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0. VARIOUS ASSOCIAHEDRA




FANS & POLYTOPES

Ziegler, Lectures on polytopes ('95)
Matousek, Lectures on Discrete Geometry ('02)



SIMPLICIAL COMPLEX

simplicial complex = collection of subsets of X downward closed
exm:

X = [n] U [n] 123/[123][123][123| 123 [123][123|[123
A={ICX|Vien], {i,i} ¢} 'Q,QQ’Q\O O\
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FANS

polyhedral cone = positive span of a finite set of R?

= intersection of finitely many linear half-spaces

fan = collection of polyhedral cones closed by faces
and where any two cones intersect along a face
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simplicial fan = maximal cones generated by d rays




POLYTOPES

polytope = convex hull of a finite set of R?
= bounded intersection of finitely many affine half-spaces
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simple polytope = facets in general position = each vertex incident to d facets

face = intersection with a supporting hyperplane

face lattice = all the faces with their inclusion relations




SIMPLICIAL COMPLEXES, FANS, AND POLYTOPES
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P polytope, F face of P

normal cone of [’ = positive span of the outer normal vectors of the facets containing

normal fan of P = { normal cone of F' | F' face of P }

simple polytope = simplicial fan =  simplicial complex




EXM: PERMUTAHEDRON

Hohlweg, Permutahedra and associahedra ('12)



PERMUTAHEDRON

Permutohedron Perm(n)

=conv{(c(1),...,0(n+1)) | o € X1}
2z,
4
G42T 21
0 ,

) J|+1
:Hﬂm {X€R+1 ZCIZJ'Z <| ‘2 >}
@#JC [n+1] jes
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connections to
e weak order
e reduced expressions
e braid moves
e cosets of the symmetric group




COXETER ARRANGEMENT

4321

Coxeter fan

= fan defined by the hyperplane arrangement
4312 {X c Rt ‘ z, =

= collection of all cones

4913 {x c R ‘ r; < xjif w(i) < 7r(j)}
2212) for all surjections 7 : [n+ 1] = [n+ 1 — k]

xj}1§i<j§n—|—1

3214



ASSOCIAHEDRA

Ceballos-Santos-Ziegler,
Many non-equivalent realizations of the associahedron ('11)



ASSOCIAHEDRON

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free

sets of internal diagonals of a convex (n + 3)-gon, ordered by reverse inclusion
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faces <> dissections faces « Schroder trees




VARIOUS ASSOCIAHEDRA

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free

sets of internal diagonals of a convex (n + 3)-gon, ordered by reverse inclusion
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Tamari ('51) — Stasheff ('63) — Haimann ('84) — Lee ('89) — (Pictures by Ceballos-Santos-Ziegler)
...— Gel'fand-Kapranov-Zelevinski ('94) — ...— Chapoton-Fomin-Zelevinsky ('02) — ...— Loday ('04) — ...
— Ceballos-Santos-Ziegler ('11)



THREE FAMILIES OF REALIZATIONS

SECONDARY LODAY'S CHAP.-FOM.-ZEL.S
POLYTOPE ASSOCIAHEDRON ASSOCIAHEDRON
~ (Pictures by CFZ)
@/@\/@ y
011—|—§042
@
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Gelfand-Kapranov-Zelevinsky ('94) : : :
BiIIera—FiIIiman—Sturmfe|>s/ (90) Hohlweg-Lange ('07) Chapoton-Fomin- Zelevinsky (102)

Ceballos-Santos-Ziegler ('11)

Hohlweg-Lange-Thomas ('12)




THREE FAMILIES OF REALIZATIONS

SECONDARY
POLYTOPE
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Gelfand-Kapranov-Zelevinsky ('94)
Billera-Filliman-Sturmfels ('90)

A—A
AT

LODAY'S
ASSOCIAHEDRON

Hohlweg-Lange ('07)
Hohlweg-Lange-Thomas ('12)

Hopf
algebra

Cluster
algebras

CHAP.-FOM.-ZEL.S
ASSOCIAHEDRON

(Pictures by CFZ)

Chapoton-Fomin-Zelevinsky ('02)
Ceballos-Santos-Ziegler ('11)

Cluster
algebras




LODAY'S ASSOCIAHEDRON

Shnider-Sternberg, Quantum groups: From coalgebras to Drinfeld algebras ('93)
Loday, Realization of the Stasheff polytope ('04)



LODAY'S ASSOCIAHEDRON

Asso(n) := conv{L(T) | T binary tree} = H N ﬂ Hz(i,j)

1<i<j<n+l1
| | - n J—1+2
L(T> = [K(Ty 7/) . T(Ty Z)] ie[n+1] HZ<Z7]> = {X = R i Z xi Z ( 2 )}
i<k<j

Shnider-Sternberg, Quantum groups: From coalgebras to Drinfeld algebras ('93)
Loday, Realization of the Stasheff polytope ('04)

12




LODAY'S ASSOCIAHEDRON

Asso(n) = conv {L(T) | T binary tree} = H n (] H"(i, )

1<i<j<n+l1
| | o n J—1+2
L(T) = [K(T, 'l) . T(Ta 7’)] i€[n+1] HZ<Z7]) = {X = R i Z Li Z ( ) )}
1<k<j

Shnider-Sternberg, Quantum groups: From coalgebras to Drinfeld algebras ('93)
Loday, Realization of the Stasheff polytope ('04)
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outsidahedra_perm2asso2cube_penche_framed_fast_bothWays_cropped.mov
Media File (video/quicktime)
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TAMARI LATTICE

Tamari lattice = slope increasing flips on triangulations

slope i j
Increasing
flip

Tamari Festschrift ('12)



TAMARI LATTICE

Tamari lattice = slope increasing flips on triangulations

= right rotations on binary trees

slope i j
Increasing
flip

-

right
rotation

Tamari Festschrift ('12)



TAMARI LATTICE

Tamari lattice

3214

right rotations on binary trees

slope increasing flips on triangulations

= lattice quotient of the weak order by the sylvester congruence

3421

3241 2431

2341

2314 3124

N

2134

3142

4321

4231

3412

2143

1324

1234

2413

4312

4213 4132

4123 1432

1342 1423

1243

Tamari Festschrift ('12)



TAMARI LATTICE

Tamari lattice = slope increasing flips on triangulations

right rotations on binary trees
= lattice quotient of the weak order by the sylvester congruence

= orientation of the graph of the associahedron in direction e — w,

Tamari Festschrift ('12)



LODAY-RONCO HOPF ALGEBRA

Malvenuto-Reutenauer, Duality between quasi-symmetric functions and the
Solomon descent algebra ('95)
Loday-Ronco, Hopf algebra of the planar binary trees ('98)



SHUFFLE AND CONVOLUTION

For n,n’ € N, consider the set of perms of G,,,, with at most one descent, at position n:

&)= {r€Gyw|T(l) < - <7(n)and T(n+1) < -+ < 7(n+n')}

Forr€ &, and 7 € &,, define

shifted concatenation 77/ = [7(1),...,7(n), 7 (1) +n,...,7'(n') +n| € &,
shifted shuffle product 717" = {(’7'7_'/) o1 ’ T E 6(”’”')} C Gpin
convolution product 7 7’ = {7T o (77) ‘ T € 6(”’”/)} C Gpaw

Exm: 1210231 = {12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312}
12 %231 = {12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231}

5 ] 5 ] 5—
4 I — 4 N
3 N 3 3 u
2— 2@ 2
el || et ) e [
1 2345 1 2345 1 2345

concatenation shuffle convolution



MALVENUTO-REUTENAUER ALGEBRA

Combinatorial Hopf Algebra = combinatorial vector space B endowed with

product - : B® B — B
coproduct A : B —+ B® B

which are “compatible’, ie.

: JAN
B® B > B »B® B
pos| [
BoBoB®B »BIBRBRB

I Q@ swap ® 1

THM. The vector space kG = P, kS, with basis (IF;).cs endowed with

F. .F., = Z F, and AF, = ZFT@@R,

cer 7’ oETxT!

is a combinatorial Hopf algebra.

Malvenuto-Reutenauer, Duality between quasi-symmetric functions and the Solomon descent algebra ('95)




MALVENUTO-REUTENAUER ALGEBRA

THM. The vector space kG = P, kS, with basis (IF;).cs endowed with

F. .F. = Z F, and AF, = ZIFT@@IFT,

cerT T’ oeTx1!

Is a combinatorial Hopf algebra.

Malvenuto-Reutenauer, Duality between quasi-symmetric functions and the Solomon descent algebra ('95)

THM. For a binary search tree T, consider the element Pr= >~ F, = > F,.
These elements generate a Hopf subalgebra k¢ of kG. BSTTG(%:T TEL(T)

Loday-Ronco, Hopf algebra of the planar binary trees ('98)

binary search tree insertion of 2751346

AR \ \ \

6 4 6 3 4 6 1 3 4 6 1 3456 1 34567 172¥3%4'5'6'7




. PERMUTREEHEDRA

Chatel-P., Cambrian Hopf Algebras ('17)
P.-Pons, Permutrees ('17)



PERMUTREES

Chatel-P., Cambrian Hopf Algebras ('17)
P.-Pons, Permutrees ('17)



PERMUTREES

permutree = directed (bottom to top) and labeled (bijectively by [n]) tree such that

>

bk Y X

=)

increasing tree = directed and labeled tree such that labels increase along arcs

leveled permutree = directed tree with a permutree labeling and an increasing labeling

7 2 4 7
| \ | \ ) |

9

N W s Ot O
N W s Ot O I




SPECIAL PERMUTREES

Examples. decoration permutrees
" — permutations of [n]
Q" standard binary search trees
{D, @} — Cambrian trees
X" —— binary sequences

N W ke Ot O




PERMUTREE CORRESPONDENCE

permutree correspondence = decorated permutation — leveled permutree

Exm: decorated permutation 2751346
e 9 o /4 ° 7 °

— N W s Ot O

Reading, Cambrian lattices ('0
Lange-P., Associahedra via spines ('13
Chatel-P., Cambrian Hopf algebras ('1

'1

0)
)
7)
P.-Pons, Permutrees ('17)



PERMUTREE CORRESPONDENCE

permutree correspondence = decorated permutation — leveled permutree

Exm: decorated permutation 2751346
e 9 o /4 ° 7 °

7 N
6 7 &
5 ),
4—@ 5
3 )
2 \7,
14§ ‘
1 4 6

06)
37)
17)
17)

Reading, Cambrian lattices
Lange-P., Associahedra via spines (
Chatel-P., Cambrian Hopf algebras

P.-Pons, Permutrees

(
1
(
(



PERMUTREE CORRESPONDENCE

permutree correspondence = decorated permutation — leveled permutree

Exm: decorated permutation 2751346
e 9 o /4 ° 7 °
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Reading, Cambrian lattices
Lange-P., Associahedra via spines (
Chatel-P., Cambrian Hopf algebras

P.-Pons, Permutrees
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PERMUTREE CORRESPONDENCE

permutree correspondence = decorated permutation — leveled permutree

Exm: decorated permutation 2751346
e 9 o /4 ° 7 °
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Reading, Cambrian lattices ('0
Lange-P., Associahedra via spines ('13
Chatel-P., Cambrian Hopf algebras ('1
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7)
P.-Pons, Permutrees ('17)



PERMUTREE CORRESPONDENCE

permutree correspondence = decorated permutation — leveled permutree

Exm: decorated permutation 2751346
e 9 o /4 ° 7 °
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7U@

Ja
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Reading, Cambrian lattices ('06)
Lange-P., Associahedra via spines ('137)
Chatel-P., Cambrian Hopf algebras ('17)
('17)

P.-Pons, Permutrees



PERMUTREE CORRESPONDENCE

permutree correspondence = decorated permutation — leveled permutree

Exm: decorated permutation 2751346
e 9 o /4 ° 7 °
N
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37)
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Reading, Cambrian lattices
Lange-P., Associahedra via spines (
Chatel-P., Cambrian Hopf algebras

P.-Pons, Permutrees
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PERMUTREE CORRESPONDENCE

permutree correspondence = decorated permutation — leveled permutree

Exm: decorated permutation 2751346

N W s Ot O
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Reading, Cambrian lattices
Lange-P., Associahedra via spines (
Chatel-P., Cambrian Hopf algebras

P.-Pons, Permutrees
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PERMUTREE CORRESPONDENCE

permutree correspondence = decorated permutation — leveled permutree

Exm: decorated permutation 2751346
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Reading, Cambrian lattices
Lange-P., Associahedra via spines (
Chatel-P., Cambrian Hopf algebras

P.-Pons, Permutrees
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PERMUTREE CORRESPONDENCE

permutree correspondence = decorated permutation — leveled permutree

Exm: decorated permutation 2751346

2 \ 4 7
NP

7
0 3
D
4
2
3 I \ / )
2 9
. 7Ud
1 4 6
Reading, Cambrian lattices ('06)
Lange-P., Associahedra via spines ('137)
Chatel-P., Cambrian Hopf algebras ('17)
P.-Pons, Permutrees ('17)

PROP. bijection decorated permutation +— leveled permutree.




PERMUTREE CORRESPONDENCE

permutree correspondence = decorated permutation — leveled permutree

Exm: decorated permutation 2751346

2 \ 4 7
NP

Sliwandl!
%&J v

N W s Ot O

Reading, Cambrian lattices ('06)
Lange-P., Associahedra via spines ('137)
Chatel-P., Cambrian Hopf algebras ('17)

P.-Pons, Permutrees ('17)

P(7) = P-symbol of 7 = permutree produced by permutree correspondence
Q(7) = Q-symbol of 7 = increasing tree produced by permutree correspondence
(analogy to Robinson-Schensted algorithm)



PERMUTREE CONGRUENCE

0-permutree congruence = transitive closure of the rewriting rules

UacVOW =5 UcaVbW
UbVacW =5 UbV caW

where a, b, ¢ are elements of [n| while U, V, W are words on [n]

ifa<b<candd e {® R}
ifa <b<candd, {0 Q}

PROP. 7 =5 7' — P(7) =P(7).

C
S U1

[

2 4 7
7 \ ’% 7
6 3 6
5 5
= ANl
3 () 3
27L)d )
1 %J) 1
/1 4 6

7251346

— N W s Ot O

2 \4 7
[
19




PERMUTREE CONGRUENCE

0-permutree congruence = transitive closure of the rewriting rules

UacVOW =5 UcaVOW ifa<b<candd, € {®,Q}
UbVacW =5 UbVcaW ifa<b<candd, e {@D R}

where a, b, ¢ are elements of [n] while U, V, W are words on [n]

PROP. 7 =5 7' — P(7) =P(7).

PROP. The permutree congruence class labeled by permutree T is given by
{r €& | P(r) =T} = {linear extensions of T}.

PROP. The permutree classes are intervals of the weak order.
Minimums avoid b — ca with §, € {®,®} and ca — b with §, € {®,®}.
Maximums avoid b — ac with ¢, € {®,®} and ac — b with ¢, € {®, ®}.

Reading, Cambrian lattices ('06)
P.-Pons, Permutrees ('17)



ROTATIONS AND PERMUTREE LATTICES

Rotation operation preserves permutrees:

increasing rotation = rotation of edge ¢ — j where i < j

PROP. The transitive closure of the increasing rotation graph is the permutree lattice.

P defines a lattice homomorphism from the weak order to the permutree lattice.

Reading, Cambrian lattices ('06)
P.-Pons, Permutrees ('17)



ROTATIONS AND CAMBRIAN LATTICES




DECORATION REFINEMENTS

o refines 6’ when 9; < 6] for all i € [n| for the order O X @,® x ®

PROP. When ¢ refines ¢, the J-permutree congruence classes refine the §-permutree
congruence classes: 0 =57 = 0 =y T.
It defines a surjection \Ifgl from the J-permutrees to the §’-permutrees.




PERMUTREEHEDRA

Loday, Realization of the Stasheff polytope (
Hohlweg-Lange, Realizations of the associahedron and cyclohedron
Lange-P., Using spines to revisit a construction of the associahedron

Chatel-P., Cambrian HopfA/gebras
P.-Pons, Permutrees



PERMUTREE FAN

For a permutree T, define

C(T)={xeH |z, <zxjforanyi— jin T}

— 1 + cone { D 1llej = > | e

jeJ el

for all edge cuts (I || J) in T)}

THM. For any 6 € {D,®,®,®}", the collection of cones {C°(T) | T d-permutree}
together with all their faces define a complete simplicial fan, the §-permutree fan F(9).

P.-Pons, Permutrees ('17)

Examples. decoration permutrees
Q" e braid fan
Q" — binary tree fan
{®, 0} < Cambrian fan
X" —— fan of the arrangement

{ri=x;1]i€n—1]}




PERMUTREEHEDRA

THM. The permutree fan F(9) is the normal fan of the permutreehedron PT(¢), defined

equivalently as

(i) the convex hull of the points

a(T); =«

for all 6-permutrees T,

(d+1 if 5; = O,
d+1+40r if 5, = ®,
d—l—l—ZT If(522®,

d+1+lr— 07 if 6=,

(i) the intersection of the hyperplane H with the half-spaces

H-(]):= {X c R"

oz (7))

for all edge cuts (I || J) of all 4-permutrees.

P.-Pons, Permutrees ('17)




PERMUTREEHEDRA

THM. The permutree fan F(9) is the normal fan of the permutreehedron PT'(9).




PERMUTREEHEDRA AND PERMUTREE LATTICES

PROP. U :=(n,n—1,..., 2,1) —(1,2,..., n—1,n)= Zie[n](n +1—2i)e;
graph of IPT(§) oriented by U = Hasse diagram of the J-permutree lattice.




MATRIOCHKA PERMUTREEHEDRA

PROP. refinement § < 6’ = inclusion PT(9) C PT(J).




MATRIOCHKA PERMUTREEHEDRA

(OLNI0) PTOO®0
T

PT (G)G)@G)) PT (G)@@G)) P (G)@@G)) PT (G)@@G)) PT PT (G)®G)G))

£ F S &



MATRIOCHKA PERMUTREEHEDRA

ROIMIWO0




outsidahedra_permutreehedra_penche_framed_ultraFast_bothWays_reversed_cropped.mov
Media File (video/quicktime)


PERMUTREE ALGEBRA

Loday-Ronco, Hopf algebra of the planar binary trees
Hivert-Novelli-Thibon, The algebra of binary search trees

Chatel-P., Cambrian Hopf Algebras
P.-Pons, Permutrees

(198
(105
(17
(17

N N’ e e’



DECORATED VERSION

For decorated permutations:
e decorations are attached to values in the shuffle
e decorations are attached to positions in the convolution

Exm: 120231 = {12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312}
12%231 = {12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231}
5 Yl 5 Yl 5—1—1Y]
4 {1 4—+——Q 4 1]
3 2y 3 3 Al
2 — 2—Q 2
1 Q@ 1 N 1@
I I I I [ [
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
concatenation shuffle convolution
kS po0.8) = Hopf algebra with basis (F;);cq,, ., and where

F. .TF, = Z F, and AF, = ZFT®FT/

cer 7’ OETT




PERMUTREE ALGEBRA AS SUBALGEBRA

Permutree algebra = vector subspace kPB% of kG p p @ @1 generated by

Pr= ) F.=)>» F,

TEG{CD,@,@,@} TEﬁ(T)
P(7)=T

for all permutrees T.

Exm: Pm = W5y35176 + Fouss7as + Fousmsas + -+ + Foszzizs + Fosasme + Fosasaa

THEO. kBT is a subalgebra of k&¢ @ 0 ®-

Loday-Ronco, Hopf algebra of the planar binary trees ('98
Hivert-Novelli-Thibon, The algebra of binary search trees

('98)
('05)
Chatel-P., Cambrian Hopf algebras ('17)
('17)

P.-Pons, Permutrees

GAME: Explain the product and coproduct directly on the permutrees...



PRODUCT IN PERMUTREE ALGEBRA

+ Fig515 + Fams1n

_|_
s | ( [F33195 + F@—z)
_|_

PROP. For any permutrees T and T’

Pr-Pr=) Ps
S

where S runs over the interval {T AT TR T/} in the 6(T)d('T")-permutree lattice.




COPRODUCT IN PERMUTREE ALGEBRA

APM = A(Fy3+ Fggy)

=1Q® (Fgg+Fm)+ Fi1®F5 + F1QFy + Fp@F1 + Fp®F; + (Faz+ Fay) @1
= 1@@&}5 +P¥®P%+P¥®P%+P%®P¥+P${®PA+ Pﬂ};@l
= 1®Pﬂ}! + P¥®(PAP¥) +P%®P¥+P$!®PA+ Pﬂ}!@)l.

PROP. For any permutree S,
mps:z( ] pT) ( T pT,)
¥ TeB(S,y) T'eA(S,y)

where ~ runs over all cuts of S, and A(S,~)
and B(S,~) denote the forests above and be-
low ~ respectively.




COPRODUCT IN PERMUTREE ALGEBRA

APM = A(Fy3+ Fggy)

=1Q® (Fgg+Fm)+ Fi1®F5 + F1QFy + Fp@F1 + Fp®F; + (Faz+ Fay) @1
= 1@@&}5 +P¥®P%+P¥®P%+P%®P¥+P${®PA+ Pﬂ};@l
= 1®Pﬂ}! + P¥®(PAP¥) +P%®P¥+P$!®PA+ Pﬂ}!@)l.

PROP. For any permutree S, A(S,7)

or=3 (I m)ef T e) o Pl s
y TeB(S,) T/cA(S,y) \—/\
1

where ~ runs over all cuts of S, and A(S,7) 2
and B(S,~) denote the forests above and be- 1 X)/ B(S,7)
low ~ respectively. )




EXTENSIONS

e Schroder permutrees




EXTENSIONS

e Schroder permutrees

e arbitrary finite Coxeter groups

somewhere between the W -permutahedron and the 1/ -associahedron




Il. QUOTIENTOPES
D, Qo (u)

P.-Santos, Quotientopes ('
P., Hopf algebras on decorated noncrossing arc diagrams ( 17*)




LATTICE SETUP

Reading, Lattice congruences, fans and Hopf a/gebras

Reading, Noncrossing arc diagrams and canonical join representations
Reading, Finite Coxeter groups and the weak order

Reading, Lattice theory of the poset of regions



CANONICAL JOIN REPRESENTATIONS

lattice = poset (L, <) with a meet A and a join V

join representation of x € L = subset J C L such that x =/ J.

xz =\/J irredundant if AJ C J with z=\/J'

JR are ordered by containement of order ideals: J < J <= Vye J, Iy € J, y<y
canonical join representation of x = minimal irred. join representation of x (if it exists)

—> "lowest way to write x as a join”



CANONICAL JOIN REPRESENTATIONS IN THE WEAK ORDER

o permutation
inversions of o = pair (0;,0;) such that ¢ < j and o; > 0,

weak order = permutations of S,, ordered 4391

by inclusion of inversion sets /l\

3421 4231 4312

T ST N

3241 2431 3412 4213 4132

NS T NN

3214 2341 3142 2413 4123 1432

ol XK T

2314 3124 2143 1342 1423

N o<

2134 1324 1243

\\\\\\\\\\\l///////////

1234



CANONICAL JOIN REPRESENTATIONS IN THE WEAK ORDER

o permutation
inversions of o = pair (0;,0;) such that ¢ < j and o; > 0,

weak order = permutations of &,, ordered

4321

by inclusion of inversion sets /l\

descent of 0 = i such that o; > 0,4 3421 49231 4312

o . T

® 3241 2431 3412 4213 4132
o
o W/\/\
.. 3214 2341 3142 2413 4123 1432
o = PY W

PY 2314 3124 2143 1342 1423

® e N <

2134 1324 1243

\I/

1234



CANONICAL JOIN REPRESENTATIONS IN THE WEAK ORDER

o permutation
inversions of o = pair (0;,0;) such that ¢ < j and o; > 0,

weak order = permutations of &,, ordered

by inclusion of inversion sets

descent of ¢ = ¢ such that o; > 0,1 join-irreducible \(o, 1)
® o
° °
o o
® |
° °
.. o ®

o = ® — )\(O', Z) = \

\ °

o ®
® o
® |
o o

Ao, ).

Reading, Noncrossing arc diagrams and canonical join representations ('15)

THM. Canonical join representation of 0 = \/Ui>0i+1




CANONICAL JOIN REPRESENTATIONS IN THE WEAK ORDER

Ao, 1).

Reading, Noncrossing arc diagrams and canonical join representations ('15)

THM. Canonical join representation of o =\/__

4321 1 \
/I\ 3
2@
3421 4231 4312 4 ®

T < |

3241 2431 3412 4213 4132

NV SN

3214 2341 3142 2413 4123 1432

oL XK T

2314 3124 2143 1342 1423

N <

2134 1324 1243

\I/

1234
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ARCS

arc = (a,b,n,S)with 1 <a<b<nandS Cla,b|



FROM PERMUTATIONS TO NONCROSSING ARC DIAGRAMS

o = 2537146

draw the table of points (o;, 1)
draw all arcs (0;,7) — (0;11,7 + 1) with
descents in red and ascent in green

project down the red arcs and up the green arcs
allowing arcs to bend but not to cross or pass points

0(o) = projected red arcs
0(o) = projected green arcs

noncrossing arc diagrams = set D of arcs st. Va, 3 € D:

o left(a) # left(B) and right(a) # right(3),

e o and [ are not crossing.

THM. ¢ — 0(0) and 0 — d(o) are bijections from
permutations to noncrossing arc diagrams.

Reading, Noncrossing arc diagrams and can. join representations ('15)

PWAG



LATTICE CONGRUENCES

lattice congruence = equiv. rel. = on L which respects meets and joins

r=2 and y=4 — cAy=2' ANy and zVy=2 VY

lattice quotient of L/= = lattice on equiv. classes of L under = where
e X <Y — JreX,yeY, z<y

e X ANY = equiv.classof rAyforanyz e X andyeY

e XVY = equiv.classof zVyforanyz e X andy €Y

circles
/.\

polygons stars

\x/ crosses




EXM: TAMARI LATTICE AS LATTICE QUOTIENT OF WEAK ORDER

binary search tree insertion of 2751346

AR ﬁ(@\ X X X

6 4 6 3 4 6 1 3 4 6 1 345 6 1 345 67 112¥3%475'6°7



EXM: TAMARI LATTICE AS LATTICE QUOTIENT OF WEAK ORDER

binary search tree insertion of 2751346

AR (ED\ X X X

6 4 6 3 4 6 1 3 4 6 1 345 6 1 34567 112¥3%475'6°7




LATTICE QUOTIENTS AND CANONICAL JOIN REPRESENTATIONS

= lattice congruence on L, then
e each class X is an interval [ (X), (X))
e [./= is isomorphic to 7 (L) (as poset)

e canonical join representations in L/= are

canonical join representations in L that do

not involve join irreducibles = with 7 (x) # =.

THM. = lattice congruence of the weak order on G,
Let Z- = arcs corresponding to join irreducibles o with 7 (c) = o
e T (0) =0 <= o has no descent i st. a(o,1) ¢ Z-.
e the map &,,/= — {nc arc diagrams in Z_} is a bijection.
X §(m, (X))
e = is the transitive closure of the rewriting rule ¢ — o - (i i + 1) where i descent
of o such that a(o,7) ¢ Z_.

Reading, Noncrossing arc diagrams and can. join representations ('15)




FORCING AND ARC IDEALS

THM. Z— = arcs corresponding to join irreducibles o with 7 (0) = 0.
Bijection G,,/= <— {nc arc diagrams in Z_}.

What sets of arcs can be Z_7
(a,d,n,S) forces (b,c,n,T) when a < b<c<dand T =S5nNIb,¢|

THM. Z set of arcs. d lattice cong. = on G,, with Z =7_ <= 7T closed by forcing.

Reading, Noncrossing arc diagrams and can. join representations ('15)




ARC IDEALS

arc ideal = ideal of the forcing poset on arcs = subsets of arcs closed by forcing

&
AN
B O ® D
@?@%@w@\@
@ /| AR TN
/\ ;@@@@@@@@
NI RSN
Fen e e N e R N R
W YSEAN S XY
\ N T SN
NI = 4
S N = N =
N+ LA+
N




BOUNDED CROSSINGS ARC IDEALS

arc ideal = ideal of the forcing poset on arcs = subsets of arcs closed by forcing

fix k > 0 and some red walls above, below and in between the points
allow arcs that cross at most k walls

M@ & M

weak order Tamari lattice diagonal Cambrian k-sashes

rectangulations lattices lattices



FROM PERMUTATIONS TO NONCROSSING ARC DIAGRAMS AGAIN

- closed by forcing
bijecton &,,/= — {nc arc diagrams in Z_}
X — o(m (X))



FROM PERMUTATIONS TO NONCROSSING ARC DIAGRAMS AGAIN

)

<
&
e

mY"A)z

s
“\‘

A.
V¢

1 2345 67

7.}

o(my(0))

— {nc arc diagrams in

S,
g

closed by forcing

1
surjection



FROM PERMUTATIONS TO NONCROSSING ARC DIAGRAMS AGAIN

7T— closed by forcing
surjection &, — {nc arc diagrams in Z_}
o — 5(m,(0))

N(o)={(,j) |1 <i<j<n, 0,>0;and a(]i,j|) N]oj,0: = S}
ordered by (i,j) < (k,{) <= i <k<{<jand o, >0, >0, > 0y

a(t,j,0) = (0j,0i,n,{or | j <k and o} € |o;,0i})

Vz_(0) = <-maximal elem. in {(i,7) € N(0o) | a(i, j,0) € IT_}

el

PROP. d(my(0)) = {a(i,j,0) | (i,j) € Nz_(0)}.

¢



FROM PERMUTATIONS TO NONCROSSING ARC DIAGRAMS AGAIN

1\
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11—
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diagonal quadrangulations permutrees k-sashes

binary trees



QUOTIENTOPES

Reading, Lattice congruences, fans and Hopf algebras ('05)
P.-Santos, Quotientopes ('177)



SHARDS AND QUOTIENT FAN

arcs decompose the hyperplanes {x € R" | x; = z,} of the braid arrangement into shards

x; < xp for all kK € S while }

snar (7/7]7”7 ) {XE €T Zaj‘k for all kE]Z,][\S

Ty = T and [



SHARDS AND QUOTIENT FAN

arcs decompose the hyperplanes {x € R" | x; = x;} of the braid arrangement into shards

; < xy, for all k hil
shard (¢, 5,n,5)= ¢x € R" | x; = x; and Ti = ko d ESvyle
x; > xp forall k € ]i, j[ . S
THM. = lattice congruence on G,, with arcs 7—

The collection of cones defined equiv. as
e the cones obtained by glueing the Coxeter
regions of the permutations in the same
congruence class of =
e the complements of the union of the shards
>(a) for all arcs o € -
forms a fan F- of R" whose dual graph realizes
the lattice quotient G,,/=.

Reading, Lattice congruences, fans and Hopf algebras ('05)




QUOTIENTOPE

fix a forcing dominant function f : arcs — R ie. st. f(a) > > f(a/) for any arc a.
o -«

for an arc a = (7,7,n,S) and a subset & # R C [n]| define the contribution

o B)— {1 if IRN{i,j} =1and S=RNJi,jl,

0 otherwise

define height function h for @ # R C [n] by hL(R) = >, ., f(a)7(a, R).

THM. For any lattice congruence = on G,, and any forcing dominant function f : arcs
— R., the quotient fan F= is the normal fan of the polytope

Pl={xeR"| (r(R)|x) <hl(R)forall @+# R C [n]}.

P.-Santos, Quotientopes ('177)

gy oY




QUOTIENTOPE LATTICE
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insidahedra_quotientopes_penche_framed_ultraFast_bothWays_cropped.mov
Media File (video/quicktime)


INSIDAHEDRA / OUTSIDAHEDRA

outsidahedra insidahedra

permutrees quotientopes

ROBWIOOD
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TOWARDS QUOTIENTOPES FOR HYPERPLANE ARRANGEMENTS

H hyperplane arrangement in R”

B distinguished region of R" . H

inversion set of a region C' = set of hyperplanes of H that separate B and C

poset of regions Pos(H, B) = regions of R"” . H ordered by inclusion of inversion sets

THM. The poset of regions Pos(H, B)
e is never a lattice when B is not a simple region,
e is always a lattice when H is a simplicial arrangement.

Bjorner-Edelman-Ziegler, Hyperplane arrangements with a lattice of regions ('90)

THM. If Pos(H, B) is a lattice, and = is a lattice congruence of Pos(H, B), the cones

obtained by glueing together the regions of R™ ~. H in the same congruence class form
a complete fan.

Reading, Lattice congruences, fans and Hopf algebras ('05)

Is the quotient fan polytopal?



HOPF ALGEBRAS ON ARC DIAGRAMS

P., Hopf algebras on decorated noncrossing arc diagrams ('177)



DECORATED PERMUTATION

decoration set = a graded set X = | | ., X, endowed with

e a concatenation concat : X,, x X,, — X,4n
) — X

[m]

e a selection select : X, x ( h

such that
(i) concat(X, concat(), £)) = concat(concat(X,)), Z)
(ii) select(select(X, R), S) = select(X,{rs | s € S})
(iii) concat(select(X, R), select()), S)) = select(concat(X, V), RUS™™)
where 57" :={s+m | s e S}.

Exm:
e A* = words on an alphabet A, with concatenation and subwords
e labeled graphs, with shifted union and induced subgraphs



DECORATED PERMUTATION

decoration set = a graded set X = | | ., X, endowed with

e a concatenation concat : X,, x X,, — X,4n
) — X

[m]

e a selection select : X, x ( h

such that
(i) concat(X, concat(), £)) = concat(concat(X,)), Z)
(ii) select(select(X, R), S) = select(X,{rs | s € S})
(iii) concat(select(X, R), select()), S)) = select(concat(X, V), RUS™™)
where 57" :={s+m | s e S}.

X-decorated permutation = pair (o, X) with 0 € G,, and X € X,,.

standardization std((p, Z), R) = (stdp(p, R), select(Z, p_l(R)))

THM. The product - and coproduct A defined by

D
Fox) Fay= Z Fpconcar(xyy) and  AF(, z)= ZFstd<<p,z>,[k]> ® Fsta((p.2). [~ k)
k=0

pEo LT

endow the vector space of decorated permutations with a graded Hopf algebra structure.

P., Hopf algebras on decorated noncrossing arc diagrams ('177)




DECORATED NONCROSSING ARC DIAGRAMS

a graded function V: X =| | . X, — T =], T, is conservative if
(i) U(X)™ and W())~™ are both subsets of V(concat(X,)))
(ii) (74,70, p,S) € W(Z) implies (a,b,q,{c|r. € S}) € VU(select(Z, R))

7 collection of arcs closed by forcing
surjection 77 : &, —> {nc arc diagrams in Z}
o — (o) = d(m(0))

X-decorated noncrossing arc diagram = (D, X') where D is a non crossing arc diagram
contained in U(X)

THM. For a decorated noncrossing arc diagram (D, X'), define

Pip.a)= Z Fs.x),

where o ranges over the permutations such that 7y x)(0) = D. The graded vector sub-
space kD = P, kD, of kKB generated by the elements Pp ), for all X-decorated
noncrossing arc diagrams (D, X'), is a Hopf subalgebra of k°.

P., Hopf algebras on decorated noncrossing arc diagrams ('177)




APPLICATIONS

fix k>0

Uq

X = words on N* (each letter a is made of 4 numbers ¢,+r,)

with concat(ay - ap, b1+ by) = ay---aymby - - by,

Ue,.
1
select(c;---¢p, R) = ¢, ---¢,, where ¢,; = min (., + min r,
ri—1<k<r; ri <k<riii
d,
U, above i
U(ay---ap) = draw | d,, red walls | below i

min(7a,, la,)

dq

between 7 and 7 + 1

allow arcs that cross at most k walls

weak order

Tamari lattice

&

diagonal
rectangulations

Cambrian
lattices

k-sashes
lattices



APPLICATIONS

extended arc = arc allowed to start at 0 or end at n + 1

X = extended arc ideals with

concatenation: Cg i ; { 5+m —
selection: % @

U(X) = strict arcs in X

— Hopf algebra on all arc ideals containing the permutree algebra

P., Hopf algebras on decorated noncrossing arc diagrams ('177)



IIl. THE UNIVERSAL ASSOCIAHEDRON
AND ITS PROJECTIONS

A';/,;%%\‘u
\v‘/// \\’V

G —“

Hohlweg-P.-Stella, Polytopal realizations of finite type g-vector fans ('177)
Manneville-P., Geometric realizations of the accordion complex ('177)



G- AND c-VECTORS




TWO POLYGONS

Consider simultaneously two n-gons:
e the red polygon supports a reference triangulation,

e the blue polygon is the ground set.




G-VECTORS

For T, red triangulation, 6, € T, and d, a blue diagonal, let

p

1 if d, slalomsond, €T, asaZ
Eo (50 S T0750) — < —1 |f 5. SlalOmS on 50 - To as an \

0 otherwise




G-VECTORS

For T, red triangulation, 6, € T, and d, a blue diagonal, let

2

1 if d, slalomsond, €T, asaZ
Eo (50 S T0750) — < —1 |f 5. SlalOmS on 50 - To as an \

0 otherwise




G-VECTORS

For T, red triangulation, 6, € T, and d, a blue diagonal, let

p

1 if d, slalomsond, €T, asaZ
Eo (50 S T0750) — < —1 |f 5. SlalOmS on 50 - To as an \

0 otherwise

\

g(Ts, ds) = g-vector of d, with respect to T, = [50 ((50 e Ty, (5.) } c R
- 00€To

= alternating £1 along the zigzag crossed by d, in T,




G-VECTOR FAN

g(T,,d,) = g-vector of §, with respect to T, = [50 (50 e'T,, 5.) } c R
00€To

THM. For any red triangulation T, the collection of cones
FE(Ts) = {Rzog(To, D.) ’ D, any blue dissection}

forms a complete simplicial fan, called g-vector fan of T..

Vo OT0

Hohlweg-Lange / Reading Hohlweg-P.-Stella




C-VECTORS

For T, red triangulation and T, blue triangulation
and two diagonals 6, € T, and 9, € T,, let

/

1 if &, slalomsond, €T, as a N
€e(00,00 € Ts) =< —1 if 0, slaloms on &, € T, as an Z

0 otherwise

\

c(Ts,de € Ts) = c-vector of §, in T, with respect to T, = [5. (50, e € T.) ] c Rt
00€To

= =+ charac. vector of diagonals of T, crossed by opposite neighbors of ¢,

c(Ts, (1e,5s) € To) = (1o, (16,36) € Te) = ¢(Ts,(5e,76) € To) = (15, (56, 7e) € To) =
—€2.7, —€2.4, €27, T €47, T €57, —€4.7,



G- AND C-VECTORS

For T, red triangulation and T, blue triangulation

g(Ts, ) = g-vector of J, with respect to T, = | & (50 e'T,, 5.)

c(T,,de € Ts) = c-vector of d, in Ty with respect to T, = | &, (50, e € T.)

L,

€5.7.
€7, +€s7 + €57,




G- AND C-VECTORS

For T, red triangulation and T, blue triangulation

g(Ts, de) = g-vector of d, with respect to T, =

c(T,,de € Ty) = c-vector of d, in T, with respect to T, =

—€9. 4, €5.7. €5.7, — €4.7,
—€9 4, € 7. t€s47 1+ €57, —€y4.7,

PROP. The g-vectors g(T,,T,) and the c-vectors c(T,,T,) form dual bases.

PROP. Duality: g(T.,T.) = —c(T.,T.)! and ¢(T.,T.) = —g(T., T.)"




ASSOCIAHEDRA FOR G-VECTOR FANS

Hohlweg-P.-Stella, Polytopal realizations of finite type g-vector fans ('177)



T,-ZONOTOPE

T.-zonotope = Zono(T,) = Minkowski sum of all c-vectors C(T.) = (J; c(T.,T.,)
Zono(T,) = Z C.
CGC(TO)

PROP. For any diagonal v,, Zono('T,) has a facet defined by the inequality

(8(To;7e) | x) < w(76)

where w(~,) = number of red diagonals that cross ~,.




T,-ASSOCIAHEDRON

Define p(To, Te)= > w(de) c(Ts,de € Ts)
0e€ T

THM. For any red triangulation T,, the g-vector fan F&('T,) is the normal fan of

Asso(T,) = conv {p(T,, Ts) | T, blue triangulation}
= {X c R | {g(T.,d0.) | x ) < w(d,) for any blue diagonal (5.} .

Hohlweg-P.-Stella, Polytopal realizations of finite type g-vector fans ('177)

&G

Loday Hohlweg-Lange Hohlweg-P.-Stella




T,-ASSOCIAHEDRON

Define p(To, Te) = > w(de) - c(Ts,de € To)
0e€ T

THM. For any red triangulation T, the g-vector fan F&('T,) is the normal fan of

Asso(T,) = conv {p(T,, Ts) | T, blue triangulation}
— {X cR"™ | (g(T.,d.) | x) < w(d,) for any blue diagonal 5.} .

Hohlweg-P.-Stella, Polytopal realizations of finite type g-vector fans ('177)

O

Hohlweg-Lange Hohlweg-P.-Stella




UNIVERSAL ASSOCIAHEDRON

Hohlweg-P.-Stella, Polytopal realizations of finite type g-vector fans ('177)



UNIVERSAL ASSOCIAHEDRON

THM. For any red triangulation T,, the g-vector fan F8('T,) is the normal fan of
Asso('T,) = conv {p(T,, T,) | Te blue triangulation}

where

p(T.,T,) Zw c(Ts, 0 € T) Z (Zw 5. 50,(5 ET)) e; € R'.

0e€ T 0ETy  0e€ET,

Hohlweg-P.-Stella, Polytopal realizations of finite type g-vector fans ('177)

—> the d.,-coordinate of p(T,, T,) does not really depends on T,




UNIVERSAL ASSOCIAHEDRON

THM. For any red triangulation T,, the g-vector fan F8('T,) is the normal fan of
Asso('T,) = conv {p(T,, T,) | Te blue triangulation}

where

p(T.,T,) Zw c(Ts, 0 € T) Z (Zw 5. 50,(5 ET)) e; € R'.

0e€ T 0ETy  0e€ET,

Hohlweg-P.-Stella, Polytopal realizations of finite type g-vector fans ('177)

THM. Let X, be the set of all internal red diagonals.
Define the universal associahedron Asso,,(n) as the convex hull of the points

pun y (YW 5. 50,5 ET)> €5, € RXO

0.EX,  0e€ET,

over all blue triangulations T,.
Then for any red triangulation T, the g-vector fan F8('T,) is the normal fan of the pro-
jection Asso(T,) of the universal associahedron Asso,,(n) on the coordinate plane R'.

Hohlweg-P.-Stella, Polytopal realizations of finite type g-vector fans ('177)




UNIVERSAL ASSOCIAHEDRON

THM. Let X, be the set of all internal red diagonals.
Define the universal associahedron Asso,,(n) as the convex hull of the points

pun Y (YW 5. 50,5 GT)> €5, € RXO

0.EX,  0e€ET,

over all blue triangulations T,.
Then for any red triangulation T, the g-vector fan F&('T,) is the normal fan of the pro-
jection Asso(T.) of the universal associahedron Asso,,(n) on the coordinate plane R'-.

Hohlweg-P.-Stella, Polytopal realizations of finite type g-vector fans ('177)




UNIVERSAL ASSOCIAHEDRON

THM. Let X, be the set of all internal red diagonals.

Define the universal associahedron Asso,,(n) as the convex hull of the points

Pun(T

ED OIS

0.EX,  0e€ET,

over all blue triangulations T,.

Then for any red triangulation T, the g-vector fan F&(
jection Asso(T.) of the universal associahedron Asso,,(n) on the coordinate plane R'-.

Hohlweg-P.-Stella, Polytopal realizations of finite type g-vector fans ('177)

- 24(00,00 € T4 )> e;. € R*™

T,) is the normal fan of the pro-

dimension of

Ny space dimension | # vertices | # facets | # vertices / facet | # facets / vertex
1 2 1 2 2 1 1

2 5! 4 5 5! 4 4

3 9 3 14 50 9<.<10 30 <. <42
4 14 13 42 38960 14 <. <28 3463 < - <4244




UNIVERSAL ASSOCIAHEDRON

THM. Let X, be the set of all internal red diagonals.
Define the universal associahedron Asso,,(n) as the convex hull of the points

pun Y (YW 5. 50,5 GT)> €5, € RXO

0.EX,  0e€ET,

over all blue triangulations T,.
Then for any red triangulation T, the g-vector fan F&('T,) is the normal fan of the pro-
jection Asso(T.) of the universal associahedron Asso,,(n) on the coordinate plane R'-.

Hohlweg-P.-Stella, Polytopal realizations of finite type g-vector fans ('177)

THM. The origin is the vertex barycenter of the universal associahedron Asso,,(n).

Hohlweg-P.-Stella, Polytopal realizations of finite type g-vector fans ('177)

CORO. For any red triangulation T, the origin is the vertex barycenter of the T.-
associahedron Asso(T.,).

Hohlweg-P.-Stella, Polytopal realizations of finite type g-vector fans ('177)




SECTIONS AND PROJECTIONS

Manneville-P., Geometric realizations of the accordion complex ('177)



SECTIONS AND PROJECTIONS

THM. For any red triangulation T, the g-vector fan F&('T,) is the normal fan of the pro-
jection Asso(T.) of the universal associahedron Asso,,(n) on the coordinate plane R'-.

What happens if we project on other coordinate planes?
No clue in general, but...

For a red dissection D, define

Asso(D,) = projection of Assou,(n) on the coordinate plane R""

Since normal fan of projections are sections of normal fans,
normal fan of Asso(D,) = section of the normal fan of Asso,,(n) by the plane R":
= subfan of the normal fan of Asso,,(n) induced by the rays in R"-

= subfan of the normal fan of Asso(T,) induced by the rays in R-
for a triangulation T, containing D,



ACCORDION COMPLEX

LEM. For a red dissection D, contained in a red triangulation T, and a blue diagonal 4,
g(T.,d,) € RP: <= §, never crosses a cell of D, through two non-consecutive edges

D.-accordion diagonal = diagonal of the blue solid polygon that crosses an accordion of D,

D.-accordion dissection = set of non-crossing D.-accordion diagonals

D.-accordion complex = simplicial complex of D.-accordion dissections

4, 2%

dissection D,  D.-accordion diagonal two maximal D,-accordion dissections



ACCORDIOHEDRON

THM. For any red dissection D,, the projection Asso(D.) of the universal associahe-
dron Asso,,(n) on the coordinate plane R"- realizes the D.-accordion complex.

Manneville-P., Geometric realizations of the accordion complex ('177)




PROJECTIONS OF PROJECTIONS

PROP. If D, C D/, then
e F8(D,) is the section of F&(D.) with the coordinate plane (e; | J, € D.),
e therefore, F8(D,) is also realized by the projection of Asso(D.) on (e; | d, € D).
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EXTENSIONS TO CLUSTER ALGEBRAS

Fomin-Zelevinsky, Cluster Algebras I, 11, I1l, IV ('02-"07)



CLUSTER ALGEBRAS

cluster algebra = commutative ring generated by distinguished cluster variables grouped

into overlapping clusters

clusters computed by a mutation process :

cluster seed = algebraic data {xy,...,z,}, combinatorical data B (matrix or quiver)
cluster mutation = ({xl,...,xk Tt B) ({:1:1,...,xﬁf,...,xn},uk(B))
Ty - Ty = H zk 4 H x;
{i ] bir>0} {7 ] bir<0}
(
(1r(B)),; = 9 bij + |bik| - b;  if k ¢ {i, 5} and by - by > 0
\ bi; otherwise

cluster complex = simplicial complex w/ vertices = cluster variables & facets = clusters

Fomin-Zelevinsky, Cluster Algebras I, II, 1ll, IV ('02-"07)



CLUSTER MUTATION

) (3



CLUSTER MUTATION




CLUSTER MUTATION




CLUSTER MUTATION




CLUSTER MUTATION GRAPH

(1 + x3)(1 + z2)

T1X2X3



CLUSTER ALGEBRA FROM TRIANGULATIONS

One constructs a cluster algebra from the triangulations of a polygon:

diagonals S cluster variables
triangulations — clusters
flip I mutation
a a

b&d —> b@d — xy = ac + bd



CLUSTER MUTATION GRAPH

‘é

?‘\ _‘.‘
/ r

\ s

é




CLUSTER ALGEBRAS

THM. (Laurent phenomenon)

All cluster variables are Laurent polynomials in the variables of the initial cluster seed.

Fomin-Zelevinsky, Cluster algebras I: Fundations ('02)

THM. (Classification)

Finite type cluster algebras are classified by the Cartan-Killing classification for finite

type crystallographic root systems.

Fomin-Zelevinsky, Cluster algebras Il: Finite type classification ('03)

for a root system ®, and an acyclic initial cluster X = {z1,...,x,}, there is a bijection
. o
cluster variables of 43 «—— O =dTU-A

:F(xl,...,xn)

cluster of Ag

cluster complex of Ag

6
PELE.SEN B=dog+ - +dya,

0 .
LB X-cluster in - _;

0 .
+—— X-cluster complex in ®~_;

see a short introduction to finite Coxeter groups




COXETER UNIVERSAL ASSOCIAHEDRON

g- and c-vectors of cluster variables are defined using principal coefficients
universal c-vectors are defined using universal coefficients

THM. T finite type Dynkin diagram and A : cluster vars — R exchange submodular.
Define the universal I'-associahedron Asso,,,(I") as the convex hull of the points

Pu(Z)= Y h(x)- culz € T)

TEY

for all seeds X in the cluster algebra of type I'.
Then for any initial seed X, the g-vetor fan F&(%,) is the normal fan of the projec-
tion Asso(X,) of the universal associahedron Asso,,(I") on the coordinate plane R'.

Hohlweg-P.-Stella, Polytopal realizations of finite type g-vector fans ('177)




IV. NON-KISSING COMPLEXES
AND GENTLE ASSOCIAHEDRA

Palu-P.-Plamondon, Non-kissing complexes and T-tilting for gentle alg. ('177)



NON-KISSING COMPLEX

Petersen-Pylyavskyy-Speyer, A non-crossing standard monomial theory ('1
Santos-Stump-Welker, Non-crossing sets and the Grassmann-assoc. ('1
McConville, Lattice structures of grid Tamari orders ('1

Garver-McConville, Enumerative properties of grid-associahedra ('17
Palu-P.-Plamondon, Non-kissing complexes and T-tilting for gentle alg. ('17



QUIVERS

quiver = oriented graph

i\ /? (loops and multiple edges allowed)
(4
/ \6

Q — (QO; Qb S, t)
O——©O ()o = vertices
()1 = edges

s,t: Q1 — Qo source and target maps



QUIVERS

quiver = oriented graph

i\ /? (loops and multiple edges allowed)
4
/ \6

Q = (Qo, Q1, s, 1)

()y = vertices

()1 = edges

s,t: Q1 — Qo source and target maps

O—0

path = a7 ...ay with a; € Q1 and t(ay) = s(ags1)

path algebra KQ = (e, | m path of ) with concatenation product
Caq...oP1... 0k if t(O‘ﬁ) — S(ﬁl)
Caj...op " €B1..B —

0 otherwise



QUIVERS

quiver = oriented graph

i\ /? (loops and multiple edges allowed)
(4
/ \6

Q = (Qo, Q1, s, 1)

()y = vertices

()1 = edges

s,t: Q1 — Qo source and target maps

0O————0

path = a7 ...ay with a; € Q1 and t(ay) = s(ags1)

path algebra KQ = (e, | m path of ) with concatenation product
Caq...oP1... 0k if t(O‘é) — 3(61)
Caj...op " €B1..B —

0 otherwise



QUIVERS

quiver = oriented graph

® ®
(loops and multiple edges allowed)
(/]
//| > Q Q = (Qo, @1, 5, 1)
(] () ®

()y = vertices

()1 = edges
s,t: Q1 — Qo source and target maps

path = a7 ...ay with a; € Q1 and t(ay) = s(ags1)

path algebra KQ = (e, | m path of ) with concatenation product
Caq...oP1... 0k if t(()ég) — 3(51)
Caj...op " €B1..B —

0 otherwise

bound quiver = quiver with relations

Q = (Q, I) where I is an admissible ideal of KQ.

Complicated way to say that we forbid certain paths



QUIVERS

quiver = oriented graph

® ®
(loops and multiple edges allowed)
(/]
//| > Q Q = (Qo, @1, 5, 1)
(] () ®

()y = vertices

()1 = edges
s,t: Q1 — Qo source and target maps

path = a7 ...ay with a; € Q1 and t(ay) = s(ags1)

path algebra KQ = (e, | m path of ) with concatenation product

Caq...apf... 0k if t(O‘é) — 3(61)
6041...04@ : 661...5k — .
0 otherwise

bound quiver = quiver with relations

Q = (Q, I) where I is an admissible ideal of KQ.

Complicated way to say that we forbid certain paths



QUIVERS

quiver = oriented graph

® ®
(loops and multiple edges allowed)
(/]
//l > Q Q = (Qo, @1, s,1)
(] () ®

()y = vertices

()1 = edges
s,t: Q1 — Qo source and target maps

path = a7 ...ay with a; € Q1 and t(ay) = s(ags1)

path algebra KQ = (e, | m path of ) with concatenation product

Caq...apf... 0k if t(O‘é) — 3(61)
6041...04@ : 661...5k — .
0 otherwise

bound quiver = quiver with relations

Q = (Q, I) where I is an admissible ideal of KQ.

Complicated way to say that we forbid certain paths



QUIVERS

bound quiver Q = (Q, I)
gentle quiver =
e forbidden paths all of length 2
e locally at each vertex, subgraph of




QUIVERS

® bound quiver Q = (Q, I)

gentle quiver =
e forbidden paths all of length 2
e locally at each vertex, subgraph of

Jad

6, blossoming quiver Q® = add blossoms to

complete each vertex to

.. X



STRINGS AND WALKS

" — €1 e
string o = a; ...q,

® ®
with oy € Qq,
o €k € {—1, 1}
0 @ 6 and t(&zk) = S( ng)

Q1




STRINGS AND WALKS

® ® string 0 = of'...q)
with a; € Qq,
>@<\} €L € {—1, 1}
0— (@| ® and t(a}F) = s(a;*))

substrings of o = {oz?...ozjj ]1§z‘§j—1§k}

bottom substring of ¢ = substring p of ¢ such that o either ends

or has an outgoing arrow at each endpoint of p
Yhot(0) = { bottom substrings of o }

top substring of 0 = substring p of o such that o either ends

or has an incoming arrow at each endpoint of p
Yiop(0) = { top substrings of o }



STRINGS AND WALKS

" — €1 e
string o = a; ...q,

® ®
with oy € Qq,
o €k € {—1, 1}
0 @ 6 and t(&zk) = S( ng)

Q1

@
@ yo
walk w = maximal string in Q%

®

@)

®
< from blossoms to blossoms
() Y
‘?)\

¥
O—e[@j—eo

\

o =

@) @)



STRINGS AND WALKS

]

string 0 = of'...q)
with oy € Qq,
€L € {—1, 1}
and t(ogf) = s(a;')

walk w = maximal string in Q%
from blossoms to blossoms



STRINGS AND WALKS

" — €1 e
string o = a; ...q,

® ®
with oy € Qq,
o €k € {—1, 1}
0 @ 6 and t(&zk) = S( ng)

Q1

walk w = maximal string in Q%
from blossoms to blossoms




NON-KISSING COMPLEX

@) ®
\/
@)

Nl

walk w = maximal string in Q%

from blossoms to blossoms

0
o> \:%\2* O

w kisses w' if Yiop(w) N Xpet(w') # S




NON-KISSING COMPLEX

@) ®

\/

@)

\QJB (;)y walk w = maximal string in Q¥

from blossoms to blossoms




NON-KISSING COMPLEX

walk w = maximal string in Q%

from blossoms to blossoms

0

o> C*]\ >
k

w kisses w' if Yiop(w) N Xpet(w') # S




NON-KISSING COMPLEX

walk w = maximal string in Q%

from blossoms to blossoms




NON-KISSING COMPLEX

walk w = maximal string in Q%
from blossoms to blossoms

[reduced| non-kissing complex I () = simplicial complex with

e vertices = [bended| walks of @ (that are not self-kissing)
e faces = collections of pairwise non-kissing [bended]| walks of Q



REDUCED NON-KISSING COMPLEX




SIMPLICIAL ASSOCIAHEDRA ARE NON-KISSING COMPLEXES

[reduced| simplicial associahedron = simplicial complex with

e vertices = [internal] diagonals of an (n + 3)-gon
e faces = collections of pairwise non-crossing [internal| diagonals of the (n + 3)-gon

0 ’ 1 2 3 4 5 6 7
}_A\O (@] O (@] O (@] O
[ ) o .7#.7#?9—[‘7#?[.7# o
1 .8 O o) o) o} o) o} o F 9
° > 3 4 5 6 7 8



SIMPLICIAL ASSOCIAHEDRA ARE NON-KISSING COMPLEXES

[reduced| simplicial associahedron = simplicial complex with

e vertices = [internal] diagonals of an (n + 3)-gon
e faces = collections of pairwise non-crossing [internal| diagonals of the (n + 3)-gon

0 ’ 1 2 3 4 5 6 7
: 0onld .
1 4.8 o o o o o o
", . 2 3 4 5 6 7 8
23 b T

diagonal R walk



SIMPLICIAL ASSOCIAHEDRA ARE NON-KISSING COMPLEXES

[reduced| simplicial associahedron = simplicial complex with

e vertices = [internal] diagonals of an (n + 3)-gon
e faces = collections of pairwise non-crossing [internal| diagonals of the (n + 3)-gon

! ’ 1 2 3 4 5 6 7T
. L o ’
1 R SO U S S
. - - 2 3 4 5 6 7 8
SN I
diagonal R walk
— kissing

crossing



SIMPLICIAL ASSOCIAHEDRA ARE NON-KISSING COMPLEXES

[reduced| simplicial associahedron = simplicial complex with

e vertices = [internal] diagonals of an (n + 3)-gon

e faces = collections of pairwise non-crossing [internal| diagonals of the (n + 3)-gon

0
1
SN
diagonal
crossing
dissection

12
et
2 3

[T

3 4

5
P

56

] 6 7
| A | A
Wﬁufog
3 4 7 8

walk
kissing
non-kissing face

A



SIMPLICIAL ASSOCIAHEDRA ARE NON-KISSING COMPLEXES

[reduced| simplicial associahedron = simplicial complex with

e vertices = [internal] diagonals of an (n + 3)-gon
e faces = collections of pairwise non-crossing [internal| diagonals of the (n + 3)-gon

o
! ’ 1 2 3 4 5 6 7T
e S N S S T S S
[ o .%W o
: \/8 ) 3 e
o 2 3 4 5 6 7 8
92 e o
3 4. 5 0 7
diagonal R walk
crossing — kissing
dissection <y non-kissing face
simplicial associahedron —— non-kissing complex

McConville, Lattice structures of grid Tamari orders ('17)



SIMPLICIAL ASSOCIAHEDRA ARE NON-KISSING COMPLEXES

[reduced| simplicial associahedron = simplicial complex with

e vertices = [internal] diagonals of an (n + 3)-gon
e faces = collections of pairwise non-crossing [internal| diagonals of the (n + 3)-gon

2
O°>[i ¢ 3
2 A 4
3 5
4 A\‘J’ ‘e °607
5 60 //.Pj% %*/ 09
7 8

McConville, Lattice structures of grid Tamari orders ('17)



TWO FAMILIES OF NON-KISSING COMPLEXES

dissection subset of Z2



TWO FAMILIES OF NON-KISSING COMPLEXES

o‘{:ﬂo

dissection subset of Z2



TWO FAMILIES OF NON-KISSING COMPLEXES

dissection

dissection quiver grid quiver



TWO FAMILIES OF NON-KISSING COMPLEXES

accordion 2457 subset of [n + m)|




TWO FAMILIES OF NON-KISSING COMPLEXES

crossing accordions

A
(V]
(o]

kissing walks kissing walks



TWO FAMILIES OF NON-KISSING COMPLEXES

accordion complex grid Tamari complex

Baryshnikov, On Stokes sets ('01)
Chapoton, Stokes posets and serpent nests ('16)
Garver-McConville, Oriented flip graphs and non-crossing tree partitions ('17)

'10

Petersen-Pylyavskyy-Speyer, A non-crossing standard monomial theory ('10)
Santos-Stump-Welker, Non-crossing sets and the Grassmann-assoc. ('17)
('17)

177)

McConville, Lattice structures of grid Tamari orders ('17
Garver-McConville, Enumerative properties of grid-associahedra ('17



DISTINGUISHED WALKS, ARROWS AND STRINGS

F' face of K. (Q)
a € Qy




DISTINGUISHED WALKS, ARROWS AND STRINGS

@) @)

F' face of K. (Q)
a € @

F,={weF|acw}
A <, w countercurrent order at o




DISTINGUISHED WALKS, ARROWS AND STRINGS

F' face of K. (Q)
a € @

F,={weF|acw}
A <, w countercurrent order at o

dw(a, F') = max._ F,
da(w, F) ={a € Q1 | w=dw(a, F)}




DISTINGUISHED WALKS, ARROWS AND STRINGS

F face of K. (Q)
a € @

F,={weF|acw}
A <, w countercurrent order at o

dw(a, F') = max._ F,
da(w, F) ={a € Q1 | w=dw(a, F)}

PROP. For any facet F' € K,(Q),
e each bended walk of F' contains 2 distinguished arrows in F' pointing opposite,
e each straight walk of F' contains 1 distinguished arrows in F' pointing as the walk.




DISTINGUISHED WALKS, ARROWS AND STRINGS

F face of K. (Q)
a € @

F,={weF|acw}
A <, w countercurrent order at o

dw(a, F') = max._ F,
da(w, F) ={a € Q1 | w=dw(a, F)}

PROP. For any facet F' € K,(Q),
e each bended walk of F' contains 2 distinguished arrows in F' pointing opposite,
e each straight walk of F' contains 1 distinguished arrows in F' pointing as the walk.

CORO. K,(Q) is pure of dimension Q.




FLIPS

F facet of Kx(Q) (ie. maximal collection of pairwise non-kissing walks)



FLIPS

F facet of Kx(Q) (ie. maximal collection of pairwise non-kissing walks)

/7N s

w € I we want to “flip”



FLIPS

F facet of Kx(Q) (ie. maximal collection of pairwise non-kissing walks)

w € I we want to “flip”

{a, B} = da(w, F)



FLIPS

F facet of Kx(Q) (ie. maximal collection of pairwise non-kissing walks)

w € F we want to “flip”

{a, 6} = da(w, F)

o, 8 € Q) such that /o € I and §/5 € I ,

Sk



FLIPS

F facet of Kx(Q) (ie. maximal collection of pairwise non-kissing walks)

w € I we want to “flip”

{a,f} = da(w, F)

o, 8 € Q) such that /o € I and §/5 € I
p=dw(a, F) and v = dw(g, F')




F facet of Kx(Q) (ie. maximal collection of pairwise non-kissing walks)

w € I we want to “flip”

{a, B} = da(w, F)

o, 8 € Q) such that /o € I and §/5 € I
p=dw(a, F) and v = dw(g, F')

W= pl, v ovw, -]




FLIPS

is the only such walk.

" kisses w but no other walk of F'. Moreover, &’

PROP. w




FLIP GRAPH




GENTLE ASSOCIAHEDRA

Manneville-P., Geometric realizations of the accordion complex ('177)
Hohlweg-P.-Stella, Polytopal realizations of finite type g-vector fans ('177)
Palu-P.-Plamondon, Non-kissing complexes and T-tilting for gentle alg. ('177)



G-VECTORS & C-VECTORS

multiplicity vector my of multiset V = {{vy,...,v,}} of Qo = > e, € R
i€lm]

g-vector g(w) of a walk w

Mpeaks(w) — Mdeeps(w)

c-vector c(w € F') of a walk w in a non-kissing facet ' =

O

RN&3

S O B W N

8((,(}, F) Mys(w,F)

00 0-—1
0 0 —1 O\

01 0
0—10
1 0 1
00 0
gl

0
0
0

0/

S T = W N~

o O =k = O O




G-VECTORS & C-VECTORS

multiplicity vector my of multiset V = {{vy,...,v,}} of Qo = > e, € R
i€lm]

g-vector g(w) of a walk w Mpeaks(ew) — Meeps(w)

c-vector c(w € F') of a walk w in a non-kissing facet ' =

o o
O

RN&3

0

0

1 01 0
00-10
010 1
000 0
gl

S O B W N

8(&], F) Mys(w,F)

00 0-—1
0 0 —1 O\

0
0
0

0/

S T = W N~

o O =k = O O

PROP. For any non-kissing facet F', the sets of vectors

g(F)={gw)|we F} and c(F)={clweF)|weF}

form dual bases.

Palu-P.-Plamondon, Non-kissing complexes and t-tilting for gentle algebras ('177)




G-VECTOR FAN

THM. For any gentle quiver @, the collection of cones

o
OE. (o FE(Q) = {Rx0g(F) | F € C(Q)}

° forms a compl. simpl. fan, called g-vector fan of Q.

stereographic projection
from (1,1,1)







NON-KISSING ASSOCIAHEDRON

kissing number x(w,w’) = number of times w kisses '

kissing number kn(w) = Z/@'(w,w’) + k(W' w)

Cd/

THM. For a gentle quiver Q with finite non-kissing complex C.1 (@),
the two sets of R% given by

(i) the convex hull of the points

an c(w € F),

weF

for all non-kissing facets F' € C.(Q),

(ii) the intersection of the halfspaces : f
C

H=(w {XGRQ0’< ()\X}ﬁkn(w)}. OE. o

for all walks w of Q, ’ oi

define the same polytope, whose normal fan is the g-vector fan F8. We call it the
(Q-associahedron and denote it by Asso.

Palu-P.-Plamondon, Non-kissing complexes and 7-tilting for gentle algebras ('177)




NON-KISSING ASSOCIAHEDRON




NON-KISSING ASSOCIAHEDRON VS ZONOTOPES

/ %?

~

b



NON-KISSING LATTICE

McConville, Lattice structures of grid Tamari orders ('17)
Palu-P.-Plamondon, Non-kissing complexes and T-tilting for gentle alg. ('177)



NON-KISSING LATTICE

THM. For a gentle quiver ) with finite non-kissing complex C,,(Q), the non-kissing
flip graph is the Hasse diagram of a congruence-uniform lattice.

» ﬁé/}*\»/Ng A/A/ \i%:
L AT A=

R | /\(

£

7

"
£
P
)
P

-
%{ > } A*A '
A <

_ V%@ A\#@L/AA

e
; AN

>
/

o .zc’

Palu-P.-Plamondon, Non-kissing complexes and T-tilting for gentle algebras ('177)




BICLOSED SETS OF SEGMENTS

o, T oriented strings
concatenation g o 7 = {aow } a € (1 and oaTt string of Q}

closure S = U o10---00, = all strings obtained by concatenation
(eN of some strings of S
O1,...,00ES
closed «— SS9 =29 coclosed «— SS9 =38 biclosed = closed and coclosed

NP QNP S g

THM. For any gentle quiver () such that ., (Q) is finite, the inclusion poset on biclosed

sets of strings of () is a congruence-uniform lattice.

McConville, Lattice structures of grid Tamari orders ('17)
Garver-McConville, Oriented flip graphs and non-crossing tree partitions ('17")
Palu-P.-Plamondon, Non-kissing complexes and t-tilting for gentle algebras ('177)



NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

@) @)
@) @)
Te o
o) A .CV
) (g
. \. S .)\O
©) @) @)
S biclosed, v € 4
w(a, S) = walk constructed with the local rules:
Q cS €S Q
—r— G —<— —>—G——
——< D —_—( D——
. ¢S ¢ S e

McConville, Lattice structures of grid Tamari orders ('17)



NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

@) @)
@) @)
Te o
o) A .<V
O*&M .)\O
O @) @)
S biclosed, v € 4
w(a, S) = walk constructed with the local rules:
o €S €S o
—r— G —<— —>—G——
——< D —_—( —r—
. ¢S ¢ S e

McConville, Lattice structures of grid Tamari orders ('17)



NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

©) @) @)
S biclosed, v € 4
w(a, S) = walk constructed with the local rules:
o €S €S o
—r— G —<— —>—G—)—
——< D —_—( D——
. ¢S ¢ S e

McConville, Lattice structures of grid Tamari orders ('17)



NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

©) @) @)
S biclosed, v € 4
w(a, S) = walk constructed with the local rules:
o €S €S o
—r— G —<— —>—G—)—
——< D —_—( D——
. ¢S ¢ S e

McConville, Lattice structures of grid Tamari orders ('17)



NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, v € 4
w(a, S) = walk constructed with the local rules:

Q cS c S Q
—y— D —<— —_——
— — —_—( —H—

. ¢S ¢ S e

McConville, Lattice structures of grid Tamari orders ('17)



NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, v € 4
w(a, S) = walk constructed with the local rules:

Q cS c S Q
—y— D —<— —_——
— — —_—( —H—

. ¢S ¢ S e

McConville, Lattice structures of grid Tamari orders ('17)



NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

@) @)
@) @)
Te o
S| CV
2 (g
. \. g .)\O
O @) @)
S biclosed, v € 4
w(a, S) = walk constructed with the local rules:
Q cS c S Q
—r— G —<— —>—G——
——< D —_—( D——
. ¢S ¢ S e

McConville, Lattice structures of grid Tamari orders ('17)



NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

©) @) @)
S biclosed, v € 4
w(a, S) = walk constructed with the local rules:
o €S €S o
—r— G —<— —>—G—)—
——< D —_—( D——
. ¢S ¢ S e

McConville, Lattice structures of grid Tamari orders ('17)



NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

©) @) @)
S biclosed, v € 4
w(a, S) = walk constructed with the local rules:
o €S €S o
—r— G —<— —>—G—)—
——< D —_—( D——
. ¢S ¢ S e

McConville, Lattice structures of grid Tamari orders ('17)



NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

©) @) @)
S biclosed, v € 4
w(a, S) = walk constructed with the local rules:
o €S €S o
—r— G —<— —>—G—)—
——< D —_—( D——
. ¢S ¢ S e

McConville, Lattice structures of grid Tamari orders ('17)



NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, v € 4
w(a, S) = walk constructed with the local rules:

Q cS c S Q
—y— D —<— —_——
— — —_—( —H—

. ¢S ¢ S e

McConville, Lattice structures of grid Tamari orders ('17)



NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

PROP. n(S) = {w(a,S) | a € @1} is a non-kissing facet.

McConville, Lattice structures of grid Tamari orders ('17)



EXM: BINARY SEARCH TREE INSERTION AGAIN

inversion set of 2751346




EXM: BINARY SEARCH TREE INSERTION AGAIN

inversion set of 2751346




EXM: BINARY SEARCH TREE INSERTION AGAIN

inversion set of 2751346




NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

PROP. n(S) = {w(a,S) | a € @1} is a non-kissing facet.

THM. The map 7 defines a lattice morphism from biclosed sets to non-kissing facets.

McConville, Lattice structures of grid Tamari orders ('17)






NON-KISSING LATTICE

THM. For a gentle quiver ) with finite non-kissing complex C,(Q), the non-kissing
flip graph is the Hasse diagram of a congruence-uniform lattice.

Palu-P.-Plamondon, Non-kissing complexes and t-tilting for gentle algebras ('177)

Much more nice combinatorics:

e join-irreducible elements of £, (Q) are in bijection with distinguishable strings
J)

e canonical join complex of £, (Q) is a generalization of non-crossing partitions
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FINITE COXETER GROUPS

Humphreys, Reflection groups and Coxeter groups ('90)
Bjorner-Brenti, Combinatorics of Coxeter groups ('05)
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W = finite Coxeter group

Coxeter fan
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A ={a; | s € S} = simple roots
d = W(A) = root system
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FINITE COXETER GROUPS

W = finite Coxeter group
Coxeter fan

fundamental chamber

S = simple reflections

A ={as | s e S} = simple roots
d = W(A) = root system

O = & NR-y[A] = positive roots

permutahedron
weak order = u <w <= Jv e W, uwv =w and {(u) + {(v) = {(w)




EXAMPLES: TYPE A AND B

TYPE A, = symmetric group &,,;1 TYPE B,, = semidirect product G,, ¥ (Zs)"

S={G,i+1)]ie[n]} S={6,i+1)]i€n—1}U{x}
A={ej1—e¢ |i€n]} A={ei1—e|ien—1}U{e}
roots = {e; —e; | 4,5 € [n+ 1]} roots = {xe;, *e; | 4,7 € [n]} U{xe; |i € [n]}

V= A{S e | i€} VoA e )

[pack to cluster algebras|




