Reading ('05) P.–Santos ('19) Padrol–P.–Ritter ('23)

QUOTIENT FAN

 $\label{eq:lattice congruence} \frac{|\text{attice congruence}|}{x \equiv x' \text{ and } y \equiv y' \text{ implies } x \wedge y \equiv x' \wedge y' \text{ and } x \vee y \equiv x' \vee y'}$

<u>quotient fan</u> \mathcal{F}_{\equiv} = chambers are obtained by glueing the chambers $\mathbb{C}(\sigma)$ of the permutations σ in the same congruence class of \equiv

QUOTIENT FANS & QUOTIENTOPES

<u>quotient fan</u> \mathcal{F}_{\equiv} = chambers are obtained by glueing the chambers of the permutations σ in the same congruence class of \equiv

 $\underline{quotientope} = polytope$ with normal fan \mathcal{F}_{\equiv}

QUOTIENT FANS & QUOTIENTOPES

<u>quotient fan</u> \mathcal{F}_{\equiv} = chambers are obtained by glueing the chambers of the permutations σ in the same congruence class of \equiv

 $\underline{quotientope} = polytope$ with normal fan \mathcal{F}_{\equiv}

QUOTIENT FANS & QUOTIENTOPES

<u>quotient fan</u> \mathcal{F}_{\equiv} = chambers are obtained by glueing the chambers of the permutations σ in the same congruence class of \equiv

 $\underline{quotientope} = polytope$ with normal fan \mathcal{F}_{\equiv}

OPEN PROBLEM: QUOTIENTOPES FOR HYPERPLANE ARRANGEMENTS

 $\mathcal H$ hyperplane arrangement in $\mathbb R^n$

<u>base region</u> B = distinguished region of $\mathbb{R}^n \smallsetminus \mathcal{H}$ <u>inversion set</u> of a region C = set of hyperplanes of \mathcal{H} that separate B and Cposet of regions $PR(\mathcal{H}, B) =$ regions of $\mathbb{R}^n \smallsetminus \mathcal{H}$ ordered by inclusion of inversion sets

THM. If $PR(\mathcal{H}, B)$ is a lattice, and \equiv is a congruence of $PR(\mathcal{H}, B)$, the cones obtained by glueing the regions of $\mathbb{R}^n \smallsetminus \mathcal{H}$ in the same congruence class form a complete fan \mathcal{F}_{\equiv} Reading ('05)

QU. Is the quotient fan \mathcal{F}_{\equiv} always polytopal?

DEFORMED PERMUTAHEDRA

Edmonds ('70) Postnikov ('09) deformation of a polytope $\mathbb{P} = \mathsf{polytope}\ \mathbb{Q}$ such that

- ullet $\mathbb Q$ is obtained from $\mathbb P$ by moving its vertices such that edge directions are preserved
- $\bullet\ \mathbb{Q}$ is obtained from \mathbb{P} by translating its inequalities without passing through a vertex
- \bullet the normal fan of ${\mathbb P}$ refines the normal fan of ${\mathbb Q}$
- \mathbb{Q} is a weak Minkowski summand of \mathbb{P} , i.e. there is \mathbb{R} and $\lambda > 0$ such that $\lambda \mathbb{P} = \mathbb{Q} + \mathbb{R}$

POLYWODD

<u>deformed permutahedron</u> = <u>polymatroid</u> = <u>generalized permutahedron</u> [Edmonds ('70)] [Postnikov ('09)]

REMOVAHEDRA VS. DEFORMED PERMUTAHEDRA

deformation of \mathbb{P} = obtained by translating inequalities in the facet description of \mathbb{P} removahedron of \mathbb{P} = obtained by removing inequalities in the facet description of \mathbb{P}

outsidahedra removahedra permutrees

insidahedra deformed permutahedra quotientopes

DEFORMATION CONE

<u>deformation</u> of a polytope \mathbb{P} = polytope \mathbb{Q} such that $\lambda \mathbb{P} = \mathbb{Q} + \mathbb{R}$ for some \mathbb{R} and $\lambda > 0$ deformation cone of \mathbb{P} = all deformations of \mathbb{P} (under dilations and Minkowski sums)

OPEN PROBLEM: RAYS OF THE DEFORMATION CONE

THM. The deformation cone of the permutahedron $\mathbb{P}erm(n)$ is (isomorphic to) the set of submodular functions $h: 2^{[n]} \to \mathbb{R}_{\geq 0}$ satisfying $h(\emptyset) = h([n]) = 0$ and the submodular inequalities $h(I) + h(J) \ge h(I \cap J) + h(I \cup J)$ for all $I, J \subseteq [n]$.

THM. The facets correspond to submodular inequalities where $|I \smallsetminus J| = |J \smallsetminus I| = 1$.

QU. Describe (or count) the rays of the submodular cone.

Edmonds ('70)

MULTIPLIHEDRA & HOCHSCHILD POLYTOPES

P.-Polyakova ('23⁺)

 $\underline{shadow map} = arity sequence on the right branch meet semilattice morphism, but not lattice morphism$

Stasheff ('63) — Forcey ('08) — Ardila–Doker ('13)

Hochschild lattice

Abad–Crainic–Dherin ('11) — Poliakova ('20⁺) Chapoton ('20) — Combe ('21) — Mühle ('22)

Tamari ('51)

 $\frac{1}{2}$ 2_1_1 $\frac{3}{1}$ $\frac{2}{2}$ $\frac{1}{3}$ 4

boolean lattice

n=2

1

1

1

1

1 1 $\begin{array}{c} 2\\ 1\end{array}$

(m, n)-multiplihedron = shuffle of $\operatorname{Perm}(m)$ and $\operatorname{Asso}(n)$ $= \mathbb{P}erm(m) \times Asso(n) + \sum [e_i, e_{m+j}]$ $i \in [m], j \in [n]$ Chapoton–P. $('22^+)$

 $\begin{bmatrix} 1\\ 2\\ 2 \end{bmatrix}$

 $\begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$

 $\begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$

P.–Polyakova $('23^+)$

(m, n)-Hochschild polytope

= removahedron of Mul(m, n)

(m, n)-multiplihedron $\implies (m, n)$ -multiplihedron lattice Chapoton-P. ('22+)

P.–Polyakova ('23⁺)

Chapoton–P. ('22⁺)

P.–Polyakova ('23⁺)

(m, n)-multiplihedron $\implies (m, n)$ -multiplihedron lattice Chapoton-P. ('22+)

(m, n)-Hochschild polytope $\implies (m, n)$ -Hochschild lattice

P.–Polyakova ('23⁺)

OPEN PROBLEM: SEMIQUOTIENTOPES

 $\underbrace{ \text{lattice congruence}}_{x \equiv x' \text{ and } y \equiv y' \text{ implies } x \land y \equiv x' \land y' \text{ and } x \lor y \equiv x' \lor y' }_{x \equiv x' \land y' \text{ and } x \lor y \equiv x' \lor y' }$

THANK YOU