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PROGRAM

|. THREE CONSTRUCTIONS OF THE ASSOCIAHEDRON

e Compatibility fan and cluster algebras
e Loday's associahedron and Hopf algebras

e Secondary polytope

Il. GRAPH ASSOCIAHEDRA

e Graphical nested complexes
e Compatibility fans for graphical nested complexes

e Signed tree associahedra

lll. BRICK POLYTOPES AND THE TWIST ALGEBRA

e [Multi][pseudo]|triangulations and sorting networks
e The brick polytope
e The twist algebra



. THREE CONSTRUCTIONS

OF THE ASSOCIAHEDRON




FANS & POLYTOPES

Ziegler, Lectures on polytopes ('95)
Matousek, Lectures on Discrete Geometry ('02)



SIMPLICIAL COMPLEX

simplicial complex = collection of subsets of X downward closed
exm:

X = [n] U [n] 123/[123][123][123| 123 [123][123|[123
A={ICX|Vien], {i,i} ¢} 'Q,QQ’Q\O O\
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FANS

polyhedral cone = positive span of a finite set of R?

= intersection of finitely many linear half-spaces

fan = collection of polyhedral cones closed by faces
and where any two cones intersect along a face
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simplicial fan = maximal cones generated by d rays



POLYTOPES

polytope = convex hull of a finite set of R?
= bounded intersection of finitely many affine half-spaces
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face = intersection with a supporting hyperplane
face lattice = all the faces with their inclusion relations
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simple polytope = facets in general position = each vertex incident to d facets




SIMPLICIAL COMPLEXES, FANS, AND POLYTOPES
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P polytope, F face of P

normal cone of [’ = positive span of the outer normal vectors of the facets containing F
normal fan of P = { normal cone of F' | F' face of P }

simple polytope = simplicial fan = simplicial complex




EXAMPLE: PERMUTAHEDRON

Hohlweg, Permutahedra and associahedra ('12)



PERMUTAHEDRON

Permutohedron Perm(n)

=conv{(o(l),...,0n+1)) | o€ X}

~HA) {XeRnH ij2<|J\2+1>}

@#JC n+1] jed




PERMUTAHEDRON

Permutohedron Perm(n)

=conv{(o(l),...,0n+1)) | o€ X}

—HA ) {XeRnH ij2<|J\2+1>}

@#JC [n+1] jes

connections to
e weak order
e reduced expressions
e braid moves
e cosets of the symmetric group




PERMUTAHEDRON

Permutohedron Perm(n)

= conv{(c(1),...,0(n+1)) | o€ X1}

“HA() {XEW ij2(|ﬂ2+1>}

@#JC [n+1] jes

connections to
e weak order
e reduced expressions
e braid moves
e cosets of the symmetric group

k-faces of Perm(n)
= surjections from [n + 1]
to n+1— k|




PERMUTAHEDRON

Pe

rmutohedron Perm(n)
=conv{(o(l),...,0n+1)) | o€ X}

4[312]1 o |J|+1
@312 @%gi%zl} =Hn () {XER 2wz ( )
n cJ
ABM2~ 75 3%) o 2! e
aAnsp A21AD connections to
3 e weak order
4]1]3]2 1349 e reduced expressions
14
41123 19 e braid moves
@12y 44312 ) e cosets of the symmetric group
—— Y, 14 k-f f Perm(n)
aces of Perm
141213 1@%%32)\(1 314 A3 D = surjections from [n + 1]
A1239 = ordered partitions of [n + 1]
11243 073 into n + 1 — k parts
a1214/3

34)




PERMUTAHEDRON

Pe

rmutohedron Perm(n)
=conv{(o(l),...,0n+1)) | o€ X}

@A312[1 n [ J]+1
A3[12 @%21 SR =Hn () {xeR“ > ap> ( )
@[3]1]2 @ 12 @£JC[n+1] jeg
SAI2~3[N B124ID
@132 A21AD connections to
3 e weak order
4]1]3]2 13410 e reduced expressions
4/1123 2 19 e braid moves
@12y 44312 ) e cosets of the symmetric group
14123 13
1]4) k-faces of Perm(n)
14213 1@%%32 11342 3] D = surjections from [n + 1]
a3 I3 to[n+1-k
A1234 = ordered partitions of [n + 1]
11243 into n + 1 — k parts
1121413 1123 = collections of n — k nested

34)

subsets of [n + 1]



COXETER ARRANGEMENT

Coxeter fan

= fan defined by the hyperplane arrangement
D {x c R ‘ v,
= collection of all cones
32[4]D {X c R**! ‘ z; < xjif w(i) < W(j)}
for all surjections 7 : [n+ 1] — [n + 1 — K|

(34[12R\ S
Ql4[1]2

- xj}1§i<j§n+1

@l

119

(n — k)-dimensional cones

= surjections from [n + 1]
11D to n+1— k]
ordered partitions of [n + 1]

d

into n + 1 — k parts

collections of n — k nested
subsets of [n + 1]




ASSOCIAHEDRA

Ceballos-Santos-Ziegler,
Many non-equivalent realizations of the associahedron ('11)



ASSOCIAHEDRON

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free
sets of internal diagonals of a convex (n + 3)-gon, ordered by reverse inclusion
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faces <> dissections faces « Schroder trees




VARIOUS ASSOCIAHEDRA

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free
sets of internal diagonals of a convex (n + 3)-gon, ordered by reverse inclusion
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Tamari ('51) — Stasheff ('63) — Haimann ('84) — Lee ('89) — (Pictures by Ceballos-Santos-Ziegler)
...— Gel'fand-Kapranov-Zelevinski ('94) — ...— Chapoton-Fomin-Zelevinsky ('02) — ...— Loday ('04) — ...
— Ceballos-Santos-Ziegler ('11)



THREE FAMILIES OF REALIZATIONS

SECONDARY
POLYTOPE
a2 Aok
Y o A
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Gelfand-Kapranov-Zelevinsky ('94)
Billera-Filliman-Sturmfels ('90)

LODAY'S
ASSOCIAHEDRON

Hohlweg-Lange ('07)
Hohlweg-Lange-Thomas ('12)

CHAP.-FOM.-ZEL.'S
ASSOCIAHEDRON

(Pictures by CFZ)

a1

Chapoton-Fomin-Zelevinsky ('02)
Ceballos-Santos-Ziegler ('11)



THREE FAMILIES OF REALIZATIONS

SECONDARY
POLYTOPE

L~
A NP
NN
/ Y ek

—~——
\V
Gelfand-Kapranov-Zelevinsky ('94)
Billera-Filliman-Sturmfels ('90)

A—/A
AT

LODAY'S
ASSOCIAHEDRON

Hohlweg-Lange ('07)
Hohlweg-Lange-Thomas ('12)

Hopf
algebra

Cluster
algebras

CHAP.-FOM.-ZEL.'S
ASSOCIAHEDRON

(Pictures by CFZ)

Chapoton-Fomin-Zelevinsky ('02)
Ceballos-Santos-Ziegler ('11)

Cluster
algebras




COMPATIBILITY FAN

Chapoton-Fomin-Zelevinsky, Polytopal realizations of generalized assoc. ('02)
Ceballos-Santos-Ziegler, Many non-equiv. realizations of the assoc. ('11)
Manneville-P., Compatibility fans for graphical nested complexes ('157)



COMPATIBILITY FANS FOR ASSOCIAHEDRA

T° an initial triangulation
9, 0" two internal diagonals

compatibility degree between § and 9"

1 ife=0
(6]16")=<0 if § and & do not cross
1 if 6 and ¢’ cross

(

\
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v

compatibility vector of § wrt T°:
d(T°,8) = |(6°]19)]

geeTe

compatibility fan wrt T°: v
D(T°) ={R>,d(T° D) | D dissection}

Fomin-Zelevinsky, Y-Systems and generalized associahedra ('03)
Fomin-Zelevinsky, Cluster algebras Il: Finite type classification ('03)
Chapoton-Fomin-Zelevinsky, Polytopal realizations of generalized associahedra ('02)
Ceballos-Santos-Ziegler, Many non-equivalent realizations of the associahedron ('11)



COMPATIBILITY FANS FOR ASSOCIAHEDRA

Different initial triangulations T° yield different realizations

7 D0

THM. For any initial triangulation T°, the cones {R>,d(T° D) | D dissection} form a
complete simplicial fan. Moreover, this fan is always polytopal.

Ceballos-Santos-Ziegler, Many non-equivalent realizations of the associahedron ('11)




NS

= O

/7

CHAPOTON-FOMIN-ZELEVINSKY'S ASSOCIAHEDRON



CLUSTER ALGEBRAS

Fomin-Zelevinsky, Cluster Algebras I, 11, I1l, IV ('02-"07)



CLUSTER ALGEBRAS

cluster algebra = commutative ring generated by distinguished cluster variables grouped
into overlapping clusters

clusters computed by a mutation process :

cluster seed = algebraic data {xy,...,z,}, combinatorical data B (matrix or quiver)
cluster mutation = ({:L’l,...,xk Tt B) ({:1:1,...,xﬁf,...,xn},uk(B))
Ty - Ty = H zk 4 H x; Vi
{i ] bir>0} {7 ] bir<0}
(
(1r(B)),; =  bij + |bik| - b;  if k ¢ {i, 5} and by - by > 0
\ bi otherwise

cluster complex = simplicial complex w/ vertices = cluster variables & facets = clusters

Fomin-Zelevinsky, Cluster Algebras I, II, 1ll, IV ('02-"07)



CLUSTER MUTATION

) (3



CLUSTER MUTATION




CLUSTER MUTATION




CLUSTER MUTATION




CLUSTER MUTATION GRAPH

(1 + x3)(1 + z2)

T1X2X3



CLUSTER ALGEBRA FROM TRIANGULATIONS

One constructs a cluster algebra from the triangulations of a polygon:

diagonals S cluster variables
triangulations — clusters
flip I mutation
a a

b&d —> b@d — xy = ac + bd



CLUSTER MUTATION GRAPH
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CLUSTER ALGEBRAS

THM. (Laurent phenomenon)
All cluster variables are Laurent polynomials in the variables of the initial cluster seed.

Fomin-Zelevinsky, Cluster algebras I: Fundations ('02)




CLUSTER ALGEBRAS

THM. (Laurent phenomenon)
All cluster variables are Laurent polynomials in the variables of the initial cluster seed.

Fomin-Zelevinsky, Cluster algebras I: Fundations ('02)

Exm: Conway-Coxeter friezes



CLUSTER ALGEBRAS

THM. (Laurent phenomenon)
All cluster variables are Laurent polynomials in the variables of the initial cluster seed.

Fomin-Zelevinsky, Cluster algebras I: Fundations ('02)

THM. (Classification)
Finite type cluster algebras are classified by the Cartan-Killing classification for crystal-
lographic root systems.

Fomin-Zelevinsky, Cluster algebras Il: Finite type classification ('03)

for a root system ®, and an acyclic initial cluster X = {z1,...,x,}, there is a bijection
. 6
cluster variables of 43 «—— O =dTU-A
F L1y...,T 0
_ (d dn) X} 6:d1()é1+""|‘dn04n
1 n
xl e o o :Cn
o .
cluster of Ag — X-cluster in - _;

o .
cluster complex of Ap +—— X-cluster complex in ®~_;

see a short introduction to finite Coxeter groups




CLUSTER/DENOMINATOR/COMPATIBILITY FAN

THM. & crystallographic root system, X acyclic initial cluster of Ag,
fx : cluster variables of A3 —— almost postive roots &~ ; = T U —A

The collection of cones

{R>g-0(Y) | Y cluster of Ag}

is a complete simplicial fan, called cluster fan, denominator fan, or compatibility fan.
Moreover, this fan is always polytopal.

Chapoton-Fomin-Zelevinsky, Polytopal realizations of generalized associahedra ('02)




THREE FAMILIES OF REALIZATIONS

SECONDARY
POLYTOPE
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Gelfand-Kapranov-Zelevinsky ('94)
Billera-Filliman-Sturmfels ('90)

A—/A
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LODAY'S
ASSOCIAHEDRON

Hohlweg-Lange ('07)
Hohlweg-Lange-Thomas ('12)

Hopf
algebra

Cluster
algebras

CHAP.-FOM.-ZEL.'S
ASSOCIAHEDRON

(Pictures by CFZ)

Chapoton-Fomin-Zelevinsky ('02)
Ceballos-Santos-Ziegler ('11)

Cluster
algebras




LODAY'S ASSOCIAHEDRON

Loday, Realization of the Stasheff polytope ('04)



LODAY'S ASSOCIAHEDRON

Asso(n) = conv {L(T) | T binary tree} = H N ﬂ H-~ (i, j)

1<i<j<n+1
LT = [T 1T gy B ={xeR™ ] Sax (
1<k<j

j—i+42
y

)

Loday, Realization of the Stasheff polytope ('04)

12




LODAY'S ASSOCIAHEDRON

Asso(n) = conv {L(T) | T binary tree} = H N ﬂ H-~ (i, j)

1<i<j<n+1

>z (M)
1<k<j

Loday, Realization of the Stasheff polytope ('04)

L(T) = [(T,3) - (T, )], HE (i j>:{x c R

i€n+1]




LODAY'S ASSOCIAHEDRON

Asso(n) obtained by deleting inequalities in facet description of the permutahedron

normal cone of L(T) in Asso(n) = {x € H | 2; < z; for all i = j in T}
= U,-1¢z(r) normal cone of o in Perm(n)
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LODAY'S ASSOCIAHEDRON



TAMARI LATTICE

Tamari lattice = slope increasing flips on triangulations

slope i j
Increasing
flip

Tamari Festschrift ('12)



TAMARI LATTICE

Tamari lattice = slope increasing flips on triangulations
= right rotations on binary trees

slope i j
Increasing
flip

-

right
rotation

Tamari Festschrift ('12)



TAMARI LATTICE

Tamari lattice = slope increasing flips on triangulations

right rotations on binary trees
= lattice quotient of the weak order by the sylvester congruence

4321 ”””’,,,/1-\\\\\\\\\\
3421 4231 4312 ﬁaﬁ m ;E

3241 2431 3412 4213 4132

3214 2341 3142 2413 4123 1432 ﬁ fﬁ ;}i fgé%
W

2314 3124 2143 1342 1423

2134 1324 1243

1234 gﬁﬁ

Tamari Festschrift ('12)




TAMARI LATTICE

Tamari lattice = slope increasing flips on triangulations

right rotations on binary trees

lattice quotient of the weak order by the sylvester congruence

= orientation of the graph of the associahedron in direction e — w,

Tamari Festschrift ('12)



HOHLWEG-LANGE'S ASSOCIAHEDRON

Loday, Realization of the Stasheff po/ytope

Reading, Cambrian lattices

Reading-Speyer, Cambrian fans

Hohlweg-Lange, Realizations of the associahedron and cyc/ohea’ron
Lange-P., Using spines to revisit a construction of the associahedron



CAMBRIAN TREES AND TRIANGULATIONS

Cambrian trees are dual to triangulations of polygons

vertices above or below [0, 9] —> signature
triangle i < j < k — node j
For any signature ¢, there are C,, = %H(Qg) e-Cambrian trees

Lange-P., Using spines to revisit a construction of the associahedron ('15)



CAMBRIAN TREES

3 6,7
Cambrian tree =
directed and labeled tree such that
i <3 >3
. . I
] \/.]
R :
<J =] ?
Filo N 4l5

Lange-P., Using spines to revisit a construction of the associahedron ('15)




HOHLWEG-LANGE'S ASSOCIAHEDRA

for any ¢ € &, Asso(e) = conv {HL(T) | T e-Cambrian tree}

€<T7])T(T7]) ifg(j):_

with HL(T); = {n +2 =0T, 5)-r(T,j)  ife(j)=+

Hohlweg-Lange, Realizations of the associahedron and cyclohedron ('07)
Lange-P., Using spines to revisit a construction of the associahedron ('15)

67
J(




HOHLWEG-LANGE'S ASSOCIAHEDRA

for any ¢ € &, Asso(e) = conv {HL(T) | T e-Cambrian tree}

€<T7])T<T7]) if&f(j):—

with HL(T); = {n +2 =0T, 5)-r(T,j)  ife(j)=+

Hohlweg-Lange, Realizations of the associahedron and cyclohedron ('07)
Lange-P., Using spines to revisit a construction of the associahedron ('15)

303
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HOHLWEG-LANGE'S ASSOCIAHEDRA

Asso(e) obtained by deleting inequalities in facet description of the permutahedron

normal cone of HL(T) in Asso(n) = {x € H | z; < x; forall i — j in T}
= U,-1¢c(r) normal cone of o in Perm(n)

3,

S
o NS
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TYPE A CAMBRIAN LATTICES

Cambrian lattice = slope increasing flips on triangulations

slope i
increasing i Ao
flip | i)

Reading, Cambrian lattices ('06)



TYPE A CAMBRIAN LATTICES

Cambrian lattice = slope increasing flips on triangulations
= right rotations on Cambrian trees

right
rotation

~

Reading, Cambrian lattices ('06)



TYPE A CAMBRIAN LATTICES

Cambrian lattice

= slope increasing flips on triangulations

= right rotations on Cambrian trees

= lattice quotient of the weak order by the Cambrian congruence

%

4321 P

Reading, Cambrian lattices ('06)



TYPE A CAMBRIAN LATTICES

Cambrian lattice = slope increasing flips on triangulations

right rotations on Cambrian trees

lattice quotient of the weak order by the Cambrian congruence
= orientation of the graph of the associahedron in direction e — w,

3 5 %

Reading, Cambrian lattices ('06)



CAMBRIAN FANS AND GENERALIZED ASSOCIAHEDRA

All this story extends to arbitrary finite Coxeter groups

Reading, Cambrian lattices ('06)
Reading-Speyer, Cambrian fans ('09)
Hohlweg-Lange-Thomas, Permutahedra and generalized associahedra ('11)



CAMBRIAN HOPF ALGEBRAS

Loday-Ronco, Hopf algebra of the planar binary trees ('98)
Chatel-P., Cambrian Hopf Algebras ('157)



SHUFFLE AND CONVOLUTION

For n,n’ € N, consider the set of perms of G,,,, with at most one descent, at position n:

&= {1 € G | (1) < -+ <7(n) and 7(n+1) < - < 7(n +n)}

Forr€ &, and 7 € &,, define

shifted concatenation 77/ = [7(1),...,7(n), 7 (1) +n,...,7'(n') +n| € G,
shifted shuffle product 717" = {(’7'7_'/) o1 ’ T E 6(”’”')} C Gpan
convolution product 7% 7" = {7T o (77" ‘ T e 6(”’”/)} C S,

Exm: 1210231 = {12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312}
12 %231 = {12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231}

5 ] 5 ] 5—

4 I — 4 N

3 N 3 3 u

2— 2@ 2

ATl | bl e T
1 2345 1 2345 1 2345

concatenation shuffle convolution



MALVENUTO-REUTENAUER ALGEBRA

DEF. Combinatorial Hopf Algebra = combinatorial vector space B endowed with
product - : B® B — B
coproduct A : B+ B® B
which are “compatible’, ie.

: JAN
B® B > B »BR B
N 3
BoBoBRB »BRIBRB®B

I Q@ swap ® [

Malvenuto-Reutenauer algebra = Hopf algebra FQSym with basis (IF;),cs and where
F,-F.= » F, and AF,= Y F, oF.

cer ! oeTxT!

Malvenuto-Reutenauer, Duality between quasi-symmetric functions and the Solomon descent algebra ('95)



SIGNED VERSION

For signed permutations:
e signs are attached to values in the shuffle product
e signs are attached to positions in the convolution product

Exm: 12101231 = {12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312},
12 %

5 5 5

4 41— 4

3 3 3

27 P 2 S

1 —P | 1 | 1 —P T
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
concatenation shuffle convolution

FQSym, = Hopf algebra with basis (IF;),cg, and where

F. .-TF, = Z F, and AF, = ZFT@)FT/

cer 7’ oeTxT!




CAMBRIAN ALGEBRA AS SUBALGEBRA OF FQSym

Cambrian algebra = vector subspace Camb of FQSym_ generated by

TeL(T)

for all Cambrian trees T.

Exm: F = Foumsis + Forrmsas + Forzsass + Forzsus + Forisas
%ﬁl + Fozsizus + Frouzsas + Frs366 + Frosizas + Fosoisas

THEO. Camb is a subalgebra of FQSym__

(98)
Hivert-Novelli-Thibon, The algebra of binary search trees ('05)
Chatel-P., Cambrian Hopf Algebras ('15™)

Loday-Ronco, Hopf algebra of the planar binary trees ('9
0

GAME: Explain the product and coproduct directly on the Cambrian trees...



PRODUCT IN CAMBRIAN ALGEBRA

IP# PM = Fi5- (Fg5 + Fog)
F s + Frises
12325 1352
Fy5235 + Fioss + Fimss Fo 4 e Fo ot T oo
_ oo 4 Fo 4 Foe + 47539 1+ 31395 13195 T I'13159
= | + Mya953 + Fygss + faass | + oo o + B 4 oo
Fo 4+ oo 4 Foe o + 71353 + 71532 + 73513 + 35312
+ 7953 + 31593 + fa5193 4 Fos
15132

PROP. For any Cambrian trees T and T,

IPT.IPT,ZZIPS
S

where S runs over the interval [T AT TR T’} in the (T)e(T")-Cambrian lattice

Chatel-P., Cambrian Hopf Algebras ('157)



COPRODUCT IN CAMBRIAN ALGEBRA

AP M = A(Fy3+ Fgg)

:1®<F§1§—|—F2—l)—|— ]FT(X)]FlQ + ]FT®]F§l + Fﬂ@FT + FE@)FL —I—(F§§—I—F§l>®1
= 1® ﬂ}g —|-IP)¥®P%+P¥®P%+P%®P¥+P${®PA+ Pﬂ};@l
= 1@]?@ + P¥®(PA.P¥) +P%®P¥+P$!®PA+ ]Pf#@l.

PROP. For any Cambrian tree S,

wr= (] pT) (I pT/)

vy TeB(S,y) T'eA(S,y)

where ~ runs over all cuts of S, and A(S,~)

and B(S,~) denote the Cambrian forests above

and below ~ respectively

|

Chatel-P., Cambrian Hopf Algebras ('15T)



COPRODUCT IN CAMBRIAN ALGEBRA

|
®
s

1+P‘ IP>__+]P’_ P, +P, ]P’_HP_ P+ P 311
M ¥®ﬁ%! ¥®% %®¥ $®A M@)
1®]P>M + IP¥®(IP’A-IP’¥) +IP’%®]P’¥+P$®IP’A+ Pﬁ#(@l'

PROP. For any Cambrian tree S,

wr= (] pT) (I pT/)

vy TeB(S,y) T'eA(S,y)

where v runs over all cuts of S, and A(S,7)
and B(S,~) denote the Cambrian forests above

and below ~ respectively

Chatel-P., Cambrian Hopf Algebras ('15T)



THREE FAMILIES OF REALIZATIONS

SECONDARY
POLYTOPE
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Gelfand-Kapranov-Zelevinsky ('94)
Billera-Filliman-Sturmfels ('90)

A—/A
AT

LODAY'S
ASSOCIAHEDRON

Hohlweg-Lange ('07)
Hohlweg-Lange-Thomas ('12)

Hopf
algebra

Cluster
algebras

CHAP.-FOM.-ZEL.'S
ASSOCIAHEDRON

(Pictures by CFZ)

Chapoton-Fomin-Zelevinsky ('02)
Ceballos-Santos-Ziegler ('11)

Cluster
algebras




SECONDARY FAN & POLYTOPE

Gelfand-Kapranov-Zelevinsky,
Discriminants, resultants, and multidimensional determinants ('94)

De Loera-Rambau-Santos, Triangulations ('10)



REGULAR SUBDIVISIONS

P point set in R?
Regular subdivision of P = projection of the lower envelope of a lifting of P

/./m'

for a lifting function w: P — R
S(P,w) = projection of the lower envelope of {(p,w(p)) ’ p € P}




REGULAR SUBDIVISIONS

P point set in R?
Regular subdivision of P = projection of the lower envelope of a lifting of P

/./"

for a lifting function w: P — R
S(P,w) = projection of the lower envelope of {(p,w(p)) ’ p € P}




REGULAR SUBDIVISIONS

P point set in R?
Regular subdivision of P = projection of the lower envelope of a lifting of P

/./"

for a lifting function w: P — R
S(P,w) = projection of the lower envelope of {(p,w(p)) ’ p € P}




NON-REGULAR SUBDIVISIONS

P point set in R?
Regular subdivision of P = projection of the lower envelope of a lifting of P




NON-REGULAR SUBDIVISIONS

P point set in R?
Regular subdivision of P = projection of the lower envelope of a lifting of P

Uu Uu

if regular, 3 u,v,w € Rsuchthatu <v<w<u



REGULAR SUBDIVISIONS REFINEMENT LATTICE

P point set in R?
Regular subdivision of P = projection of the lower envelope of a lifting of P

EARNYING %
Presd
NNy NG PY
\[1/



SECONDARY FAN

P point set in R?, S subdivision of P
Secondary cone of S = C(S) = {w c RF ’ S refines S(P,w)}
Secondary fan of P = YFan(P) = {C(S) ‘ S subdivision of P}

Gelfand-Kapranov-Zelevinsky, Discriminants, resultants, and multidimensional determinants ('94)



SECONDARY POLYTOPE

P point set in R?, T triangulation of P

Volume vector of T = ®(T) = ( > vom))
pEP

peAET
Secondary polytope of P = YPoly(P) = conv {(ID ‘ T triangulation of P}

%4

]
- ]

1 ]

Gelfand-Kapranov-Zelevinsky, Discriminants, resultants, and multidimensional determinants ('94)
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SECONDARY FAN & POLYTOPE

Secondary fan of P = YFan(P) = {C(S) ‘ S subdivision of P}
Secondary polytope of P = > Poly(P) = conv {CI)(T) ‘ T triangulation of P}

THM. e dimension of YXPoly(P) = |P| —d —1
e Y Fan(P) is the inner normal fan of ¥Poly(P)
e face lattice of Y Poly(P) =

Gelfand-Kapranov-Zelevinsky, Discriminants, resultants, and multidimensional determinants ('94)
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SECONDARY POLYTOPE
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HIGH DIMENSIONAL FLIP GRAPHS

Triangulation of P C R? = well-behaved cover of conv(P) with simplices

Bistellar flip = { conv(X \ {x}) ’ xe Xt +—  {conv(X N {x}) ‘ x € X"}
where |X| =d + 2 and X = X" U X~ Radon partition of X

A AP

CORO. The graph of bistellar flips on regular triangulations of P is connected for any P.




HIGH DIMENSIONAL FLIP GRAPHS

Triangulation of P C R? = well-behaved cover of conv(P) with simplices

Bistellar flip = { conv(X \ {x}) ’ xe Xt +—  {conv(X N {x}) ‘ x € X"}
where |X| =d + 2 and X = X" U X~ Radon partition of X

CORO. The graph of bistellar flips on regular triangulations of P is connected for any P.

THEO. The graph of bistellar flips on all triangulations of P is not always connected.

Santos, A point set whose space of triangulations is disconnected ('00)




BACK TO THE ASSOCIAHEDRON

All dissections of a 2-dimensional convex point P set are regular

CORO. Y Poly(P) is an associahedron







THREE FAMILIES OF REALIZATIONS

SECONDARY
POLYTOPE

L~
A NP
NN
/ Y ek

—~——
\V
Gelfand-Kapranov-Zelevinsky ('94)
Billera-Filliman-Sturmfels ('90)

A—/A
AT

LODAY'S
ASSOCIAHEDRON

Hohlweg-Lange ('07)
Hohlweg-Lange-Thomas ('12)

Hopf
algebra

Cluster
algebras

CHAP.-FOM.-ZEL.'S
ASSOCIAHEDRON

(Pictures by CFZ)

Chapoton-Fomin-Zelevinsky ('02)
Ceballos-Santos-Ziegler ('11)

Cluster
algebras




Il. GRAPH ASSOCIAHEDRA




GRAPHICAL NESTED COMPLEX

Carr-Devadoss, Coxeter complexes and graph associahedra ('06)
Postnikov, Permutohedra, associahedra, and beyond ('09)
Zelevinsky, Nested complexes and their polyhedral realizations ('06)



NESTED COMPLEX AND GRAPH ASSOCIAHEDRON

G graph on ground set V

Tube of G = connected induced subgraph of G

Compatible tubes = nested, or disjoint and non-adjacent
Tubing on G = collection of pairwise compatible tubes of G

1 2 3)  (@——2 D)

4 5] )
\\J
| A <
QJ\ 9)
Nested complex NV (G) = simplicial complex of tubings on G
= clique complex of the compatibility relation on tubes

\
a

7
d

(G-associahedron = polytopal realization of the nested complex on G

Carr-Devadoss, Coxeter complexes and graph associahedra ('06)









SPECIAL GRAPH ASSOCIAHEDRA

path associahedron = associahedron



SPECIAL GRAPH ASSOCIAHEDRA




SPECIAL GRAPH ASSOCIAHEDRA

complete graph associahedron = permutahedron



SPECIAL GRAPH ASSOCIAHEDRA

secondary polytope of dilated simplices

r associahedron



LINEAR LAURENT PHENOMENON ALGEBRAS

Laurent Phenomenon Algebra = commut. ring gen. by cluster variables grouped in clusters

seed = pair (x, F) where
e x = {x1,...,x,} cluster variables
o F ={Fy,..., F,} exchange polynomials

seed mutation = (x, F) — p;(x, F) = (x', F’) where
o1 = Fz/azZ while x; =x; for j #1
e I/ obtained from F} by eliminating z;

THM. Every cluster variable in a LP algebra is a Laurent polynomial in the cluster

variables of any seed.
Lam-Pylyavskyy, Laurent Phenomenon Algebras ('12)

Connection to graph associahedra: Any (directed) graph G defines a linear LP algebra
whose cluster complex contains the nested complex of G

Lam-Pylyavskyy, Linear Laurent Phenomenon Algebras ('12)



COMPATIBILITY FANS
FOR GRAPHICAL NESTED COMPLEXES

Manneville-P., arXiv:1501.07152


http://arxiv.org/abs/1501.07152

COMPATIBILITY FANS FOR ASSOCIAHEDRA

T° an initial triangulation
9, 0" two internal diagonals

compatibility degree between § and 9"

1 ife=0
(6]16")=<0 if § and & do not cross
1 if 6 and ¢’ cross

(

\

A
v

compatibility vector of § wrt T°:
d(T°,8) = |(6°]19)]

geeTe

compatibility fan wrt T°: v
D(T°) ={R>,d(T° D) | D dissection}

Fomin-Zelevinsky, Y-Systems and generalized associahedra ('03)
Fomin-Zelevinsky, Cluster algebras Il: Finite type classification ('03)
Chapoton-Fomin-Zelevinsky, Polytopal realizations of generalized associahedra ('02)
Ceballos-Santos-Ziegler, Many non-equivalent realizations of the associahedron ('11)



COMPATIBILITY FANS FOR ASSOCIAHEDRA

Different initial triangulations T° yield different realizations

7 D0

THM. For any initial triangulation T°, the cones {R>,d(T° D) | D dissection} form a
complete simplicial fan. Moreover, this fan is always polytopal.

Ceballos-Santos-Ziegler, Many non-equivalent realizations of the associahedron ('11)




COMPATIBILITY FANS FOR GRAPHICAL NESTED COMPLEXES

T° an initial maximal tubing on G *@* o@-o) o(o0)
t,t’ two tubes of G
compatibility degree between t and t’ GOY *«(+®
(—1 if £ =t/ (=)o -
(t]t) =<0 if t,t' are compatible
_[{neighbors of t in t' \ t}| otherwise @oe @ ®

compatibility vector of t wrt T°:

d(T°t) = [(°] )] oo @. @ g @ @

THM. For any initial maximal tubing T° on G, @
the collection of cones @
D(G,T°) = {R=od(T°, T) | T tubing on G} W « . '?@

forms a complete simplicial fan, called com-
patibility fan of G. @ @

Manneville-P., Compatibility fans for graphical nested complexes @




COMPATIBILITY FANS FOR GRAPHICAL NESTED COMPLEXES

THM. {R>od(T°,T) | T tubing on G} forms a complete simplicial fan for any T°.

Manneville-P., Compatibility fans for graphical nested complexes ('15")

° v

Cyclohedron Permutahedron




GRAPH CATALAN MANY SIMPLICIAL FAN REALIZATIONS

THM. When none of the connected components of G is a spider,

# linear isomorphism classes of compatibility fans of G
= # orbits of maximal tubings on G under graph automorphisms of G.

Manneville-P., Compatibility fans for graphical nested complexes ('15T)




POLYTOPALITY?

QU. Are all compatibility fans polytopal?




POLYTOPALITY?

QU. Are all compatibility fans polytopal?

Polytopality of a complete simplicial fan <= Feasibility of a linear program

Exm: We check that the compatibility fan on the complete graph K- is polytopal by
solving a linear program on 126 variables and 17 640 inequalities



POLYTOPALITY?

QU. Are all compatibility fans polytopal?

Polytopality of a complete simplicial fan <= Feasibility of a linear program

Exm: We check that the compatibility fan on the complete graph K- is polytopal by
solving a linear program on 126 variables and 17 640 inequalities

— All compatibility fans on complete graphs of < 7 vertices are polytopal...
— All compatibility fans on graphs of < 4 vertices are polytopal...



POLYTOPALITY?

QU. Are all compatibility fans polytopal?

Polytopality of a complete simplicial fan <= Feasibility of a linear program

Exm: We check that the compatibility fan on the complete graph K- is polytopal by
solving a linear program on 126 variables and 17 640 inequalities

— All compatibility fans on complete graphs of < 7 vertices are polytopal...
— All compatibility fans on graphs of < 4 vertices are polytopal...

To go further, we need to understand better the linear dependences between the compat-
ibility vectors of the tubes involved in a flip

THM. All compatibility fans on the paths and cycles are polytopal

Ceballos-Santos-Ziegler, Many non-equivalent realizations of the associahedron ('11)
Manneville-P., Compatibility fans for graphical nested complexes ('15T)




POLYTOPALITY?

polytopal?
of the stellohedra

QU. Are all compatibility fans

Remarkable realizations
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POLYTOPALITY?

QU. Are all compatibility fans polytopal?

Remarkable realizations of the stellohedra

GBS

(s SN N e
EONVE

Convex hull of the orbits under coordinate permutations of theset { 3", ie; ’ 0<k<n}



SIGNED TREE ASSOCIAHEDRA

arXiv:1309,5222


http://arxiv.org/abs/1309.5222

LODAY'S ASSOCIAHEDRON

Asso(n) := conv{L(T) | T binary tree} = H N ﬂ Hz(i,j)

1<i<j<n+l1

Z 5> (] —z+2)}
— 2
1<k<j

Loday, Realization of the Stasheff polytope ('04)

e

H=(i, )= {x c R"*!

AR LVREAN AL

e Asso(n) obtained by deleting inequalities in the facet description of the permutahedron
e normal cone of L(T) in Asso(n) = {x € H | z; < z; for all i = j in T}
= Uyer(r) normal cone of o in Perm(n)



SPINES

spine of a tubing T = Hasse diagram of the inclusion poset of T

O——0) ?
| 4
A 5 J; 6/|7\8
N/ | |
2 9
N\
tube t of the tubing T —  node s(t) of the spine S labeled
by t U {t' |t/ € T, ¥/ Tt}
tube t(s)= J{¢ | ¢ <sinS} <+ node s of the spine S

of the tubing T

S spine on G <= for each node s of S with children s; .. .s;, the tubes t(sy). .. t(sg)
lie in distinct connected components of G[t(s) N s]




SPINES

spine of a tubing T = Hasse diagram of the inclusion poset of T

D 9 ) >

/ ol 24|16
A <5 U Y g
\J\\—@

tube t of the tubing T —  node s(t) of the spine S labeled
by t U {t' |t/ € T, ¥/ Tt}

09

tube t(s)= J{¢ | ¢ <sinS} <+ node s of the spine S
of the tubing T

S spine on G <= for each node s of S with children s; .. .s;, the tubes t(sy). .. t(sg)
lie in distinct connected components of G[t(s) N s]




NESTED FANS AND GRAPH ASSOCIAHEDRA

THM. The collection of cones { {x € H | z; < z; for all i — j in T} } T tubing on G}
forms a complete simplicial fan, called the nested fan of G. This fan is always polytopal.
Carr-Devadoss, Coxeter complexes and graph associahedra ('06)

Postnikov, Permutohedra, associahedra, and beyond ('09)
Zelevinsky, Nested complexes and their polyhedral realizations ('06)




HOHLWEG-LANGE'S ASSOCIAHEDRA
3 6,7

for an arbitrary signature ¢ € £""1,

Asso(e) == conv {HL(T) | T e-Cambrian tree}

€<T7])T(T>]) ifg(j):—

with HL(T); = {n +2— (T, ) -r(T,5)  ife(j) =+

“'L‘
[

Hohlweg-Lange, Realizations of the associahedron and cyclohedron ('07)

Lange-P., Using spines to revisit a construction of the associahedron ('15)

3, s

<
T 303 DN “ ‘ Y
S >/ \
Rule for Cambrian trees ”51”52333 \/\ ‘2/‘

e Asso(n) obtained by deleting inequalities in the facet description of the permutahedron
e normal cone of HL(T) in Asso(e) = {x € H | 2; < z; for all i = j in T}



SIGNED SPINES ON SIGNED TREES

T tree on the signed ground set V =V~ LU V' (negative in white, positive in black)

Signed spine on T = directed and labeled tree S st
(i) the labels of the nodes of S form a partition of the signed ground set V

(i) at a node of S labeled by U = U~ULIU™, the source label sets of the different incoming
arcs are subsets of distinct connected components of T\. U™, while the sink label sets
of the different outgoing arcs are subsets of distinct connected components of T\ U™




SPINE COMPLEX

Signed spine complex S(T) = simplicial complex whose inclusion poset is isomorphic to

the poset of edge contractions on the signed spines of T

&=

C—0=06=0)
N\

8)
%
2

(D

e

o=
68

&=
@»@/»@»@
g=o
S

S
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SPINE FAN

For S spine on T, define C(S) = {x e H | 2, < z,, for all arcs u — v in S}

L @

THEO. The collection of cones F(T):= {C(S) | S € S(T)} defines a complete simplicial
fan on H, which we call the spine fan

P., Signed tree associahedra ('137)




SIGNED TREE ASSOCIAHEDRON

Signed tree associahedron Asso(T) = convex polytope with

(i) a vertex a(S) € RY for each maximal signed spine S € S(T), with coordinates

) |{7T€H(S)|v€7randm¢7r}} if ve V™
a(sS), =
\V|+1—‘{7T€H(S)\vaand’rvgéﬂ}‘ if v e V"

where r, = unique incoming (resp. outgoing) arc when v € V™~ (resp. when v € V™)
I1(S) = set of all (undirected) paths in S, including the trivial paths

(i) a facet defined by the half-space

H=(B)= {x cRY

(7))

veED
for each signed building block B € B(T)



EXM: VERTEX DESCRIPTION

&AJQA?Z

O <@ <D<
@<=
<=o0<=<®
OO0 @ <o)< @\@
=) S @4
) — \ <= S,
(&)
O 0<=a<® —, o) i
< G



EXM: FACET DESCRIPTION




MAIN RESULT

THM. The spine fan F(T) is the normal fan of the signed tree associahedron Asso(T),
defined equivalently as

(i) the convex hull of the points
a(g)v{]{WEH(S)Mewandmgéw}] if ve V-
Vi+1—|{rellS)|verandr, ¢ x}| ifveV'
for all maximal signed spines S € S(T)
(i) the intersection of the hyperplane H with the half-spaces

(")

veB

H-=(B) = {x cRY

for all signed building blocks B € B(T)

P., Signed tree associahedra ('137)

CORO. The signed tree associahedron Asso(T) realizes the signed nested complex NV (T)




SKETCH OF THE PROOF

STEP 1. We have
V] +1 B sc(r)| + 1
EEV a(S ( and E a(S), = )

for any arc r of S. In other words, “each vertex a(S) belongs to the hyperplanes H=(B)
it is supposed to". Proof by double counting




SKETCH OF THE PROOF

STEP 1. We have
V] +1 B sc(r)| + 1
EEV a(S ( and E a(S), = )

for any arc r of S. In other words, “each vertex a(S) belongs to the hyperplanes H=(B)
it is supposed to". Proof by double counting

STEP 2. If S and S’ are two adjacent maximal spines on T, such that S’ is obtained
from S by flipping an arc joining node u to node v, then

a(S") —a(S) e Rug- (e, — ¢,)

—U~ 0 —U~
O !
% T % ;\D@ T &
A2 =

a(S') —aS) = (|U[+1)- (V] +1) - (en =€)




SKETCH OF THE PROOF

STEP 1. We have
V] +1 B sc(r)| + 1
EEV a(S ( and E a(S), = )

for any arc r of S. In other words, “each vertex a(S) belongs to the hyperplanes H=(B)
it is supposed to". Proof by double counting

STEP 2. If S and S’ are two adjacent maximal spines on T, such that S’ is obtained
from S by flipping an arc joining node u to node v, then

a(S") —a(S) € Rug- (e, — €y)

STEP 3. A general theorem concerning realizations of simplicial fan by polytopes
In other words, a characterization of when is a simplicial fan regular

Hohlweg-Lange-Thomas, Permutahedra and generalized associahedra ('11)
De Loera-Rambau-Santos, Triangulations: Structures for Algorithms and Applications ('10)




FURTHER GEOMETRIC PROPERTIES

PROP. The signed tree associahedron Asso(T) is sandwiched between the permutahe-
dron Perm(V) and the parallelepiped Para(T)

Z ey, e, =Perm(T) C  Asso(T) < Para(T) = Z m(u — v)- ey, e

u#veV u—eT




FURTHER GEOMETRIC PROPERTIES

PROP. The signed tree associahedron Asso(T) is sandwiched between the permutahe-
dron Perm(V) and the parallelepiped Para(T)

Y lewe] =Perm(T) C  Asso(T) C  Para(T) = » wlu— v)-[e,.c)
u#AveV w—veT

Common vertices of Asso(T) and Para(T) = orientations of T which are spines on T
Common vertices of Asso(T) and Perm(T) = linear orders on V which are spines on T
= no common vertex of the three polytopes except if T is a signed path




FURTHER GEOMETRIC PROPERTIES

PROP. The signed tree associahedron Asso(T) is sandwiched between the permutahe-
dron Perm(V) and the parallelepiped Para(T)

Y lewe] =Perm(T) C  Asso(T) C  Para(T) = » wlu— v)-[e,.c)
u#AveV u—veT

Common vertices of Asso(T) and Para(T) = orientations of T which are spines on T
Common vertices of Asso(T) and Perm(T) = linear orders on V which are spines on T
= no common vertex of the three polytopes except if T is a signed path

PROP. Asso(T) and Asso('T") isometric <= T and T’ isomorphic or anti-isomorphic,
up to the sign of their leaves, ie. 3 bijection 6 : V — V' st. Yu,v € V

e u—vedgeinT < 0O(u)—0(v) edge in T’

e if u is not a leaf of T, the signs of u and 6(u) coincide (resp. are opposite)




GRAPH PROPERTIES OF GRAPH ASSOCIAHEDRA

Manneville-P., Graph properties of graph associahedra (SLC'15)



GRAPH PROPERTIES OF GRAPH ASSOCIAHEDRA

THM. The diameter §(Asso(G)) of the skeleton of the graph associahedron
e is non-decreasing: G C G' = §(Asso(G)) < d(Asso(G'))

e satisfies the non-leaving-face property (all geodesics between two vertices of a
face F' of Asso(G) stay in F)

e is bounded by max(e, 2n — 18) < §(Asso(G)) < (n ; 1)

Sleator-Tarjan-Thurston, Rotation distance, triangulations, and hyperbolic geometry ('88)
Pournin, The diameter of associahedra ('14)
Manneville-P., Graph properties of graph associahedra (SLC'15)




GRAPH PROPERTIES OF GRAPH ASSOCIAHEDRA

1. the graph of the permutahedron is Hamiltonian

<:(123)--(132)--(312)--(321)--(231)--(213;:>

|

<<1234) N

- (41

23)

1324)-

(4132)--

/7~ N\ /7~ N\

- (3214) -

\_/

- (3124)-

(4312) -

\_/

(4321)--

(2314)-

(4231)--

\_/

(2134)>

13) -

(4213) -

Trotter, Algorithm 115: Perm. Commun. ACM ('62)
Johnson, Generation of permutations by adjacent transposition ('63)

Steinhaus, One hundred problems in elementary mathematics ('64)



GRAPH PROPERTIES OF GRAPH ASSOCIAHEDRA

1. the graph of the permutahedron is Hamiltonian

Trotter, Algorithm 115: Perm. Commun. ACM ('62)
Johnson, Generation of permutations by adjacent transposition ('63)
Steinhaus, One hundred problems in elementary mathematics ('64)

2. the graph of the associahedron is Hamiltonian

Lucas, The rotation graph of binary trees is Hamiltonian ('87)
Hurtado-Noy, Graph of triangulations of a convex polygon and tree of triangulations ('99)
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CONSTRUCTING AN HAMILTONIAN CIRCUIT...

THM. When G has at least 2 edges, the skeleton of Asso(G) is Hamiltonian.
Manneville-P., Graph properties of graph associahedra (SLC'15)
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BRICK POLYTOPES




THREE GEOMETRIC FAMILIES




THREE GEOMETRIC FAMILIES

Triangulations Pseudotriangulations Multitriangulations

T~

triangulation = maximal crossing-free set of edges

pseudotriangulation = maximal crossing-free pointed set of edges

k-triangulation = maximal (k 4 1)-crossing-free set of edges

Pocchiola-Vegter, Topologically sweeping visibility complexes via pseudotriangulations ('96)
Capoyleas-Pach, A Turdn-type theorem on chords of a convex polygon ('92)



RELEVANT EDGES

Triangulations Pseudotriangulations Multitriangulations

triangulation = maximal crossing-free set of edges

pseudotriangulation = maximal crossing-free pointed set of edges

k-triangulation = maximal (k 4 1)-crossing-free set of edges

Pocchiola-Vegter, Topologically sweeping visibility complexes via pseudotriangulations ('96)
Capoyleas-Pach, A Turdn-type theorem on chords of a convex polygon ('92)



TRIANGLES — PSEUDOTRIANGLES - STARS

Triangulations Pseudotriangulations Multitriangulations

T~

triangulation = maximal crossing-free set of edges
= decomposition into triangles

pseudotriangulation = maximal crossing-free pointed set of edges
= decomposition into pseudotriangles

k-triangulation = maximal (k 4 1)-crossing-free set of edges
= decomposition into k-stars

Pocchiola-Vegter, Topologically sweeping visibility complexes via pseudotriangulations ('96)
P.-Santos, Multitriangulations as complexes of star polygons ('09)
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Triangulations Pseudotriangulations Multitriangulations

T~

triangulation = maximal crossing-free set of edges
= decomposition into triangles

pseudotriangulation = maximal crossing-free pointed set of edges
= decomposition into pseudotriangles

k-triangulation = maximal (k 4 1)-crossing-free set of edges
= decomposition into k-stars

Pocchiola-Vegter, Topologically sweeping visibility complexes via pseudotriangulations ('96)
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TRIANGLES - PSEUDOTRIANGLES - STARS

Triangulations Pseudotriangulations Multitriangulations

r

triangulation = maximal crossing-free set of edges
= decomposition into triangles

pseudotriangulation = maximal crossing-free pointed set of edges
= decomposition into pseudotriangles

k-triangulation = maximal (k 4 1)-crossing-free set of edges
= decomposition into k-stars

Pocchiola-Vegter, Topologically sweeping visibility complexes via pseudotriangulations ('96)
P.-Santos, Multitriangulations as complexes of star polygons ('09)



FLIPS

Triangulations Pseudotriangulations Multitriangulations

T~

flip = exchange an internal edge with the common bisector of the two adjacent cells
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FLIPS

Triangulations Pseudotriangulations Multitriangulations

flip = exchange an internal edge with the common bisector of the two adjacent cells




FLIPS

Triangulations Pseudotriangulations Multitriangulations

flip = exchange an internal edge with the common bisector of the two adjacent cells




THREE GEOMETRIC STRUCTURES

Triangulations Pseudotriangulations Multitriangulations
- /
@\@/ / (!%&
/TN V
<~ ‘Q\\\ / / =

associahedron <—  crossing-free sets of internal edges

pseudotriangulations polytope <+—  pointed crossing-free sets of internal edges
multiassociahedron <—  (k + 1)-crossing-free sets of k-internal edges

Rote-Santos-Streinu, Expansive motions and the polytope of pointed pseudo-triangulations ('03)



DUALITY

P.-Pocchiola, Multitriang., pseudotriang. and primitive sorting networks ('12)
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P.-Pocchiola, Multitriangulations, pseudotriangulations and primitive sorting networks ('12)
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P.-Pocchiola, Multitriangulations, pseudotriangulations and primitive sorting networks ('12)
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Triangulations Pseudotriangulations Multitriangulations
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P.-Pocchiola, Multitriangulations, pseudotriangulations and primitive sorting networks ('12)



SORTING NETWORKS
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PSEUDOLINE ARRANGEMENTS
ON SORTING NETWORKS




SORTING NETWORKS

Bubble sort Insertion sort Even-odd sort

Knuth, The art of Computer Programming, Vol. 3 — Sorting and Searching ('97)



NETWORKS & PSEUDOLINE ARRANGEMENTS

network NV = n horizontal levels and m vertical commutators.

bricks of N' = bounded cells.




NETWORKS & PSEUDOLINE ARRANGEMENTS

network NV = n horizontal levels and m vertical commutators.

bricks of N' = bounded cells.

pseudoline = x-monotone path which starts at a level [ and ends at the level n+1 —1.

crossing = II contact = ‘

pseudoline arrangement (with contacts) = n pseudolines supported by A" which have
pairwise exactly one crossing, eventually some contacts, and no other intersection.




CONTACT GRAPH OF A PSEUDOLINE ARRANGEMENT

Contact graph A* of a pseudoline arrangement A =

e a node for each pseudoline of A, and
e an arc for each contact point of A oriented from top to bottom.

Root configuration of A = R(A) = {ei — € ‘ i —]J € A#}

¢
@

5 ®




FLIPS

flip = exchange a contact with the corresponding crossing.

THM. Let NV be a sorting network with n levels and m commutators. The graph of flips
G(N) is (m — (”))—regular and connected.

2

QUESTION. Is G(N) the graph of a simple (m — (;‘))-dimensional polytope?




BRICK POLYTOPE

P.-Santos, The brick polytope of a sorting network ('12)
P.-Stump, Brick polytopes of spherical subword complexes & gen. assoc. ('15)



BRICK POLYTOPE

N a sorting network with n + 1 levels and m commutators

P.-Santos, The brick polytope of a sorting network ('12)



BRICK POLYTOPE

N a sorting network with n + 1 levels and m commutators

A pseudoline arrangement supported by A©  ——  brick vector B(A) € R"*!

P.-Santos, The brick polytope of a sorting network ('12)
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A pseudoline arrangement supported by A©  ——  brick vector B(A) € R"*!
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P.-Santos, The brick polytope of a sorting network ('12)
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BRICK POLYTOPE
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A pseudoline arrangement supported by A©  ——  brick vector B(A) € R"*!
B(A); = number of bricks of A/ below the jth pseudoline of A
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BRICK POLYTOPE

N a sorting network with n + 1 levels and m commutators

A pseudoline arrangement supported by A©  ——  brick vector B(A) € R"*!
B(A); = number of bricks of A/ below the jth pseudoline of A

Brick polytope B(N') = conv {B(A) | A pseudoline arrangement supported by N}

P.-Santos, The brick polytope of a sorting network ('12)



BRICK POLYTOPE

{479} (3,7,3,5) {467} 3726

{279} 3,6,3,6) {267} (3,6,2,7)
{349} (1,7,5,5) B({2,5,6})=(2,6,2,8)

B({3,4,5})=(1,7.3,7) B({2,3,5})=(1,6,3,)



BRICK VECTORS AND FLIPS

If A and A\’ are two pseudoline arrangements supported by A/ and related by a flip between
their 7th and jth pseudolines, then B(A) — B(A\') € Nog (e; — €;).

THM. The cone of the brick polytope B(N') at the brick vector B(A) is the incidence
cone of the contact graph of A:

cone {B(A) — B(A) | A’ supported by N'} = cone {¢; — ¢

i —je N}




COMBINATORIAL DESCRIPTION

THM. The cone of the brick polytope B(N') at the brick vector B(A) is the incidence
cone of the contact graph of A:

cone {B(A") — B(A) | A’ supported by N'} = cone {e; —¢;

i —j €A}

VERTICES OF B(N)
The brick vector B(A) is a vertex of B(N) <= the contact graph A* is acyclic.

GRAPH OF B(N)
The graph of the brick polytope is a subgraph of the flip graph whose vertices are the
pseudoline arrangements with acyclic contact graphs.

FACETS OF B(N)
The facets of B(N) correspond to the minimal directed cuts of the contact graphs of
the pseudoline arrangements supported by N.

P.-Santos, The brick polytope of a sorting network ('12)



NORMAL FAN

THM. The Coxeter fan refines the normal fan of the brick polytope. More precisely,
normal cone of B(A) in B(N) = U o(fundamental cone)

oce6,
R(A)Co(27F)




MINKOWSKI SUM

THM. Bi(A) = characteristic vector of pseudolines of A passing above the kth brick
B(N, k) = conv {B(A) | A pseudoline arrangement supported by N}

B(Q) = convy B(A) = convAz B.(A convy B.(A) = Zk BN,k

)

=\ /4 +




DUPLICATED NETWORKS AND ZONOTOPES

Duplicated network N = duplicate the commutators corresp. to G in a reduced network

Any pseudoline arrangement supported by Nq has one contact and one crossing among
each pair of duplicated commutators. Therefore

pseudoline arrangements on Ng orientation of G

vertices of B(Ng)
B(NG)

acyclic orientations of G
graphical zonotope of G = Z e, e
1—1€G
graphical hyperplane arrangement of G
= hyp. {xeR"|x;=x;} fori—5€G

I 111

normal fan of Ng



COXETER BRICK POLYTOPES

All this story extends to arbitrary finite Coxeter groups

P.-Stump, Brick polytopes of spherical subword complexes & gen. assoc. ('15)



TWISTS




k-TWISTS

k=2 k=3

trapezoidal shape of height n and width k



k-TWISTS

ﬁ\
SRRRE

(k,n)-twist = pipe dream in the trapezoidal shape of height n and width k

Bergeron-Billey. RC-graphs and Schubert polynomials. 1993
Knutson-Miller. Grébner geometry of Schubert polynomials. 2005



k-TWISTS

1 3 4 5 1 3 4 5 1 3 4 5 1 3 4 5
y y o S S

J ( / = / =

I J ) L f,_,r__J

L f b, ('__J
w,

12345 1 Ty Ly b % i m
AL P, A

k=0 k=1 k=2 k=3

(k,n)-twist = pipe dream in the trapezoidal shape of height n and width k
contact graph of a twist T = vertices are pipes of T and arcs are elbows of T



I-TWISTS AND TRIANGULATIONS

Correspondence

elbow in row i and column 57 +—  diagonal |7, j] of the (n + 2)-gon
(1, n)-twist T <— triangulation T* of the (n + 2)-gon
pth relevant pipe of T — pth triangle of T*
contact graph of T — dual binary tree of T*
elbow flips in T T diagonal flips in T*
1 345
> 0 6
_J /4\
o 1 5

/\ 7\
1 3

7 N\ 7 N\ 3

Woo. Catalan numbers and Schubert Polynomials for w = 1(n+ 1) ...2. Unpub 2004
P.—Pocchiola. Multitriangulations, pseudotriangulations and primitive sorting networks. 2012



I-TWISTS AND TRIANGULATIONS

Correspondence

elbow in row i and column 57 +—  diagonal |7, j] of the (n + 2)-gon
(1, n)-twist T <— triangulation T* of the (n + 2)-gon
pth relevant pipe of T — pth triangle of T*
contact graph of T — dual binary tree of T*
elbow flips in T T diagonal flips in T*
1 345
> 0 6
1 \4 1 5
/N / \
3 5 A
/N /N 3

Woo. Catalan numbers and Schubert Polynomials for w = 1(n+1)...2. Unpub 2004
P.—Pocchiola. Multitriangulations, pseudotriangulations and primitive sorting networks. 2012



E-TWISTS AND k-TRIANGULATIONS

Correspondence
elbow in row i and column j <+— diagonal |7, j| of the (n + 2k)-gon
(k,n)-twist T +— k-triangulation T* of the (n + 2k)-gon
pth relevant pipe of T — pth k-star of T*
contact graph of T — dual graph of T*
elbow flips in T T diagonal flips in T*
J

P.—Pocchiola. Multitriangulations, pseudotriangulations and primitive sorting networks. 2012



BRICK POLYTOPES OF TWISTS

L

k=1

/2134
34

permutahedron Perm(n) brick polytope Brick®(n) zonotope Zono"(n)
conv(S,,11) conv {B(A) | A (k,n)-twist} > e, e
[i—jl<k

k = 1 gives Loday's associahedron!!




BRICK POLYTOPES OF TWISTS

permutahedron Perm(n) brick polytope Brick®(n) zonotope Zono"(n)
conv(S,,11) conv {B(A) | A (k,n)-twist} > e, e



BRICK POLYTOPES OF TWISTS

1243 {213
1234 #F—
T =
. i
permutahedron Perm(n) brick polytope Brick®(n) zonotope Zono"(n)
conv(S,,11) conv {B(A) | A (k,n)-twist} > e, e



k-TWIST INSERTION

Input: a permutation 7 =7,---7,

Algo: Insert pipes one by one (from right to left) as northwest as possible

Output: an acyclic (k, n)-twist ins"(7)

Exm: Insertion of 7 = 31542 1 2345

1 2345

1 2345

1 2 3 45

DN O s Ot
— N O R Ot
N O s Ot
DN QO O Ot




k-TWIST INSERTION

Input: a permutation 7 =7---7,
Algo: Insert pipes one by one (from right to left) as northwest as possible

Output: an acyclic (k, n)-twist ins"(7)

Exm: Insertion of 7 = 31542 1 3 4
12345 -
1 2345 - »

12345 - J J
5 5 5 5
4 4 4 4
3 3 3 B 3

(" ]

1 1 1 1




k-TWIST INSERTION

Input: a permutation 7 =7,---7,

Algo: Insert pipes one by one (from right to left) as northwest as possible

Output: an acyclic (k,n)-twist ins®(7)

Exm: Insertion of 7 = 31542 1 3 4
12345 -
1 2345 ~ J

1 2345 - J J
5 5 5 5
4——Jr 4= 4 A
3 3 3| | 3

. ]

1 1 1 1




k-TWIST INSERTION

Input: a permutation 7 =7,---7,
Algo: Insert pipes one by one (from right to left) as northwest as possible
Output: an acyclic (k, n)-twist ins"(7)

1 3 4

Exm: Insertion of 7 = 31542
12345 -

= Ot
| |-
(OV]
S
t
=~ Ot
| R
“i
= Ot
I 1 U
|
= Ot
I 1 U




k-TWIST INSERTION

Input: a permutation 7 =7,---7,
Algo: Insert pipes one by one (from right to left) as northwest as possible
Output: an acyclic (k, n)-twist ins"(7)

Exm: Insertion of 7 = 31542

1 3 4 5
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k-TWIST INSERTION

Input: a permutation 7 =7,---7,
Algo: Insert pipes one by one (from right to left) as northwest as possible
Output: an acyclic (k, n)-twist ins"(7)

Exm: Insertion of 7 = 31542

1 34 5
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k-TWIST INSERTION

Input: a permutation 7 =7,---7,
Algo: Insert pipes one by one (from right to left) as northwest as possible
Output: an acyclic (k, n)-twist ins"(7)

Exm: Insertion of 7 = 31542

1 34 5
1 34 5
e
4 J(—
ST
A
1

THM. ins" is a surjection from permutations of [n] to acyclic (k,n)-twists.
fiber of a (k,n)-twist T = linear extensions of its contact graph T#.

Exm: insertion in binary search trees




E-TWIST CONGRUENCE

k-twist congruence = equivalence relation =" on &,, defined as the transitive closure of

the rewriting rule

UacVibiVaby - - Vibp W =F UcaVib Vaby - - - Vibp W

4321

3421 4231

e

3241 2431 3412

3214 2341 3142

2314 3124 2143

N

2134 1324

1234

2413

4312

4213 4132

4123 1432

1342 1423

1243

3421

4321

4231

if a <b; <cforallielk]

4312

=N

3241 2431

N

3412

3214 2341

2314 3124

Dy

2143

N o~~~

2134

1324

1234

1243

PROP. The k-twist congruence is a lattice congruence of the weak order.

PROP. For any 7,7 € &,,, we have 7 =" 7/ <= ins"(7) = ins"(7).




INCREASING FLIP LATTICE

flip in a k-twist = exchange an elbow with the unique crossing between its two pipes
increasing flip = the elbow is southwest of the crossing
increasing flip order = transitive closure of the increasing flip graph

1 3 4 5




<t -

T

=g
=

T =

Rel o

=g

7

INCREASING FLIP LATTICE
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INCREASING FLIP LATTICE

flip in a k-twist = exchange an elbow with the unique crossing between its two pipes
increasing flip = the elbow is southwest of the crossing
increasing flip order = transitive closure of the increasing flip graph

1 3 4 5

PROP. The increasing flip order on acyclic k-twists is isomorphic to:

e the quotient lattice of the weak order by the k-twist congruence =*,

e the subposet of the weak order induced by the permutations of &,, avoiding the
pattern 1(k +2)— (o1 +1)—--- = (o + 1) for all o € G;,.




TWIST ALGEBRA




SHUFFLE AND CONVOLUTION

For n,n’ € N, consider the set of perms of G,,,, with at most one descent, at position n:

&= {1 € G | (1) < -+ <7(n) and 7(n+1) < - < 7(n +n)}

Forr€ &, and 7 € &,, define

shifted concatenation 77/ = [7(1),...,7(n), 7 (1) +n,...,7'(n') +n| € G,
shifted shuffle product 717" = {(’7'7_'/) o1 ’ T E 6(”’”')} C Gpan
convolution product 7% 7" = {7T o (77" ‘ T e 6(”’”/)} C S,

Exm: 1210231 = {12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312}
12 %231 = {12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231}

5 ] 5 ] 5—

4 I — 4 N

3 N 3 3 u

2— 2@ 2

ATl | bl e T
1 2345 1 2345 1 2345

concatenation shuffle convolution



MALVENUTO & REUTENAUER'S HOPF ALGEBRA ON PERMUTATIONS

DEF. Combinatorial Hopf Algebra = combinatorial vector space B endowed with
product - : B® B — B
coproduct A : B+ B® B
which are “compatible’, ie.

: JAN
B® B > B »BR B
N 3
BoBoBRB »BRIBRB®B

I Q@ swap ® [

Malvenuto-Reutenauer algebra = Hopf algebra FQSym with basis (IF;),cs and where
F,-F.= » F, and AF,= Y F, oF.

cer ! oeTxT!

Malvenuto-Reutenauer. Duality between quasi-symmetric functions and the Solomon descent algebra. 1995



HOPF SUBALGEBRA

k- Twist algebra = vector subspace Twist" of FQSym generated by

IP)T:: Z ]FT: Z ]F7'7

T€S TeL(TH)
ins”(7)=T
for all acyclic k-twists T.
Exm:
P, _a:i_, = E F P, j = Figsuo + Fisgae P ‘j = 3152 P i‘ji’ = F31542.
%_: 7€G5 E + Fai540 + Fri340 I + F35140 I 1
i + Fa5142 + Fsg140 1

+ [F35410 + 53410

THEO. Twist” is a subalgebra of FQSym

Loday-Ronco. Hopf algebra of the planar binary trees. 1998
Hivert-Novelli-Thibon. The algebra of binary search trees. 2005

GAME: Explain the product and coproduct directly on the k-twists...



PRODUCT

P ]I;y = (Fi403 + Fy103) - Foy
j_: B IF 7] B F ]
D 142635 142653 F F F
F F F F 146523 164523 165423
F + If'146235 164235 + 1146253 164253 F F F
142365 F F F F + ¥ 416523 + F614523 + 615423
F + [+ 419635 + 614235 | + | + 1412653 + 14253 F + F + F
+ 1412365 + 461523 + 641523 + 651423

+ IF416235 + Fe41235 + F416253 + F641253
+ Faes5103 + Feas123 + Fes4123

|+ Fa61235 ] |+ Fa61253 ]
=P 12345)55_{_]? 1234;5?'_{_ 12:54;5?‘4_]]?) 1254)5?4_ 12341?_}_ 1234??_}_]})) 1234.15?_{_1[)) 123456
J J J J J J J J
J
F F F A A F F .

PROP. For T € AT"(n) and T' € AT"(n) acyclic k-twists, Py - Pp = > Pg, where S
runs over the interval between T\'T" and T/T" in the (k,n + n/)-twist lattice.

1 2 3 4 1 2 1 23456 1 23456
)

I

1
u

5
,Jr_
T T }_I:Jf T\T T 1T




THREE EXTENSIONS




THREE EXTENSIONS

CAMBRIANIZATION TUPLIZATION SCHRODERIZATION
1 2345

= DN W s Ot




CAMBRIANIZATION

PR ] ] ]

L

k=0 k=1 k=2 k=3

k € N and € € &7, define a shape Sh” formed by four monotone lattices paths:
(i) enter path: from (||, 0) to (0, |¢|-) with pth step north if ¢, = — and west if ¢, = +,

(i) exit path: from (Je|y + k,n + k) to (n + k,|e|- + k) with pth step east if ¢, = —
and south if ¢, = +,

(iii) accordion paths: the path (NE)E++* from (0, ||-) to (|e|4 + k,n + k) and
the path (EN)E-+* from (||, 0) to (n +k,|e|- + k).



CAMBRIANIZATION

1 1 1 1
. 34 5 —154 5 14 5
J) J) J
| -
y (____J,_JI_I (--J
5 J:J
123 45 { 3 15 7% 3 X5
W W g

Cambrian (k, e)-twist = pipe dream in Sh*
contact graph of a twist T = vertices are pipes of T and arcs are elbows of T



CAMBRIANIZATION

Input: a signed permutation 7 =7,---7,
Algo: Insert pipes one by one (from right to left) as northwest as possible

Output: an acyclic Cambrian (£, £)-twist insk(T)

Exm: Insertion of 7 = 31542

34 5

Ot
Ot

O
Ot

32

3 2 3 2 3 2




CAMBRIANIZATION

Input: a signed permutation 7 =7,---7,
Algo: Insert pipes one by one (from right to left) as northwest as possible

Output: an acyclic Cambrian (£, £)-twist insk(T)

Exm: Insertion of 7 = 31542
1

) .. 345 )
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CAMBRIANIZATION
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CAMBRIANIZATION

permutahedron Perm brick polytope Brick"(¢) zonotope Zono"(n)
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TUPLIZATION

E =le1,..., e/ an (-tuple of signatures
(k, E)-twist tuple = an (-tuple [Ty,..., T/ where
o T, is a (k,&;)-twist
e the union of the contact graphs Tf J---U Tf is acyclic
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SCHRODERIZATION

hyperpipe = union of pipes whose common elbows are changed to crossings
(k,n)-hypertwist = collection of hyperpipes obtained from a (k,n)-twist T by merging
subsets of pipes inducing connected subgraphs of T#

1 2 3 4 5
J, L))
} J /4|5\
1 ’ J( 2|3\
JJ /
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SCHRODERIZATION

Input: an ordered partition A = A\;--- A,
Algo: Insert hyperpipes one by one (from right to left) as northwest as possible

Output: an acyclic (k, n)-hypertwist ins"())

Exm: Insertion of 7 = 3|15|42 12345
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Input: an ordered partition A = A\;--- A,
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SCHRODERIZATION

Input: an ordered partition A = A\;--- A,

Algo: Insert hyperpipes one by one (from right to left) as northwest as possible
Output: an acyclic (k, n)-hypertwist ins"())

Exm: Insertion of 7 = 3|15|42
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SCHRODERIZATION

Input: an ordered partition A = A\;--- A,
Algo: Insert hyperpipes one by one (from right to left) as northwest as possible

Output: an acyclic (k, n)-hypertwist ins"())

Exm: Insertion of 7 = 3|15|42
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FINITE COXETER GROUPS

Humphreys, Reflection groups and Coxeter groups ('90)
Bjorner-Brenti, Combinatorics of Coxeter groups ('05)
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FINITE COXETER GROUPS

W = finite Coxeter group
Coxeter fan

fundamental chamber

S = simple reflections

A ={as | s e S} = simple roots
d = W(A) = root system

Ot = & N R>y[A] = positive roots

permutahedron
weak order = u < w <= Jv e W, uwv =w and {(u) + {(v) = {(w)



EXAMPLES: TYPE A AND B

TYPE A, = symmetric group &,,;1 TYPE B,, = semidirect product G,, ¥ (Zs)"

S={G,i+1)]ie[n]} S={6,i+1)]i€n—1}U{x}
A={ej1—e¢ |i€n]} A={ei1—e|ien—1}U{e}
roots = {e; —e; | 4,5 € [n+ 1]} roots = {xe;, *e; | 4,7 € [n]} U{xe; |i € [n]}

V= A{S e | i€} VoA e )

[pack to cluster algebras|




