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LATTICE QUOTIENTS AND GEOMETRY




FANS & POLYTOPES

Ziegler, Lectures on polytopes ('95)
Matousek, Lectures on Discrete Geometry ('02)



FANS

polyhedral cone = positive span of a finite set of R?

= intersection of finitely many linear half-spaces

fan = collection of polyhedral cones closed by faces
and where any two cones intersect along a face

A

P

v

simplicial fan = maximal cones generated by d rays



POLYTOPES

polytope = convex hull of a finite set of R?
= bounded intersection of finitely many affine half-spaces

%
N

face = intersection with a supporting hyperplane
face lattice = all the faces with their inclusion relations

N2

simple polytope = facets in general position = each vertex incident to d facets




SIMPLICIAL COMPLEXES, FANS, AND POLYTOPES
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normal cone of ' = positive span of the outer normal vectors of the facets containing F’
normal fan of P = { normal cone of F' | F' face of P }

P polytope, F face of P

simple polytope = simplicial fan = simplicial complex




WEAK ORDER AND PERMUTAHEDRON




WEAK ORDER

inversions of 0 € &,, = pair (0;,0;) such that ¢ < j and 0; > 0
weak order = permutations of &,, ordered by inclusion of inversion sets

4321
3421 4231 4312
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3241 2431 3412 4213 4132
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3214 2341 3142 2413 4123 1432
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2314 3124 2143 1342 1423
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PERMUTAHEDRON

Permutahedron Perm(n) = conv {(7(1),...,7(n)) | T € &,}

cwn) frew 3oz (V)

D+JC[n]

—H+Zez,e]

1<i<g<n




PERMUTAHEDRON

Permutahedron Perm(n) = conv {(7(1),...,7(n)) | T € &,}

cwn) frew 3oz (V)

D+JC[n]

—H+Zez,e]

1<i<g<n

weak order = orientation of
the graph of Perm(n)

connections to
e reduced expressions
e braid moves
e cosets of the symmetric group



COXETER ARRANGEMENT

Coxeter fan = fan defined by the hyperplane arrangement {x € R" | z; = :Ej}ngan

4321

2341

3124



COXETER ARRANGEMENT

Coxeter fan = fan defined by the hyperplane arrangement {x € R" | z; = :Ej}ngan
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MY ZOO OF LATTICE QUOTIENTS

Reading, Lattice congruences, fans and Hopf a/gebras

Reading, Finite Coxeter groups and the weak order
Novelli—-Reutenauer—Thibon. Generalized descent patterns in permutations
Hivert, Novelli, Thibon. The algebra of binary search trees

P., Brick polytopes, lattice quotients, and Hopf algebras (’

Chatel-P., Cambrian a/gebras

P —Pons, Permutrees

Law—Reading, The Hopf algebra of diagonal rectangu/at/ons

Giraudo, Algebraic and combinatorial structures on pairs of twin binary trees



LATTICE CONGRUENCES

lattice congruence = equiv. rel. = on L which respects meets and joins

r=2 and y=4 — ctAy=2' ANy and zVy=2' VY

lattice quotient of L/= = lattice on equiv. classes of L under = where
o X <Y — dJre X, yeY, z<y

e X \NY = equiv.classof rAyforanyz e X andyeY

e XVY = equiv.classof rVyforanyz e X andyeY

circles
/‘\

polygons stars

\x/ crosses




LATTICE CONGRUENCES

lattice congruence = equiv. rel. = on L which respects meets and joins
r=2 and y=4 — ctAy=2' ANy and zVy=2' VY
characterization:

e cach equivalence class is an interval,
e the up and down projection maps o — 7'(0) and o — 7| (o) are order-preserving.

circles
/‘\

polygons stars

\x/ crosses




EXM 1: BOOLEAN LATTICE & CUBE

Recoils of a permutation o = i € [n — 1] such that o7 1(¢) > o (¢ + 1)

recoils lattice = lattice quotient of the weak order by the relation “same recoils”

( P /4
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EXM 2: K-RECOIL SCHEME LATTICE & ZONOTOPES

G*(n) = graph with vertex set [n] and edge set {{i,j} € [n)? } i< <i+ k}

7 7 Ao Ao A 7

k-recoils insertion of 7 € &,, = acyclic orientation of G*(n) with edge i — j forall i, j € [n]
such that |i — j| < k and 771(i) < 771(4)

Novelli-Reutenauer—Thibon. Generalized descent patterns in permutations and associated Hopf Algebras ('11)

k-recoils lattice = lattice quotient of the weak order by the relation “same k-recoils”

4321
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3421 4231 4312

(L5

2134 1324 1243

1234




EXM 2: K-RECOIL SCHEME LATTICE & ZONOTOPES

\

zonotope

Zono"( i, e;]
\z ]|<k

Vertices «— acyclic orientations
of G¥(n)

connections to
e matroids and oriented matroids
e hyperplane arrangements



EXM 2: K-RECOIL SCHEME LATTICE & ZONOTOPES

_ gt el Zono(n) = 3 e, e

% ——-|-+— '|'+—_—
\ / zonotope

i—j<k
\ +t=- Vertices «— acyclic orientations
/ of G¥(n)
connections to
e matroids and oriented matroids

e hyperplane arrangements



EXM 2: K-RECOIL SCHEME LATTICE & ZONOTOPES
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-t ~ _ / Zono"(n) = > [es, el
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i—jl<k

f-— Vertices «— acyclic orientations
- of G¥(n)

_—— connections to
e matroids and oriented matroids
e hyperplane arrangements



EXM 3: TAMARI LATTICE & LODAY'S ASSOCIAHEDRON

binary search tree insertion of 2751346

A ﬁ(@\ X X X

6 4 6 3 4 6 1 3 4 6 1 345 6 1 34567 112¥3%475'6°7

Tamari lattice = lattice quotient of the weak order by the relation “same binary tree”




EXM 3: TAMARI LATTICE & LODAY'S ASSOCIAHEDRON

Loday's associahedron
Asso(n) == conv{L(T) | T binary tree} = H N () H~(i,j)

1<i<j<n+1
. | o , | — 1+ 2
R e POE (|
i<k<j

Shnider—Sternberg, Quantum groups: From coalgebras to Drinfeld algebras ('93)
Loday, Realization of the Stasheff polytope ('04)

12




EXM 3: TAMARI LATTICE & LODAY'S ASSOCIAHEDRON

Loday's associahedron
Asso(n) = conv {L(T) | T binary tree} = H N (] H"(i, )

1<i<j<n+1
| | o , | — 1+ 2
L(T) = [0(T,3) - 7(T,0)] p, H><%J>:={X€R“ ZM(] 2 )}
i<k<j

Shnider-Sternberg, Quantum groups: From coalgebras to Drinfeld algebras ('93)
Loday, Realization of the Stasheff polytope ('04)




EXM 3: TAMARI LATTICE & LODAY'S ASSOCIAHEDRON

ROWWIO0




outsidahedra_perm2asso2cube_penche_framed_fast_bothWays_cropped.mov
Media File (video/quicktime)


EXM 3: TAMARI LATTICE & LODAY'S ASSOCIAHEDRON




EXM 4: K-TWIST LATTICE & BRICK POLYTOPES

12345 12345 12345 12345
j J g o g |
T , = T
J _J r__) jr__J J jr__d
Ins JJ 1
J
12345 1 5y Ly D m ir m
k=0 k=1 k=2 k=3

(k,n)-twist = pipe dream in the trapezoidal shape of height n and width k
contact graph of a twist T = vertices are pipes of T and arcs are elbows of T



EXM 4: K-TWIST LATTICE & BRICK POLYTOPES

Correspondence

elbow in row i and column 57 +—  diagonal [i, j] of the (n + 2)-gon
(1,n)-twist T <— triangulation T* of the (n + 2)-gon
pth relevant pipe of T — pth triangle of T~
contact graph of T e dual binary tree of T*
elbow flips in T < diagonal flips in T*
1 3

D
J 0 6

)
I

N\
1/ \3 7 N\

4
/7 N\ /N 3

1 D

Woo. Catalan numbers and Schubert Polynomials for w = 1(n + 1) ...2. Unpub 2004
P.—Pocchiola. Multitriangulations, pseudotriangulations and primitive sorting networks. 2012



EXM 4: K-TWIST LATTICE & BRICK POLYTOPES

Correspondence

elbow in row i and column 57 +—  diagonal [i, j] of the (n + 2)-gon
(1,n)-twist T <— triangulation T* of the (n + 2)-gon
pth relevant pipe of T — pth triangle of T~
contact graph of T e dual binary tree of T*
elbow flips in T < diagonal flips in T*
1 3 45
AN : :
T 1/ \4 1 5
/N / \
3 5 A
/N /N 3

Woo. Catalan numbers and Schubert Polynomials for w = 1(n + 1) ...2. Unpub 2004
P.—Pocchiola. Multitriangulations, pseudotriangulations and primitive sorting networks. 2012



EXM 4: K-TWIST LATTICE & BRICK POLYTOPES

Correspondence

elbow in row ¢ and column j
(k,n)-twist T
pth relevant pipe of T

diagonal [i, j] of the (n + 2k)-gon
k-triangulation T* of the (n + 2k)-gon
pth k-star of T*

contact graph of T dual graph of T*

[111]

diagonal flips in T*

elbow flips in T

P.—Pocchiola. Multitriangulations, pseudotriangulations and primitive sorting networks. 2012



EXM 4: K-TWIST LATTICE & BRICK POLYTOPES

k-twist insertion of 3154

12345
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k-twist lattice = lattice quotient of the weak order by the relation “same k-twist”
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P., Brick polytopes, lattice quotients, and Hopf algebras ('18)
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EXM 4: K-TWIST LATTICE & BRICK POLYTOPES

k-twist insertion of 31542
1 2 3 45 1 345 1 34 5 1 34 5

P

5 4 5 "—’—’ 5 5 1 5 5
— 4 — 4= — 4 — 4 4
3 3 3 3 3
1 1 1 1 1

2134 1324 1243 f? \fr‘/fr

P., Brick polytopes, lattice quotients, and Hopf algebras ('18)



EXM 4: K-TWIST LATTICE & BRICK POLYTOPES

Is a commutative diagram of lattice homomorphisms:




EXM 4: K-TWIST LATTICE & BRICK POLYTOPES

brick vector of a (k,n)-twist T = vector b(T) € R” fjar’ Lo
with b(T); = number of boxes below the ith pipe of T

brick polytope
Brick"(n) = conv {b(T) | T (k, n)-twist}

Vertices +— acyclic (k, n)-twists

Facets <— 0/1-seqs with no
subseqs 101
for ¢ > k

connections to

e Loday associahedron

e incidence cones . jj
I

of binary trees

e [amari lattice




EXM 4: K-TWIST LATTICE & BRICK POLYTOPES

brick vector of a (k, n)—twist T = vector b(T) c R jCJJFer f_}ddj
with b(T); = number of boxes below the ith pipe of T | jE

brick polytope
Brick"(n) = conv {b(T) | T (k, n)-twist}

Vertices «+— acyclic (k,n)-twists .,
Facets <— 0/1-seqs with no
subseqs 101

for ¢ > k
connections to 1234
. IS _rr’
e Loday associahedron

jf

e incidence cones

of binary trees

e [amari lattice

Wy



EXM 4: K-TWIST LATTICE & BRICK POLYTOPES

brick vector of a (k,n)-twist T = vector b(T) € R” f;:;ﬂ JIA
: 1T

with b(T); = number of boxes below the ith pipe of T

i

e

.

brick polytope
Brick"(n) = conv {b(T) | T (k, n)-twist}

Vertices +— acyclic (k, n)-twists
Facets <— 0/1-seqs with no
subseqs 101

for ¢ > k o
£
connections to 1
e Loday associahedron A
e incidence cones J;’A

of binary trees

e [amari lattice




EXM 4: K-TWIST LATTICE & BRICK POLYTOPES

Permutahedron Perm(n)



EXM 4: K-TWIST LATTICE & BRICK POLYTOPES

Permutahedron Perm(n) C  Brick polytope Brick”(n)



EXM 4: K-TWIST LATTICE & BRICK POLYTOPES

Permutahedron Perm(n) C  Brick polytope Brick®(n) < Zonotope Zono"(n)



EXM 4: K-TWIST LATTICE & BRICK POLYTOPES

Permutahedron Perm(n) C  Brick polytope Brick®(n) < Zonotope Zono"(n)

Brick'(n) Zono' (n)



EXM 4: K-TWIST LATTICE & BRICK POLYTOPES

Permutahedron Perm(n) C  Brick polytope Brick®(n) < Zonotope Zono"(n)

Brick'(n) Zono' (n)
M M
Brick?(n) Zono®(n)



EXM 4: K-TWIST LATTICE & BRICK POLYTOPES

Permutahedron Perm(n) C  Brick polytope Brick®(n) < Zonotope Zono"(n)

Brick'(n) Zono' (n)
M M
Brick?(n) Zono®(n)
M M

Brick®(n) Zono®(n)




EXM 4: K-TWIST LATTICE & BRICK POLYTOPES

Permutahedron Perm(n) C  Brick polytope Brick®(n) < Zonotope Zono"(n)




EXM 5: PERMUTREE LATTICES AND PERMUTREEHEDRA

|

2 4 7
: 5
i
1 416
permutree = directed (bottom to top) and labeled (bijectively by [n]) tree such that
; ? <j | >
J J J
? < > ?

<J_| =
%
<) 1 =)

P.—Pons, Permutrees ('18)



EXM 5: PERMUTREE LATTICES AND PERMUTREEHEDRA

Examples. decoration permutrees
O4 ¢ permutations of [n]
Q" — standard binary search trees
{®,@}" ¢ Cambrian trees
X" e binary sequences

N W = Ot O

P.—Pons, Permutrees ('18)



permutree insertion of 2751346

o T e e 92 e 4 o T e e 2 e 4 o T e e 92 e 4 o T e e 92 e 4 o T e

EXM 5: PERMUTREE LATTICES AND PERMUTREEHEDRA
gw CD) J@ 5@ d)) J§ S%Dll d & S%D <P) u ETR\ 4) u 5%(7)
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permutree lattice = lattice quotient of the weak order by the relation “same permutree”
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P.—Pons, Permutrees ('18)



EXM 5: PERMUTREE LATTICES AND PERMUTREEHEDRA

permutree insertion of 2751346
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P.—Pons, Permutrees ('18)



EXM 5: PERMUTREE LATTICES AND PERMUTREEHEDRA

o refines &' when 9; < ¢, for all ¢ € [n] for the order O < @, 0 X ®

When § refines &', the d-permutree congruence classes refine the d-permutree congruence
classes: 0 =5 7 = 0 =y T.

P.—Pons, Permutrees ('18)



EXM 5: PERMUTREE LATTICES AND PERMUTREEHEDRA

Binary search tree insertion with cisors and elastics

A ﬂ(@\ KD\ TK% X

6 4 6 3 4 6 1 3 4 1 3456 1 345 67 172¥374'576°7

(@p)

172Y3'47'5'6°'7

P.—Pons, Permutrees ('18)



EXM 5: PERMUTREE LATTICES AND PERMUTREEHEDRA

permutreehedron
PT(6) = conv {PP(T) | T 6-permutree} = H n [ | H(I)

I cut

_ Il +1
PP(T)=[1+d;+ Ly, — b7,y H ()= {X eR™H Y ay > (‘ |2+ )}
el
P.—Pons, Permutrees ('18)




EXM 5: PERMUTREE LATTICES AND PERMUTREEHEDRA

permutreehedron
PT(6) = conv {PP(T) | T 6-permutree} = H n [ | H(I)
I cut

oz ()

P.—Pons, Permutrees ('18)




EXM 5: PERMUTREE LATTICES AND PERMUTREEHEDRA

PT(ORR0)

T

[TEJLY

PTOOR0) ON0) T(OR®0D) T(OR90)

@W®

/ P.—Pons, Permutrees ('18)



EXM 5: PERMUTREE LATTICES AND PERMUTREEHEDRA

ROWWIO0




outsidahedra_permutreehedra_penche_framed_ultraFast_bothWays_reversed_cropped.mov
Media File (video/quicktime)


EXM 6: TWIN BINARY TREES AND DIAGONAL RECTANGULATIONS

Twin binary trees = pair of binary trees with opposite canopy
= (T, T") where T and TP have a common linear extension

Law—Reading, The Hopf algebra of diagonal rectangulations ('12)

in bijection with diagonal rectangulations

Giraudo, Algebraic and combinatorial structures on pairs of twin binary trees ('12)

Baxter insertion = insert ¢ in a binary tree and ¢°P in another binary tree



EXM 6: TWIN BINARY TREES AND DIAGONAL RECTANGULATIONS

Baxter lattice = lattice quotient of the weak order by the relation “same twin binary tree”
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EXM 6: TWIN BINARY TREES AND DIAGONAL RECTANGULATIONS

Baxter associahedron = Minkowski sum of two opposite associahedra



EXM 6: TWIN BINARY TREES AND DIAGONAL RECTANGULATIONS

Baxter associahedron = Minkowski sum of two opposite associahedra

General tuplization process:
e tuples of objects representing classes
e intersection of lattice congruences
e Minkowski sum of polytopes



EXM 6: TWIN BINARY TREES AND DIAGONAL RECTANGULATIONS
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SUMMARY

lattice congruence = equiv. rel. = on L which respects meets and joins

r=2 and y=4 — rANy=2'ANy and zVy=2 VY

sylvester congruence multiplization Cambrianization tuplization
ceac---b--- ceeac--obyeocbpeo leftif be {@, Q) intersection
=.--ca---b--- =---ca---by---bp--- rightif b e {®D R} of congruences
fa<b<ec ifa<b <c
1 3 4 5
,_)f___)J,_J
s
b,

11234567

binary tree multitriangulation permutree diagonal rectangulations



CANONICAL JOIN REPRESENTATIONS

Reading, Lattice congruences, fans and Hopf algebras ('0

Reading, Noncrossing arc diagrams and canonical join representations ('1
Reading, Finite Coxeter groups and the weak order ('1

Reading, Lattice theory of the poset of regions ('1

)
)
0)
0)



CANONICAL JOIN REPRESENTATIONS

lattice = poset (L, <) with a meet A and a join V

join representation of x € L = subset J C L such that x =\/ J.
x =\/J irredundant if AJ' C J with x =\/J'
JR are ordered by containement of order ideals: J < J «<— Vye J, dy € J, y<y

canonical join representation of x = minimal irred. join representation of x (if it exists)

—> “lowest way to write x as a join”



CANONICAL JOIN REPRESENTATIONS IN THE WEAK ORDER

o permutation
inversions of o = pair (0, 0;) such that i < 5 and o, > o
weak order = permutations of &,, ordered 4391

by inclusion of inversion sets /l\

3421 4231 4312

T ST N

3241 2431 3412 4213 4132

NS NN

3214 2341 3142 2413 4123 1432

ol XK T

2314 3124 2143 1342 1423

N o<

2134 1324 1243

\\\\\\\\\\\l///////////

1234



CANONICAL JOIN REPRESENTATIONS IN THE WEAK ORDER

o permutation
inversions of o = pair (0, 0;) such that i < 5 and o, > o
weak order = permutations of &,, ordered 4391

by inclusion of inversion sets /l\

descent of 0 = i such that o; > 0,4 3421 4231 4312

o . T

® 3241 2431 3412 4213 4132
o
° W/\/\
.. 3214 2341 3142 2413 4123 1432
o = PY W

PY 2314 3124 2143 1342 1423

° NS <<~

2134 1324 1243

\I/

1234



CANONICAL JOIN REPRESENTATIONS IN THE WEAK ORDER

o permutation
inversions of o = pair (0, 0;) such that i < 5 and o, > o
weak order = permutations of &,, ordered

by inclusion of inversion sets

descent of ¢ = ¢ such that o; > 0,1 join-irreducible A\(o, 1)
® o
o o
° °
® o
o |
°. o *

o= ° o Mo, i) = — .

\ °

o ®
® |
| o
o |

Ao, 1).

Reading, Noncrossing arc diagrams and canonical join representations ('15)

THM. Canonical join representation of ¢ = \/Ui>0i—|—1




CANONICAL JOIN REPRESENTATIONS IN THE WEAK ORDER

Ao, ).

Reading, Noncrossing arc diagrams and canonical join representations ('15)

THM. Canonical join representation of o =\/__

4321

el I

3421 4231 4312

T ST N |

3241 2431 3412 4213 4132

VA SNV N

3214 2341 3142 2413 4123 1432

o XK T

2314 3124 2143 1342

N <

2134 1324 1243

\\\\\\\\\\\l///////////
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ARCS

@(a,i):ooo%ooooo

arc = (a,b,n,S)with1 <a<b<nand S Cla,b|



FROM PERMUTATIONS TO NONCROSSING ARC DIAGRAMS

o = 2537146

draw the table of points (o, 7)
draw all arcs (0;,7) — (0;11,7 + 1) with
descents in red and ascent in green

project down the red arcs and up the green arcs
allowing arcs to bend but not to cross or pass points

0(o) = projected red arcs
0(o) = projected green arcs

noncrossing arc diagrams = set D of arcs st. Vo, 3 € D:

o left(cr) # left(B) and right(a) # right(5),

e o and (3 are not crossing.

THM. o — d(o) and o — d(o) are bijections from
permutations to noncrossing arc diagrams.

Reading, Noncrossing arc diagrams and can. join representations ('15)

PG



SHARDS

shard >(i, j,n,S) = {X c R”

[xi < . for all k£ € S while }
Ty = T and

x; > xp for all k € i, j[ S

NN




SHARDS

shard (i, j,n,S) = {X e R"

[azi < x; for all £ € S while }
T =Ty and

x; > xp forall k € ]i, j[ . S

REM. The shards >(i, j,n,.S) for all
subsets S C i, j| decompose the hy-

perplane x; = x; into 277"~ pieces. \
A

REM. A chamber of the Coxeter fan is
characterized by the shards below it.




LATTICE QUOTIENTS AND CANONICAL JOIN REPRESENTATIONS

= lattice congruence on L, then
e each class X is an interval [ (X), 71(X)]
e [./= is isomorphic to 7 (L) (as poset)
e canonical join representations in L/= are

canonical join representations in L that

only involve join irreducibles = with 7 (x) = =.

THM. = lattice congruence of the weak order on G,,
Let Z- = arcs corresponding to join irreducibles o with 7 (0) = o
Then
e (0)=0 < I(0) CI-.
e the map &,,/= — {nc arc diagrams in Z_} is a bijection.
X 3(m, (X))

Reading, Noncrossing arc diagrams and can. join representations ('15)




FROM PERMUTATIONS TO NONCROSSING ARC DIAGRAMS AGAIN

N
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I~ © 10 < M A

1234567
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1 5
—

binary trees



FORCING AND ARC IDEALS

THM. Z- = arcs corresponding to join irreducibles o with 7 (0) = 0.
Bijection G,,/= <— {nc arc diagrams in Z_}.

What sets of arcs can be Z_7

THM. The following are equivalent for a set of arcs Z:
e there exists a lattice congruence = on G,, with Z = 7_,
e 7 is an upper ideal for the order (a,d,n,S) < (b,c,n,T) <= a<b<c<d
and T'= 5SnN1b, .

Reading, Noncrossing arc diagrams and can. join representations ('15)




BOUNDED CROSSINGS ARC IDEALS

arc ideal = ideal of the forcing poset on arcs = subsets of arcs closed by forcing

fix k£ > 0 and some red walls above, below and in between the points
allow arcs that cross at most k£ walls

M@ @

weak order Tamari lattice diagonal permutree k-sashes

rectangulations lattices lattices



ARC IDEALS

arc ideal = ideal of the forcing poset on arcs = subsets of arcs closed by forcing
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QUOTIENTOPES

5)

16)
)

Reading, Lattice congruences, fans and Hopf algebras ('0
Reading, Finite Coxeter groups and the weak order ("
Pilaud-Santos, Quotientopes ('1



SHARDS

shard >(i, j,n,S) = {X c R”

[xi < . for all k£ € S while }
Ty = T and

x; > xp for all k € i, j[ S

NI




SHARDS AND QUOTIENT FAN

shard (i, j,n,S) = {x c R"

Qi
v

T =Ty and

x; < xy for all k € S while
x; > xp forall k € ]i, j[ . S

THM. For a lattice congruence =on G, the
cones obtained by glueing the Coxeter re-
gions of the permutations in the same con-
gruence class of = form a fan F- of R"
whose dual graph realizes the lattice quo-
tient G,,/=.

Reading, Lattice congruences, fans and Hopf algebras ('05)

THM. Each lattice congruence = on &, cor-
responds to a set of shards Y- such that
the cones of F_ are the connected compo-

nents of the complement of the union of the
shards in X_.

Reading, Lattice congruences, fans and Hopf algebras ('05)




SIMPLICIAL COMPLEXES, FANS, AND POLYTOPES

oo

~m
,{ ﬂ& %“0 :\

i

ol

1

normal cone of ' = positive span of the outer normal vectors of the facets containing F’
normal fan of P = { normal cone of F' | F' face of P }

P polytope, F face of P

simple polytope = simplicial fan = simplicial complex




QUOTIENTOPE

fix a forcing dominant function f: o — R.gie. st. f(X)> > f(X') for any shard X.
Y=
for a shard ¥ = (4, j,n,S) and a subset & # R C [n] define the contribution

1 if[RN{i,j}{=1and S=RNJi,Jj|,
s [1FIRALG) ¥
0 otherwise

define height function h for @ # R C [n] by hL(R) = > ves. f(E)v(E, R).

THM. For a lattice congruence = on &,, and a forcing dominant function f : ¥ — R,
the quotient fan F= is the normal fan of the polytope

PL={xeR"| (r(R)|x) <hL(R)forall @+RCn}.

P.-Santos, Quotientopes ('177)
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QUOTIENTOPE LATTICE
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insidahedra_quotientopes_penche_framed_ultraFast_bothWays_cropped.mov
Media File (video/quicktime)


INSIDAHEDRA / OUTSIDAHEDRA

outsidahedra insidahedra

permutrees quotientopes

ROBWIOOD




outsidahedra_permutreehedra_penche_framed_ultraFast_bothWays_reversed_cropped.mov
Media File (video/quicktime)
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HYPERPLANE ARRANGEMENTS

Bjorner—Edelman—Ziegler, Hyperplane arrangements with a lattice of regions ('90)
Reading, Lattice theory of the poset of regions ('16)
11 +

1
P.—Ritter, Quotientopes for congruence uniform arrangements ('18™)



POSET OF REGIONS

H hyperplane arrangement in R”
B distinguished region of R" ~\\ H

inversion set of a region C' = set of hyperplanes of H that separate B and C
poset of regions Pos(H, B) = regions of R" . H ordered by inclusion of inversion sets

THM. The poset of regions Pos(H, B)
e is never a lattice when B is not a simple region,
e is always a lattice when H is a simplicial arrangement.

Bjorner—Edelman—Ziegler, Hyperplane arrangements with a lattice of regions ('90)




LATTICE CONGRUENCES OF THE POSET OF REGIONS

THM. If Pos(H, B) is a lattice, and = is a lattice congruence of Pos(H, B), the cones
obtained by glueing together the regions of R™ ~\. H in the same congruence class form

a complete fan.
P Reading, Lattice congruences, fans and Hopf algebras ('05)

Is the quotient fan polytopal?




LATTICE CONGRUENCES OF THE POSET OF REGIONS

THM. If Pos(H, B) is a lattice, and = is a lattice congruence of Pos(H, B), the cones
obtained by glueing together the regions of R™ ~\. H in the same congruence class form

a complete fan.
P Reading, Lattice congruences, fans and Hopf algebras ('05)

Is the quotient fan polytopal?

goal: construct a height function

~\/"

\
77\

tool: shards




QUOTIENTOPES FOR CONGRUENCE-UNIFORM ARRANGEMENTS

THM. If Pos(H, B) is a lattice, and = is a lattice congruence of Pos(H, B), the cones
obtained by glueing together the regions of R™ ~\. H in the same congruence class form

a complete fan.
P Reading, Lattice congruences, fans and Hopf algebras ('05)

Is the quotient fan polytopal?

THM. In the situation when

e H is a simplicial arrangement,

e the poset of regions Pos(H, B) is a congruence-uniform lattice,
then the quotient fan is the normal fan of a polytope.

P.—Ritter, Quotientopes for congruence uniform arrangements ('187)




COXETER ARRANGEMENTS

Coxeter group = group generated by reflections

Type A Type B Type H



COXETER ARRANGEMENTS

weak order = orientation of the graph of the Coxeter permutahedron




A SIMPLICIAL BUT NOT CONGRUENCE-UNIFORM ARRANGEMENT

\

O




A SIMPLICIAL BUT NOT CONGRUENCE-UNIFORM ARRANGEMENT

5

s this fan polytopal?



LATTICE QUOTIENTS AND HOPF ALGEBRAS




HOPF ALGEBRAS

Combinatorial Hopf Algebra = combinatorial vector space B endowed with
product - : B B — B
coproduct A : B+ B® B
which are compatible:
Alx-y) = Alz) - Ay)

or more precisely the following diagram commutes:

: VAN
B® B > B »B® B
pos| [
BBB®B »BoBB®B

I @ swap ® [

Exm: (G, ) group. kG group algebra where
g-h=gxh and NG =9gRg



LODAY-RONCO HOPF ALGEBRA

Malvenuto—Reutenauer, Duality between quasi-symmetric functions and the
Solomon descent algebra ('95)
Loday—Ronco, Hopf algebra of the planar binary trees ('98)



PERMUTATION RESTRICTION

For 0 € G,, and I C [n], define
e 0|7 = restriction of o to the positions in 1,
e o/l = restriction of o to the values in I.

5 O 3 O 5 ®
4—@ 2—@ 4—@ 3—@
3 3 2
24? 14T 24? T
1 ¢ 1= ® ! ¢
1 2 3 4 5 1 2 3 1 2 3 4 5 1 2 3

41523345 = 123 41523124 = 231



SHUFFLE AND CONVOLUTION

Forr€ &, and 7 € &,,, define

shifted concatenation 77/ = [7(1),...,7(n), 7 (1) +n,...,7'(n') + n] € &,
shifted shuffle 710 7/ = {(7 € S,y | d =7 and gl = 7"}

Ol =T and O = 7'}

convolution 7% 7/ = {0 € S,

Exm: 1210231 = {12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312}
12 %231 = {12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231}

5 ] 5 L] 5——M

4 m 4 O 4 L]

3 ] 3 3 L]

2 — 2—@ 2

el el e [T
1 2 345 1 2 345 1 2345

concatenation shuffle convolution



MALVENUTO-REUTENAUER ALGEBRA

Forr€ &, and 7 € &,,, define

shifted concatenation 77/ = [7(1),...,7(n), 7 (1) +n,...,7'(n') + n] € &,
shifted shuffle 710 7/ = {(7 € S,y | d =7 and gl = 7"}

Ol =T and O = 7'}

convolution 7% 7/ = {0 € S,

Exm: 1210231 = {12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312}
12 %231 = {12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231}

THM. The vector space kG = P, kS, with basis (IF;).cs endowed with
F,-F.= » F, and AF,=» F oF,

cer T’ OETXT

is a combinatorial Hopf algebra.
Malvenuto—Reutenauer, Duality between quasi-symmetric functions and the Solomon descent algebra ('95)




LODAY-RONCO ALGEBRA

THM. The vector space kG = & _ kS, with basis (F;),cs endowed with

F..F, = Z F, and AT, = ZIE‘T@@IFT/

cer 7’ oeTxT!

is a combinatorial Hopf algebra.

Malvenuto—Reutenauer, Duality between quasi-symmetric functions and the Solomon descent algebra ('95)

THM. For a binary search tree T, consider the element Pr:= >~ [F.= )" F,.
These elements generate a Hopf subalgebra k¥ of k&. BSTTE(TG):T TeL(T)

Loday—Ronco, Hopf algebra of the planar binary trees ('98)

binary search tree insertion of 2751346

AR ) ) )

6 4 6 3 4 6 1 3 4 6 1 3456 1 34567 172Y3%47'576"7




PERMUTREE ALGEBRA

P.—Pons, Permutrees ('18)
Chatel-P., Cambrian algebras ('17)



DECORATED VERSION

For decorated permutations:
e decorations are attached to values in the shuffle
e decorations are attached to positions in the convolution

Exm: 12101231 = { 2453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132 45312}
12x231 = {1_%53 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241 45231}
5 Yl 5 Yl 5 Yl
4 {7 4—1T—Q 4 {7
3 A 3 3 A
2 — 2—Q 2
1 Q@ 1 N 1@
| | I I [ [
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
concatenation shuffle convolution
kS 0008y = Hopf algebra with basis (I;);ca,, ., aNd where

F..F. = Z F, and AF, = ZIFT@)IFT,

cer T’ ogEeTxT!




PERMUTREE ALGEBRA AS SUBALGEBRA

Permutree algebra = vector subspace kPB% of kG p g @ @1 generated by

IP)T = Z ]FT: Z IFT?

7'66{@7@7@7@} TeL(T)
P(r)=T

for all permutrees T.

Exm Pm = Wo135076 + Faia57a6 + Faamsae + - + Frszsiae + Fososae + Fosasaan

THEO. K*B¥ is a subalgebra of k& q @ 9 1

Loday—Ronco, Hopf algebra of the planar binary trees ('98
Hivert—Novelli-Thibon, The algebra of binary search trees ('05
Chatel-P., Cambrian Hopf algebras ('14*

P.—Pons, Permutrees ('16™

SN N N N

GAME: Explain the product and coproduct directly on the permutrees...



PRODUCT IN PERMUTREE ALGEBRA

Pﬁy Py y= Fro- (Foz + Fag)
M Fyps + Fiis
12395 T 17352
2135 + Fiamss + Fiass B 4 o Fo 4 o
_ oo o 4 Foome + 17533 T 71375 13125 + 33152
=\ T Tmss T s T s | T L o [T i R
Foo 4T - Foos + 71353 + 71532 + 33513 + 35313
+ Fazss T Fass 1 e g
15132

PROP. For any permutrees T and T’,

IPT-IPT/:ZIPS
S

where S runs over the interval [T s T AN T’} in the §(T)o(T')-permutree lattice




COPRODUCT IN PERMUTREE ALGEBRA

I
&
=

&l
+
=
+
=
039
=
4+
=
039
=
+
=
039
=S|
_|_
=
&
=
i
=
3
+
%

039

1 ® l + P T®IP’__ + P T<§§>IP’_ + P _®]P’T +IP’_®IP’_ + P ;1
¥ ¥ ¥ R
z + %ipﬁ'%ﬁ*@z@%*éwﬁ ngm.

I
029
s

PROP. For any permutree S,

wr= (] PT) (I PT,)

¥ TeB(S,y) T'eA(S,y)

where ~ runs over all cuts of S, and A(S,~)
and B(S,7) denote the forests above and be-

low ~ respectively




COPRODUCT IN PERMUTREE ALGEBRA

Apﬂ}; = A(]F@_g + FQ_l)

=1® (Fgg+Fom) + Fi1®F5 + F1@Fy + Fp ®F + FpF; +(F 3
= 1 ® M +P¥®P%+P¥®P%+P%®P¥+P$!®PA+ ng@l
= 1®Pﬁ;§ + Pv@([@g-[@v) +P%!®P¥+P${®PA+ Pﬁ;g@l.

=
_I_
=]
&2l
®
—_

PROP. For any permutree S, A(S,7)
Y

or=3 (I m)e Te) o Pl s
v NTeB(Sn) TIEA(S ) \/\
1

where 7 runs over all cuts of S, and A(S,~) 2
and B(S,v) denote the forests above and be- 1 X)/ B(S, )
low ~ respectively )




DUAL PERMUTREE ALGEBRA AS QUOTIENT

= dual Hopf algebra with basis (G;);eq 404 and wWhere

GT-GT/:ZGU and  AG, = Z G, ® G,

oETxT! cer 7’

k6?®,®,®,®}

PROP. The graded dual kBT of the permutree algebra is isomorphic to the image
under the canonical projection

m:C(A) — C(A)/ =,

of k6?®’®7®7®}

where = denotes the permutree congruence. The dual basis Qr of Pt is expressed
as Qp = (G, ), where 7 is any linear extension of T




PRODUCT IN DUAL PERMUTREE ALGEBRA

5]
co 10| 3 1
PROP. For any permutrees T and T, 4 1
|
Qr-Qr =) Qur IX H© KX
S / b2 @
where s runs over all shuffles of 6(T) and §(T")

XD



PRODUCT IN DUAL PERMUTREE ALGEBRA

‘S
e
=

I

D!

Il\DI
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ol

I
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Y
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o

PROP. For any permutrees T and T’

QT ) QT’ — Z QTST’

where s runs over all shuffles of §(T) and o('T")

X e Ne [
S = [IXDHNWMYONW
:0%] @ =

3

X Q)@ mm



PRODUCT IN DUAL PERMUTREE ALGEBRA

X e Y] )
PROP. For any permutrees T and T’ SIS
|
Qr-Qr =) Qur 0K ¢ Mo
S
%] x Q@ =

where s runs over all shuffles of 6(T) and §(T") %

X QP mm




PRODUCT IN DUAL PERMUTREE ALGEBRA

(&
e

(&)
R
||

&

§?

I
P!
N
Y
+ 5
P!
Z|
o
_|_

G395

W N R

%{f

5+ Gomis + Goszig + Gapis + Gygog + Gysags

+Qfﬁ+@fﬁ&/+<@w+<@ﬁ%ﬂ!+@ﬁﬂ%

PROP. For any permutrees T and T’

QT ) QT’ — Z QTST’

where s runs over all shuffles of §(T) and o('T")

Yl

® 2\

L5y



PRODUCT IN DUAL PERMUTREE ALGEBRA

PROP. For any permutrees T and T, 6
Qr-Qr— 3" Qe
— TOS\TD

where s runs over all shuffles of §(T) and o('T")

X &®& K N



COPRODUCT IN DUAL PERMUTREE ALGEBRA

AQ fq}é = AGys
= 1 X G213 + Gl & GIQ + GQl & Gl + GQl?) & 1

_1®Qﬁ#+@ﬁ®@$+@%®@¥+@ﬁ#®l

PROP. For any permutree S,

AQs = Z Qris~) @ Qres )
Y

where ~ runs over all gaps between vertices of S,
and L(S,v) and R(S,~) denote the permutrees
left and right to ~ respectively




COPRODUCT IN DUAL PERMUTREE ALGEBRA

AQM— AGQB
= 1®G§l§ + G;@Gﬁ + G§l®GT + Ggg@l

_1®QM+QA®Q$+Q%®Q¥+QM®L

PROP. For any permutree S,

AQs = Z Qrs) ® Qresy
Y

where ~ runs over all gaps between vertices of S,
and L(S,v) and R(S,~y) denote the permutrees
left and right to ~ respectively




COPRODUCT IN DUAL PERMUTREE ALGEBRA

Aqu}é— AG@B
= 1®G§l§ + GL®GE + G§l®GT + Ggg@l

_1®QM+QA®@$+Q%®Q¥+QM®L

PROP. For any permutree S,

AQs = Z Qris~) @ Qres ) 3
Y

&

where ~ runs over all gaps between vertices of S,
and L(S,v) and R(S,~) denote the permutrees
left and right to ~ respectively




HOPF ALGEBRAS ON ARC DIAGRAMS

P., Hopf algebras on decorated noncrossing arc diagrams ('18™)



DECORATED PERMUTATION

decoration set = a graded set X = | | ., X, endowed with
e a concatenation concat : X,,, x X,, — X,
) — Xi

m]

e a selection select : X,,, X ( .

such that
(i) concat(X', concat(), Z)) = concat(concat(X,)), Z)
(ii) select(select(X', R), S) = select(X,{rs | s € S})
(iii) concat(select(X, R), select()), S)) = select(concat(X, V), RUS™™)
where 57" :={s+m | s e S}.

Exm:
e A* = words on an alphabet A, with concatenation and subwords
e labeled graphs, with shifted union and induced subgraphs



DECORATED PERMUTATION

decoration set = a graded set X = | | ., X, endowed with
e a concatenation concat : X,, x X, — Xoin
e a selection select : X,, x ([m]) — X
such that
(i) concat(X', concat(), Z)) = concat(concat(X,)), Z)
(ii) select(select(X', R), S) = select(X,{rs | s € S})
(iii) concat(select(X, R), select()), S)) = select(concat(X, V), RUS™™)
where S7":= {s+m | s € S}.

X-decorated permutation = pair (o, X') with 0 € G,, and X € X,..

standardization std((p, Z), R) = (stdp(p, R), select(Z, p_l(R)))

THM. The product - and coproduct /A defined by

Fox) Feyy= Y Floconcarry) and AF(,z): ZFstd (p.2).0k) © Fsed((p.2). 1\ )

pEo LT

endow the vector space of decorated permutations with a graded Hopf algebra structure.

P., Hopf algebras on decorated noncrossing arc diagrams ('187)




DECORATED NONCROSSING ARC DIAGRAMS

a graded function W : X =| | . X, — T = [ |,-,Jn is conservative if
(i) U(X)™ and W())~™ are both subsets of V(concat(X,)))
(i) (ra, 75,0, S) € U(Z) implies (a,b,q,{c|r. € S}) € U(select(Z, R))

7 collection of arcs closed by forcing
surjection 77 : G,, — {nc arc diagrams in 7}
o — (o) =o(m(0))

X-decorated noncrossing arc diagram = (D, X)) where D is a non crossing arc diagram
contained in V(X))

THM. For a decorated noncrossing arc diagram (D, X'), define

Pip.a)= Z o),

where o ranges over the permutations such that 7y (x)(0) = D. The graded vector sub-
space kD = (P, . kD, of kKB generated by the elements Pp x), for all X-decorated
noncrossing arc diagrams (D, X'), is a Hopf subalgebra of k°3.

P., Hopf algebras on decorated noncrossing arc diagrams ('18™)




APPLICATIONS

fix k>0
Uq
X = words on N* (each letter a is made of 4 numbers ¢,+r,)
. da
with concat(a; - - - ap, by ---by) =ay---aypby--- by,
U,
select(ci---¢,, R) = ¢, ---C,, where ¢,, = min (., + min 7
ri—1<k<r; ri<k<riti
de,
U, above i
U(ay---ay) = draw | d,, red walls | below i
min(re;, fa;,,) between ¢ and i + 1

allow arcs that cross at most k£ walls

&

weak order Tamari lattice diagonal Cambrian k-sashes
rectangulations lattices lattices




APPLICATIONS

extended arc = arc allowed to start at 0 or end at n + 1

X = extended arc ideals with

concatenation: Cg i ; E 5+m =
selection: % @

U(X) = strict arcs in X

— Hopf algebra on all arc ideals containing the permutree algebra

P., Hopf algebras on decorated noncrossing arc diagrams ('18™)
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